
Axioms for Real-Time Logics 1

P.-Y. Schobbens a J.-F. Raskin b;c T.A. Henzinger b L. Ferier a

aComputer Science Institute, University of Namur, Belgium

bElectrical Engineering and Computer Sciences, University of California,

Berkeley, USA

cComputer Science Department, Free University of Brussels, Belgium

Abstract

This paper presents a complete axiomatization of two decidable propositional real-
time linear temporal logics: Event Clock Logic (EventClockTL) and Metric Interval
Temporal Logic with past (MetricIntervalTL). The completeness proof consists of an
e�ective proof building procedure for EventClockTL. From this result we obtain a
complete axiomatization of MetricIntervalTL by providing axioms translating MITL
formulae into EventClockTL formulae, the two logics being equally expressive. Our
proof is structured to yield axiomatizations also for interesting fragments of these
logics, such as the linear temporal logic of the real numbers (LTR).

Key words: Temporal logic, real-time, axiomatization, completeness.

1 Introduction

Many real-time systems are safety-critical, and therefore deserve to be speci-
�ed with mathematical precision. To this end, real-time linear temporal logics
[5] have been proposed and served as the basis of speci�cation languages.
They use real numbers for time, which has advantages for speci�cation and
compositionality. Several syntaxes are possible to deal with real time: freeze

? This work is supported in part by the ONR YIP award N00014-95-1-0520, the NSF
CAREER award CCR-9501708, the NSF grant CCR-9504469, the DARPA/NASA
grant NAG2-1214, the ARO MURI grant DAAH-04-96-1-0341, the Belgian National
Fund for Scienti�c Research (FNRS), the European Commission under WGs Aspire
and Fireworks, the Portuguese FCT under Praxis XXI, the Walloon region, and
Belgacom.

Preprint submitted to Elsevier Preprint 9 November 1999

quanti�cation [4,12], explicit clocks in a �rst-order temporal logic [11,21], inte-
gration over intervals [10], and time-bounded operators [17]. We study logics
with time-bounded operators, because those logics are the only ones which
have, under certain restrictions, a decidable satis�ability problem [5].

The logic MetricTLR+ extends the operators of temporal logic to allow the
speci�cation of time bounds on the scope of temporal operators. For example,
the MetricTLR+ formula�(p! �=1q) expresses that \every p event is followed
by some q event after exactly 1 time unit." It has been shown that the logic
MetricTLR+ is undecidable and even not recursively axiomatizable [4]. One rea-
son for this undecidability result is the ability of MetricTLR+ to specify exact
distances between events; these exact distance properties are called punctu-
ality properties. The logic MetricIntervalTL is obtained from MetricTLR+ by
removing the ability to specify punctuality properties: all bounds appearing
in temporal operators must be non-singular intervals. For example, the for-
mula �(p! �[1;2]q), which expresses that \every p event is followed by some q
event after at least 1 time unit and at most 2 time units," is a MetricIntervalTL

formula, because the interval [1; 2] is non-singular. The logic MetricIntervalTL

is decidable [3]. This decidability result allows program veri�cation using auto-
matic techniques. However, when the speci�cation is large or when it contains
�rst-order parts, a mixture of automatic and manual proof generation is more
suitable. Unfortunately, the current automatic reasoning techniques (based on
timed automata) do not provide explicit proofs. Secondly, an axiomatization
provides deep insights into a logic. Third, a complete axiomatization serves
as a yardstick for a de�nition of relative completeness for more expressive log-
ics (such as �rst-order extensions) that are not completely axiomatizable, in
the style of [16,20]. This is why the axiomatization of time-bounded operator
logics is cited as an important open question in [5,17].

We provide a complete axiom system for decidable real-time logics, and a
proof-building procedure. We build the axiom system by considering increas-
ingly complex logics: LTR [6], EventClockTL with past clocks only, Event-
ClockTL with past and future clocks (also called SCL [22]), MetricIntervalTL [3]
with past and future operators.

The method that we use to show the completeness of our axiomatization is
standard: we show that it is possible to construct a model for each consistent
formula. More speci�cally, our proof of completeness is an adaptation and
an extension of the proof of completeness of the axiomatization of TL [19].
The handling of the real-time operators requires care and represents the core
technical contribution of this paper. Some previous works presented axioms
for real-time logics, but no true (versus relative) completeness result for dense
real-time. In [12], completeness results are given for real-time logics with ex-
plicit clocks and time-bounded operators, but for time modeled by a discrete
time domain, the natural numbers. In [9,7], a completeness result is presented

2

for the qualitative (non real-time) part of the logics considered in this pa-
per. There, the time domain considered is dense but the hypothesis of �nite
variability that we consider 1 is dropped and, as a consequence, di�erent tech-
niques have to be applied. In [17], axioms for real-time logics are proposed.
These axioms are given for �rst-order extensions of our logics, but no rela-
tive completeness results are studied (note that no completeness result can be
given for �rst-order temporal logics.) Finally, a relative completeness result
is given for the duration calculus in [10]. The completeness is relative to the
hypothesis that valid interval logic formulae are provable.

2 Models and logics for real-time

2.1 Models

As time domain T, we choose the nonnegative real numbers R�0 = fx 2
Rjx � 0g. This dense domain is natural and gives many advantages detailed
elsewhere: compositionality [6], full abstractness [6], stuttering independence
[1], easy re�nement. These advantages, and the results of this paper, mainly
depend on density: they can easily be adapted for the rational numbers Q , the
real numbers R. To avoid Zeno's paradox, we add to our models the condition
of �nite variability [6] (condition (3) below): only �nitely many state changes
can occur in a �nite amount of time.

An interval I � T is a convex subset of time. Given t 2 T, we freely use
notations such as t+ I for the interval ft0 j 9t00 2 I with t0 = t+ t00g, t > I for
the constraint \t > t0 for all t0 2 I", # I for the interval ft > 0j9t0 2 I : t � t0g.
A bounded non-empty interval has an in�mum (also called greatest lower
bound, or left endpoint, or begin) and a supremum (also called least upper
bound, or right endpoint, or end). Such an interval is thus usually written
as e.g. (l; r], where l is the left endpoint, the rounded parenthesis in \(l"
indicates that l is excluded from the interval, r is the right endpoint, and
the square parenthesis in \r]" indicates that r is included in the interval.
The interval is called left-open and right-closed. If we extend the notation, as
usual, by allowing r to be 1, then any interval can be written in this form.
Two intervals I and J are adjacent if the right endpoint of I, noted r(I), is
equal to the left endpoint of J , noted l(J), and either I is right-open and J
is left-closed or I is right-closed and J is left-open. We say that a non-empty
interval I is singular if l(I) = r(I). In this case, we often use the notation = t
rather than [t; t]. Similarly, < l abbreviates (0; l), etc. An interval sequence

1 In every �nite interval of time, the interpretation of propositions can change only
�nitely many times.

3

�I = I0; I1; I2; : : : is an in�nite sequence of non-empty bounded intervals so
that (1) the �rst interval I0 is left-closed with left endpoint 0, (2) for all i � 0,
the intervals Ii and Ii+1 are adjacent, and (3) for all t 2 T, there exists an
i � 0 such that t 2 Ii. Consequently, an interval sequence partitions time so
that every bounded subset of T is covered by �nitely many elements of the
partition. Let P be a set of propositional symbols. A state s � P is a set of
propositions. A timed state sequence � = (�s; �I) is a pair that consists of an
in�nite sequence �s of states and an interval sequence �I. Intuitively, it states
the period Ii during which the state was si. Thus, a timed state sequence �
can be viewed as a function from T to 2P , indicating for each time t 2 T a
state �(t) = si where t 2 Ii.

2.2 The Linear Temporal Logic of Real Numbers (LTR)

The formulae of LTR [6] are built from propositional symbols, boolean con-
nectives, the temporal \until" and \since" and are generated by the following
grammar:

� ::= p j �1 _ �2 j :� j �1U�2 j �1S�2

where p is a proposition.

The LTR formula � holds at time t 2 T of the timed state sequence � , written
(�; t) j= � according to the following de�nition, where we omit � :

t j= p i� p 2 �(t)
t j= �1 _ �2 i� t j= �1 or t j= �2
t j= :� i� t 6j= �
t j= �1U�2 i� 9t0 > t ^ t0 j= �2 and 8t00 2 (t; t0), t00 j= �1 _ �2
t j= �1S�2 i� 9t

0 < t ^ t0 j= �2 and 8t
00 2 (t0; t), t00 j= �1 _ �2

An LTR formula � is satis�able if there exists � and a time t such that (�; t) j=
�, an LTR formula � is valid if for every � and every time t we have (�; t) j= �.

This logic was shown to be expressively equivalent to the monadic �rst-order
logic of the order over the reals [15].

Our operators U; S are slightly non-classical, but more intuitive: they do not
require �2 to start in a left-closed interval.

On the other hand, each of them is slightly weaker than its classical variant,
but together they have the same expressive power, as we show by providing
mutual translations below in sections 2.2.1 and 2.4.1. It is thus a simple matter
of taste. We will note the classical until as Û.

4

2.2.1 Abbreviations

In the sequel we use the following abbreviations:

� �1Û�2 � �1U(�2 ^��1) (� is de�ned below).
� �1U

+�2 � �1 ^ �1U�2, the \Until" re
exive for its �rst argument;
� �1U

��2 � �2 _ �1U+�2, the \Until" re
exive for its two arguments;
�
� � ?U�, meaning \just after in the future" or \for a short time in the
future". The dual of
 is noted K+ in [9], and it means thus \arbitrarily
close in the future". We don't introduce it, since we will see that due to
�nite variability,
 is his own dual.

� �� � >U�, meaning \eventually in the future";
� �� � :�:�, meaning \always in the future";
� their re
exive counterparts: ��;��;
� �1W�2 � �1U�2 _��1, meaning \unless in the future";
� its re
exive counterparts: W+, W�.

and the past counterpart of all those abbreviations:

� �1Ŝ�2 � �1S(�2 ^
�1);
� �1S

+�2 � �1 ^ �1S�2, the \Since" re
exive for its �rst argument;
� �1S

��2 � �2 _ �1S
+�2, the \Since" re
exive for its two arguments;

� �� � ?S�, meaning \just before in the past" or \arbitrarily close in the
past";

� ��� � >S�, meaning \eventually in the past";
� �� � :��:�, meaning \always in the past";
� their re
exive counterparts: ���;��;
� �1Z�2 � �1S�2 _��1, meaning \unless in the past";
� its re
exive counterparts: Z+, Z�.

2.3 Event-Clock Temporal Logic

The formulae of EventClockTL [22] are built from propositional symbols, boolean
connectives, the temporal \until" and \since" operators, and two real-time op-
erators: at any time t, the history operator /I� asserts that � was true last in
the interval t� I, and the prediction operator .I� asserts that � will be true
next in the interval t+ I. The formulae of EventClockTL are generated by the
following grammar:

� ::= p j �1 _ �2 j :� j �1U�2 j �1S�2 j /I � j .I �

where p is a proposition and I is an interval which can be empty, singular and
whose bounds are natural numbers (or in�nite). The EventClockTL formula �
holds at time t 2 T of the timed state sequence � , written (�; t) j= � according

5

6

-
time

1

value

of the

for p

timed

trace

sequence

:p[[p] :p] p [:p [p] p] :p

[:��p]/<1p[/=1p] />1p] /<1p]/<1p[/=1p]] /<1p] /<1p

event tick reset event reset

event

reset

unde�ned small big blocked small small blocked small

tick

event

[

clock

Fig. 1. A History clock evolving over time

to the rules for LTR and the following additional clauses:

t j= /I � i� 9t0 < t ^ t0 2 t� I ^ t0 j= � and 8t00 : t� I < t00 < t; t00 6j= �
t j= .I � i� 9t0 > t ^ t0 2 t+ I ^ t0 j= � and 8t00 : t < t00 < t + I; t00 6j= �

A .I� formula can intuitively be seen as expressing a constraint on the value
of a clock that measures the distance from now to the next time where the
formula � will be true. In the sequel, we use this analogy and call this clock a
prediction clock for �. Similarly, a /I� formula can be seen as a constraint on
the value of a clock that records the distance from now to the last time such
that the formula � was true. We call such a clock a history clock for �. For a
history (resp. prediction) clock about �,

� the next /=1� (resp. previous .=1�) is called its tick;
� the point where � held last (resp. will hold next) is called its event;
� the point (if any) at which � will hold again (resp. held last) is called its
reset;

� if � is true at time t and was true just before t (resp. and will still be true
just after t) then we say that the clock is blocked at time t;

� if � was never true before t (resp. will never be true after t) then the clock
is unde�ned at time t.

The main part of our axiomatization consists in describing the behavior and
the relation of such clocks over time. For a more formal account on the rela-
tion between EventClockTL formulae and clocks, we refer the interested reader
to [22]. We simply recall:

Theorem 1 [22] The satis�ability problem for EventClockTL is complete for

6

Pspace.

which is the best result that can be expected, since any temporal logic has
this complexity.

Example 1 �(p! .=5 p) asserts that after every p state, the �rst subsequent
p state is exactly 5 units later (so in between, p is false); the formula�(/=5 p!
q) asserts that whenever the last p state is exactly 5 units ago, then q is true
now (time-out).

2.4 Metric-Interval Temporal Logic

MetricIntervalTL restricts the power of MetricTLin an apparently di�erent way
from EventClockTL: here the real-time constraints are attached directly to
the until, but cannot be punctual. The formulae of MetricIntervalTL [3] are
built from propositional symbols, boolean connectives, and the time-bounded
\until" and \since" operators:

� ::= p j �1 ^ �2 j :� j �1ÛI �2 j �1ŜI �2

where p is a proposition and I is a nonsingular interval whose bounds are
natural numbers or in�nite. The MetricIntervalTL formula � holds at time
t 2 T of the timed state sequence � , written (�; t) j= � according to the
following de�nition (the propositional and boolean clauses are as for LTR):

t j= �1ÛI �2 i� 9t
0 2 t+ I ^ t0 j= �2 and 8t

00 : t < t00 < t0; t00 j= �1
t j= �1ŜI �2 i� 9t

0 2 t� I ^ t0 j= �2 and 8t
00 : t0 < t00 < t; t00 j= �1

Here, we have used the classical until to respect the original de�nition, but
this doesn't matter as explained in subsection 2.2.1.

Theorem 2 [3] The satis�ability problem for MetricIntervalTL is complete for
Expspace.

So although the logics are equally expressive, their translation must be di�cult
enough to absorb the di�erence in complexity. Our translation, presented in
section 5, indeed gives an exponential blowup of formulae.

2.4.1 Abbreviations

In the sequel we use the following abbreviations:

� �1Û�2 � �1Û(0;1)�2, the untimed \Until" of MetricIntervalTL.

� C� � :�Û� expresses that the next �-interval is left-closed.

7

� �1UI�2 � (�1 _ �2)ÛI�2.
� �I� � >ÛI�, meaning \within I";
� �I� � :�I:�, meaning \always within I";

and the past counterpart of all those abbreviations. The fact that we use the
same notations as in the other logics is intentional and harmless, since the
de�nitions are semantically equivalent.

Furthermore, now that we have re-de�ned the basic operators of EventClockTL,
we also use its abbreviations.

Example 2 �(q ! rŜ�5 p) asserts that every q state is preceded by a p state
of time di�erence at most 5, which is right-closed, and all intermediate states
are r states; the formula �(p ! �[5;6)p) asserts that every p state is followed
by a p state at a time di�erence of at least 5 and less than 6 time units. This
is weaker than the EventClockTL example, since p might also hold in between,
and of course because 5 units are not exactly required.

3 Axiomatization of EventClockTL

In section 4, we will present a proof-building procedure for EventClockTL. In
this section, we simply collect the axioms used in the procedure, and present
their intuitive meaning. Our logics are symmetric for past and future (a duality
that we call the \mirror principle"), except that time begins but does not
end: therefore the axioms will be only written for the future, but with the
understanding that their mirror images, obtained by replacing U by S, . by /,
etc. are also axioms. This does not mean that we have an axiomatization of the
future fragment of these logics: our axioms make past and future interact, and
our proof technique makes this interaction is unavoidable, mainly in axiom
(11).

3.1 Qualitative axioms (complete for LTR)

We use the rule of inference of replacement of equivalent formulae:

�$ �0 (�)

 (�0)
(1)

All propositional tautologies (2)

8

For the non-metric part, we use the following axioms and their mirror images:

:(U?) (3)

�U(^ 0)! �U (4)

(^ �)$
 ^
� (5)

�> ! (�:�$:� �) (6)

(U�)$ U� (7)

(S�)$
� _ (
 ^ (S��)) (8)

 U�$
(U��) (9)

�U ! � (10)

�((^
> !
) ^ (� !))! (
 ! �) (11)

They mainly make use of the
 operator, because as we shall see, it cor-
responds to the transition relation of our structure. Axiom (3) is the usual
necessitation or modal generalization rule, expressed as an axiom. Similarly,
(4) is the usual weakening principle, expressed in a slightly non-classical form.
(5), (6) allow to distribute
 with boolean operators. Note that the validity
of (6) requires �nite variability. (7), (8) describe how the U and S operators
are transmitted over interval boundaries. (9) gives local consistency conditions
over this transmission. (10) ensures eventuality when combined with (11). It
can also be seen as weakening the left side of the U to >. The induction axiom
(11) is essential to express �nite variability: If a property is transmitted over
interval boundaries, then it will be true at any point; said otherwise, any point
is reached by crossing �nitely many interval boundaries.

The axioms below express that time begins (12) but has no end (13):

���:�> (12)

> (13)

We have written the other axioms so that they are independent of the begin
or end axioms, in order to deal easily with other time domains (see subsection
4.4). This is why some apparently spurious
> occur above, e.g. in (11): they
are useful when the future is bounded.

Remark 3 Theorem 21 shows that the axioms above form a complete axiom-
atization of the logic of the real numbers with �nite variability, de�ned as LTR
in [6]. The system proposed in [6] is unfortunately unsound, redundant and
incomplete. Indeed, axiom F5 of [6] is unsound; axiom F7 can be deduced
from axiom F8; and the system cannot derive the induction axiom (11). To
see this last point, take the structure formed by R�0 followed by R, with �nite
variability: it satis�es the system of [6] (corrected according to [7]) but not the
induction axiom. Thus this valid formula cannot be derived in their system.

9

3.2 Quantitative axioms

For the real-time part, we �rst describe the static behavior; intersection, union
of intervals can be translated into conjunction, disjunction due to the fact that
there is a single next event:

.I[J�$.I� _ .J� (14)

.I\J�$.I� ^ .J� (15)

Since . is a strict future operator, the value 0 is never used:

: .=0 � (16)

If we do not constrain the time of next occurrence, we simply require a future
occurrence:

.>0 $ � (17)

Finally the addition corresponds to nesting:

.�m+n�$.�m .�n � (18)

.<m+n�$.<m .�n � (19)

The next step of the proof is to describe how a single real-time .I� evolves
over time, using
 and �. We use (20) to reduce left-open events to the easier
case of left-closed ones.

:(C�)! (.[l;m)
 �$.(l;m)�) (20)

:
 .=m (21)

C ! (
 .<m $.�m) (22)

� .<m $ ((.<m _ _�) ^�>) (23)

 ! .<m (24)

These axioms are complete for formulae where the only real-time operators
are prediction operators .I� and they all track the same (qualitative) formula
�. For a single history tracked formula, we use the mirror of the axioms plus
an axiom expressing that the future time is in�nite, so that any bound will be
exceeded:

 ! (� _ � />m) (25)

The description provided by these axioms are mostly expressed by the au-
tomaton of �gure 2, showing the possible evolution of history predicates.
This �gure will receive a formal status in lemma 22. Most consequences of

10

]

[

]]

]]
[

]

[

[]

�

:�

:��� /<1� /=1� />1�

Fig. 2. The possible evolutions of a history clock

these axioms can simply be read from this automaton: For instance, />1�!
(/>1� ^ :�)U

�
 /<1� is checked by looking at paths starting from />1�.

As soon as several such formulae are present, we cannot just combine their
individual behavior, because the .; / have to evolve synchronously (with the
common implicit real time). We use a family of axioms (and their mirrors) to
express this common speed. They express the properties of order and addition,
but expressed with di�erent clocks. Said otherwise, the ordering of the ticks
should correspond to the ordering of their events. We use U (or W) to express
the ordering: :pUq means that q will occur before (or at the same time as)
any p. E.g. in (26), the antecedent /=1� states that � ticks now, thus after of
together with . Then their events shall be in the same order: :�S . Similarly,
(30) says that if last � was less than 1 ago, and was even closer, than last
 was less than 1 ago as well.

/=1�! (/�1 $:�S (26)

(.<1 _) ^ : U
��! : .=1 �Z(.�1 _) (27)

(.<1 _) ^ : U
� /=1 �! :�Z .=1 _ :�Z (28)

/�1 ^ �! : .=1 �S (29)

/<1� ^ :�S ! /<1 (30)

/<1 ^ : S .=1 �! .<1� ^ :� (31)

3.3 Theorems

We will use in the proof some derived rules of LTR (and thus EventClockTL):

11

Lemma 4 The rules ofmodus ponens and modal generalization are derivable.

� �!

(32)

�

��
(33)

Proof.

� the rule of modus ponens (32) is derived from replacement (1) as follows:
from � we deduce propositionally � $ >; by (1) we replace � by > in
�! giving > ! which yields propositionally .

� the rule of modal generalization (33) (also called necessitation) is derived
similarly from (1) and (3): From �, we deduce :� $?. Replacing in (3),
we obtain :(U:�). By taking := >, we get ��.

�

We'll also need some EventClockTL theorems:

:
 $
: (34)

(�1 _ �2)$
�1 _
�2 (35)

� ! �> (36)

:�> ! (��$?) (37)

� �$
� (38)

 �$
� (39)

�> (40)

: /; (41)

/I ! �> (42)

: .I �$:�� _ .I� (43)

.I�$: .<I � ^ .#I� (44)

.I�! .J� with (I � J) (45)

�(�1 ^ �2)! ��1 (46)

Proof.

(34) By (13), we can remove the condition
> in the mirror of (6).
(35) We use (5) and duality through (34).
(36) Expanding the de�nition of �, we have to prove ?S� ! ?S>. This
results from the mirror of (4) with � := ?; := >; 0 := �.

(37) From (36). So all � formulae are false at the beginning of time.
(38) By (8).
(39) By (7).

12

(40) By (13), (10).
(41) Take (14) with I := ;; J := [0; 0]. By (16) we obtain /; $?.
(42) We'll prove its mirror. By (14), /I ! />0 . By (17), � . By (10),
 .
(43) By (15), (14), (17).
(44) By (15), (14), (17).
(45) By (15). (or by (14)).
(46) By (4).

�

4 Completeness of the axiomatic system for EventClockTL

As usual, the soundness of the system of axioms can be proved by a simple
inductive reasoning on the structure of the axioms. We concentrate here on
the more di�cult part: the completeness of the proposed axiomatic system. As
usual with temporal logic, we only have weak completeness: for every valid for-
mula of EventClockTL, there exists a �nite formal derivation in our axiomatic
system for that formula. So if j= � then ` �. As often, it is more convenient to
prove the contrapositive: every consistent EventClockTL formula is satis�able.
Due to the mirror principle, most explanations will be given for the future
only.

Our proof is divided in steps, that prove the completeness for increasing frag-
ments of EventClockTL.

(1) We �rst deal with the qualitative part, without real-time. This part of
the proof follows roughly the completeness proof of [19] for discrete-time
logic.
(a) We work with worlds that are built syntactically, by maximal consis-

tent sets of formulae.
(b) We identify the transition relation, and its syntactic counterpart: it

was the \next" operator for discrete-time logic [19], here it is the
,
expressing the transition from a closed to an open interval, and �,
expressing the transition from an open to a closed interval.

(c) We impose axioms describing the possible transitions for each oper-
ator.

(d) We give an induction principle (11) that extends the properties of
local transitions to global properties.

(2) For the real-time part:
(a) We give the statics of a clock;
(b) We describe the transitions of a clock;
(c) By further axioms, we force the clocks to evolve simultaneously. The

completeness of these axioms is proved by showing that only realistic

13

clock evolutions are allowed by the axioms.

4.1 Qualitative part

Let us assume that the formula � is consistent and let us prove that it is
satis�able. To simplify the presentation of the proof, we use the following
lemma:

Lemma 5 Every EventClockTL formula can be rewritten into an equivalent
formula of EventClockTL1 (using only the constant 1).

Proof. First by the use of the theorem .I� $: .<I � ^ .#I� (44), every
formula .I� with l(I) 6= 0 can be rewritten as a conjunction of formulae
with 0-bounded intervals. Using the axioms .�m+n� $.�m .�n � (18) and
.<m+n�$.<m .�n � (19) every interval can be decomposed into a nesting of
operators associated with intervals of length 1. �

In the sequel, we assume that the formula � for which we want to construct a
model is in EventClockTL1, as allowed by lemma 5.

We now de�ne the set C(�) of formulae associated with �:

� Sub: the sub-formulae of �.
� The formulae of Sub subject to a future real-time constraint: R = f�j.I � 2
Subg. We will say that a prediction clock is associated to these formulae.

� For these formulae, we will also track
� when the next occurrence of � is
left-open: this will simplify the notation. The information about � will be
reconstructed by axiom (20). J = f
�j� 2 Rg.

� To select whether to track � or
�, we need the formulae giving the open-
ness of next interval: L = fC�j� 2 R [Jg.

� The formulae giving the current integer value of the clocks: I = f.<1�; .=1�;
.>1�j� 2 R [Jg. Thanks to our initial transformation, we only have to
consider whether the integer value is below or above 1.

� Among these, the \tick" formulae will be used in F to determine the frac-
tional parts of the clocks: T = f.=1� 2 Ig.

� We also de�ne the mirror sets. For instance, R� = f�j /I � 2 Subg.
� The formulae giving the ordering of the fractional parts of the clocks, coded
by the ordering of the ticks: F = f:�U ;:�S j�; 2 T [R [J [T� [
R� [J�g.

� The eventualities: E = f��j U� or Û� 2 Sub [L [L�g
� The constant true >, because �> will be used in lemma 14.

We close the union of all sets above under :;
;� to obtain the closure of �,
noted C(�). This step preserves �niteness since we stop after adding just one of

14

each of these operators. Theorems (39), (38) show that further addition would
be semantically useless. For the past, we only have (6), (37). They also give
the same result, since we only have two possible cases: if �> is true, we can
move all negations outside and cancel them, except perhaps one. Otherwise,
we know that all � are false by (4). In each case, at most one � or
 and
one : are needed. We use the notational convention to identify formulas with
their simpli�ed form. For example, we write � 2 C(�)$
� 2 C(�) to mean
� 2 C(�)$# (
�) 2 C(�), where # is the simpli�cation operator.

Note that although we are in the qualitative part, we need already include the
real-time formulae that will be used later. In this subsection they behave as
simple propositions.

A propositionally consistent structure

A set of formulae F � C(�) is complete w.r.t. C(�) if for all formulae � 2
C(�), either � 2 F or :� 2 F ; it is propositionally consistent if (i) for all
formulae �1_�2 2 C(�), �1 2 F or �2 2 F i� �1_�2 2 F ; (ii) for all formulae
� 2 C(�), � 2 F i� :� 62 F . We call such a set a propositional atom of C(�).

We de�ne our �rst structure, which is a �nite graph, � = (�;�) where � is
the set of all propositional atoms of C(�) and � � � � � is the transition
relation of the structure. � is de�ned by considering two sub-relations:

� �] represents the transition from a right-closed to a left-open interval;
� �[represents the transition from a right-open to a left-closed interval.

Let A;B be propositional atoms. We de�ne

� A�]B , 8
 � 2 C(�);
� 2 A$ � 2 B;
� A�[B , 8� � 2 C(�); � 2 A$ �� 2 B.

The transition relation � is the union of �] and �[, i.e. A�B i� either A�]B
or A�[B.

Now we can de�ne that the atom A is singular i� it contains a formula of the
form � ^ :
 � or symmetrically � ^ :� �.

Lemma 6 In the following, A and B are atoms:

(1) A is singular i� it is irre
exive (i.e. :A�]A, equivalently :A�[A, also
:A�[A).

(2) If A�[B, then A is not singular and (B is singular or B = A).
(3) If B�]A, then A is not singular and (B is singular or B = A).

15

(4) If B is singular, then there is at most one atom A such that A�[B and
a unique C such that B�]C.

A is initial i� it contains :�>. It is then singular, since it contains >^ :�
>. A is monitored i� it contains �, the formula of which we check
oating
satis�ability.

Any atom A is exactly represented by the conjunction of the formulae that it
contains, written Â. By propositional completeness, we have:

Lemma 7 `
W
A2� Â.

For any relation �, we de�ne the formula �(A) to be
W
BjA�B B̂. The formula

W
BjA�]B

B̂ can be simpli�ed to
V

�2A �^

V
:
�2A :�, because in the proposi-

tional structure, all other members of a B are allowed to vary freely and thus
cancel each other by the distribution rule.

Lemma 8 ` Â ^
> !
�](A).

Proof.
�](A) =

W
BjA�]B

B̂ =
(
V

�2A � ^

V
:
�2A :�) =

V

�2A
� ^

V
:
�2A :
 � by (5), (34). �

Dually,
W
BjA�[B

B̂ can be simpli�ed to
V
�2A��. Therefore:

Lemma 9 ` �Â! �[(A).

Now let �+ be the transitive closure of �. Since �[� �+ , we have:

Lemma 10 ` �Â! �+(A).

Similarly,

Lemma 11 ` Â ^
> !
�+(A).

Using the disjunction rule for each reachable Â, we obtain: ` �+(A)^
> !

�+(A) and ` ��+(A) ! �+(A). Now we can use the induction axiom
(11) provided by �nite variability, i.e. �((^
> !
) ^ (� !)) !
(
 ! �). Using necessitation (33) and modus ponens (32), we obtain:

Lemma 12 ` Â! ��+(A).

16

An EventClockTL-consistent structure

We say that an atom A is EventClockTL-consistent if it is propositionally con-
sistent and consistent with the axioms and rules given in section 3. Now, we
consider the structure �̂ = (�̂; �̂), where �̂ is the subset of propositional atoms
that are EventClockTL-consistent and �̂ = f(A;B)jA�B and A;B 2 �̂g.
Note that the lemmas above are still valid in the structure �̂ as only incon-
sistent atoms are suppressed. We now investigate more deeply the properties
of the structure �̂ and show how we can prove from that structure that the
consistent formula � is satis�able.

We �rst have to de�ne some notions.

� A maximal strongly connected substructure (MSCS)
 is a non-empty set of
atoms
 � �̂ of the structure �̂ such that:

(1) for all D1; D2 2
, D1�̂
+D2, i.e. every atom can reach all atoms of
, i.e.,

 is strongly connected;
(2) for all D1; D2 2 �̂ such that D1�̂

+D2 and D2 2 �̂+D1 and D1 2
 then
D2 2
, i.e.,
 is maximal.

� A MSCS
 is called initial if for all D1�̂D2 and D2 2
 then D1 2
, i.e.

 has no incoming edges.

� A MSCS
 is called �nal if for all D1�̂D2 and D1 2
 then D2 2
, i.e.

has no outgoing edges.

� A MSCS
 is called self-ful�lling if for every formula of the form �1U�2 2 A
with A 2
, there exists B 2
 such that �2 2 B.

We now establish two properties of MSCS of our structure �̂.

Lemma 13 Every �nal MSCS
 of the structure �̂ is self-ful�lling.

Proof. Let us make the hypothesis that there exists �1U�2 2 A with A 2

and for all B 2 D, �2 62 B. By lemma 12 and as by hypothesis �2 62 B, for
all B 2 �̂+(A), by theorem (46) and a propositional reasoning, we conclude
` Â ! �:�2. Using the axiom (10) and the hypothesis that �1U�2 2 A,
we obtain ` Â ! ��2 and by de�nition of �, we obtain ` Â ! :�:�2 in
contradiction with ` Â! �:�2 which is impossible since A is, by hypothesis,
consistent. �

Lemma 14 Every non-empty initial MSCS
 of the structure �̂ contains an
initial atom, i.e. there exists A 2
 such that �> 62 A.

Proof. By de�nition of initial MSCS, we know that for allD1�̂D2 and D2 2
,
then D1 2
. Let us make the hypothesis that for all A 2
, �> 2 A. By
the mirror of lemma 12 we conclude, by a propositional reasoning and the
hypothesis that �> 2 D for all D such that D�̂+A, that ` Â! ��>. This

17

contradicts axiom (12), so A 62 �̂, thus
 is empty. � Actually such initial
MSCS are made of a single initial atom.

In the sequel, we concentrate on particular paths, called runs, of the struc-
ture �̂. A run of the structure �̂ = (�̂; �̂) is a pair � = (�A; �I) where �A =
A0A1 : : : (An : : : An+m)

! is an in�nite sequence of atoms and �I = I0I1 : : : In : : :
is an in�nite sequence of intervals such that:

(1) Initiality: A0 is an initial atom;
(2) Consecution: for every i � 0, Ai�̂Ai+1;
(3) Singularity: for every i � 0, if Ai is a singular atom then Ii is singular;
(4) Alternation: I0I1 : : : In : : : alternates between singular and open intervals,

i.e. for all i > 0, I2i is singular and I2i+1 is open.
(5) Eventuality: the set fAn; :::; An+mg is a �nal MSCS.

Note that, for the moment, the timing information provided in �I is purely
qualitative (singular or open); therefore any alternating sequence is adequate
at this qualitative stage. Later, we will construct a speci�c sequence satisfying
also the real-time constraints. In the sequel, given � = (�A; �I), �(t) denotes the
atom Ai such that t 2 Ii.

Lemma 15 The transition relation �̂ of the structure �̂ is total, i.e. for all
atoms A 2 �̂, there exists an atom B 2 �̂ such that A�̂B.

Proof.We prove �̂] total, i.e. for allA 2 �̂;� = f�j
� 2 Ag[f:�j:
� 2 Ag
is consistent and can thus be completed to form an atom B. Assume it is not:
by de�nition ` :�̂, i.e. ` :�̂$ >. We can replace > in (13), giving `
:�̂.
By (34), ` :
 �̂. By (5), the set f
�j
 � 2 Ag [f
:�j:
 � 2 Ag is
inconsistent. Using (34) again, the set f
�j
� 2 Ag[f:
�j:
� 2 Ag � A
is inconsistent, and thus A is inconsistent, contradicting A 2 �̂. �

Lemma 16 For every atom A of the structure �̂, there is a run � that passes
through A.

Proof.

(1) Initiality, i.e. every atom of �̂ is either initial or can be reached by an
initial atom. Let us consider an atom A, if A is initial then we are done,
otherwise, let us make the hypothesis that it can not be reached by an
initial atom, it means: for all B�̂+A then :�> 62 B, so by propositional
completeness �> 2 B. By lemma 12 and a propositional reasoning, we
obtain ` Â! � �>. Using axiom (12) we obtain a contradiction in A.
We use this path for the �rst part of the run.

(2) Consecution, by construction.
(3) Singularity: i.e., every odd atom is not singular. For the �rst and second

part of the run, we can obtain this by taking a simple path (thus without

18

self-loops). Since the �rst atom A0 is initial, it is singular; from there on,
non-singular and singular states will alternate by lemma 6. For the �nal
repetition, this technique might not work when the MSCS is a single
atom. Then we know that this single atom is non-singular, and thus
Singularity is also veri�ed.

(4) Alternation: we can choose any alternating interval sequence, since the
timing information is irrelevant at this point.

(5) Eventuality, i.e. every atom of �̂ can reach one of the �nal MSCS of �̂.
It is a direct consequence of the fact that �̂ is total and the fact that �̂
is �nite. We use this reaching path for the second part of the run, then
an in�nite repetition of this �nal MSCS.

�

A run � = (�A; �I) of the structure �̂ has the qualitative Hintikka property if it
respects the semantics of the qualitative temporal operators which is expressed
by the following conditions (real-time operators will be treated in the following
section):

H1 if Ai is singular then Ii is singular;
H2 �1U�2 2 Ai i�

� either Ii is singular and there exists j > i s.t. �2 2 Aj and for all k s.t.
i < k < j, �1 2 Ak;

� or Ii is not singular and
(1) either �2 2 Ai; i = j
(2) or there exists j > i s.t. �2 2 Aj and for all k s.t. i � k < j, �1 2 Ak;

H3 if �1S�2 2 Ai i�
� either Ii is singular and there exists j < i s.t. �2 2 Aj and for all k s.t.
j < k < i, �1 2 Ak;

� or Ii is not singular and
(1) either �2 2 Ai; i = j
(2) or there exists j < i s.t. �2 2 Aj and for all k s.t. j < k � i, �1 2 Ak;

We call such a run a qualitative Hintikka run. Next, we show properties of
some additional properties of runs related to the Hintikka properties above:

Lemma 17 For every run � = (�A; �I) of the structure �̂, with �A = A0A1 : : : ,
for every i � 0 such that �� 2 Ai:

� either Ii is singular and there exists j > i such that � 2 Aj;
� or Ii is non-singular and there exists j � i such that � 2 Aj.

Proof. First let us prove the following properties of the transition relation �̂:

� let A�̂]B and �� 2 A then either � 2 B or �� 2 B. Recall that �� � >U�,

and by de�nition of �̂], axiom (9) and a propositional reasoning, we obtain

19

that �� 2 A i� � 2 B or �� 2 B;
� let A�̂[B and �� 2 A then either � 2 A, � 2 B or >U� 2 B. By de�nition

of �̂[, the mirror of axiom (8) and a propositional reasoning, we obtain
� 2 A or � 2 B or �� 2 B.

By the two properties above, we have that if �� 2 Ai then either � appears in
Aj with j > i if Ii is singular (and thus right closed), j � i if Ii is not singular
(and thus an open interval) or � is never true and �� propagates for the rest
of the run. But this last possibility is excluded by our de�nition of run: by
clause (5), every run eventually loops into a �nal (thus self-ful�lling by lemma
13) MSCS
. Then either � is realized before this looping or �� 2
 and by
lemma 13 � 2
 and is thus eventually realized. �

Lemma 18 For every run � = (�A; �I) of the structure �̂, for every position i
in the run if �1U�2 2 Ai then the right implication of property H2 is veri�ed,
i.e:

� either Ai is singular and there exists j > i s.t. �2 2 Aj and for all k s.t.
i < k < j, �1 2 Ak;

� or Ai is not singular and
(1) either �2 2 Aj; j = i
(2) or there exists j > i s.t. �2 2 Aj and for all k s.t. i � k < j, �1 2 Ak.

Proof. By hypothesis we know that �1U�2 2 Ai and we �rst treat the case
where Ai is singular.

� By the axiom (10) and lemma 17, we know that there exists j > i such that
�2 2 Aj. Let us make the hypothesis that Aj is the �rst �2-atom after Ai.

� It remains us to show that: for all k s.t. i < k < j, �1 2 Ak. We reason by
induction on the value of k.
� Base case: k = i+1. By hypothesis we have �1U�2 2 Ai and also Ai�̂]Ai+1

(as Ai is right closed) and thus for all
� 2 Ai; � 2 Ai+1 by de�nition
of �̂]. By axiom (7), we conclude that �1U�2 2 Ai+1 and by axiom (9),
theorem (35) and axiom (5), and the fact that by hypothesis �2 62 Ai+1,
(Prop) allows us to conclude that �1 2 Ai+1.

� Induction case: k = i+ l with 1 < l < j � i. By induction hypothesis, we
know that �1 2 Ak�1 and �1U�2 2 Ak�1, also :�2 2 Ak and :�2 2 Ak�1

as k < j (by hypothesis j is the �rst position after i where �2 is veri�ed).
To establish the result, we reason by cases :
(1) Ik is open and thus Ik�1 is singular and right closed. We have Ak�1�̂]Ak,

and thus for all
� 2 C(�);
� 2 Ai $ � 2 Ai+1 by de�nition of
�̂]. As �1U�2 2 Ak�1 by induction hypothesis and the axiom (7) we
conclude that �1U�2 2 Ak. Using the axiom (9), theorem (35), axiom
(5) and the fact that �2 62 Ak, and (Prop), we conclude that �1 2 Ak.

(2) Ik is closed which implies that Ik�1 is right open and Ak�1�̂[Ak. By

20

de�nition of �̂[we have that for all �� 2 C(�);�� 2 Ak $ � 2
Ak�1. So we have �(�1U�2);�:�2 2 Ak, by hypothesis k < j thus
we have :�2 2 Ak. Using those properties and the mirror of axiom
(8) we conclude that �1 ^ �1U�2 2 Ak.

We now have to treat the case where Ai is not singular. By the axiom (10)
and lemma 17 we know that there exists a later atom Aj, i.e. j � i, such that
�2 2 Aj. If j = i then �2 2 Ai and we are done. Otherwise j > i, and we must
prove that for all k s.t. i � k < j, �1 2 Ak, this can be done by the reasoning
above. �

We now prove the reverse, i.e. every time that �1U�2 is veri�ed in an atom
along the run then �1U�2 appears in that atom. This lemma is not necessary
for qualitative completeness but we use this property in the lemmas over real-
time operators.

Lemma 19 For every run � = (�A; �I) of the structure �̂, for every position
i � 0, for every �1U�2 2 C(�), if :

� either Ai is singular and there exists j > i s.t. �2 2 Aj and for all k s.t.
i < k < j, �1 2 Ak;

� or Ai is not singular and
(1) either �2 2 Aj; j = i
(2) or there exists j > i s.t. �2 2 Aj and for all k s.t. i � k < j, �1 2 Ak.

then �1U�2 2 Ai.

Proof. We reason by considering the three following mutually exclusive cases:

(1) Ai is singular and there exists j > i s.t. �2 2 Aj and for all k s.t. i < k < j,
�1 2 Ak. We reason by induction to show that �1U�2 2 Aj�l for all l s.t.
1 � l � j � i.
� Base case: l = 1. By hypothesis, we know that �2 2 Aj. We now reason
by cases:
(a) if Aj�1 is right closed then we have Aj�1�̂]Aj and by de�nition of

�̂],
�2 2 Aj�1. Using the axiom (9) we deduce by (Prop) that
�1U�2 2 Aj�1.

(b) if Aj�1 is right open then we know that j � 1 > i (as Ii is singular

by hypothesis) and thus �1 2 Aj�1. Also as Aj�1�̂[Aj, ��1 2 Aj.
Using the mirror of axiom (8) and a propositional reasoning, we
obtain �(�1U�2) 2 Aj and by de�nition of �̂[, �1U�2 2 Aj�1.

� Induction case: 1 � l < i � j � 1 and we have established the result
for l� 1, i.e. �1U�2 2 Aj�(l�1). Let us show that we have the result for
Aj�l. First note that by hypothesis, �1 2 Aj�(l�1). We again reason by
cases:

21

(a) Ij�l is right closed. Then we have Aj�l�̂]Aj�(l�1) and by de�ni-

tion of �̂], for all
� 2 C(�),
� 2 Aj�l i� � 2 Aj�(l�1),thus

(�1U�2) 2 Aj�l and by axiom (7) we have that �1U�2 2 Aj�l.

(b) Aj�l is right open. Then we have Aj�l�̂[Aj�(l�1) and by de�nition

of �̂[, for all �� 2 C(�), �� 2 Aj�(l�1) i� � 2 Aj�l. We know
that by hypothesis, �1 2 Aj�l as j � l 6= i (Ii is singular and Ij�l
not), thus ��1 2 Aj�(l�1), also �1U�2 2 Aj�(l�1) (by induction
hypothesis). Using the mirror of axiom (8) and a propositional
reasoning, we obtain �(�1U�2) 2 Aj�(l�1) and by de�nition of �̂[

that �1U�2 2 Aj�l.

(2) Ai is not singular and �2 2 Aj. As Ai is not singular, we have Ai�̂]Ai, by

de�nition of �̂], we have
�2 2 Ai. By the axiom (9) and a proposition
reasoning, we obtain the desired result: �1U�2 2 Ai.

(3) Ai is not singular, �2 62 Aj, and there exists j > i s.t. �2 2 Aj and for all
k s.t. i � k < j, �1 2 Ak. This case is treated by an inductive reasoning
similar to the �rst one above.

�

We have also the two corresponding mirror lemmas for the S-operator.

From the previous proved lemmas, it can be shown that the qualitative axioms
of section 3 are complete for the qualitative fragment of EventClockTL, i.e. the
logic LTR.

Lemma 20 A run � has the Hintikka property for LTR formulae: for every
LTR formula � 2 C(�); � 2 �(t)$ (�; t) j= �.

Proof. The Hintikka property was proved in the lemmas above, but expressed
without reference to time t. It remains to prove that this implies the usual
de�nition, by induction on formulae.

(1) Let t 2 Ii. We must prove 9t0 > t ^ t0 j= �2 and 8t
00 2 (t; t0), t00 j= �1 _ �2

from H2. Of course, we take t0 somewhere in Ij, so that t0 j= �2.
(t; t0) can be divided in 3 parts: the part in Ii, which is empty when Ii

is singular, the part in some Ik (i < k < j), the part in Ij. Each of them
satis�es �1 _ �2.

(2) Conversely, the usual de�nition implies H2: First note that given t, if
Ai = �(t) is not singular but Ii is singular, it means that Ai+1 = Ai by
lemma 6. Thus we can merge Ii; Ii+1 to ensure that Ii is singular i� Ai

is singular without loss of generality. Let j be the �rst index where �2,
j > i if Ii is singular, or else j � i. We can take t0 > t in Ij without loss
of generality. Since we need t00 j= �1 _ �2, all intermediate intervals must
satisfy �1.

22

(H3) is symmetric. �

Finally, we have the following theorem that expresses the completeness of the
qualitative axioms for the logic LTR:

Theorem 21 Every LTR formula that is consistent with the qualitative ax-
ioms is satis�able.

Proof. Let � be a consistent LTR formula. We construct �̂� = (�̂; �̂). Let
B 2 �̂ be an atom of the structure such that � 2 �̂. Such an atom B exists as
� is consistent. By lemma 16, there exists a run � = (�A; �I) such that B = Ai

for some i � 0. By lemma 20, we have (�; t) j= � for all t 2 Ii and thus � is
satis�able. �

We now turn to the completeness of real-time axioms.

4.2 Quantitative part

A run � = (�A; �I) of the structure �̂ has the timed Hintikka property if it
respects the Hintikka properties de�ned previously and the two following ad-
ditional properties:

H4 .I� 2 �(t) i� there exists t
0 2 t+I such that � 2 �(t0) and 8t00 : t < t00 < t+I,

:� 2 �(t00)
H5 /I� 2 �(t) i� there exists t

0 2 t�I such that � 2 �(t0) and 8t00 : t > t00 > t�I,
:� 2 �(t00)

A run that respects those additional properties is called a well-timed run. In
the sequel, we will show that for each run of the structure �̂, we can modify
its sequence of intervals, using a procedure, in such a way that the modi�ed
run is well-timed.

Recall that given a tracked formula � 2 R,

� .=1� is called its tick;
� (� ^
:�) _ (:� ^��) is called its event (note that the second case need
not be considered thanks to the axioms (20), (22));

� (� ^�:�) _ (:� ^
�) is called its reset.

The evolution of the real-time predicates is described by �gure 2. We can now
see the status of this drawing:

Lemma 22 For any tracked formula � 2 R, the projection of �̂ (restricted to
atoms containing the formulae C�) on �; /<1�; /=1�; />1�;��� is contained in
�gure 2.

23

Proof. It su�ces to show that no further consistent atoms nor transitions can
be added to the �gure.

� Atoms: from the axioms (15), (17), (14), (16).
� Transitions: We simply take all missing arrows of the �gure, and show that
they cannot exist. As the proof is fairly long, we only show some excerpts.

(1) Assume that an atom A containing �; /=1� is linked to an atom B con-
taining :�; />1� in this way: A�̂]B. Since />1� 2 B, by axioms (14),

(15), (16), we have : /<1 � 2 B. Now by de�nition of �̂],
: /<1 � 2 A,
and by (34), :
 /<1� 2 A. Now the main step: we use the mirror of
(23), negated on both sides. :
> is impossible by (13), and thus we can
conclude :� 2 A contradicting � 2 A.

(2) Now we show the only two transitions which are eliminated by the re-
striction to C�. The �rst one is A�̂]B where A contains /<1�;:�;C� and
B contains /<1�; �. We prove C� ! :
 � using (9). In more detail, C�
abbreviates :�U(� ^ �:�). Applying (9) and unfolding U

�, we obtain
using (35):
(� ^ �:�) _
(:� ^ : : :). The �rst disjunct is impossible,
by (5), (34), (38).
On the other hand, by de�nition of �̂],
� 2 A, whence the contradic-

tion.
(3) The second transition eliminated is A�̂]B where A contains />1�;:�;C�

and B contains /<1�;:�. By de�nition of �̂],
 /<1 � 2 A. By axiom
(22), /�1� 2 A, contradicting />1� 2 A.

�

A constraint is a real-time formula of an atom Ai. The begin of a constraint
is the index e at which its previous event, tick or reset occurred. The end of
a constraint is the index j at which its next event, tick or reset occurs. This
vocabulary refers to the order of time only: the begin is always before the
corresponding end, whether for history or prediction operators. Begins, ends,
ticks, resets, events are always singular. We say that (the history clock of) � is
active between an event � and the next reset of �. It is small between its event
and the next tick or reset. After this, it is big. When it is big, it doesn't give
actual constraints, since it can stay big for any time, on one hand, and on the
other hand because it has passed �rst through a tick, which is forced to be 1
time unit apart from the event. Thus the monotonicity of time will ensure that
big constraints are indeed semantically true. We de�ne the scope of a constraint
as the interval between the event and the next tick or reset, or equivalently
between its begin and its end. The same vocabulary applies symmetrically for
prediction operators. Actual constraints are either equalities (the time spend
in their scope must be 1), linking an event to a tick, or inequalities (the time
spend in their scope must be less than 1). An inequality is always linked to
a small clock. Constraints can be partially ordered by scope: it is enough to
solve constraints of maximal scope, as we shall see. A constraint of maximal

24

scope always owns indexes: they are found at the end of its scope. The scope
of an inequality extends from an event to a reset. Whether an atom Ai is in
the scope of a constraint, and which, can be deduced from its contents. The
table below shows the contents of an atom Ai that is the end of an equality.
We distinguish the prediction and history cases. The table is simpli�ed by the
fact that we can assume that events are closed. The begin atom is the closest
one in the past to contain the indicated formulae.

Table 1
Equality constraints { ticking clocks

begin end in Ai

� (event) /=1� (tick)

.=1� (tick) �;:�S .=1 � (event)

The table below shows the contents of an atom Ai indicating that the clock is
small. It is thus in the scope of a constraint, whose begin is before and whose
end is after. The begin (resp. end) is the closest atoms with the indicated
contents.

Table 2
Small clocks

begin in Ai end

.=1� (tick) .<1�;:�S
+ .=1 � � (event)

� (event) /<1�;:�Ŝ� /=1� _ � _
� (tick or reset)

� _�� (reset) : .=1 �S�;:(:�S .=1 �); (.<1� _ (� ^�:�) � (event)

Note that the existence of the begin and ends is guaranteed by �g. 2: a clock
cannot stay small forever. In this section, we furthermore enforce that it will
not stay small more than 1 unit of time.

The proof shows that these constraints can be solved i� they are compatible
in the sense that the scope of an equality cannot be included in the scope
of an inequality, nor strictly in the scope of another equality. The axioms for
several clocks ensure this compatibility.

The previous section has built a run � = (�A; �I), where �I is irrelevant, that
is qualitatively correct. From any such run � = (�A; �I), we now build a well-
timed run Attr(�) = (�A; �J) by attributing a well-chosen sequence of intervals
�J = J0J1 : : : Jn : : : to the atoms of the run, so as to satisfy the real-time
constraints.

Before, we introduce two lemmas on which the algorithm relies, that can also
be read from �g. 2:

25

Lemma 23 For every run � = (�A; �I) of the structure �̂, we have that if
/=1 2 Ai then there exists 0 � j < i such that 2 Aj.

Proof. This lemma is a direct consequence of the mirrors of axioms (14) and
(17). �

Lemma 24 For every run � = (�A; �I) of the structure �̂, we have that if
�: ; ;: S .=1 2 Ai then there exists 0 � j < i such that .=1 2 Aj.

Proof. This lemma is a direct consequence of the mirror of axiom (10). �

The algorithm proceeds by induction along the run, attributing time points
[ti; ti] when i is even. As a consequence, an open interval (ti�1; ti+1) is at-
tributed when i is odd: we don't mention it, and just de�ne ti for even i.

(1) Base: t0 = 0, i.e. we attribute the interval [0; 0] to the initial atom A0.
(2) Induction: we identify and solve the tightest constraint containing i. We

de�ne b as the begin of this tightest constraint, by cases:
(a) equality constraints:

(i) If there is an /=1 2 Ai there has been a last (singular) atom
Ab containing before at time tb.

(ii) Else, if �: ; ;: S .=1 2 Ai there has been a last atom Ab

containing .=1 before Ai, at time tb.
We set ti = te + 1, i.e., we attribute [tb + 1; tb + 1] to Ai.

(b) If there are no equality constraints, we consider inequality constraints:
(i) We compute the earliest begin b of the small clocks using table 2.

ti has to be between ti�2 and tb + 1. We choose ti = (ti�2 + tb +
1)=2.

(ii) Otherwise, we attribute (say) ti�2 + 1=2 to Ai.

The algorithm selects arbitrarily an equality constraint, but is still determin-
istic:

Lemma 25 If two equality constraints have the same end i, their begins b1; b2
are identical.

Proof. Four combinations of equality constraints are possible:

(1) The �rst constraint is /=1�
(a) The second constraint is /=1 : Ai contains thus /�1 by (14). We

apply (26) to obtain :�S .
We repeat this with ; � inverted to obtain : S�. These formulae

imply by the mirror of Lemma 19 that cannot occur before �, and
conversely, thus they occur in the same atom.

(b) The second constraint is the event ;:� with : S .=1 : then Ai

contains /�1� by (14). We apply (29) to obtain : .=1 S�.

26

Since Ai contains : U� /=1 � since its eventuality /=1� is true
now. We apply (28) to obtain :�Z(.�1 _). Since : S .=1 2 Ai,
we know that the tick occurs �rst (perhaps ex-aequo) among the
possibilities that end the Z.
These formulae imply by Lemma 19 that .=1 cannot occur before

�, and conversely, thus they occur in the same atom.
(2) The �rst constraint is the event � with :�S .=1 � 2 Ai:

(a) The second constraint is /=1 2 Ai: This case is simply the previous
one, with �; inverted.

(b) The second constraint is the event with : S .=1 : Ai contains
: U�� since its eventuality � is true now. We apply (27) to obtain
: .=1 �Z(.�1 _). By : S .=1 , the tick .=1 occurred �rst.
We repeat this with ; � inverted. These formulae imply by Lemma 19

that .=1 cannot occur before .=1�, and conversely, thus they occur
in the same atom.

�

Solving an equation at its end also solves current partial inequations:

Lemma 26 If Ai is in the scope of an inequation, and the end of an equation,
then the begin Aj of the inequation is after the begin Ab of the equation (b < j).

Proof. There are 3 possible forms of inequations in Ai (see table 4.2):

(1) .<1 ;: S
+ .=1 2 Ai and .=1 2 Aj:

let j � i be its begin, i.e. .=1 2 Aj. We must show that b < j. The
equation can be:
(a) /=1� 2 Ai and � 2 Ab:

thus : U� /=1 � 2 Ai; by (28) :�Z(.�1 _) 2 Ai. The �rst case
is true as by hypothesis : S+ .=1 2 Ai (.=1 must occur before
in the past), and gives b � j.

(b) �;:�S .=1 � 2 Ai and .=1� 2 Ab:
using (27), we obtain : .=1 �Z(.�1 _) 2 Ai. The �rst case is true,
by hypothesis, and gives b � j.

We cannot assume b = j, because the mirror of lemma 25 then gives
 2 Ai, contradicting : S+ .=1 2 Ai. We conclude b < j.

(2) /<1 ;: Ŝ 2 Ai:
let j � i be its begin (its event), i.e. 2 Aj. We must show that b < j.
The equation can be:
(a) /=1� 2 Ai and � 2 Ae:

We apply (26) to obtain :�S , meaning by the mirror of lemma 19
that b � j. : S� 62 Ai, for otherwise we apply (30) yielding /<1� 2
Ai contradicting /=1� 2 Ai by (15), so we conclude b < j.

(b) �;:�S .=1 � 2 Ai and .=1� 2 Ab:

27

by (29) : .=1 �S 2 Aj, so b � j. We cannot have the reverse
: S .=1 �, for otherwise we apply the mirror of (31) and deduce
:� 2 Ai, so we conclude b < j.

(3) : .=1 S ;:(: S .=1); (.<1 _) 2 Ai:
let j � i be its begin (a reset). Either .<1 2 Ai already, or if the
event is in Ai, we use axiom (23) to show .<1 2 Ai�1. Since there is no
intervening between j and i, the �g.2 implies .<1 2 Aj+1 and thus
.�1 2 Aj by (22). Because :(: S .=1) 2 Ai, we deduce .<1 2 Aj.
Now, we must show that b < j. The equation can be:
(a) /=1� 2 Ai and its event � 2 Ab:

As .<1 _ 2 Ai, we apply (28) to obtain :�Z(.�1 _), which
means b � j. Again because there are no intervening between j
and i, using lemma 19 we have : U /=1 � 2 Aj. Using the mirror
of (31), /<1�;:� 2 Aj, thus j = b is impossible, since :� 2 Aj and
� 2 Ab. We conclude b < j.

(b) �;:�S .=1 � 2 Ai and .=1� 2 Ab:
so : U�� 2 Ai, and we use (27) to obtain : .=1 �Z(.�1 _) 2
Ai. The reset occurs strictly before the tick, so the �rst case is
excluded, giving : .=1 2 Aj; using .�1 2 Aj, .<1 2 Aj. Again
because there are no intervening between positions j and i, we
have : U /=1 � 2 Aj. Using the mirror of (30), .<1� 2 Aj . The
second case is thus true, and means b � j. b = j is impossible, since
.<1� 2 Aj; .=1� 2 Ab. We conclude b < j.

�

We now show that the algorithm Attr assigns time bounds of intervals that
are increasing.

Lemma 27 The sequence ti built by Attr is increasing.

Proof. In the notation of the de�nition, this amounts to prove ti�2 < tb + 1
when b is de�ned, since ti is either tb + 1 (in the case of an equality) or the
middle point of (ti�2; tb + 1) (in the case of an inequality). If b is not de�ned
(no constraints) then it is trivially veri�ed as we attribute ti�2+1=2 to ti. We
prove the non trivial cases by induction on i:

(1) base case: i = 2. Either:
(a) no constraint is active, b is unde�ned;
(b) b = 0; tb = 0; ti�2 = 0. We just have to prove 0 < 1.

(2) induction: We divide in cases according to the constraint selected at i�2,
whose begin is called bi�2:
(a) an equality: by lemmas 25, 26, its begin was before, i.e., bi�2 < b.

By inductive hypothesis, ti is increasing: tbi�2 < tb. Thus ti�2 =
tbi�2 + 1 < tb + 1.

28

(b) an inequality: Thus the begin bi�2 � bi, since it was obtained by
sorting. By inductive hypothesis, ti is increasing: so tbi�2 � tb. By
inductive hypothesis, ti�4 < tbi�2+1. Thus ti�2 = (ti�4+tbi�2+1)=2 <
(tbi�2 + 1 + tbi�2 + 1)=2 = tbi�2 + 1 � tb + 1.

�

Furthermore, the algorithmAttr ensures that time increases beyond any bounds:

Lemma 28 The sequence of intervals �J of Attr(�) = (�A; �J) built by our
algorithm has �nite variability: for all t 2 R+ , there exists an i � 0 such that
t 2 Ii.

Proof. Although there is no lower bound on the duration of an interval, we
show that the time spend in each passage through the �nal cycle of ��A =
A0A1 : : : (AnAn+1 : : : An+m)

! is at least 1=2. Thus any real number t will be
reached before index 2tc, where c is the number of atoms in the �nal cycle.
We divide in cases:

(1) If the cycle AnAn+1 : : : An+m contains an atom which is not in the scope
of any constraint, the time spent there will be 1=2.

(2) Else, the cycle contains constraints, and thus constraints of maximal
scope. This scope, however, cannot be greater than one cycle. Let e the
end of such a constraint. Thus e is in the scope of no other constraint
with an earlier begin.
The time spent in the scope of the constraint until i is at least 1=2:

Let again b be the begin of the scope of the constraint. te�2 � tb (since
the begin and end are singular and distinct), thus our algorithm gives
te � (te�2 + tb + 1)=2 � tb + 1=2. Since the scope cannot be greater than
one cycle, the time spent in a cycle is at least 1=2.

�

This procedure correctly solves all constraints:

Lemma 29 The interval attribution Attr transforms any run � in a well-
timed run Attr(�).

Proof. We show the two supplementary properties of a well-timed run:

(1) Let /I 2 �(t) = Ai. We must show that the next occurs in t� I. /I
can be:
(a) />1 : These constraints are automatically satis�ed because:

(i) the mirror of the eventuality rule (17) guarantees has occurred.
9j < i 2 Aj ; Let us take the �rst such j, which is the
corresponding event.

29

(ii) According to �g.2, will stay false, and eventually we will reach
/=1 : 9k j < k < i; /=1 2 Ak;

(iii) the axiom (25) guarantees that satisfying the equality will entail
satisfying the greater-than constraint, since they refer to the
same tracked event, and since the equality is later. In formulae,
for any ti 2 Ii, tk < ti by lemma 27, tk = tj+1, so that ti > tj+1.

(b) /=1 : Since this is an equality constraint, the algorithm Attr must
have chosen an equality constraint with begin b. Thus ti = tb+1. By
lemma 25, the begin event � is also in Ab.

(c) /<1 : If i isn't even (singular), we know that the constraint will still
be active in the next atom i + 1, because the end of a constraint is
always singular. By (22):
� It might become an equality (the clock may tick), in which case
it is treated as in the previous case (with i+1 instead of i). Then
the monotonicity of time will ensure that Ii < ti+1 = tb + 1.

� If it is still the same inequality, it is treated below (with i + 1
instead of i). Then the monotonicity of time will ensure that
Ii < ti+1 < tb + 1.

Thus at this point we can assume that i is even. Let j < i be the
begin of the constraint, � 2 Aj. The constraint selected by Attr at i
can be:
(i) an equality: by lemma 26, its begin b < j, so that ti = tb + 1 <

tj + 1.
(ii) or the constraint chosen in Ai is an inequality. The pair /<1 2

Ai; 2 Aj is also an inequality in Ai: let f be its begin. The
algorithm has selected the constraint with the earliest begin b.
Thus b � f � j < i, and ti < tb + 1. Thus ti < tj + 1.

(2) Let .I 2 �(t) = Ai. Very similarly, we must show that the next occurs
in t+ I. .I can be:
(a) .>1 : These constraints are automatically satis�ed because:

(i) the eventuality rule (17) guarantees will occur: 9j > i 2
Aj. We take the �rst such j, which is the corresponding event.
We can assume it is singular.

(ii) Figure 2 guarantees that there is �rst a tick: 9k i < k <
j; .=1 2 Ak;

(iii) the reset rule (25) guarantees that satisfying the equality will
entail satisfying the greater-than constraint, since they refer to
the same end event, and since the equality is later. In formulae,
for any ti 2 Ii, tk > ti by lemma 27, tk = tj�1, so that ti < tj�1.

(b) .=1 : let Aj contain the next event of . Since this is an equality con-
straint, the algorithm Attr must have chosen an equality constraint
at Aj. By lemma 25, its begin is i. Thus tj = ti + 1.

(c) .<1 : Let Aj contain the next event of . The constraint selected by
Attr at j can be:
(i) an equality: by lemma 26 its begin b < i, so that tj = tb + 1 <

30

ti + 1 for any ti 2 Ii.
(ii) or the constraint chosen in Aj is an inequality. The pair .<1 2

Ai; 2 Aj is also an inequality in Aj: let f be its begin. The
algorithm has selected the constraint with the earliest begin b.
Thus b � f � i � j, and tj < tb + 1. Thus tj < ti + 1, for any
ti 2 Ii.

The reader now expects a proof for the converse implication. This is not needed
thanks to (43). �

As a consequence of the last lemmas, we have:

Lemma 30 A timed run built by Attr has the Hintikka property for Event-

ClockTL: 8� 2 C; � 2 �(t)$ (�; t) j= �.

Finally, we obtain the desired theorem:

Theorem 31 Every EventClockTL-consistent formula is satis�able.

Proof. If � is a EventClockTL-consistent formula then there exists an �-monitored
atom A� in �̂. By lemma 16, there exists a set of runs � that pass through
A� and by the properties of the procedure Attr, lemma 18, lemma 28 and
lemma 29, at least one run (�A; �I) 2 � has the Hintikka property for Event-
ClockTL. It is direct to see that (�A\P; �I) is a model for � at time t 2 I� (the
interval of time associated to A� in (�A; �I)) and thus � is satis�able. �

Corollary 32 The rule (1) and axioms (2)-(31) form a complete axiomati-
zation of EventClockTL.

4.3 Comparison with automata construction

In spirit, the procedure given above can be considered as building an au-
tomaton corresponding to a formula. The known procedures [3] for deciding
MetricIntervalTL use a similar construction, �rst building a timed automaton
and then its region automaton. We could not use this construction directly
here, because it involves features of automata that have no counterpart in the
logic, and thus could not be expressed by axioms. However, the main ideas are
similar. The region automaton will record the integer value of each clock: we
code this by formulae of the form .<1 .=1 ::: .=1�. It will also record the order-
ing of the fractional parts of the clocks: this is coded here by formulae of the
form :.=1 :::.=1�U.=1 :::.=1 . There are some small di�erences, however. For
simplicity we maintain more information than needed. For instance we record
the ordering of any two ticks, even if these ticks are not linked to the current
value of the clock. This relationship is only inverted for a very special case:

31

when a clock has no previous and no following tick, we need not and cannot
maintain its fractional information. It is easy to build a more careful and more
e�cient tableau procedure, that only records the needed information.

The structure of atoms constructed here treats the eventualities in a di�erent
spirit than automata: here, there may be invalid paths in the graph of atoms.
It is immediate to add acceptance conditions to eliminate them and obtain a
more classical automaton. But it is less obvious to design a class of automata
that is as expressive as the logic: this is done in [14].

4.4 Other time domains

As we have already indicated incidentally, our proofs are written to adapt to
other time domains T with minimal change. We only consider totally ordered
dense time, however. For instance, we could use as time domain:

(1) The real numbers, T = R: We replace (12) by the mirror of (13).
(2) The rational numbers, T = Q : If we force the bounds of an interval to

be rational as well, nothing has to be changed. Otherwise, a transition
from an open interval to an open interval is now possible, if the common
bound is irrational. This defeats the induction axiom (11). We postpone
the study of this case to a further paper, but the basic ideas of the proof
still apply.

(3) A bounded real interval:
(a) closed T = [l; r]: For the qualitative part, we replace (13) by the

mirror of (12). For the quantitative part, we �rst remove the axiom
(25). If the duration of the interval d = l � r is integer, we add:

:�> ! .=d:
> (47)

stating that the beginning is at distance d from the end. Otherwise,
we add the best approximation of this:

:�> ! .(bdc;dde):
> (48)

(b) open T = [l; r): For the qualitative part, we replace (13) by the
mirror of (12): from a qualitative point of view, an open interval is
indistinguishable from an in�nite one.

32

5 Translating MetricIntervalTL into EventClockTL

The logics have been designed from a di�erent philosophical standpoint:MetricIn-

tervalTL restricts the undecidable logic MetricTL by \relaxing punctuality",
i.e., forbidding to look at exact time values; EventClockTL, in contrast, forbids
to look past the next event in the future. However, we have shown in [14] that,
surprisingly, they have the same expressive power. The power given by nesting
connectives allows to each logic to do some of its forbidden work. Here, we
need more than a mere proof of expressiveness, we need a �nite number of
axioms expressing the translation between formulae of the two logics. We give
below both the axioms and a procedure that use them to provide a proof of
the equivalence.

First, we suppress intervals containing 0:

�ÛI $ _ (�ÛJ) with J = I n f0g and 0 2 I (49)

Then we replace bounded untils ÛI with 0 62 I by simpler �I , provided 0 62 I:

�ÛI $ ��I(_ �Û) ^�<I(� ^ �Û) ^ �Û ^ �I (50)

where l is the left endpoint of I, the intervals J = ftj0 < t < Ig, J0 = ftjO �
t < Ig.

We suppress classical until using:

�Û $ �U(^��) (51)

For in�nite intervals, we reduce the lower bound l > 0 to 0 using

�(l;1)�$ �(0;l]�� (52)

�[l;1)�$ �(0;l](� _ ��) (53)

For �nite intervals with left bound equal to 0, we exclude it if needed with
(49), and we use the . operator:

�(0;u)�$.<u� (54)

�(0;u]�$.�u� (55)

Note that the formulae .<u� and .�u� can be reduced to formulae that only
use constant 1 using the axioms (18) and (19).

When the left bound of the interval is di�erent from 0 and the right bound

33

di�erent from 1, we reduce the length of the interval to 1 using:

�I[J�$ �I� _ �J� (56)

Then we use the following rules recursively until the lower bound is reduced
to 0:

�(l;l+1)�$ �[l�1;l) .=1
� _ �(l�1;l) .=1 � _�(l�1;l] .<1 � (57)

�(l;l+1]�$ �[l�1;l) .=1
� _ �(l�1;l] .=1 � _�(l�1;l] .<1 � (58)

�[l;l+1)�$ �[l�1;l) .=1
� _ �[l�1;l) .=1 � _�(l�1;l]�[0;1)� (59)

�[l;l+1]�$ �[l�1;l) .=1
� _ �[l�1;l] .=1 � _�(l�1;l]�[0;1)� (60)

In this way, any MetricIntervalTL formula can be translated into a Event-

ClockTL formula where bounds are always 0 or 1. Actually, we used a very
small part of EventClockTL; we can further eliminate .<1�:

.<1�$ (C� ^ : .=1 �U
+�) _ (:(C�) ^ : .=1
�U+
 �) (61)

showing that the very basic operators .=1; /=1 have the same expressive power
as full MetricIntervalTL.

The converse translation is much simpler:

.I�$:�<I� ^ �Inf0g� (62)

�U $ (� _)Û (63)

5.1 Axiomatization of MetricIntervalTL

To obtain an axiom system for MetricIntervalTL, we simply translate the ax-
ioms of EventClockTL and add axioms expressing the translation.

Indeed, we have translations in each direction:
T : EventClockTL! MetricIntervalTL

S : MetricIntervalTL! EventClockTL.
Therefore, to prove a MetricIntervalTL formula �, we translate it into Event-

ClockTL and prove it there using the procedure of section 4. The proof � can
be translated back to MetricIntervalTL in T (�) proving T (S(�)). Indeed, each
step is a replacement, and replacements are invariant under syntax-directed
translation preserving equivalence:

T ($ �) = T ()$ T (�)

T (�[p :=]) = T (�)[p := T ()]

34

To �nish the proof we only have to add T (S(�))
�

. Actually the translation axioms

above are stronger, stating T (S(�))$ �. In our case, T (de�ned by (62), (63))
is so simple that it can be considered as a mere shorthand. Thus the axioms
(1){(29) and (49){(60) form a complete axiomatization of MetricIntervalTL,
with .I ;U now understood as shorthands.

Theorem 33 The rule (1), axioms (2)-(29), and axioms (49)-(60) form a
complete axiomatization of MetricIntervalTL.

6 Conclusion

The speci�cation of real-time systems using dense time is natural, and has
many semantical advantages, but discrete-time techniques (here proof tech-
niques [8,18]) have to be generalized. The model-checking and decision tech-
niques have been generalized in [2,3]. Unfortunately, the technique of [3] uses a
translation to automata which are more powerful and complex than temporal
logic, and thus is not suitable for building a completeness proof.

This paper provides complete axiom systems and proof-building procedures
for linear real time, extending the technique of [19]. This procedure can be
used to automate the proof construction of propositional fragments of a larger
�rst-order proof.

Some possible extensions of this work are:

� The proof rules are admittedly cumbersome, since they exactly re
ect the
layered structure of the proof: for instance, real-time axioms are clearly sep-
arated from the qualitative axioms. More intuitive rules can be devised if we
relax this constraint. This paper provides an easy way to show their com-
pleteness: it is enough to prove the axioms of this paper. This also explains
why we have not generalized the axioms, even when obvious generalizations
are possible: we prefer to stick to the axioms needed in the proof, to facilitate
a later completeness proof using this technique.

� The logics used in this paper assume that concrete values are given for real-
time constraints. As demonstrated in the HyTech checker [13], it is often
useful to mention parameters instead (symbolic constants), and derive the
needed constraints on the parameters, instead of a simple yes/no answer.

� The extension of the results of this paper to �rst-order variants of MetricIn-

tervalTL should be explored. However, completeness is often lost in �rst-
order variants [23].

� The development of programs from speci�cations should be supported: the
automaton produced by the proposed technique might be helpful as a pro-
gram skeleton in the style of [24].

35

References

[1] M. Abadi and L. Lamport. The existence of re�nement mappings. Theoretical
Computer Science, 82(2):253{284, 1991.

[2] R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real time.
Information and Computation, 104(1):2{34, 1993.

[3] R. Alur, T. Feder, and T.A. Henzinger. The bene�ts of relaxing punctuality.
Journal of the ACM, 43(1):116{146, 1996.

[4] R. Alur and T.A. Henzinger. A really temporal logic. In Proceedings of the

30th Annual Symposium on Foundations of Computer Science, pages 164{169.
IEEE Computer Society Press, 1989.

[5] R. Alur and T.A. Henzinger. Logics and models of real time: a survey. In
J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Rozenberg, editors, Real
Time: Theory in Practice, Lecture Notes in Computer Science 600, pages 74{
106. Springer-Verlag, 1992.

[6] H. Barringer, R. Kuiper, and A. Pnueli. A really abstract concurrent model and
its temporal logic. In Proceedings of the 13th Annual Symposium on Principles

of Programming Languages, pages 173{183. ACM Press, 1986.

[7] J.P. Burgess. Basic tense logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, volume II, pages 89{133. D. Reidel Publishing
Company, 1984.

[8] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic veri�cation of �nite-
state concurrent systems using temporal-logic speci�cations. ACM Transactions

on Programming Languages and Systems, 8(2):244{263, 1986.

[9] D. M. Gabbay and I. M. Hodkinson. An axiomatization of the temporal logic
with Until and Since over the real numbers. Journal of Logic and Computation,
1(2):229{259, December 1990.

[10] M. R. Hansen and Zhou Chaochen. Semantics and completeness of duration
calculus. In J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg,
editors, Proceedings of Real-Time: Theory in Practice, volume 600 of LNCS,
pages 209{225, Berlin, Germany, June 1992. Springer.

[11] E. Harel, O. Lichtenstein, and A. Pnueli. Explicit-clock temporal logic. In
Proceedings of the Fifth Annual Symposium on Logic in Computer Science,
pages 402{413. IEEE Computer Society Press, 1990.

[12] T.A. Henzinger. Half-order modal logic: how to prove real-time properties.
In Proceedings of the Ninth Annual Symposium on Principles of Distributed

Computing, pages 281{296. ACM Press, 1990.

[13] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: the next generation.
In Proceedings of the 16th Annual Real-time Systems Symposium, pages 56{65.
IEEE Computer Society Press, 1995.

36

[14] Thomas A. Henzinger, Jean-Francois Raskin, and Pierre-Yves Schobbens. The
regular real-time languages. In K. Larsen, editor, Proceedings of ICALP'98:

International Colloquium on Automata, Languages and Programming, volume
1343 of Lecture Notes in Computer Science, pages 580{591, Aalborg, Denmark,
July 1998. Springer-Verlag.

[15] J.A.W. Kamp. Tense Logic and the Theory of Order. PhD thesis, UCLA, 1968.

[16] Yonit Kesten and Amir Pnueli. A complete proof systems for QPTL. In
Proceedings, Tenth Annual IEEE Symposium on Logic in Computer Science,
pages 2{12, San Diego, California, 26{29 June 1995. IEEE Computer Society
Press.

[17] Ron Koymans. Specifying message passing and time-critical systems with

temporal logic. LNCS 651, Springer-Verlag, 1992.

[18] O. Lichtenstein and A. Pnueli. Checking that �nite-state concurrent programs
satisfy their linear speci�cation. In Proceedings of the 12th Annual Symposium

on Principles of Programming Languages, pages 97{107. ACM Press, 1985.

[19] O. Lichtenstein, A. Pnueli, and L.D. Zuck. The glory of the past. In R. Parikh,
editor, Logics of Programs, Lecture Notes in Computer Science 193, pages 196{
218. Springer-Verlag, 1985.

[20] Z. Manna and A. Pnueli. The anchored version of the temporal framework.
In J.W. de Bakker, W.-P. de Roever, and G. Rozenberg, editors, Linear Time,
Branching Time, and Partial Order in Logics and Models for Concurrency,
Lecture Notes in Computer Science 354, pages 201{284. Springer-Verlag, 1989.

[21] J.S. Ostro�. Temporal Logic of Real-time Systems. Research Studies Press,
1990.

[22] J.-F. Raskin and P.-Y. Schobbens. State clock logic: a decidable real-time logic.
In O. Maler, editor, HART 97: Hybrid and Real-time Systems, Lecture Notes
in Computer Science 1201, pages 33{47. Springer-Verlag, 1997.

[23] A. Szalas and L. Holenderski. Incompleteness of �rst-order temporal logic with
until. Theoretical Computer Science, 57(2-3):317{325, May 1988.

[24] P. Wolper. Synthesis of Communicating Processes from Temporal-Logic

Speci�cations. PhD thesis, Stanford University, 1982.

37

