
Jagged Bite Problem NP-Complete Construction

Kris Hildrum and Megan Thomas

Computer Science Division

University of California, Berkeley

fhildrum,mctg@cs.berkeley.edu

ABSTRACT

A hyper-rectangle is commonly used as a bounding predicate in tree-based access methods in
databases. To reduce the number of I/O's per query, we would like to reduce the volume of this
bounding predicate by cutting chunks out of the corners of the bounding hyper-rectangle. Ideally, one
would like to remove the largest hyper-rectangular chunk that does not contain any points. In this
paper, we formalize the problem and then show that the problem of �nding the largest possible chunk
is NP-complete. We accomplish this through a reduction from 3-SAT to our problem.

The Jagged-Bites Problem

The Jagged-Bites problem, de�ned after we provide some background, is signi�cant to a database access
method designer working with nearest neighbor queries because of the way that such queries interact
with rectangular bounding predicates (BPs). It was �rst suggested in [1].

Nearest neighbor queries work by �nding points within a given distance of the query point, in essence
asking expanding hyper-sphere queries. Figure 1 depicts a rectangular, 2-D BP and the circles of nearest
neighbor queries. If the query point is in the middle of a BP, it does not matter how small the BP
volume is; this node will be accessed. However, nearest neighbor queries starting from points just outside
a particular BP may or may not intersect that BP. For good performance on nearest neighbor query
workloads, the intersection of BPs with non-matching query spheres, like the two topmost queries in
Figure 1, must be minimized.

The data points of R-tree1 leaf nodes do not always �ll their minimum bounding rectangles (MBRs),
instead leaving noticeable gaps at corners of the MBRs. This suggests that query execution costs may
rise while checking the contents of the empty corners of the MBR, as the two top queries in Figure 1 do.
Combined with our intuition about the importance of reducing spherical intersections with BP regions
near the BP edges, this leads us to focus on attempting to remove empty areas from the corners of an
MBR BP, by \biting" into the volume of the BP from the corners.

Consider the points in the rectangle in Figure 1. A two-rectangle BP, pictured in Figure 2, can bind
those same data points more tightly than the MBR BP. However, the two-rectangle BP still leaves empty
areas at some corners of each rectangle of the BP in this �gure. This would be less problematic in a BP
that stored the MBR and the largest possible rectangular \bite" taken out of each corner. This type of
BP, which we call a \Jagged Bites" BP (JB), would describe the data in a node more precisely than a two
rectangle BP. The JB BP, pictured in Figure 3 for the same set of data points, stores the MBR of a set
of data, as well as a set of points identifying the bites. Just as the MBR of a data set can be represented
by storing two points, one for the highest values in each dimension, and one for the lowest, a corner bite

1An R-tree is a balanced tree-structured database access method for multi-dimensional data. Data is stored at the leaf
level of the tree, while upper levels contain minimum bounding rectangles and pointers to the corresponding sets of data
points (or MBRs, in the case of multilevel trees) that the MBRs bound. Query execution cost, measured in I/O's, increases
as the number of leaf level pages read into memory in order to check for data that actually satis�es the query increases.



2

Query

MBR BP

Query

Query

Query

Figure 1: Nearest Neighbor Queries And Rectangular BPs

Figure 2: A Two-Rectangle BP Figure 3: A Jagged Bites BP



3

can be represented by the associated MBR corner point and another point at the one \internal" corner
of the bite rectangle, which might not intersect any MBR hyper edge.

Here we prove that a polynomial-time algorithm for constructing an optimal JB bounding predicate
is not possible unless P = NP , so a heuristic JB BP construction algorithm is necessary.

De�nitions

Without loss of generality, we assume that all points are positive, and that the MBR corner we bite into
will be located at ~0. If this is not the case, the problem can be adjusted by shifting and re
ection so that
it holds.

We also assume that all the pi in all the points ~p are �nite, i.e., 8pi in all ~p; pi < C for some �nite
number C.

JB problem

JB (jagged-bite) problem:
Given a set P of n-dimensional points, maximize

n�1Y
i=0

vi = v0v1 : : : vn�1

subject to 8~p 2 P; 9i such that pi � vi.

JBP problem

To argue NP-hardness, we need to turn the above problem into a problem that has a yes/no answer. Call
this problem the JBP (jagged-bite-predicate).

JBP problem:
Given a number k, and a set of points P , does there exist a vector ~v such that:

�
Q
vi � k

� 8~p 2 P; 9i such that pi � vi?

Notice that these two problems are polynomial time equivalent. It is clear that solving jagged-bite
problem means one can solve the predicate version. To go the other way, use JBP as an oracle in a
binary search to �nd the maximum k, which gives an answer to the JB problem. For example, start
with k = 100, and if the answer is yes, double k. (Otherwise, halve k.) If the answer is no, then set
k = 1=2(100 + 200), then if the answer is yes, set k = 175 and so on until k is found. This will take a
logarithmic number of uses of the JBP oracle.

3-SAT

Given variables x0 : : : xn�1 and a formula � = c1 ^ c2 ^ : : : cm, where ci is the disjunction of three literals
(for example c = x3 _ :x2 _ x5), determine whether � is satis�able.

JBP is NP-hard

We show that a polynomial-time solution of the JBP problem provides a polynomial-time solution to the
3-SAT problem. Therefore, JBP is NP-hard.



4

The Reduction

Given the formula �, we create the following JBP problem by creating points of dimension 2n and setting
k.

Intuitively, our reduction will relate ~v to a satisfying assignment. The vector ~v will have a location
in it for each literal (a literal is a variable or its negation). Loosely, ~v = (x0;:x0; x1;:x1; : : : ;:xn�1),
where xi = 1 if xi is true, and xi = 2 if xi is false. Likewise, :xi is 2 if x1 is true, and :x1 is 1 if xi is
false. In the discussion that follows, v2i corresponds to the literal xi, and v2i+1 corresponds to :xi.

In order for the above description of ~v to make sense, certain values of ~v must be prevented. For
example ~v = (1; 1; 1; 2; 1; 2) would imply that both x0 and :x0 are true, which would not correctly model
the satis�ability problem. Some of the points created in the reduction exist only to force ~v to be well-
formed. Other points are created from the clauses of � such that satisfying a clause is equivalent to
�nding an i such that pi � vi for the corresponding point.

As a running example to clarify the procedure, we will use: � = (x1 _ x2 _ x3) ^ (:x1 _ :x2 _ :x3)

clause points Convert a clause c of � to a point ~p of dimension 2n in the following way.
p2i = 1 if xi appears in clause c, p2i+1 = 1 if :xi appears in clause c, and both are 0 otherwise.
Create one such point for each clause of �. The purpose of the clause points is to capture the
particular formula �. The clauses in our running example become the points (1; 0; 1; 0; 1; 0) and
(0; 1; 0; 1; 0; 1).

two-points For every i 2 [0; 2n� 1] we add the point pj =

(
2 j = i
0 otherwise

.

The purpose of the two-points is to ensure that all the vi will be � 2. In other words, to make
the JB hyper-rectangle into a hyper-square with all sides of length 2. This means, for example,
that a vector ~v = (1; 1; 1; 24) will not be possible. The example formula generates (2; 0; 0; 0; 0; 0),
(0; 2; 0; 0; 0; 0), (0; 0; 2; 0; 0; 0), (0; 0; 0; 2; 0; 0), (0; 0; 0; 0; 2; 0), and (0; 0; 0; 0; 0; 2).

one-points For every i 2 [0; n� 1] we add the point pj =

(
1 j 2 [2i; 2i+ 1]
0 otherwise

This means the points

(1; 1; 0 : : :0); (0; 0; 1; 1; 0; : : : ; 0) and so on. These points prevent a variable and its negation from
being false at the same time. Indirectly, this prevents both a variable and its negation from being
true. In terms of points, one-points prevent ~v from being (2; 2; 1; 2; : : :)

The example formula generates (1; 1; 0; 0; 0; 0), (0; 0; 1; 1; 0; 0), and (0; 0; 0; 0; 1; 1).

Choose k = 2n. Though listed last, this condition is vital. Combined with one-points and two-points,
this is the condition that forces ~v to have the desired structure of 1's and 2's.

The example formula k = 23 = 8.

In the next two sections, we will prove that our reduction is correct. That is, we must show that � is
satis�able if and only if JBP says yes.

� satis�able ) JBP says yes

We want to show that if the 3-SAT formula is satis�able, then the JBP algorithm will say yes. To prove
this this, we will �nd a ~v such that:

�
Q
vi � 2n

� For all points ~p, 9i s.t. pi � vi



5

For the � given above, one satis�ng assignment is x1 = true, x2 = false, and x3 = false. From this
assignment, the proof below would construct the ~v = (1; 2; 2; 1; 2; 1).
Proof

Choose v2i = 1 if xi is true, 2 otherwise. Similarly, v2i+1 = 2 if xi is true, 1 otherwise. Clearly,Q
vi = 2n � k = 2n, so the �rst condition is satis�ed.
Now, we must show that for all points ~p, 9j such that pj � vj . There are three cases:

� ~p is a clause point. We need to show that in one of the variables with a 1, ~v also has a one.
Fortunately, we know that at least one literal in the clause corresponding to that point is true.
Suppose that literal is xi (or :xi). Then v2i = 1, (or v2i+1 = 1) since we constructed ~v to ensure
that this would be true. Therefore, we have that p2i � v2i (or p2i+1 � v2i+1).

� ~p is of the form (. . . 0, 2, . . . 0) We selected ~v such that every element of ~v is less than or equal to
2, so this holds.

� ~p is of the form (. . . ,1, 1, 0, . . . 0) We constructed ~v such that one of every pair is 1, so this is
satis�ed.

JBP says yes ) � satis�able

Suppose that the JBP says yes. From the vector ~v, we will construct a satisfying assignment to �.
First, recall that we know that all vi are less than 2 (because of the two-points). Further, for every

pair v2i, v2i+1, we know that at least one of those pairs is less than one (because of the one-points). So,
we know that v2i�v2i+1 � 2. Finally, since we know that

Q
vi � 2n, we can conclude that v2i�v2i+1 = 2.

Since each of them has a maximum of two, we can conclude that of the pair v2i, v2i+1, exactly one must
be 2, and the other must be 1.

So, we construct a satisfying assignment in the following way: xi is true if v2i = 1, and xi is false if
v2i+1 = 1.

Now we show that for this assignment, each clause has at least one true literal, and so the formula is
satis�ed. Fix a clause c. This clause corresponds to a point ~p , and we know that for some i, pi � vi.
The only way pi � vi is if pi = vi = 1. (Since pi can be 0 or 1, and vi can only be 1 or 2.) If vi is 1,
then that means the corresponding literal is true, and if pi is 1, then that means that the corresponding
literal is in the the clause c, which means that c contains at least one true literal, so c is satis�ed. Since
this holds for every c, the formula as a whole is satis�ed.

NP-completeness

A problem is NP-complete if it is is NP-hard and in NP. We have shown that the JBP problem is NP-hard,
so to show it is NP-complete, we need only show that it is in NP.

A problem is in NP if it has a polynomial size witness that can be veri�ed in polynomial time. In this
case, ~v is a witness. It is easy to check, given ~v, that

Q
vi � k and that 8~p; 9i such that pi � vi. This

means that JBP is NP-complete.

References

[1] M. Thomas, C. Carson, and J. Hellerstein. Creating a Customized Access Method for Blobworld.
Submitted to ICDE 2000.


