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Abstract

Recent developments in both hardware and software have made it
worthwhile to consider embedding intelligence in storage to handle
general purpose processing that can be offloaded from the hosts. In
particular, low-cost processing power is now widely available and
software can be made robust, secure and mobile. In this paper,
we propose a general Smart Storage (SmartSTOR) architecture in
which a processing unit that is coupled to one or more disks can
be used to perform such offloaded processing. A major part of
the paper is devoted to understanding the performance potential of
the SmartSTOR architecture for decision support workloads since
these workloads are increasingly important commercially and are
known to be pushing the limits of current system designs. Our
analysis suggests that there is a definite advantage in using fewer
but more powerful processors, a result that bolsters the case for
sharing a powerful processor among multiple disks. As for soft-
ware architecture, we find that the offloading of database opera-
tions that involve only a single relation to the SmartSTORs is far
less promising than the offloading of multiple-relation operations.
In general, if embedding intelligence in storage is an inevitable ar-
chitectural trend, we have to focus on developing parallel software
systems that can effectively take advantage of the large number of
processing units that will be in the system.

1 Introduction

Typical I/O devices consist of the physical device hardware (e.g.,
disk platters, read/write heads), device specific electronics (e.g.,
sense amplifiers) and generic electronics (a general purpose or spe-
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cial purpose embedded microprocessor or processors). With the
rapid growth in processing power per processor (estimated at a rate
of 60% per year [11]), it is reasonable to consider implementing
and treating the processing power placed in a disk controller as
general purpose, and not just as a dedicated microprogrammed em-
bedded controller. For instance, a 33 MHz ARM7TDMI embedded
processor has recently been used to implement all the functions
of a disk controller, including the servo control [3]. If a moder-
ately powerful general purpose microprocessor is combined with
a reasonable amount of local memory, and placed either in a disk
controller or a storage controller (i.e., a controller which controls
multiple devices), then there will exist a general purpose outboard
CPU with substantial excess processing capacity.

Recent advances in software technology make using this pro-
cessing capacity easier than previously. In particular, software fault
isolation techniques [23] as well as robust and secure languages
such as Java [9] enable applications to be effectively isolated so
that they can be safely executed on a machine without causing ma-
licious side effects. Recent emphasis on architectural neutrality and
the portability of languages [9] further enhances code mobility and
eases the way for code to be moved to different machines for execu-
tion. For example, in SUN’s Jini framework [20], application code
can be downloaded to the device as needed. The convergence of
these hardware and software developments provide an opportunity
for a fundamental shift in system design by allowing application
code to be offloaded to the peripherals for execution.

In this paper, we propose a general architecture forSmart Stor-
agein which a processing unit that is coupled to one or more disks
can be used to perform general purpose processing offloaded from
the host. The main motivation for SmartSTOR is that many of
today’s storage adapters and outboard controllers already contain
several general purpose commodity processors that are needed to
handle functions such as RAID [6] protection. Implementing Smart
Storage would amount to enhancing these adapters and controllers
to perform some general purpose processing. Besides allowing pro-
cessing to be offloaded from the host processor, the Smart Storage
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architecture also reduces data movement between the host and stor-
age subsystem. In addition, it allows processing power to be auto-
matically scaled with increasing storage demand. Other advantages
of embedding intelligence in storage include simplifying the costly
task of system management [5].

There have been some recent proposals for embedding in-
telligence in disks [10] and these include the Intelligent Disk
(IDISK) [16] and the Active Disk [1, 18]. The processors that can
be used in these disk-centric proposals are subject to the power
budget and stringent cost constraints of the disk environment - gen-
erally disks are fungible and are sold almost entirely on the basis
of price. The market for high cost/high performance/high function-
ality disks is very limited, and thus prices for disks in this market
segment are higher than they would otherwise be due to the loss of
efficiencies of scale. On the other hand, SmartSTOR, by operating
at the level of the storage (i.e., multiple device) controller, can of-
fer processing units that are more substantial and therefore easier
to effectively use. Moreover, by allowing a processing unit to be
coupled to one or more disks, the SmartSTOR architecture allows
for more flexible scaling of processing power to increasing storage
demand. In the nearer term, the SmartSTOR architecture is likely
to be easier to accomplish because increasing the processing power
on an adapter or controller to handle general purpose processing
is less risky than modifying the actual disk design. It also lowers
the barrier of entry and opens up the architecture to the creativity
of more than just the few disk companies. Finally, it separates the
manufacturing of low cost disks (most of which go into PCs) from
high performance controllers (which can go into servers, clusters
and mainframes, and which are relatively price-insensitive).

The idea of moving processing closer to the disk was studied
extensively in the form of database machines during the late 1970s
and early 1980s [7, 13]. Most of those database machines relied on
costly special-purpose hardware which had to be specifically pro-
grammed and which prevented the database machines from taking
advantage of algorithmic advancements and improvements in com-
modity hardware. In addition, the reliance on highly-specialized
hardware made it difficult to develop succeeding generations of the
system so that it was not worthwhile to expend significant effort
programming these machines. In contrast, the SmartSTOR archi-
tecture leverages commodity general purpose hardware which al-
lows the system to track the continual improvements in both hard-
ware and software. In particular, a SmartSTOR can be based on
a standard CPU platform (e.g.,PowerPC, MIPS, X86,etc. ), for
which there are extensive software tools, a great deal of support,
and a long projected life. In addition, the technology that is now
available for developing portable and architecturally-neutral soft-
ware can help reduce the need to program specifically for any par-
ticular implementation of the SmartSTOR architecture. Further-
more, shared nothing database algorithms and technology have ma-
tured to the point where we should be able to exploit some of the
parallelism present in the SmartSTOR architecture.

Essentially, we envision a system in which the host supervises a
number of SmartSTORs, each of which consists of a powerful pro-
cessing unit, a useful amount of local memory, and a number of I/O
devices, usually disks. The host processor may generate tasks spe-
cific to one SmartSTOR (i.e.,only needing data local to that Smart-
STOR) and delegate that work to the SmartSTOR, which would
then deliver the result to the host. Alternatively, the SmartSTOR
can be handed more complicated tasks that require coordination
with other SmartSTORs. If the generation and delegation of these
tasks can be sufficiently automated and reliable, and if the load bal-
ancing is successful, then the processing power of the SmartSTOR
CPUs and the host become additive, and the result is a much more
powerful system.

An essential element to the success of the Smart Storage ar-
chitecture lies in convincing the software developers that Smart-
STOR is a viable and attractive architecture. Projecting the per-
formance potential of the SmartSTOR architecture is an important
first step in this direction. Since decision support workloads are
increasingly important commercially [4], a major part of this re-
port is devoted to understanding how these workloads will per-
form on the SmartSTOR architecture. In particular, we evaluate
the performance of the Transaction Processing Performance Coun-
cil Benchmark D (TPC-D) [21], which is the industry-standard de-
cision support benchmark, on various SmartSTOR-based systems.
Our methodology is based on projecting SmartSTOR performance
from current system performance and parameters. More specifi-
cally, we use the system configurations of recent TPC-D results to
determine the number of SmartSTORs that will be needed. In ad-
dition, we examine the query execution plans from two recently
certified TPC-D systems to establish the fraction of work that can
be offloaded to the SmartSTORs. We also use recent TPC-D results
to empirically derive the system scalability relationship so that we
can estimate the effectiveness of distributing a query among many
SmartSTORs. There are clearly limits to this projection approach
but we believe that it is the most effective and appropriate method-
ology at this early stage.

The rest of this report is organized as follows. In the next sec-
tion, we describe the hardware and software architecture for Smart-
STOR. In Section 3, we present the methodology used to project the
performance of TPC-D on systems with SmartSTOR. Performance
analysis results are presented in Section 4. Section 5 concludes this
report. Appendix A contains a brief overview of the TPC-D bench-
mark whilst Appendix B contains the query execution plans of all
17 TPC-D queries taken from a recently certified TPC-D setup.

2 The SmartSTOR Architecture

The proposed Smart Storage architecture consists of a process-
ing unit that is coupled to one or more disks. Figure 1 depicts
such an architecture. We define thecardinality of a SmartSTOR
to be the number of disks it contains. A SmartSTOR with a car-
dinality of one contains asingle diskand is referred to as SD. n
our performance projection, SD is conceptually equivalent to an
IDISK/Active Disk. When a SmartSTOR containsmultiple disks,
we refer to it as MD.

The success of the SmartSTOR architecture hinges on the avail-
ability of software that can take advantage of its unique capabili-
ties. Figure 2 shows a spectrum of software options, each having
different performance potential and requiring different amounts of
software engineering effort. At this point in time, it is not apparent
which software architecture, if any, will provide enough benefits to
justify its development cost but through the performance projection
that we will perform later in this report, we hope to gain some un-
derstanding that will help developers reach their own conclusions.

Intuitively, data intensive operations like filtering and aggrega-
tion should be offloaded to the SmartSTOR. More generally, op-
erations that rely solely on local data belonging to a single base
relation are good candidates for offloading. We refer to thissingle-
relationoffloading as SR. Such operations are the basis of database
queries and includes table/index scan, sort, group by and par-
tial aggregate functions. Basically, SR includes all single-relation
operations before a join or a “table queue”, which is a mecha-
nism through which the database management system (DBMS) dis-
tributes data among its agents.

Although single-relation operations are the basis of database
queries, a typical decision support query involves a lot more than
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Figure 1: SmartSTOR Hardware Architecture.
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Figure 2: Possible Software Architectures.

just these basic operations. In order to distribute more process-
ing to the SmartSTORs, we have to consider offloading multiple-
relation operations such as joins that may involve data in one or
more SmartSTORs. Suchmultiple-relationoffloading is referred
to as MR. At the extreme end, this is functionally equivalent to
running a complete shared-nothing DBMS [8, 17] such as IBM’s
DB2/EEE [15] and an operating system on each SmartSTOR. The
main shortcoming of running a shared-nothing DBMS on each
SmartSTOR is the hefty resource requirement of the full-fledged
DBMS. In this case, using SmartSTORs with more substantial pro-
cessing unit shared among multiple disks is likely to be more effec-
tive than an IDISK/Active Disk setup. It may be possible to trim
the shared-nothing DBMS to contain only the functionality prof-
itable for offloading but coming up with this and other software
architecture is an open research problem.

3 Projection Methodology

In this section, we outline the methodology that we use to assess
the effectiveness of the SmartSTOR architecture and the relative
merits of the various hardware and software organizations, partic-
ularly, SD (single disk), MD (multiple disk), SR (single-relation
offloading) and MR (multiple-relation offloading). There have
been some recent work on evaluating the performance of Active
Disks [1, 2, 18, 22] but these have concentrated on image process-
ing applications and basic database operations. Because decision
support workloads represent an increasing fraction of the commer-
cial workload [4] and are growing so rapidly as to be pushing the
limits of current system designs [24, 25], we focus primarily on
projecting how well they will perform on a SmartSTOR architec-
ture. Our projection is based on the Transaction Processing Perfor-

mance Council Benchmark D (TPC-D) [21], which is the industry
standard benchmark for decision support. A brief description of the
benchmark is provided in Appendix A. Readers who are interested
in the characteristics of the benchmark are referred to [12], which
contains a comprehensive analysis of the benchmark characteris-
tics and how they compare with those of real production database
workloads.

TPC-D version 2, which is substantially different from version
1, has been approved and must be used by vendors starting Febru-
ary 16, 1999. This report is based on version 1 since all the pub-
lished results are of this version. As soon as enough TPC-D ver-
sion 2 results are published, we plan to do a follow-up study to see
whether the same trends are observed with the new version. Be-
cause both the hardware and software technologies are advancing
rapidly, we decide to look at the more recent results, specifically
those that were published between July 1998 and January 1999.
We omit the very recent results because we believe that these very
recent setups have been so fine-tuned for running the benchmark
that attempting to lump them in with the other results would be
meaningless.

For instance, Figure 3 compares the query executions times for
two similar benchmark setups that were published in October 1998
and February 1999. Note that in the February 1999 run, the 17
queries have been sped up so dramatically that the two update func-
tions (UF1 and UF2) clearly dominate the run time. We believe that
such behavior results from the aggressive use of Automatic Sum-
mary Tables (ASTs) which are auxiliary tables that contain partially
aggregated data. When selecting the query execution plan, the op-
timizer will attempt to match queries to the ASTs and perform only
the necessary final aggregation. In other words, ASTs enable pro-
cessing to be effectively pushed to the database load phase, which
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Figure 3: Profile of Query Run Times for Two Similar TPC-D Se-
tups.

is not part of the TPC-D performance metric, so that very little pro-
cessing needs to be performed when executing the queries.

3.1 I/O Bandwidth

There are two likely major advantages to the SmartSTOR architec-
ture: (a) the amount of data that needs to be moved from the disks
to the host for processing should be significantly reduced; (b) the
actual processing can be offloaded from the host and done in paral-
lel by the many processors within the whole system. Since decision
support workloads are very data intensive, it is generally believed
that they will benefit substantially from the potential decrease in
I/O traffic. However, by considering the actual I/O bandwidth that
is consumed during the execution of the TPC-D benchmark, we
find that I/O bandwidth may not be that serious a bottleneck.

Based on measurements1 performed on several certified TPC-
D setups, we have been able to establish a simple rule of thumb
relating the TPC-D scale factor to the amount of physical I/Os re-
quired. More specifically, we find that for a database of scaleS, a
total of about3 � S GB of data are transferred between the host and
storage system during a TPC-D power test. With improvements
in the memory capacity of the host system and more sophisticated
database optimization, the constant3 is expected to gradually de-
crease over time. Our measurements also indicate that the peak
bandwidth requirement is about 3.3 times the average. Therefore,
we can estimate the I/O bandwidth consumed during a TPC-D run
by:

Average I/O bandwidth � 3 � S
total run time

Peak I/O bandwidth � 10 � S
total run time

1Internal measurements taken in IBM benchmark labs.

Note that these rules of thumb are based on measurements con-
ducted without the use of Automatic Summary Tables (ASTs).

In Table 1, we apply these rules of thumb to estimate the I/O
bandwidth consumed in some recent TPC-D benchmark runs. The
highest per node I/O bandwidth consumption (1251.50 MB/s peak)
is observed on a 32-processor system with a 12.5 GB/s system bus
and which can be configured with 32 PCI buses each having a peak
bandwidth of 528 MB/s. This puts the peak bandwidth consumed
at about 10% of the bandwidth available. The highest per proces-
sor I/O bandwidth consumption is about 48.43 MB/s peak and oc-
curs on an 8-processor system with a 3.2 GB/s system bus. This
system can be configured with eight 528 MB/s PCI buses. Such
results suggest that decision support workloads similar to TPC-D
may not impose extra I/O bandwidth burden over that required for
other workloads that today’s systems are designed to handle.

To further understand this rather surprising finding, let us ex-
amine the query execution plans from a recently certified TPC-D
setup. These plans are presented in Appendix B. Of the 17 TPC-
D queries, only Query 16 uses a table scan and it is of theSUP-
PLIER table which contains only about 0.1% of the total number
of records in the database. All the other accesses rely on an index
in one way or another. In this particular TPC-D setup, a total of
twenty-six indices are defined over the eight relations. Perhaps as
a reflection of the fact that the TPC-D benchmark has been well
studied and understood, there are many cases of index-only-access
in which all the required fields are defined in the indices. It appears
that the judicious use of techniques such as indices has been ex-
tremely effective at reducing the amount of I/O bandwidth required
to support a TPC-D-like decision support workload. Therefore, for
the rest of this report, we will concentrate on the offloading aspect
of SmartSTOR.

3.2 System Configuration

The first step in projecting the performance of TPC-D on the Smart-
STOR architecture is to determine the number of SmartSTORs that
will be in the system and the processing power that they will pos-
sess. As is typical of forward-looking studies, we assume that some
aspect of the system, in this case the number of drives, will remain
the same. Table 2 summarizes the relevant configuration informa-
tion for the recent TPC-D results. For each setup, we project the
number of SmartSTORs in the corresponding future system by:

num-SmartSTOR=
num-disk

cardinality

In order to describe the processing power available in the
SmartSTORs without using absolute and therefore time-frame de-
pendent numbers, we introduce the notion ofperformance per disk
(perf-per-disk), which is the effective processing power per disk
relative to the host processor.

perf-per-disk=
processing power per SmartSTOR

processing power of host processor� cardinality

The actual value of perf-per-disk depends on the cardinality, family
and generation of processors used, the power budget, the system
design,etc. and is open to debate. In general, we believe that if
the processor is embedded in the disk as opposed to the adapter or
outboard controller, it will tend to have lower performance because
of the smaller power budget and the much more stringent cost con-
straints in the disk environment. For an intelligent adapter or con-
troller, the embedded processor may perhaps be even as powerful
as a host processor, although that would unlikely be cost effective.
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Average Peak
System MB/s per

Node
MB/s per

Processor
MB/s per

Node
MB/s per

Processor
Sun Enterprise 3500 116.22 14.53 387.40 48.43
NEC Express 5800 HV8600 74.26 9.28 247.53 30.93
IBM Netfinity 7000 M10 36.65 9.16 122.17 30.53
IBM RS/6000 S70 54.97 4.58 183.23 15.27
IBM NetFinity 7000 M10 37.10 9.27 123.67 30.90
Compaq ProLiant 7000 41.27 10.32 137.57 34.40
NCR 4400 24.36 6.09 81.20 20.30

10
0G

B

Compaq Digital Alpha 4100 20.23 5.06 67.43 16.87
IBM RS/6000 SP model 550 10.76 2.69 35.87 8.97
Compaq Alpha Server GS140 42.75 4.27 142.50 14.23
Sequent NUMA-Q 2000 149.78 4.68 499.27 15.60
SGI Origin 2000 91.28 2.85 304.27 9.50
HP 9000 V2250 70.60 4.41 235.33 14.70
HP NetServer LXr 8000 25.42 6.36 84.73 21.20

30
0G

B

NCR 4400 22.84 5.71 76.13 19.03
Sun Starfire Enterprise 10000 375.45 5.87 1251.50 19.57
IBM Netfinity 7000 M10 9.81 2.45 32.70 8.17
Sequent NUMA-Q 2000 238.75 3.73 795.83 12.431T

B

Sun Starfire Enterprise 10000 281.34 4.40 937.80 14.67

Table 1: Estimated I/O Bandwidth Consumed during TPC-D.

System # Host
Processors # Disks Ratio

Sun Enterprise 3500 8 138 17.25
NEC Express 5800 HV8600 8 129 16.13
IBM Netfinity 7000 M10 4 94 23.50
IBM RS/6000 S70 12 215 17.92
IBM NetFinity 7000 M10 4 84 23.50
Compaq ProLiant 7000 4 84 21.00
NCR 4400 4 43 10.75

10
0G

B

Compaq Digital Alpha 4100 4 57 14.25
IBM RS/6000 SP model 550 96 816 8.50
Compaq Alpha Server GS140 40 512 12.80
Sequent NUMA-Q 2000 32 263 8.22
SGI Origin 2000 32 209 6.53
HP 9000 V2250 16 202 12.63
HP NetServer LXr 8000 4 89 22.25

30
0G

B

NCR 4400 4 63 15.75
Sun Starfire Enterprise 10000 64 1085 16.95
IBM Netfinity 7000 M10 128 928 7.25
Sequent NUMA-Q 2000 64 809 12.641T

B

Sun Starfire Enterprise 10000 64 1085 16.95
Average 31.16 363.42 14.99

Table 2: Number of Host Processors and Disks used in Recent TPC-D Setups.

Query 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

System 1 100.0 6.8 0.3 4.0 5.2 41.8 0.2 21.8 9.0 2.1 0.4 8.0 0.3 13.3 48.2 0.0 0.1

System 2 99.9 2.3 12.9 2.7 94.6 44.1 53.4 9.0 5.5 1.6 0.1 7.8 6.4 91.6 41.9 0.2 49.1

Table 3: Percent of Work that can be Offloaded by SR.
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In either case, the embedded processor is likely to be used also for
tasks, some of which are real-time, that are previously performed
in special-purpose hardware. Since it is premature to specify pre-
cise values for perf-per-disk, we perform sensitivity analysis on the
parameter in this paper.

3.3 SR Performance

Recent work has shown that single-relation operations such as SQL
select and aggregation can be very effectively offloaded to an Ac-
tive Disk [1]. However, a typical decision support query involves
a lot more than just single-relation operations. In most cases, the
results of the single-relation operations are combined through joins
to create new derived relations that are further operated on. There-
fore, determining the actual fraction of work that can be offloaded
by SR, and thereby the potential overall speedup, is non-trivial.

Our method for determining the fraction of work that can be
offloaded by SR is to analyze the query execution plans. The re-
sults presented in this paper are based on the query execution plans
from two recently certified TPC-D setups. The fraction of process-
ing that can be offloaded depends very much on the query execu-
tion plans selected by the query optimizer. In order to understand
the possible range of values, we consider both a shared-everything
and a shared-nothing DBMS. System 1 is a Symmetric Multipro-
cessor System (SMP) running IBM’s DB2/UDB [14], a shared-
everything DBMS, while System 2 is a cluster-based system run-
ning the shared-nothing IBM DB2/EEE [15].

Appendix B contains the plans from the first system. In our no-
tation, any sub-tree rooted by a rectangular box is a SR sub-tree; all
the operations in such a sub-tree can be offloaded by SR. Our goal
is to determine the fraction of work that the SR sub-trees represent.
Measuring the CPU time needed for each individual operation in a
query execution plan is extremely difficult because the operations
are executed simultaneously in parallel or in a pipelined fashion.
Therefore, we use the CPU costs estimated by the query optimizer
to determine the fraction of work that is represented by the SR sub-
trees. The results for all 17 queries in the two TPC-D setups are
summarized in Table 3.

From the table, Query 1 is the only query that can be offloaded
by more than 50% in System 1. Observe further that only 5 out
of the 17 queries can be offloaded by more than 10% in System 1.
System 2 is generally more amenable towards single-relation of-
floading but it is still the case that less than half of the queries can
be offloaded by more than 10%. According to Amdahl’s Law [11],
these statistics suggest that the performance potential of SR may
be limited. However, the fact that there is substantial difference
between the figures for the two setups suggest that there may be
considerable room for improving the plans generated to better take
advantage of the SmartSTOR architecture. This is an area that re-
quires further research.

Suppose thatf is the fraction of processing that can be of-
floaded by SR. Assuming that host and SmartSTOR processing are
maximally overlapped, the speedup that can be achieved by SR is:

speedup=
1

Max(1� f; f
s
)

where

s =
num-disk

num-host-proc
� perf-per-disk

is the aggregate processing power available in the SmartSTORs rel-
ative to that in the host. If we further assume that the system will be
intelligent enough to not offload operations when it does not make

sense to do so, the speedup is:

speedup= Max(1;
1

Max(1� f; f
s
)
)

As we shall see, even with such optimistic assumptions, the perfor-
mance potential of SR is rather limited.

Assuming that the current run time for queryi isQI(i), we can
project the run time for the query on a SmartSTOR architecture,
QI(i)0, by:

QI(i)0 =
QI(i)

speedup

The TPC-D benchmark defines both a power metric and a
throughput metric [21]. Since we are primarily interested in
speedups, we focus on the power metric, QppD, in this paper. In
determining the average performance improvement possible in a
SmartSTOR architecture with SR, we use the projected query run
times,QI(i)0s, to determine the speedup in QppD for each of the
recent 19 TPC-D systems. Then we take the arithmetic mean over
the 19 setups to obtain an average improvement in QppD. Note that
QppD includes the execution times of two update functions, which
we assume cannot be offloaded by SR. Also, as discussed in Ap-
pendix B, the definition of QppD limits the run time of any query
to be at most 1000 times shorter than that of the slowest query.

3.4 MR Performance

In general, when work is distributed across multiple processing
units, skew comes into play so that the performance of the sys-
tem scales sublinearly with the number of processing units. For a
well-understood workload such as TPC-D, we can try to distribute
the tuples in the base relations evenly across the SmartSTORs so
as to minimize any data skew. Therefore, for SR, the portion of
work offloaded is likely to be sped up by the extra processing power
available in the SmartSTORs. However, for more complicated op-
erations that involve redistributing tuples or that involve derived
relations, there is likely to be an unequal distribution of relevant
tuples across the SmartSTORs.

In order to project the performance of TPC-D when multiple-
relation operations are offloaded, we need to understand how effec-
tively the work can be distributed across the SmartSTORs,i.e.,we
need to understand the scalability of the system. Since we are not
aware of any generally accepted model of scalability for TPC-D,
we empirically derive a model by using the recent TPC-D results.
Because these results were obtained on systems with different pro-
cessors, we have to first normalize them. Let:

database efficiency=
QppD

SPECintbase95� num-host-proc

Some readers may balk at normalizing TPC-D performance by
SPEC numbers [19] but we are not aware of any better alternative.

Figure 4 plots the database efficiency of the recent 300 GB
TPC-D results. We choose to use the 300 GB results because the
benchmark setups for this scale factor have a wide range in the
number of processors used. Observe that the set of points can be
roughly approximated by C

3
p

num-host-proc
, whereC is a constant.

We refer to this scalability rule as thecube root rulein that when the
number of processors is increased by a factor of eight, the per pro-
cessor efficiency is halved. We expect the scalability of the system
to improve with advances in both hardware and software. There-
fore, we use thefourth root ruleto consider future TPC-D system
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Figure 4: Scalability of TPC-D Systems.

scalability. With the fourth root rule, the per processor efficiency is
halved when the number of processors is increased by a factor of
16. Note that real workloads are unlikely to be as well understood
and tuned as the TPC-D benchmark and the processing will tend to
be less well distributed. In other words, real workloads will prob-
ably scale more poorly with the number of processors. Therefore,
we also consider thesquare root rule.

Using these scalability rules, we can establish a relationship
between QppD and the number of processors and their processing
power.

QppD

= database efficiency� SPECintbase95� num-host-proc

=
C

n

p
num-host-proc

� SPECintbase95� num-host-proc

= C � SPECintbase95� num-host-proc1�
1

n

where

n =

(
2 for the square root rule,
3 for the cube root rule,
4 for the fourth root rule.

In a SmartSTOR environment,

QppD

= C � SPECintbase95SmartSTOR�
num-SmartSTOR1�

1

n

= C � perf-per-disk� cardinality � SPECintbase95host�
num-SmartSTOR1�

1

n

Therefore,

QppD improvement=

perf-per-disk� cardinality �
�

num-SmartSTOR
num-host-proc

�1�
1

n

Using this result, the improvement in QppD can be projected
for each of the 19 recent TPC-D systems. As in the case for SR, we

take the arithmetic mean over the 19 setups to obtain the average
projected improvement in QppD.

4 Analysis of Performance Results

Based on the steps outlined in the previous section, we can analyti-
cally derive the improvement in QppD for the various hardware and
software alternatives. The results are summarized in Figure 5. For
MR, we plot the projected range of speedup with the square, cube
and fourth root scalability rules. The textured (bricked) regions in
the figure are bounded by the potential speedup with the square
and cube root rules. For SR, we plot the range of speedup given
by the two sets of offloading fractions discussed in Section 3.2 and
presented in Figure 3. Note that the figure makes no cost state-
ment. This is deliberate since accurate cost information are gen-
erally closely guarded and in any case, are very technology and
timeframe-dependent. Given a set of cost estimates, Figure 3 can
be used to determine whether SmartSTOR is a cost-effective ap-
proach and if so, the configuration that should be used.

Recall from our scalability model that for MR, TPC-D perfor-
mance tends to scale rather sublinearly with the number of proces-
sors used. This shows up in Figure 5 in that for the same perf-
per-disk, MR4D is projected to have a performance advantage over
MR2D and an even bigger advantage over MRSD. However, MD
is limited by the fact that there are no arbitrarily powerful proces-
sors. A natural question to ponder at this juncture is how does
IDISK/Active Disk compare with an intelligent adapter or con-
troller? IDISK/Active Disk is conceptually identical to an intel-
ligent adapter or controller of cardinality 1 with the exception that
it is likely to have a lower perf-per-disk. As discussed earlier, the
exact value of perf-per-disk is arguable but with the much more
stringent power and cost constraints in the disk environment, as
well as the fact that the processor may have to handle tasks pre-
viously performed in special-purpose hardware, we believe that a
value of 1

4
may be reasonable. For comparison, this ratio of pro-

cessing power is about equivalent to that between a 200 MHz Intel
Pentium MMX and a 575 MHz Compaq Alpha 21264 (based on
SPECintbase95). In this case, the projected improvement in QppD
ranges from 1.16 to 1.39 for SR and from 0.95 to 1.88 for MR.

As a rough guide, an interesting value of perf-per-disk for an
outboard controller may be:

perf-per-disk=
0:8

cardinality

Based on this, the projected speedup in QppD for cardinalities of 1,
2 and 4 with multiple-relation offloading ranges from 3.05 to 6.02,
from 2.15 to 3.58 and from 1.52 to 2.13 respectively. For single-
relation offloading, the corresponding ranges are 1.20-1.59, 1.17-
1.48 and 1.15-1.35. These results suggest that the performance
potential of MR is clearly superior to that of SR. An important
point to note here is that among all published TPC-D results so far,
the largest number of processors used is only 192 while the largest
number of disks used is over 1,500. If embedding intelligence in
storage is an unavoidable architectural trend, we have to focus on
improving the scalability of parallel software systems to effectively
take advantage of the large number of processors that will be in the
system.

5 Conclusions

In this report, we have proposed a general Smart Storage (Smart-
STOR) architecture in which general purpose processing can be
performed by a processing unit that is shared among one or more
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Figure 5: Projected Improvement in TPC-D Performance. To reduce clutter, we use MRSD, MR2D and MR4D to denote multiple-relation
offloading on SmartSTORs of cardinality 1, 2 and 4 respectively.

disks. In order to understand the performance potential of the
SmartSTOR architecture for decision support workloads, as well
as the various hardware and software tradeoffs, we projected the
performance of the industry-standard decision support benchmark,
TPC-D, on various SmartSTOR-based systems. In particular, we
performed measurements on several recently certified TPC-D sys-
tems to estimate the I/O bandwidth required for supporting such
workloads. We also examined the query execution plans from two
recent TPC-D systems to determine the amount of processing that
can potentially be offloaded to the SmartSTORs. In addition, we
analyzed recent TPC-D performance figures to empirically estab-
lish a scalability rule that can be used to project the effectiveness
of distributing query execution among a large number of Smart-
STORs.

The SmartSTOR architecture provides two key performance
advantages, namely a reduction in I/O movement between the host
and I/O subsystem, and the ability to offload some of the work from
the host processor to the processing units in the SmartSTORs. The
analysis performed in this paper suggests that I/O bandwidth may
not be that serious a bottleneck for TPC-D. Therefore the main ad-
vantage of using SmartSTORs for workloads similar to TPC-D ap-
pears to be the ability to offload some of the processing from the
host. By analyzing recent TPC-D results, we find that the perfor-
mance of decision support systems scales rather sublinearly with
the number of processors used. Therefore, our results indicate that
there is a definite advantage in using fewer but more powerful pro-
cessors. In view of this and the arguments presented in the paper,
we believe that intelligent adapters or controllers that share a sub-
stantial processing unit among multiple disks may be an interesting
architecture. As for software architecture, our evaluation shows
that the offloading of database operations that involve multiple re-
lations is far more promising that the offloading of operations that
involve only a single relation. In either case, if embedding intel-
ligence in storage is an inevitable architectural trend, we have to
develop parallel software systems that are more scalable so as to

effectively take advantage of the large number of processing units
that will be in the system.
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Appendix A

The Transaction Processing Performance Council Benchmark D
(TPC-D) [21] is a decision support benchmark that models the anal-
ysis end of the business environment where trends are analyzed and
refined to support sound business decisions. It consists of 8 rela-
tions, 17 read-only queries and 2 update functions. The 17 read-
only queries have different complexities, varying from single table
aggregation (e.g.,Query 1) to 8-way join (e.g.,Query 2).

Eightscale factors(SF) are defined – 1, 10, 30, 100, 300, 1,000,
3,000, and 10,000. The scale factor is approximately the logical
database size measured in GBs. Each benchmark configuration
may define different indices. With index and database storage over-
head (e.g.,free space), the actual database size may be much bigger
than the raw database size defined by the benchmark. Only results
measured against the same database size are comparable.

TPC-D introduces two performance metrics and a single
price-performance metric. They are the TPC-Dpower metric
(QppD@Size), TPC-Dthroughput metric(QthD@Size) and TPC-
D price/performance metric(Price-per-QphD@Size). The power
metric is defined as follows:

QppD@Size=
3600

19

p
(RI(1) � RI(2) � ::: � RI(17) � UI(1) � UI(2))

� SF

where

� RI(i) = MAX(QI(i), 1

1000
MAXQI).

� QI(i) is the run time, in seconds, of queryQi during the power
test.

� MAXQI = MAX(QI(1), QI(2), ..., QI(17)).

� UI(j) is the run time, in seconds, of update functionUFj dur-
ing the power test.

� Size is the database size chosen for the measurement and SF,
the corresponding scale factor.

The power test runs one query at a time in the order defined by
the benchmark. The 3600 translates QppD to a query per hour
measurement. Since QppD is a geometric mean of query rates,
each query or update function has an equal weight. If the perfor-
mance of any query or update function is improved by a factor of
2, the QppD@Size measurement will be increased by about 3.7%.
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If a system’s execution time scales linearly with SF, QppD at any
database size will be the same.

In the throughput test, one or more query streams are run con-
currently on the system. The throughput metric is defined as fol-
lows:

QthD@Size=
S � 17 � 3600

Ts
� SF

where

� S is the number of query streams used in the throughput test.

� Ts is the interval, in seconds, between when the query streams
are started and when the last query stream completes.

� Size is the same as in the definition of QppD.

Notice that QthD@Size is based on the arithmetic mean of the
query execution times. Thus queries with longer execution times
have more weight in the metric.

The TPC-D power metric and the TPC-D throughput metric are
combined to form a composite query-per-hour rating, QphD@Size,
which is the geometric mean of QppD@Size and QthD@Size. Fi-
nally, the price/performance metric is defined as:

Price-per-QphD@Size=
$

QphD@Size

Appendix B

In this appendix, we show the query execution plans of all 17 TPC-
D read-only queries from a recently certified TPC-D result on an
SMP system. In each execution plan, sub-trees rooted by rectan-
gular boxes are SR sub-trees; all operations in a SR sub-tree are
single-base-relation operations that can be offloaded by SR. Each
query execution plan tree is rooted by areturnoperation, which re-
turns the qualified tuples to the application. We use a double-circle
for tables and indices. These include base tables, base indices, and
optimizer generated subqueries and table functions. The legend is
as follows:

� AST: automatic summary table
ASTs are auxiliary tables that contain partially aggregated
data.

� FETCH: table scan through index

� FILTER: predicate evaluation
This is for the predicates that are not pushed down to the
scans.

� [HSjMSjNL]JOIN: [hashjmerge-scanjnested-loop] join

� [IX jTB]SCAN: [indexjtable] scan
IXSCAN is different from FETCH in that the former is an
index-only scan,i.e.,the corresponding table does not have to
be read to get the needed fields.

� L[M]TQ: local [merge] table queue
Table queue is a mechanism to exchange data among oper-
ations. The plans are from an SMP system, thus, all table
queues are local table queues. Regular LTQ collects data in
any order while LMTQ collects data in a specific order.

� GRPBY: group by

� RETURN: return to host

� SORT: sort

10
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Figure B-1: Execution Plans for Queries 1, 2 and 3.
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Figure B-2: Execution Plans for Queries 4, 5, 6 and 7.
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Figure B-3: Execution Plans for Queries 8 and 9.
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Figure B-4: Execution Plan for Queries 10, 11 and 12.
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Figure B-5: Execution Plans for Queries 13, 14 and 15.
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Figure B-6: Execution Plans for Queries 16 and 17.
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