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Abstract—If ubiquitously deployed, IP Multicast promises
to provide an efficient datagram service for an arbitrary
sending host to reach an arbitrary and dynamic set of des-
tination hosts anywhere in the Internet. Unfortunately, two
very difficult problems —interdomain multicast routing and
viable end-to-end multicast transport— have yet to be solved
and deployed satisfactorily.

This paper proposes a new multicast service model called
the Breadcrumb Forwarding Service(BCFS) synthesized
from the EXPRESS service model and the network compo-
nent of the Pragmatic Multicast protocol (PGM). Like EX-
PRESS, BCFS utilizes explicit-source group join and like
PGM, enhances the network forwarding architecture with
finer-granularity group control. To demonstrate the flexi-
bility and efficacy of BCFS, we developed a novel reliable
multicast transport protocol, Rainbow, for bulk data trans-
fer built on top of BCFS. In this approach, each receiver
runs an independent, window-based congestion control al-
gorithm modeled after TCP, thereby affording “TCP friend-
liness” while retaining the efficiency of IP Multicast. To en-
hance scalability and support asynchronous receiver behav-
ior, we employ a Digital Fountain at the source. In this pa-
per, we detail BCFS service model, describe how Rainbow
builds on this service model and on the Digital Fountain ab-
straction, and evaluate the resulting system. Our simulation
results show that Rainbow/BCFS performs well in a variety
of configurations and is “TCP friendly”.

I. INTRODUCTION

The cornerstone of the Internet’s resounding success is
arguably the end-to-end design principle [1], which says
that a given system function should operate at the lowest
communication layer in which it can be wholly and cor-
rectly realized. When applied to network design, an end-
to-end philosophy naturally leads to an architecture where
few constraints are placed upon the network itself — e.g.,
the network can drop, delay, replicate, and corrupt pack-
ets — and richer services like reliable, sequenced delivery
are defined and implemented at the edge of the network in
an “end to end” fashion. In the Internet architecture, the
IP network layer offers abest effortdelivery service and
richer transport services like TCP are built on this best-
effort IP service.

This split between a deliberately simple network layer
and a rich transport layer naturally leads to a robust and
scalable system. Because so few presumptions are placed
on the network, not only is such a network relatively easy
to engineer and deploy at large scale, but end-to-end pro-
tocol and application designers must conscientiously ac-
count for the indeterminacies of the underlying network.
In effect, the best-effort service model calibrates the de-
signer’s expectations for an environment like the Internet,
where consistent, homogeneous, and high-performance
communication is often the exception rather than the rule.

Thus, the end-system software that results tends to bero-
bust, and as a consequence, the Internet as a whole has
continued to scale gracefully despite an onslaught of new
and evolving constituent technologies that are decentrally
managed, heterogeneous, and imbued with mixed levels of
reliability.

Quite naturally, then, when Deering proposed IP Multi-
cast [2] — an enhancement of the traditional Internet ar-
chitecture for efficient multipoint packet delivery — he
very deliberately appealed to the end-to-end design prin-
ciple. Like unicast, Deering’s multicast service model is
best effort and richer services like reliability must be im-
plemented in the end-hosts. Unfortunately, whereas the
end-to-end approach has enjoyed tremendous success as
the bedrock of the unicast Internet, its adaptation to the
multicast has created two very difficult design problems
that have yet to be satisfactorily solved: First, because
multicast routing is so more complex than its unicast coun-
terpart, a viable interdomain multicast routing protocol has
yet to be developed; and second, transport services like re-
liable multicast are confounded by the best-effort network
model where packet drops can impact indeterminate sub-
sets of the receiver group. Despite more than a decade’s
worth of research, a viable interdomain multicast routing
has yet to materialize and a reliable multicast transport
protocol that offers congestion control and robust and scal-
able behavior remains a research problem.

The failure of many and varied research efforts to bear
truly viable end-to-end multicast transport protocols [3],
[4], [5] or truly viable wide-area, interdomain multicast
routing protocols [6], [7], [8] brings into question whether
the proposed multicast service model is in fact the appro-
priate core building block. None of the proposals for re-
liable multicast have satisfied the requirements for “safe”
deployment on the public Internet [9], e.g., is scalable, ro-
bust, congestion controlled, accommodates heterogeneity,
and so forth. Nor have the routing protocols provided the
degree of control, stability, flexible, robustness, and scala-
bility required by service providers to deploy them flexibly
in the complex peering relationships that will be required
for universal deployment.

Reacting to this mixed success, several researchers have
proposed alternative multicast service models. The EX-
PRESS service model, for example, abandons the IP Mul-
ticast anonymity of the class D group address [10]. In-
stead, EXPRESS advocates a model where a multicast tree
is rooted at a single source and receivers explicitly indicate
that source when subscribing to a multicast channel. Sim-
ilarly, the so-calledsimple multicastarchitecture [11] pro-
poses that the group addressing architecture be extended
to explicitly embed the IP address of a “rendezvous point”
in the multicast group. In either model, the normal unicast
routing infrastructure can be used to route multicast data
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and/or control traffic since unicast addresses are explicit
in the revised addressing architecture. The premise is that
this approach simplifies the so-calledrendezvous problem,
and because of several other attractive properties, purport-
edly induces a more viable multicast architecture.

Whereas EXPRESS and simple multicast re-examine
the multicast routing architecture from first principles,
other work advocates the strategic placement of intelli-
gence within the network infrastructure to solve multicast
transport problems. For example, RMTP proposes that
designated receiversbe placed within the network infras-
tructure to carry out localized retransmissions using sub-
tree multicasts to enhance scalability [12]; LRMP pro-
poses the deployment of logging receivers that provide a
similar function [13]; and the Reliable Multicast proXy
(RMX) architecture [14] relies on proxy agents within the
network to carry out format and protocol conversion to ac-
commodate network heterogeneity and effect congestion
control.

Rather than rely on service node deployment within
and across the network, other works address the prob-
lem of how one might jointly optimize the design of a
new multicast transport service with complementary end-
to-end transport protocols, thereby retaining many of the
merits of the end-to-end approach. The Lightweight Mul-
ticast Services (LMS) architecture [15] pioneered this ba-
sic approach. In LMS, multicast routers conspire to ar-
range the receivers into a tree-based hierarchy that is con-
gruent with the underlying network topology. This hierar-
chy is exposed to the end clients through a service model
extension that allows a host to send a packet to its logi-
cal parent in the tree. This extension in turn enables an
end-to-end multicast transport protocol that implicitly ex-
ploits the network topology to optimize its performance.
Similarly, the AIM architecture provides a rich addressing
structure that from within a single framework offers many
different forwarding services, e.g., subtree multicast, stan-
dard group multicast, anycast, and so forth [16]. On top
of AIM, several multicast transports have been fashioned,
including a reliable multicast transport. Finally, the ran-
domcast forwarding service was proposed as an alternative
to LMS to enhance robustness by breaking the hierarchy
of parent/child relationships with randomized forwarding
thus eliminating single points of failure. Reliable multicast
protocols can then be layered on top of the randomcast for-
warding service, e.g., Search Party and Rumor Mill [17].

A similar, though less modular, approach has been un-
dertaken in the PraGmatic Multicast (PGM) protocol [18].
Here, routers are enhanced with transport-level knowledge
and an end-to-end protocol is built on top of this transport-
aware network infrastructure yielding a monolithic solu-
tion for reliable multicast loss recovery. In PGM, receivers
generate NACKs to repair missing data, and PGM-aware

routers coalesce NACKs by maintaining per-packet se-
quencing state in the routers. This state, in effect, forms a
“trail of breadcrumbs” from the receivers missing a given
piece of data back to the source of that data. When the
source receives notification of new breadcrumb state, it
generates a retransmission that in turn follows the bread-
crumbs to each requesting receiver and simultaneously
tears down the breadcrumb state that represents that re-
transmission request. This loss recovery scheme is opti-
mal in the sense that retransmissions are sent to only those
receivers that are in need of that data.

Unfortunately, in PGM, the network service is not
clearly defined as a separable and reusable component net-
work forwarding service. Instead the network component
is a PGM-specific router optimization rather than a gen-
eral extension to the multicast forwarding service. We
believe that this codependence between the network and
transport layers is unnecessary. In fact, the PGM router-
assist component can instead be cast as an explicit-source
multicast service that is optimized for fast group establish-
ment and teardown. In this interpretation, PGM NACKs
represent explicit-source group joins, as in the EXPRESS
service model, and the source-generated PGM retransmis-
sions represent special data packets that simultaneously
induce group teardown. Thus, we can recast PGM as
a EXPRESS-likebreadcrumb forwarding service(BCFS)
and an end-to-end transport protocol layered on top of
BCFS, where PGM is but one of many possible transport
protocols. When viewed in this light, each PGM NACK
request corresponds to a multicast subscription interaction
in a framework in which multiple multicast groups provide
multicast loss recovery [19].

In this paper, we present BCFS as a synthesis of the
PGM and EXPRESS architectures and further describe a
novel reliable multicast transport protocol for bulk transfer
built on top of BCFS. Unlike most all other reliable mul-
ticasts including PGM, which transmit data using the nor-
mal IP multicast delivery service then recover from losses
using some other mechanisms, our protocol — which we
call Rainbow— is built exclusively upon the BCFS ser-
vice model. Also unlike previous works, Rainbow in-
cludes a congestion control algorithm that is modeled af-
ter that in TCP and thus provides a viable solution for
congestion-controlled reliable multicast. In this approach,
each receiver maintains its own congestion window and
runs slow-start and congestion avoidance [20] individu-
ally by driving the equivalent of the TCP “ack clock” with
breadcrumb requests. To enhance Rainbow’s scalability
and support asynchronous receiver subscriptions, Rainbow
utilizes a Digital Fountain [21] at the source to temporally
decorrelate what data to send from when it must be sent.
This approach allows receivers to exercise asynchronous
and autonomous behavior while simultaneously enjoying
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Fig. 1. Basic Service Model by BCFS.

the performance benefit of synchronous multicast commu-
nication.

Our core contribution lies not in the particular proto-
col described herein, which we continue to investigate and
refine, but rather in the overall architecture and general
direction of the approach — we readily admit that sev-
eral practical engineering issues and details for how BCFS
would be implemented are omitted from this first genera-
tion design. In a nutshell, BCFS/Rainbow brings together
several novel protocol idioms described elsewhere into a
new framework for multicast communication that not only
represents a viable method for deployment — as evidence
by Cisco’s efforts in developing and deploying PGM —
but provides a service that can be successfully used across
a wide variety of multicast applications and protocols. In
addition to supporting Rainbow, BCFS can effectively sup-
port a variant of PGM and, as described later, provides
a superset of the EXPRESS multicast service model and
thus shares many of its attractive properties. Finally, armed
with a BCFS network service, the Rainbow transport pro-
tocol represents a truly TCP-friendly reliable multicast
protocol.

In the remainder of this paper, we develop detail the
BCFS service model and describe how Rainbow builds on
this service model. In the next section, we describe the
BCFS service model and transport API. In section III, the
design of Rainbow is detailed and simulation results on ex-
ploring its performance is shown. We discuss future work
and conclude the paper in section V.

II. B READCRUMB FORWARDING SERVICE

A. Service Model

The Breadcrumb Forwarding Service(BCFS) unifies
the EXPRESS service model and the network component
of PGM into a single, flexible multicast service model.
To this end, BCFS provides a single-source, request-based
multicast service, where groups can be efficiently set up

and torn down in tandem with a data exchange, loosely
analogous to how T/TCP optimizes the establishment and
teardown of a TCP connection in a single response/reply
dialogue [22]. BCFS is thus optimized for ephemeral
groups that come and go rapidly and is consequently well-
suited as a building block for multi-group reliable multi-
cast schemes.

To avoid unnecessary transport-level dependence,
BCFS uses an abstract “label” to identify a particular re-
quest with respect to some source. The source/label pair
(S,L) thus induces an group-oriented address architecture
that is precisely analogous to the source/channel (S,E)
framework proposed in EXPRESS. BCFS differs from
EXPRESS, however, in that messages are sent from the
receivers toward the source along the multicast tree and
are suppressed if a message with the same label has al-
ready been sent up the tree. The group membership pro-
tocol is exposed to and run at the application layer, and
arbitrary messages can be piggy-backed onto these control
messages.

Figure 1 illustrates this breadcrumb forwarding model.
Request messages for some piece of data drop bread-
crumbs along the path to a source: the breadcrumbs, in
turn, guide the reply message from the source back to all
requesting receivers. Each breadcrumb is identified by an
(S,L) pair to differentiate the forwarding paths for all la-
bels in use.

To enhance the range of transport services that can be
built on top of BCFS, the forwarding model includes a
level-numbering scheme for selectively tearing down the
breadcrumb state. Each breadcrumb carries with it a level
number and each request and response includes a level
number in the header of the packet. A request packet is
propagated up the tree toward the sender only if its level
number exceeds the level number in the breadcrumb stored
at the router (or if no such breadcrumb exists). Similarly,
breadcrumb state is torn down by a response packet only
if the level number is equal to or exceeds the breadcrumb
level stored in the router.

An application interacts with BCFS through the pro-
totype interface defined in Figure 2.bcf bind allows an
application to register its interest in receiving breadcrumb
packets sent to a particular label or set of labels using an
address/mask pair. If multiple processes match a given la-
bel, a copy of the message is delivered to each process.

A request packet is sent viabcf request, which includes
the address of the source or tree root (i.e., the destination
of the message), a label, a level number, and an optional
message body. The message field in a request might in-
clude transport protocol payload like sequence numbers of
requested packets.

A reply message is sent bybcf reply. The reply con-
tains a label which is copied from the corresponding re-
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bcf bind(lab, mask);
bcf request(src,lab,lev,msg);
bcf reply(lab,lev,msg );
bcf recv(src,lab,lev,msg);

src: data source address
(destination of request).

lab: BCF label.
lev: level number.
msg: transport message.

Fig. 2. BCFS API for transport protocol

quest packet. The level field contains the level to be torn
down.

In summary, the sequence of events for effecting the
BCFS forwarding service are roughly as follows:
(1) Request:A receiver sends a request packet with a label
and level.
(2) Setup:A router that receives a request message main-
tains state for forwarding links and the level associated
with the label.
(3) Suppression:The router forwards the request message
toward the source if the label in the request message is new
for the that router or the level number is larger than the
highest level being maintained. Otherwise, the message is
not forwarded.
(4) Reply: A source, in response to the request message,
sends the requested data together with the label embedded
in the request message and a level number to be torn down.
(5) Forwarding: A router directs a reply message to the
links that are associated with the label.
(6) Teardown:The router removes the forwarding state of
the link associated with the label, if the reply message in-
cludes a level number that is larger than the level main-
tained by the router.

A.1 Label and Level Use

How applications and protocols generate labels depends
on how the protocol designer wishes to differentiate and
aggregate higher-layer messages. For example, in PGM,
the transport sequence number could be hashed with a port
number or some other application specific identifier to pro-
duce a label for a retransmission request. Of course, hash-
ing can result in address conflicts so applications must be
prepared to deal with superfluous data coming from other,
unrelated applications or sessions. But, if the label space is
large enough and the label generation functions are chosen
well, then the probability of collision will remain low and
not adversely impact protocol performance. Moreover, a
separate, independent label space exists for each source,
so the impact of collisions is quite limited. This contrasts
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Fig. 3. Request by the same label with different levels.: each
receiver receives different number of packets

with the existing IP multicast service model where any
host in the network can send arbitrary data to an arbitrary
group and collisions are prone to happen especially in the
absence of a globally consistent multicast address alloca-
tion scheme (which remains a difficult research problem).

The level numbering scheme controls request forward-
ing and tear-down timing. For example, Figure 3 shows
how a level number can be used to request a specific num-
ber of packets on some label in a receiver-specific fashion.
Here, a request message forN packets uses a level number
of N , whereN can vary among the different receivers, say
N1 : : : NR. Let M = maxk=1:::RNk. The request with
the largest levelM then reaches the source without sup-
pression, and as a result the source learnsM . The source
then generatesM packets with level numbers1 : : : M , and
each receiver receives exactly the number of packets re-
quested.

This level-numbering scheme interacts nicely with pre-
viously proposed schemes for FEC-based loss recov-
ery [23]. Here, the above scheme can be extended by hav-
ing each receiver generate a NACK for a block of packets
indicating how many packets were omitted from the block
(i.e., corresponding to theNk’s). Then the source would
generateM parity packets that recover the lost packets for
each receiver, no matter which packets were lost. Details
of this mechanism as applied to the traditional multicast
service model are described at length in [23].

B. Router Behavior

We call a router that supports BCFS aBCF Router. A
BCF Router maintains forwarding information associated
with labels (BCF Label). End hosts exchangeBCF Mes-
sages, which consist ofBCF Requestfrom receivers and
BCF Replyfrom the source.

To effect BCFS, routers maintain “breadcrumb state”
tied to a particular label, but they do not store a copy of
the message. The breadcrumb also includes level number
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that corresponds to the highest request level for that label
seen so far.

If a router receives a request message for a label that
is already stored in the router and the level number is
less than or equal to the level number stored in the bread-
crumb, then the message dropped, much as DVMRP [2],
EXPRESS [10], and PIM [6] join messages are coalesced
in a multicast distribution tree. Otherwise, the message is
propagated up the tree toward the source S using the nor-
mal unicast routing tables (i.e., along the reverse-path mul-
ticast route back to S). Thus, as in PGM, routers can fuse
requests by suppressing label messages if the state has al-
ready been established.

If the message makes it all the way to the source subnet,
the router incident to the source delivers it to that source
and an application (which has presumably bound itself to
the label in question viabcf bind() ) receives the mes-
sage. Because suppression is carried out on a per-label
basis, if different receivers send messages on the same la-
bel at the same time, only one message will be delivered
to the source.

Upon receiving a request, the source may respond with
an arbitrary message tied to the label in question. When
a source sends a “reply” packet bound to a particular la-
bel, the routers forward the packet along all links that have
breadcrumb state tied that label. As a side effect of for-
warding the packet, the breadcrumb state is deleted, which
allows future messages to be propagated back up the tree
and frees up router resources.

Unlike PGM NACKs, labeled request messages are not
sent in a hop-wise reliable fashion, which means that only
breadcrumb state needs to be maintained in the router, not
the entire message body. However, this also means that a
lost request message that never makes it to the source sup-
presses further messages sent for that label. To avoid this,
label state is refreshed in a soft-state fashion [24], [25].
To this end, when a router suppresses the propagation of
a label because of existing breadcrumb state, it verifies
that the breadcrumb state has been recently “refreshed”,
e.g., according to the scalable session messages algorithm
in [25]. If the label needs to be refreshed, a null mes-
sage for that label is sent toward the source. Thus, if the
source receives a specially marked null message, it knows
the original request message was dropped somewhere in
the network and can invoke a higher-layer recovery pro-
cess if necessary. By using data-driven state updates, the
router need not manage timers to otherwise trigger soft-
state updates.

To complement the soft-state update process, bread-
crumb entries may be deleted by the router if no update is
received after a certain time interval. Yet unlike the normal
multicast group management machinery, tearing down this
state is not critical because updates are data driven from

the receivers and generated only if a receiver is explic-
itly present. Thus, the pool of breadcrumbs could either
be timed out by a soft-state aging process or entries could
simply be reallocated using LRU replacement.

As defined, BCFS is a superset of and can implement
EXPRESS. To do so, each receiver periodically generates
a null request message addressed to some channel (S,L)
with level number 1, and the source sends data packets
as responses to label L with level number 0. Thus, the
breadcrumb state is maintained exactly as if it were an EX-
PRESS channel and packets are sent best-effort to every
receiver in the source-specific group identified by the la-
bel.

B.1 Setup and Request Suppression

A multicast channel is set up when a request packet ar-
rives at a router by updating state in the router.

If (S,L) in a request message is new for a router, the
router appends a new entry for the label and maintains the
link identifier for the link that the message came from as a
directed link. A level number is maintained coupled with
each forwarding link. The request message is then for-
warded toward a source.

On the other hand, if the router’s state already has a
entry for (S,L), the router explores the list of forwarding
links. If the link is not in the list, the link identifier is added
to the list of directed links tied to the label and a level num-
ber is also maintained for the link. If the link is already
designated as a directed link but the request has higher
level than that in the router’s state for the link, the level
number is updated. Only in the case where the level num-
ber is larger than any level numbers of forwarding links
tied to (S,L) is the message forwarded to the up-link. Oth-
erwise, the request message is suppressed.

B.2 Teardown and Forwarding

A forwarding path is torn down by deleting links from
the list of directed links in a router’s state when a reply
packet arrives at the router or a timer expires.

When a BCF reply message arrives at a router, the BCF
reply message is forwarded to links listed as directed links
tied to (S,L). Furthermore the router compare the level in
the message with the level of each directed link. If the level
number in the reply is equal to or larger than the level num-
ber for a link, the forwarding state of the link is deleted.
Otherwise, the link is retained as a directed link.

B.3 PGM-like Multicast over BCFS

To illustrate the power and flexibility of BCFS for struc-
turing the PGM network component as an independent and
reusable service, we briefly describe how a PGM-like re-
liable multicast can be easily adapted to BCFS. In this ap-
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proach, original data packets are sent to the entire multicast
group. When a receiver detects lost packets, a NACK is
sent via a BCF request message with a label generated by
hashing sequence number of the lost packet into the low-
bits of a label, with some well-known upper prefix (per-
haps selected as a hash of a session-specific identifier). In
response to the NACK, the source retransmits the lost data
via a BCF reply message with the same label. In turn, the
BCF routers forward the reply packet to precisely those
receivers that earlier sent a request.

The label generated by transport sequence numbers can
prevent conflicts between different NACKs. Even if the
label space is smaller than the sequence number space, the
label with sequential order can avoid conflict because a
source is expected to send data packets sequentially. In
PGM, the size of transmit window is large enough for label
space to avoid conflict because only data packets within
transmit window are provided for loss recovery.

III. R AINBOW ON DIGITAL FOUNTAIN

Not only can a PGM-like transport be built on top of
BCFS, but because BCFS is a generic network service,
other transport protocols can exploit it as well. In this sec-
tion, we describe a reliable multicast transport that differs
quite substantially from PGM even though it is built upon
precisely the same network service. In particular, our pro-
tocol exhibits a viable solution to one of the hardest prob-
lems in reliable multicast, namely congestion control.

Multicast congestion control is greatly confounded by
heterogeneity amongst receivers in a group: if using only
a single multicast group, a single, uniform sending rate
cannot satisfy the conflicting requirement of a diverse
set of receivers attached to the network at different bit
rates. That is, a congestion control strategy must force
the sender to transmit data according to the most con-
strained receiver [26], [27]. This solution is inherently
unsatisfying for large-scale deployment in heterogeneous
environments. Alternatively, the source can send to multi-
ple multicast groups allowing receivers to individually ad-
just their reception rate by joining and leaving multicast
groups [28], [29], [30]. Unfortunately, the granularity of
the layers limits the degree of adaptation and the design of
a control law that can manage receiver membership in a
scalable and robust fashion is a hard problem that has not
been satisfactorily solved.

To address these problems, we propose a reliable multi-
cast transport based on BCFS, calledRainbow, (ReliAble
multicast by INdividual Bandwidth adaptation using win-
dOW), which includes a congestion control scheme. Rain-
bow is designed to accomplish the following:
� A receiver receives data at its available rate as if there
were a unicast TCP connection between a source and a
receiver (i.e., the protocol dynamics are “TCP friendly”).

� The bottleneck link or links in a multicast distribution
tree are efficiently shared by data aggregation among many
receivers.
� The source need not manage state on a per-receiver ba-
sis, which would otherwise limit the protocol’s scalability.

A. Digital Fountain

The Rainbow congestion control scheme utilizes a Dig-
ital Fountain [21] on top of BCFS. To establish the context
for Rainbow, we first outline the Digital Fountain abstrac-
tion.

A Digital Fountain provides a robust mechanism for
“implicit” multicast loss recovery as it requires no feed-
back from the source. Here, a sender simply multicasts
a stream of data packets that are generated by the foun-
tain as a function of a fixed input (e.g., a file). A receiver
tunes in at any point and gathers up some fixed number of
packets. Once this critical number of packets is attained,
the receiver leaves the group and decodes the file from the
packets.

A key property of the digital fountain is that (almost)
any subset of packets may be used to decode thereby
alleviating any need for feedback from the receivers to
the source. From the perspective of a sender’s load, the
scheme is extremely efficient because a sender simply
transmits packets without involving any sort of loss recov-
ery scheme. Moreover, heterogeneity can potentially be
tamed since the fountain can stripe packets across multi-
ple rates and receivers can adjust their reception rate us-
ing multiple groups as described above. Though a scheme
based on receiver-driven adaptation across multiple mul-
ticast groups may eventually be shown to be viable, this
approach has not been fully and comprehensively devel-
oped and we felt it worthwhile to look for alternatives.

B. Congestion Control by using BCFS

In a heterogeneous environment, it is difficult to satisfy
all receiver bandwidth requirements with a single multicast
channel. To provide different data rates for each receiver
without deteriorating network condition, congestion con-
trol using BCFS is designed as follows:
� Individual TCP-like window control: Each receiver
independently executes TCP-like window control [20].
Data transmissions are triggered by the arrival of bread-
crumbs at the sender. In turn, packet arrivals at the re-
ceiver cause that host to increase its congestion window
(either by one for each packet received in slow start or one
packet per round-trip in congestion avoidance mode). The
invariant we maintain is that the number of breadcrumbs
outstanding is less than or equal to the congestion window.
Thus, the number of packets in transit from the source to
the receiver is bounded by the congestion window. In ad-
dition, the congestion window is controlled in response to
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lost packets according to measured congestion conditions
on the path from the source to that receiver. Since the win-
dow control behaves as if there were a TCP session be-
tween a source and a receiver, each receiver utilizes band-
width in a TCP-friendly way.
� Transmission request by BCF messages:A receiver
sends a TRQ (transmission request) as a BCF request us-
ing as many labels as its window size. This means that
receivers that have the same window size use the same la-
bels for TRQs, and a receiver that has a smaller window
uses a subset of the labels that are used by a receiver with
a larger window size. If receivers send TRQs with a la-
bel after another receiver sends a TRQ with the same label
and the TRQs sent later arrives at a BCF router before the
reply message of the former TRQ arrives, the TRQs are
aggregated and the copies of the identical data packet are
sent to all receivers which send the TRQs with the same
label. TRQ corredponds to ACK in TCP in the sense that
it is sent at packet reception. However it does not need to
include sequence numbers of received packets.
� Simple reply by a Digital Fountain source: By using
a Digital Fountain, the source can merely respond to each
TRQ by sending one packet after another as a BCF replie,
which includes the same label as the TRQ.

Figure 4 (a) illustrates Rainbow/BCFS data aggregation,
where two receivers have a shared bottleneck link, they
are probable to have the same window size and it is ex-
pected that most TRQs are aggregated at the link. As a
result, most of the data packets from a source are directed
to both receivers. In case that two receivers have bottle-
necks at down-links and one link has half the bandwidth
of the other link as shown in Figure 4 (b), the slower re-
ceiver receives half of the data directed to the faster re-
ceiver, copied at the diverging point. Through using Dig-
ital Fountain source, a receiver receives different packets
with high probability and reliability is guaranteed by con-
tinuing to send TRQs until enough packets arrival to re-
construct the original data,

Of course, there is no guarantee that all packets are de-
livered efficiently as in the example above, because win-
dow control at each receiver is not synchronized in any ex-
plicit coordinated way, and a receiver accesses data asyn-
chronously. But when receivers have a shared bottleneck
link, it could happen that the same packet loss pattern
causes same window control timing, and behave in a nearly
synchronous way. Simulation results in section IV demon-
strate this aggregation efficiency. As a result, more data
aggregation occurs at the shared link, networks can enjoy
efficient transmission of multicast, and receivers can re-
ceive data at the end-to-end available bandwidth.

(b)
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Fig. 4. Multicast Congestion Control using BCFS

C. Window Adaptation at each receiver

A receiver maintains as many labels as its window size
(typically labeled from 1 to window size), and sends TRQs
with a label and a level number (level 1 except for after loss
detection). The forwarding state that is tied to the label at
the routers on the path toward the receiver is torn down
by the reply packet from the source, because a source is
expected to send a reply with the same label and level. In
response to the arrival of a data packet, the receiver sends
another TRQ with the same label. Thus, the number of
outstanding packets conforms to the window size which is
also the number of labels in use.

Data transmission is initiated by a receiver’s TRQ via
a BCF request. At this point the receiver’s window size
is one, and only one label is maintained. In slow start
mode, at every data reception the receiver increases win-
dow size by one, which induces two TRQs with different
labels, one of which is the label in the reply packet and the
other is a new label (equal to the updated window size).
When packet loss is detected, window size is decreased in
half (labels are 1 to (original window size)/2) and the TRQ
remains pending until the number of outstanding packets
becomes less than the halved window size. The number of
outstanding packets is estimated byW �L�R, where W
is the original window size, L is the lost packet number,
and R is the number of packets received since loss detec-
tion. In case for failure of counting outstanding data be-
cause of consecutive packet loss, TRQ also resumes when
RTT/2 has passed after loss detection. The round trip time
between a source and a receiver is measured by time dura-
tion since TRQ is sent until a reply data packet arrives, and
mean duration is used for the RTT estimation as in TCP.
After restarting the TRQ clock, as in congestion avoidance
mode, window size is increased by one when the receiver
receives reply messages for all labels being maintained.
Thus, the window control algorithm mirrors that in TCP.

Packet loss is detected when a timer tied to a TRQ ex-
pires. This timer is set by the RTT estimation. We can
also detect packet loss when a later TRQ is replied be-
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fore an earlier TRQ for another label is still waiting for
a reply. When packet loss occurs, routers may retain the
forwarding state tied to the label of the lost packet without
being deleted. The state at the routers causes suppression
of a request packet with the same label if it is sent with
the original level. To avoid this suppression, when a re-
ceiver sends a TRQ with the label formerly tied to the lost
packet, a higher level is used for the TRQ (level 2 or higher
in case of consecutive packet loss), and the TRQ with the
higher level is expected to reach the source. The source
replies by sending data with as high level as the TRQ and
consequently the reply with the higher level can delete its
forwarding state tied to the label by one packet, even if
consecutive packet loss leads to state with the large level
number. After receiving the higher level reply, the receiver
uses the original level (level 1) again.

IV. EVALUATION

In this section, we present simulation results of several
simple network topologies to study how Rainbow adapts
to heterogeneous receivers and network conditions. In sec-
tion IV-A, we explore the basic behavior of Rainbow based
on a small scale session with simple topologies. In section
IV-B, we execute simulations for larger scale sessions and
compare results with RLC [29].

We implemented the BCFS network service and Rain-
bow/Digital Fountain on the network simulator ns-2 [31].
For forwarding of BCF request to the source, reverse path
toward a source is necessary. In ns-2, because shortest-
path routes are computed for the input topology, a reverse
path is available from each node via the route. Our BCFS
transport API can be deployed for other types of transport
protocols, and in fact we have implemented PGM/BCFS
as well.

A. Exploring the behavior of Rainbow

A.1 Evaluation Metrics

We investigate how Rainbow realizes each receiver’s
satisfaction under a heterogeneous environment, efficient
utilization of network resources. Thus, following metrics
are used to evaluate the congestion control scheme.

� Bottleneck bandwidth utilization: The data receiving
rate of a receiver against its end-to-end available band-
width shows how much it can satisfy heterogeneous re-
ceivers. A hundred percent utilization of available band-
width is not expected, because of the TCP-like window
control, which oscillates by its inherent nature.
� Data packets aggregation:A total packet number sent
to a cluster of receivers that share the same link character-
izes network resource efficient utilization. In ideal case,
all receivers under the same bottleneck link should share

all data packets with each other and the total packet num-
ber is equal to the number required for reconstruction.
� Intra fairness: Clusters of receivers under the same link
share the link fairly depending on down-link capacities.
Even if the shared link is not an end-to-end bottleneck,
the link might not have enough capacity to accommodate
all the down link bandwidth. In that case, the shared link
should be utilized efficiently by BCFS data aggregation
mechanism and data packets should be directed to each
down-link according to its bandwidth.

A.2 Topologies and Settings

We simulated two scenarios, shown in Figure 5 to in-
vestigate the points described above. The topology of Sce-
nario A-(i) consists of one shared up-link and five different
down-links. One down-link is narrower than the shared
up-link, but others have broader link capacity than the
shared bottleneck and each link has different transmission
delay. Through this topology, adaptation to heterogeneous
receivers and sharing bandwidth at a bottleneck link is in-
vestigated. Four faster receivers should receive the same
service at up-link capacity and the slowest receiver should
receive a portion of the data directed to faster ones at its
down-link capacity.

Scenario A-(ii) has two clusters of five receivers with
the shared backbone link (L1) by all receivers and the same
capacity down-link for each cluster. For the shared back-
bone link, we use three different bandwidth. Receivers in
both clusters should receive data at the same rate in all sit-
uations in terms of intra-fairness, and the degree of data
aggregation should change depending on the backbone ca-
pacity. We expect that as the backbone capacity becomes
narrower, the more packets are aggregated at the link and
all the receivers come to receive the same data packets if
the backbone becomes an end-to-end bottleneck.

In all of the experiments, the data packet size is 512
Bytes, and the simulation run comprises 2000 packets,
which means a receiver stops sending TRQs after receiving
2000 packets. To “randomize” each run, each receiver ini-
tiates its session at a uniformly random start time in [0...5]
seconds. All routers are RED gateways with a queue size
of 10 packets. In each scenario, 100 simulations are exe-
cuted with randomized different start time of receivers and
average results are shown in the following sections.

A.3 Scenario A-(i)

The results for scenario A-(i) are illustrated in Figure
6. The slowest receiver receives data at around 200 Kbps
against its 256 Kbps bottleneck capacity and the average
receiving rate throughout the duration of the simulation is
214.4 Kbps, with some variance at the slow-start phase.
This average is also calculated from all 100 simulation
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Fig. 5. Simulation Settings.

runs, and we use the average rate for later explanation of
simulation results. The receiving rate of all four faster re-
ceivers reaches around 350 Kbps against 400 Kbps up-link
bottleneck bandwidth after different increase rate in slow
start phase because of bandwidth and delay difference and
the average rate of four receivers is 329.7 Kbps.

In this scenario, four faster receivers should be dealt
with as if on a single multicast channel because they share
the identical bottleneck link. The overhead against the sin-
gle multicast session is 15.2 % ,which is calculated by four
times of the packet number sent from the source over the
total packet number received by the four faster receivers
during the stable condition, between 10 and 20 seconds in
the simulation. Furthermore, 1264.4 packets for the slow-
est receiver (R1) out of 1279.9 packets are shared with
other faster receivers, while at least one other receiver is
receiving data.

From this simulation, we have seen all receivers can re-
ceive at their appropriate rates according to each available
bandwidth through data aggregation at bottleneck link.
Some overhead exists even for receivers sharing a bottle-
neck link, but this overhead is not expected to grow as
the number of receivers increases, because the more re-
ceivers exist under the same bottleneck link, the higher the
probability TRQs are aggregated resulting in the same data
packet is sent to more receivers at the same time. The sim-
ulation results for larger session size is shown in section
IV-B.3.
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Fig. 6. Simulation Result (scenario A-(i)).

A.4 Scenario A-(ii)

In Table 1, the average receiving rate for each cluster
of five receivers and the average total packet number sent
from the source are shown for different bandwidth back-
bone (L1) cases. Figure 7 shows receiving rates of re-
ceivers in a cluster (C1) for three different backbone ca-
pacity cases. According to the average receiving rate in
Table 1, receivers on both subtrees (C1,C2) attain approx-
imately equal throughputs for all bandwidth cases.

When the shared backbone link has adequate bandwidth
(1 Mbps) compared with the down-links, all receivers re-
ceive data at the down-link capacity rate. The behavior of
packet aggregation can be similar to the situation in which
two different multicast channels exist for each subtree be-
cause the bandwidth of the backbone link is broad enough
to accommodate two different 256 Kbps multicast ses-
sions. However, the total number of sent packets is 3402.7,
which is less than the double of the necessary packet num-
ber for reconstruction from the source as shown in Table
1 because some packets are eventually aggregated for both
of clusters.

When the bandwidth of shared backbone link is 500
Kbps, its capacity is a little less than aggregation of down-
links bandwidth. Even in this case, the same receiving rate
is realized as in 1 Mbps case, as shown in both Table 1
and Figure 7. The reason is that more identical packets are
aggregated at the the backbone link and directed to more
receivers at the same time, which is also evident by less
total sent packets than 1 Mbps case in Table 1.

When the shared backbone link is 250 Kbps, the link
becomes the bottleneck and all receivers should be dealt
with as if on one multicast channel. In Table 1, a decrease
in overall packets shows that more data are aggregated at
the node of the backbone link.

As the results show, depending on the placements of
bottleneck link, Rainbow aggregates data packets in dif-
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ferent ways and as a result, traffic behaves as if a subtrees
of bottleneck link is formed as the same multicast channel
without explicit coordinated mechanism for synchroniza-
tion.

Table 1
SIMULATION RESULTS(SCENARIO 2).

L1 Bandwidth Average rate (Kbps) Packet number

1 Mbps C1 202.4 3402.7
C2 202.6

500 Kbps C1 201.6 3320.5
C2 200.7

250 Kbps C1 190.8 2849.1
C2 191.9

B. Comparison with RLC

In this section, we present simulation results that ex-
plore scalability to large session size, heterogeneity and
TCP fairness. We also compare results of Rainbow with
those of RLC [29], which is a TCP-friendly congestion
control scheme for layered multicast.

B.1 Evaluation Metrics

We use the following metrics to compare Rainbow with
RLC in terms of large session size, heterogeneous environ-
ments and TCP fairness.
� Overhead for large scale session:The total number of
packets sent to a cluster of receivers through the shared
bottleneck link characterizes efficient network resource
utilization. In ideal case, if there are N homogeneous re-
ceivers under the shared bottleneck link, the total number
of packets received by the N receivers is N times of the
number of packets transmitted through the shared bottle-

neck link:

overhead =
N � ps
P

N

i=1 pri
� 1 (1)

is used as a metric of overhead, whereps is the number of
packets transmitted through the shared link andpri is the
number of packets received by theith receiver.
� Bottleneck bandwidth utilization for heterogeneous
receivers: The data transmitted through a link against its
bandwidth shows utilizatoin of the link:

utilization =
average transmisson rate

link bandwidth
(2)

the utilization of heterogeneous links is used for compari-
son between Rainbow and RLC.
� Fair bandwidth share with TCP: We use the follow-
ing fairness metric proposed in [32] to investigate fair link
share of concurrent Rainbow and TCP flows.

fairness =
(
P

xi)
2

n
P

xi2
(3)

where,xi is normalized throughput of measured through-
putTi over fair throughputOi,

xi = Ti=Oi (4)

Fair throughput is a fraction of a shared link bandwidth
over a total number of Rainbow (or RLC) and TCP flows
We assume that the link should be shared evenly among
Rainbow (or RLC) and TCP flows and .

B.2 Topology and Settings

Figure 8 shows the topologies used in the simulations.
The topology in scenario B-(i) consits of one sender and
N receivers. We examine how overhead changes as the
number of receivers N increases. The N receivers are ho-
mogeneous: they have the same bandwidth and delay, and
the shared up-link is narrower than a down-link for each
receiver. Ideally all data packets should be aggregated at
the shared link and provided to all receivers, which results
in 0% overhead. However, unsyncronized behavior of each
receiver’s congestion control and packet loss at the shared
link can introduce overhead. The number of receivers N
varies from 4 to 125.

Scenario B-(ii) has one sender and 13 heterogeneous re-
ceivers with different bandwidths. Thenth receiverRn’s
link bandwidth isrn = 2�nr0 (n : �6:::6). Thus,� in-
dicates the degree of heterogeneity, which increases as�
increases. We investigate how Rainbow and RLC adapt to
such a heterogeneous environment and whether they can
realize high utilization for each link. In this scenario We
setr0 to 512 Kbps, and� varies from 0.0 to 0.5. When�
is 0.0, receivers are homogeneous with 512 Kbps links. In
the most heterogeneous case, or� = 0:5, the bandwidth of
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the narrowest link isr
�6 = 64 (Kbps) and the bandwidth

of the broadest linkr6 = 4 (Mbps).

Scenario B-(iii) and B-(iv) investigate TCP friendliness.
In Scenario B-(iii), there are only two receivers for TCP
and Rainbow (or RLC) respectively. Using this simple
topology we examine how Rainbow (or RLC) shares a link
with a TCP flow. For the shared link bandwidth, we use
from 128 to 512 Kbps.

On the other hand, scenario B-(iv) has multiple sender-
receiver pairs both for Rainbow (or RLC) and TCP under
the same shared link. Because the bandwidth of the shared
link is fixed, proper bandwidth share for each receiver is
determined by the number of sessions. Rainbow (or RLC)
and TCP have the same number of sessions,N . We study
how Rainbow and TCP share a link under this environment
of many concurrent flows with the fairness metrics as the
number of sessions2N varies from 4 to 16.

Data packets are 512 Bytes for all simulation runs. TCP
NewReno implemantation in ns-2 [31] is used. For RLC,
the base layer’s sending rate is 32 Kbps and synchroniza-
tion points for base layer come every second. For all sce-
narios, 50 simulation runs are executed and each session
starts at uniformly randomized time in [0...5] seconds.

B.3 Scenario B-(i)

Figure 9 (a) illustrates the results of overhead for Rain-
bow and RLC as the number of receivers incereases. Over-
head of RLC does not depend on the number of receivers,
because receivers conduct synchronized congestion con-
trol of joining or leaving a layer. The overhead of RLC
comes from lost packets, as shown in Figure 9 (b).

On the other hand, Rainbow’s overhead increases with
the number of receivers because of unsychoronized win-
dow control at each receiver. But this overhead does not
grow linearly with number of receivers. and converges at
around 25 %.

Intuition about this result is shown in Figure 10. If there
two receivers, executing unsynchronized window contrrol,
each receiver increases window size up to maximum value
W additively acccording to their bottleneck line and re-
duce window in half toW=2 in reaction to packet loss.
In this case, overhead are areas of diamonds. If there are
many receivers, the overhead exptends to sum of triangle
areas, which makes 25 % overhead traffic compared with
a single receiver case. Actual behavior is more compli-
cated. Some receivers are probable to suffer from shared
packet loss before maximum window, which leads to more
inefficiency. However this shared packet loss could result
in more synchronized behavior among receivers’ window
control and thereby reduce overhead.

B.4 Scenario B-(ii)

Figure 11 (a) shows the results of link utilization for
Rainbow and RLC as the heterogeneous index� increases.
Average utilization of all receivers are calculated and dis-
played. We also plot the maximum and minimum utiliza-
tion among receivers.

The worst resuls mostly came from the highest band-
width link (l6) and the result of the worst utilizatoin de-
grades as heteroneneity increases, where the bandwidth of
the highest link becomes broader. For Rainbow, the reason
of this poor utilization is considered that heterogeneous
link bandwidth causes many reordered packets. Reorder-
ing occurs because some TRQs are aggregated at an inter-
vening node and reply data packets for other receivers are
copied and sent to the link. but ohther TRQs have to go up
all through the tree to the source and then reply packets are
sent. This reordering makes receivers misunderstand that
packet loss occurs and fail to extend window size large
enough for high bandwidth links.

In case of RLC, it does not have slow start phase (expo-
nential increase) and synchronized points when join exper-
iments are executed for higher layer become infrequent.
This causes slow adaptation for higher bandwidth links.
For example, appropriate layer for 4 Mbps link is 7th or
8th layer and join experiments for 7th layer are executed
every 32 seconds based on parameters that are used for this
simulation.

We expected the utilization of RLC would become
worse as the heterogeniety increases, because prepared
layers limit the adaptation granularity. But in terms of av-
erage link utilization for all links, RLC seems realizing
more settled link utilization than Rainbow. However, it
is because RLC sends packets aggressively to low bit rate
link at the cost of packet loss. Figure 11 (b) shows the
loss rate of the link which suffers from packet loss most.
The lowest bandwidth link tends to suffer from packet loss
most and also record the best utilization. According to the
graph, as� increases and the lowest bandwidth link (l

�6)
becomes narrower, the best link utilization is going up but
the loss rate increases. This high loss rate is unaccept-
able considering coexistence with other traffic. Accord-
ing to this result, in order to lower loss rate, synchronized
points for RLC should be extended, but it causes slower
adaptation to link bandwidth and degrade link utilization
especally for high bandwidth case.

B.5 Scenario B-(iii)

According to the results above, we expect RLC’s behav-
ior is not TCP-friendly especially for low bit rate link. We
study how a link is shared between TCP and Rainbow (or
RLC) flows for different bandwidths. Figure 12 (a) shows
the fairness metric (3). Figure 12 (b) shows the ratio of



12

average receiving rate of Rainbow (or RLC) and TCP. A
value of more than 1.0 means Rainbow’s (or RLC’s) aver-
age rate is over TCP’s average rate. Packet loss rate at the
shared link is shown in Figure 12 (c).

According to the fairness metric Figure 12 (a), Rainbow
behaves fairly against TCP traffic, but RLC gets unfair
bandwidth share except of the case of 256 Kbps. Figure
12 (b) shows that this unfairness comes from the fact that
RLC get too much bandwidth share in case of 128 Kbps,
but less bandwidth share for 512 Kbps. As Figure 12 (c)
shows, the loss rate of RLC for low bit rate link also in-
dicates RLC’s aggressive behavior when sharing a single
queue of the shared link with a TCP flow. On the other
hand, RLC fails to get enough bandwidth share in case of
512 Kbps because of RLC’s infrequent adaptation interval
for higher layers.

B.6 Scenario B-(iv)

In scenario B-(iv), we investigate link sharing among
multiple Rainbow (or RLC) and TCP flows. The band-
width of the shared link is fixed but the number of sessions
varies. As a result, appropriate bandwidth share for each
sesion is similar to the former scenario B-(iii). Figure 13
(a),(b),(c) shows fairness metric, ratio of average receiving
rate, and packet loss rate respectively. Note that to com-
pare with Figure 12 x-axis is reverse in terms of shared
bandwidth.

The tendency of transition of fairness is similar to sce-
nario B-iii. Rainbow shows more settled fairness change
for different number of sessions. When the number of ses-
sion is four and bandwidth share is broader, RLC cannot
get enogh bandwidth share and fairness metric is worse.
As the number of sessions increases and bandwidth share
decreases, RLC gets more than its fair share of the band-
width. However degradation of fairness for RLC is less
than scenario B-(iii) as appropriate bandwidth share de-
creases. The reason is considered that when number of
sessions increase, the packet loss pattern seems random
from each session and behave equivalently to the model
described in [29].

V. CONCLUSION

In this paper, we have presented an alternative multi-
cast service model,BCFS, and congestion control for reli-
able multicast,Rainbow, built on top of the BCFS service
model.

As future work, we plan to tackle practical implementa-
tion issues for BCFS in terms of a router’s required mem-
ory and processing load, and describe more detailed proto-
col specification. Other efficient application examples on
BCFS will enforce the significance of the service model.
As for Rainbow, its scalability will be clarified by large-

scale simulation and mathematical analysis about data ag-
gregation mechanism.

We believe BCFS provides a new direction for multicast
forwarding service. By factoring PGM into a reusable net-
work component that is modeled after EXPRESS, we have
created a network service that is not only a good build-
ing block for PGM, but also provides a foundation for new
transport protocols like Rainbow.
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Fig. 9. Simulation Result (scenario B-(i)).
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Fig. 11. Simulation Result (scenario B-(ii)).
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Fig. 12. Simulation Result (scenario B-(iii)).
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Fig. 13. Simulation Result (scenario B-(iv)).


