
A Classi�cation of Symbolic Transition Systems

Thomas A. Henzinger Rupak Majumdar

Report No. UCB/CSD-99-1086

December 1999

Computer Science Division (EECS)
University of California
Berkeley, California 94720

A Classi�cation of Symbolic Transition

Systems?;??

Thomas A. Henzinger Rupak Majumdar

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley, CA 94720-1770, USA

ftah,rupakg@eecs.berkeley.edu

Abstract. We de�ne �ve increasingly comprehensive classes of in�nite-
state systems, called STS1{5, whose state spaces have �nitary structure.
For four of these classes, we provide examples from hybrid systems.

STS1 These are the systems with �nite bisimilarity quotients. They can
be analyzed symbolically by (1) iterating the predecessor and boolean op-
erations starting from a �nite set of observable state sets, and (2) termi-
nating when no new state sets are generated.This enablesmodel checking
of the �-calculus.

STS2 These are the systems with �nite similarity quotients. They can be
analyzed symbolically by iterating the predecessor and positive boolean
operations. This enables model checking of the existential and universal
fragments of the �-calculus.

STS3 These are the systems with �nite trace-equivalence quotients. They
can be analyzed symbolically by iterating the predecessor operation and
a restricted form of positive boolean operations (intersection is restricted
to intersection with observables). This enables model checking of linear
temporal logic.

STS4 These are the systems with �nite distance-equivalence quotients
(two states are equivalent if for every distance d, the same observables
can be reached in d transitions). The systems in this class can be ana-
lyzed symbolically by iterating the predecessor operation and terminat-
ing when no new state sets are generated. This enables model checking of
the existential conjunction-free and universal disjunction-free fragments
of the �-calculus.

STS5 These are the systems with �nite bounded-reachability quotients
(two states are equivalent if for every distance d, the same observables
can be reached in d or fewer transitions). The systems in this class can be

? An abbreviated version of this paper will appear in the Proceedings of the 17th Inter-
national Symposium on Theoretical Aspects of Computer Science (STACS), Lecture
Notes in Computer Science, Springer-Verlag, 2000.

?? This research was supported in part by the DARPA (NASA) grant NAG2-1214, the
DARPA (Wright-Patterson AFB) grant F33615-C-98-3614, the MARCO grant 98-
DT-660, the ARO MURI grant DAAH-04-96-1-0341, and the NSF CAREER award
CCR-9501708.

analyzed symbolically by iterating the predecessor operation and termi-
nating when no new states are encountered. This enables model checking
of reachability properties.

0 Introduction

To explore the state space of an in�nite-state transition system, it is often con-
venient to compute on a data type called \region," whose members represent
(possibly in�nite) sets of states. Regions might be implemented, for example, as
constraints on the integers or reals. We say that a transition system is \sym-
bolic" if it comes equipped with an algebra of regions which permits the e�ective
computation of certain operations on regions. For model checking, we are par-
ticularly interested in boolean operations on regions as well as the predecessor
operation, which, given a target region, computes the region of all states with
successors in the target region. While a region algebra supports individual op-
erations on regions, the iteration of these operations may generate an in�nite
number of distinct regions. In this paper, we study restricted classes of symbolic
transition systems for which certain forms of iteration, if terminated after a �nite
number of operations, still yield su�cient information for checking interesting,
unbounded temporal properties of the system.

0.1 Symbolic Transition Systems

De�nition: Symbolic transition system A symbolic transition system S =
(Q; �;R; p�q; P) consists of a (possibly in�nite) set Q of states, a (possibly non-
deterministic) transition function � : Q ! 2Q which maps each state to a set
of successor states, a (possibly in�nite) set R of regions, an extension function
p�q : R ! 2Q which maps each region to a set of contained states, and a �nite
set P � R of observables, such that the following six conditions are satis�ed:

1. The set P of observables covers the state space Q; that is,
S
fppq j p 2 Pg =

Q.
2. For each region � 2 R, there is a region Pre(�) 2 R such that

pPre(�)q = fs 2 Q j (9t 2 �(s) : t 2 �)g;

furthermore, the function Pre : R! R is computable.
3. For each pair �; � 2 R of regions, there is a region And(�; �) 2 R such that

pAnd(�; �)q = p�q \ p�q; furthermore, the function And : R � R ! R is
computable.

4. For each pair �; � 2 R of regions, there is a region Di� (�; �) 2 R such that
pDi� (�; �)q = p�qnp�q; furthermore, the function Di� : R � R ! R is
computable.

5. All emptiness questions about regions can be decided; that is, there is a
computable function Empty : R! B such that Empty(�) i� p�q = ;.

2

6. All membership questions about regions can be decided; that is, there is
a computable function Member : Q � R ! B such that Member (s; �) i�
s 2 p�q.

The tuple RS = (P;Pre ;And ;Di� ;Empty) is called the region algebra of S. ut

Remark: Duality We take an existential view of symbolic transition systems.
The dual, universal view requires (1)

T
fppq j p 2 Pg = ;, (2{4) closure of R

under computable functions Pre, And , and Di� such that

pPre(�)q = fs 2 Q j (8t 2 �(s) : t 2 �)g;

pAnd(�; �)q = p�q [p�q, and pDi� (�; �)q = QnpDi� (�; �)q, and (5) a com-
putable function Empty for deciding all universality questions about regions
(that is, Empty(�) i� p�q = Q). All results of this paper have an alternative,
dual formulation. ut

0.2 Example: Polyhedral Hybrid Automata

A polyhedral hybrid automaton H of dimension m, for a positive integer m,
consists of the following components [AHH96]:

Continuous variables A set X = fx1; : : : ; xmg of real-valued variables. We
write _X for the set f _x1; : : : ; _xmg of dotted variables (which represent �rst
derivatives during continuous change), and we writeX 0 for the set fx01; : : : ; x

0
mg

of primed variables (which represent values at the conclusion of discrete
change). A linear constraint over X is an expression of the form k0 �
k1x1 + � � � + kmxm, where �2 f<;�;=;�; >g and k0; : : : ; km are integer
constants. A linear predicate over X is a boolean combination of linear con-
straints over X . Let Lm be the set of linear predicates over X .

Discrete locations A �nite directed multigraph (V;E). The vertices in V are
called locations ; the edges in E are called jumps.

Invariant and
ow conditions Two vertex-labeling functions inv and
ow .
For each location v 2 V , the invariant condition inv(v) is a conjunction of
linear constraints over X , and the
ow condition
ow (v) is a conjunction of
linear constraints over _X. While the automaton control resides in location v,
the variables may evolve according to
ow (v) as long as inv(v) remains true.

Update conditions An edge-labeling functions update . For each jump e 2 E,
the update condition update(e) is a conjunction of linear constraints over
X [X 0. The predicate update(e) relates the possible values of the variables
at the beginning of the jump (represented by X) and at the conclusion of
the jump (represented by X 0).

The polyhedral hybrid automaton H is a rectangular automaton [HKPV98] if

|all linear constraints that occur in invariant conditions of H have the
form x � k, for x 2 X and k 2 Z;

3

|all linear constraints that occur in
ow conditions of H have the form
_x � k, for x 2 X and k 2 Z;

|all linear constraints that occur in jump conditions of H have the form
x � k or x0 = x or x0 � k, for x 2 X and k 2 Z;

|if e is a jump from location v to location v0, and update(e) contains
the conjunct x0 = x, then both
ow (v) and
ow(v0) contain the same
constraints on _x.

The rectangular automaton H is a singular automaton if each
ow condition of
H has the form _x1 = k1 ^ : : : ^ _xm = km. The singular automaton H is a timed
automaton [AD94] if each
ow condition of H has the form _x1 = 1^ : : :^ _xm = 1.

The polyhedral hybrid automaton H de�nes the symbolic transition system
SH = (QH ; �H ; RH ; p�qH ; PH) with the following components:

{ QH = V �Rm; that is, every state (v;x) consists of a location v (the discrete
component of the state) and values x for the variables in X (the continuous
component).

{ (v0;x0) 2 �H(v;x) if either (1) there is a jump e 2 E from v to v0 such
that the closed predicate update(e)[X;X 0 := x;x0] is true, or (2) v0 = v and
there is a real � � 0 and a di�erentiable function f : [0; �]! Rm with �rst
derivative _f such that f(0) = x and f(�) = x0, and for all reals " 2 (0; �),
the closed predicates inv(v)[X := f(")] and
ow(v)[_X := _f(")] are true. In
case (2), the function f is called a
ow function.

{ RH = V �Lm; that is, every region (v; �) consists of a location v (the discrete
component of the region) and a linear predicate � over X (the continuous
component).

{ p(v; �)qH = f(v;x) j x 2 Rm and �[X := x] is trueg; that is, the extension
function maps the continuous component � of a region to the values for the
variables in X which satisfy the predicate �. Consequently, the extension of
every region consists of a location and a polyhedral subset of Rm.

{ PH = V �ftrueg; that is, only the discrete component of a state is observable.

It requires some work to see that SH is indeed a symbolic transition system. First,
notice that the linear predicates over X are closed under all boolean operations,
and that satis�ability is decidable for the linear predicates. Second, the Pre
operator is computable on RH , because all
ow functions can be replaced by
straight lines [AHH96].

0.3 Background De�nitions

The symbolic transition systems are a special case of transition systems. A tran-
sition system S = (Q; �; �; p�q; P) has the same components as a symbolic tran-
sition system, except that no regions are speci�ed and the extension function is
de�ned only for the observables (that is, p�q : P ! 2Q).

State equivalences A state equivalence �= is a family of relations which contains
for each transition system S an equivalence relation �=S on the states of S.

4

The �= equivalence problem for a class C of transition systems asks, given two
states s and t of a transition system S from the class C, whether s �=S t. The
state equivalence �=a is as coarse as the state equivalence �=b if s �=

S
a t implies

s �=Sb t for all transition systems S. The equivalence �=a is coarser than �=b

if �=a is as coarse as �=b, but �=b is not as coarse as �=a. Given a transition
system S = (Q; �; �; p�q; P) and a state equivalence �=, the quotient system is the
transition system S=�= = (Q=�=; �=�=; �; p�q=�=; P) with the following components:

|the states in S=�= are the equivalence classes of �=S ;
|� 2 �=�=(�) if there is a state s 2 � and a state t 2 � such that t 2 �(s);
|� 2 ppq=�= if there is a state s 2 � such that s 2 ppq.

The quotient construction is of particular interest to us when it transforms an
in�nite-state system S into a �nite-state system S=�=.

State logics A state logic L is a logic whose formulas are interpreted over the
states of transition systems; that is, for every L-formula ' and every transition
system S, there is a set [[']]S of states of S which satisfy '. The L model-
checking problem for a class C of transition systems asks, given an L-formula '
and a state s of a transition system S from the class C, whether s 2 [[']]S . Two
formulas ' and of state logics are equivalent if [[']]S = [[]]S for all transition
systems S. The state logic La is as expressive as the state logic Lb if for every
Lb-formula ', there is an La-formula which is equivalent to '. The logic La is
more expressive than Lb if La is as expressive as Lb, but Lb is not as expressive
as La. Every state logic L induces a state equivalence, denoted �=L: for all states
s and t of a transition system S, de�ne s �=SL t if for all L-formulas ', we have
s 2 [[']]S i� t 2 [[']]S . The state logic L admits abstraction if for every L-formula
' and every transition system S, we have [[']]S =

S
f� j � 2 [[']]S=�=Lg; that is,

a state s of S satis�es an L-formula ' i� the �=L equivalence class of s satis�es
' in the quotient system. Consequently, if L admits abstraction, then every
L model-checking question on a transition system S can be reduced to an L
model-checking question on the induced quotient system S=�=L

. Below, we shall
repeatedly prove the L model-checking problem for a class C to be decidable by
observing that for every transition system S from C, the quotient system S=�=L

has �nitely many states and can be constructed e�ectively.

Symbolic semi-algorithms A symbolic semi-algorithm takes as input the re-
gion algebra RS = (P;Pre ;And ;Di� ;Empty) of a symbolic transition system
S = (Q; �;R; p�q; P), and generates regions in R using the operations P , Pre ,
And , Di� , and Empty . Depending on the input S, a symbolic semi-algorithm
on S may or may not terminate.

0.4 Preview

In sections 1{5 of this paper, we shall de�ne �ve increasingly comprehensive
classes of symbolic transition systems. In each case i 2 f1; : : : ; 5g, we will proceed
in four steps:

5

1 De�nition: Finite characterization We give a state equivalence �=i and
de�ne the class STS(i) to contain precisely the symbolic transition systems S
for which the equivalence relation �=Si has �nite index (i.e., there are �nitely
many �=Si equivalence classes). Each state equivalence �=i is coarser than its
predecessor �=i�1, which implies that STS(i� 1) (STS(i) for i 2 f2; : : : ; 5g.

2 Algorithmics: Symbolic state-space exploration We give a symbolic
semi-algorithm that terminates precisely on the symbolic transition systems in
the class STS(i). This provides an operational characterization of the class STS(i)
which is equivalent to the denotational de�nition of STS(i). Termination of the
semi-algorithm is proved by observing that if given the region algebra of a sym-
bolic transition system S as input, then the extensions of all regions generated
by the semi-algorithm are �=Si blocks (i.e., unions of �=Si equivalence classes).
If S is in the class STS(i), then there are only �nitely many �=Si blocks, and
the semi-algorithm terminates upon having constructed a representation of the
quotient system S=�=i

. The semi-algorithm can therefore be used to decide all �=i

equivalence questions for the class STS(i).

3 Veri�cation: Decidable properties We give a state logic Li which admits
abstraction and induces the state equivalence �=i. Since �=i quotients can be
constructed e�ectively, it follows that the Li model-checking problem for the
class STS(i) is decidable. However, model-checking algorithms which rely on
the explicit construction of quotient systems are usually impractical. Hence, we
also give a symbolic semi-algorithm that terminates on the symbolic transition
systems in the class STS(i) and directly decides all Li model-checking questions
for this class.

4 Example: Hybrid systems The interesting members of the class STS(i) are
those with in�nitely many states. In four out of the �ve cases, following [Hen96],
we provide certain kinds of polyhedral hybrid automata as examples.

1 Class-1 Symbolic Transition Systems

Class-1 systems are characterized by �nite bisimilarity quotients. The region
algebra of a class-1 system has a �nite subalgebra that contains the observables
and is closed under Pre, And , and Di� operations. This enables the model
checking of all �-calculus properties. In�nite-state examples of class-1 systems
are provided by the singular hybrid automata.

1.1 Finite Characterization: Bisimilarity

De�nition: Bisimilarity Let S = (Q; �; �; p�q; P) be a transition system. A
binary relation � on the state space Q is a simulation on S if s � t implies the
following two conditions:

1. For each observable p 2 P , we have s 2 ppq i� t 2 ppq.
2. For each state s0 2 �(s), there is a state t0 2 �(t) such that s0 � t0.

6

Symbolic semi-algorithm Closure1

Input: a region algebra R = (P;Pre ;And ;Di� ;Empty).

T0 := P ;
for i = 0; 1; 2; : : : do

Ti+1 := Ti

[fPre(�) j � 2 Tig
[fAnd(�; �) j �; � 2 Tig
[fDi� (�; �) j �; � 2 Tig

until pTi+1q � pTiq.

The termination test pTi+1q � pTiq, which is shorthand for fp�q j � 2 Ti+1g �
fp�q j � 2 Tig, is decided as follows: for each region � 2 Ti+1 check that there is
a region � 2 Ti such that both Empty(Di� (�; �)) and Empty(Di� (�; �)).

Fig. 1. Partition re�nement

Two states s; t 2 Q are bisimilar, denoted s �=S1 t, if there is a symmetric
simulation� on S such that s � t. The state equivalence�=1 is called bisimilarity.

ut

De�nition: Class STS1 A symbolic transition system S belongs to the class
STS1 if the bisimilarity relation �=S1 has �nite index. ut

1.2 Symbolic State-space Exploration: Partition Re�nement

The bisimilarity relation of a �nite-state system can be computed by partition
re�nement [KS90]. The symbolic semi-algorithm Closure1 of Figure 1 applies
this method to in�nite-state systems [BFH90,Hen95]. Suppose that the input
given to Closure1 is the region algebra of a symbolic transition system S =
(Q; �;R; p�q; P). Then each Ti, for i � 0, is a �nite set of regions; that is, Ti � R.
By induction it is easy to check that for all i � 0, the extension of every region
in Ti is a �=S1 block. Thus, if �=S1 has �nite index, then Closure1 terminates.
Conversely, suppose that Closure1 terminates with pTi+1q � pTiq. From the
de�nition of bisimilarity it follows that if for each region � 2 Ti, we have s 2 p�q
i� t 2 p�q, then s �=S1 t. This implies that �=S1 has �nite index.

Theorem 1A For all symbolic transition systems S, the symbolic semi-algorithm
Closure1 terminates on the region algebra RS i� S belongs to the class STS1.

Corollary 1A The �=1 (bisimilarity) equivalence problem is decidable for the
class STS1 of symbolic transition systems.

1.3 Decidable Properties: Branching Time

De�nition: �-calculus The formulas of the �-calculus are generated by the
grammar

' ::= p j p j x j ' _ ' j ' ^ ' j 9
 ' j 8
 ' j (�x : ') j (�x : ');

7

for constants p from some set � , and variables x from some set X . Let S =
(Q; �; �; p�q; P) be a transition system whose observables include all constants;
that is, � � P . Let E : X ! 2Q be a mapping from the variables to sets of
states. We write E [x 7! �] for the mapping that agrees with E on all variables,
except that x 2 X is mapped to � � Q. Given S and E , every formula ' of the
�-calculus de�nes a set [[']]S;E � Q of states:

[[p]]S;E = ppq;
[[p]]S;E = Qnppq;
[[x]]S;E = E(x);
[['1
�
_
^

	
'2]]S;E = [['1]]S;E

�
[
\

	
[['2]]S;E ;

[[
�
9
8

	

 ']]S;E = fs 2 Q j (

�
9
8

	
t 2 �(s) : t 2 [[']]S;E)g;

[[
�
�
�

	
x : ']]S;E =

�
\
[

	
f� � Q j � = [[']]S;E[x7!�]g.

If we restrict ourselves to the closed formulas of the �-calculus, then we obtain a
state logic, denoted L�1 : the state s 2 Q satis�es the L�1 -formula ' if s 2 [[']]S;E
for any variable mapping E ; that is, [[']]S = [[']]S;E for any E . ut

Remark: Duality For every L�1 -formula ', the dual L�1 -formula ' is obtained
by replacing the constructors p, p, _, ^, 9
, 8
, �, and � by p, p, ^, _, 8
, 9
,
�, and �, respectively. Then, [[']]S = Qn[[']]S . It follows that the answer of the
model-checking question for a state s 2 Q and an L�1 -formula ' is complementary
to the answer of the model-checking question for s and the dual formula '. ut

The following facts about the �-calculus are relevant in our context [AH98].
First, L�1 admits abstraction, and the state equivalence induced by L�1 is �=1

(bisimilarity). Second, L�1 is very expressive; in particular, L�1 is more expressive
than the temporal logics Ctl� and Ctl, which also induce bisimilarity. Third,
the de�nition of L�1 naturally suggests a model-checking method for �nite-state
systems, where each �xpoint can be computed by successive approximation. The
symbolic semi-algorithm ModelCheck of Figure 2 applies this method to in�nite-
state systems.

Suppose that the input given to ModelCheck is the region algebra of a symbolic
transition system S = (Q; �;R; p�q; P), a �-calculus formula ', and any mapping
E : X ! 2R from the variables to sets of regions. Then for each recursive
call of ModelCheck, each Ti, for i � 0, is a �nite set of regions from R, and
each recursive call returns a �nite set of regions from R. It is easy to check
that all of these regions are also generated by the semi-algorithm Closure1 on
input RS . Thus, if Closure1 terminates, then so does ModelCheck. Furthermore,
if it terminates, then ModelCheck returns a set [']E � R of regions such thatS
fp�q j � 2 [']Eg = [[']]S;E , where E(x) =

S
fp�q j � 2 E(x)g for all x 2 X . In

particular, if ' is closed, then a state s 2 Q satis�es ' i� Member (s; �) for some
region � 2 [']E .

Theorem 1B. For all symbolic transition systems S in STS1 and every L�1 -
formula ', the symbolic semi-algorithm ModelCheck terminates on the region
algebra RS and the input formula '.

8

Symbolic semi-algorithmModelCheck

Input: a region algebra R = (P;Pre ;And ;Di� ;Empty), a formula ' 2
L
�
1 , and a mapping E with domain X.

Output: [']E :=
if ' = p then return fpg;
if ' = p then return fDi� (q; p) j q 2 Pg;
if ' = ('1 _ '2) then return ['1]E [['2]E ;
if ' = ('1 ^ '2) then

return fAnd(�; �) j � 2 ['1]E and � 2 ['2]Eg;
if ' = 9
 '0 then return fPre(�) j � 2 ['0]Eg;
if ' = 8
 '0 then return PnnfPre(�) j � 2 (Pnn['0]E)g;
if ' = (�x : '0) then

T0 := ;;
for i = 0; 1; 2; : : : do

Ti+1 := ['0]E[x7!Ti]

until
S
fp�q j � 2 Ti+1g �

S
fp�q j � 2 Tig;

return Ti;
if ' = (�x : '0) then

T0 := P ;
for i = 0; 1; 2; : : : do

Ti+1 := ['0]E[x7!Ti]

until
S
fp�q j � 2 Ti+1g �

S
fp�q j � 2 Tig;

return Ti.

The pairwise-di�erence operationTnnT 0 between two �nite setsT and T 0 of regions
is computed inductively as follows:

Tnn; = T ;
Tnn(f�g [T 0) = fDi� (�; �) j � 2 TgnnT 0.

The termination test
S
fp�q j � 2 Tg �

S
fp�q j � 2 T 0g is decided by checking

that Empty(�) for each region � 2 (TnnT 0).

Fig. 2. Model checking

Corollary 1B The L�1 model-checking problem is decidable for the class STS1

of symbolic transition systems.

1.4 Example: Singular Hybrid Automata

The fundamental theorem of timed automata [AD94] shows that for every timed
automaton, the (time-abstract) bisimilarity relation has �nite index. The proof
can be extended to the singular automata [ACH+95]. It follows that the sym-
bolic semi-algorithm ModelCheck, which has been implemented for polyhedral
hybrid automata in the tool HyTech [HHWT95], decides all L�1 model-checking
questions for singular automata. The singular automata form a maximal class

9

of hybrid automata in STS1. This is because there is a 2D (two-dimensional)
rectangular automaton whose bisimilarity relation is state equality [Hen95].

Theorem 1C The singular automata belong to the class STS1. There is a 2D
rectangular automaton that does not belong to STS1.

2 Class-2 Symbolic Transition Systems

Class-2 systems are characterized by �nite similarity quotients. The region alge-
bra of a class-2 system has a �nite subalgebra that contains the observables and
is closed under Pre and And operations. This enables the model checking of all
existential and universal �-calculus properties. In�nite-state examples of class-2
systems are provided by the 2D rectangular hybrid automata.

2.1 Finite Characterization: Similarity

De�nition: Similarity Let S be a transition system. Two states s and t of S
are similar, denoted s �=S2 t, if there is a simulation � on S such that both s � t
and t � s. The state equivalence �=2 is called similarity. ut

De�nition: Class STS2 A symbolic transition system S belongs to the class
STS2 if the similarity relation �=S2 has �nite index. ut

Since similarity is coarser than bisimilarity [vG90], the class STS2 of symbolic
transition systems is a proper extension of STS1.

2.2 Symbolic State-space Exploration: Intersection Re�nement

The symbolic semi-algorithm Closure2 of Figure 3 is an abstract version of the
method presented in [HHK95] for computing the similarity relation of an in�nite-
state system. Suppose that the input given to Closure2 is the region algebra of
a symbolic transition system S = (Q; �;R; p�q; P). Given two states s; t 2 Q, we
say that t simulates s if s � t for some simulation � on S. For i � 0 and s 2 Q,
de�ne

Sim i(s) =
\
fp�q j � 2 Ti and s 2 p�qg;

where the set Ti of regions is computed by Closure2. By induction it is easy to
check that for all i � 0, if t simulates s, then t 2 Simi(s). Thus, the extension of
every region in Ti is a �=

S
2 block, and if �=S2 has �nite index, then Closure2 termi-

nates. Conversely, suppose that Closure2 terminates with pTi+1q � pTiq. From
the de�nition of simulations it follows that if t 2 Simi(s), then t simulates s.
This implies that �=S2 has �nite index.

Theorem 2A For all symbolic transition systems S, the symbolic semi-algorithm
Closure2 terminates on the region algebra RS i� S belongs to the class STS2.

Corollary 2A The �=2 (similarity) equivalence problem is decidable for the class
STS2 of symbolic transition systems.

10

Symbolic semi-algorithm Closure2

Input: a region algebra R = (P;Pre ;And ;Di� ;Empty).

T0 := P ;
for i = 0; 1; 2; : : : do

Ti+1 := Ti

[fPre(�) j � 2 Tig
[fAnd(�; �) j �; � 2 Tig

until pTi+1q � pTiq.

The termination test pTi+1q � pTiq is decided as in Figure 1.

Fig. 3. Intersection re�nement

2.3 Decidable Properties: Negation-free Branching Time

De�nition: Negation-free �-calculus The negation-free �-calculus consists
of the �-calculus formulas that are generated by the grammar

' ::= p j x j ' _ ' j ' ^ ' j 9
 ' j (�x : ') j (�x : ');

for constants p 2 � and variables x 2 X . The state logic L�2 consists of the

closed formulas of the negation-free �-calculus. The state logic L�2 consists of
the duals of all L�2 -formulas. ut

The following facts about the negation-free �-calculus and its dual are relevant
in our context [AH98]. First, both L�2 and L�2 admit abstraction, and the state

equivalence induced by both L�2 and L�2 is �=2 (similarity). It follows that the

logic L�1 with negation is more expressive than either L�2 or L�2 . Second, the
negation-free logic L�2 is more expressive than the existential fragments of Ctl�

and Ctl, which also induce similarity, and the dual logic L�2 is more expressive
than the universal fragments of Ctl� and Ctl, which again induce similarity.

If we apply the symbolic semi-algorithm ModelCheck of Figure 2 to the region
algebra of a symbolic transition system S and an input formula from L�2 , then
the cases ' = p and ' = 8
 '0 are never executed. It follows that all regions
which are generated by ModelCheck are also generated by the semi-algorithm
Closure2 on input RS . Thus, if Closure2 terminates, then so does ModelCheck.

Theorem 2B For all symbolic transition systems S in STS2 and every L�2 -
formula ', the symbolic semi-algorithm ModelCheck terminates on the region
algebra RS and the input formula '.

Corollary 2B The L�2 and L�2 model-checking problems are decidable for the
class STS2 of symbolic transition systems.

11

2.4 Example: 2D Rectangular Hybrid Automata

For every 2D rectangular automaton, the (time-abstract) similarity relation has
�nite index [HHK95]. It follows that the symbolic semi-algorithm ModelCheck,

as implemented in HyTech, decides all L�2 and L�2 model-checking questions for
2D rectangular automata. The 2D rectangular automata form a maximal class of
hybrid automata in STS2. This is because there is a 3D rectangular automaton
whose similarity relation is state equality [HK96].

Theorem 2C The 2D rectangular automata belong to the class STS2. There is
a 3D rectangular automaton that does not belong to STS2.

3 Class-3 Symbolic Transition Systems

Class-3 systems are characterized by �nite trace-equivalence quotients. The re-
gion algebra of a class-3 system has a �nite subalgebra that contains the observ-
ables and is closed under Pre operations and those And operations for which
one of the two arguments is an observable. This enables the model checking
of all linear temporal properties. In�nite-state examples of class-3 systems are
provided by the rectangular hybrid automata.

3.1 Finite Characterization: Traces

De�nition: Trace equivalence Let S = (Q; �; �; p�q; P) be a transition system.
Given a state s0 2 Q, a source-s0 trace � of S is a �nite sequence p0p1 : : : pn of
observables pi 2 P such that

1. s0 2 pp0q;
2. for all 0 � i < n, there is a state si+1 2 (�(si) \ ppi+1q).

The number n of observables (minus 1) is called the length of the trace �, the
�nal state sn is the sink of �, and the �nal observable pn is the target of �. Two
states s; t 2 Q are trace equivalent, denoted s �=S3 t, if every source-s trace of S
is a source-t trace of S, and vice versa. The state equivalence �=3 is called trace
equivalence. ut

De�nition: Class STS3 A symbolic transition system S belongs to the class
STS3 if the trace-equivalence relation �=S3 has �nite index. ut

Since trace equivalence is coarser than similarity [vG90], the class STS3 of sym-
bolic transition systems is a proper extension of STS2.

3.2 Symbolic State-space Exploration: Observation Re�nement

Trace equivalence can be characterized operationally by the symbolic semi-
algorithm Closure3 of Figure 4. We shall show that, when the input is the region

12

Symbolic semi-algorithm Closure3

Input: a region algebra R = (P;Pre ;And ;Di� ;Empty).

T0 := P ;
for i = 0; 1; 2; : : : do

Ti+1 := Ti

[fPre(�) j � 2 Tig
[fAnd(�; p) j � 2 Ti and p 2 Pg

until pTi+1q � pTiq.

The termination test pTi+1q � pTiq is decided as in Figure 1.

Fig. 4. Observation re�nement

algebra of a symbolic transition system S = (Q; �;R; p�q; P), then Closure3 ter-
minates i� the trace-equivalence relation �=S3 has �nite index. Furthermore, upon
termination, s �=S3 t i� for each region � 2 Ti, we have s 2 p�q i� t 2 p�q.

Theorem 3A For all symbolic transition systems S, the symbolic semi-algorithm
Closure3 terminates on the region algebra RS i� S belongs to the class STS3.

Proof [HM99] We proceed in two steps. First, we show that Closure3 terminates
on the region algebra RS i� the equivalence relation �=SL�

3

induced by the linear-
time �-calculus (de�ned below) has �nite index. Second, we show that �=L�

3

coincides with trace equivalence. The proof of the �rst part proceeds as usual. It
can be seen by induction that for all i � 0, the extension of every region in Ti, as
computed by Closure3, is a�=SL�

3

block. Thus, if�=SL�
3

has �nite index, then Closure3

terminates. Conversely, suppose that Closure3 terminates with pTi+1q � pTiq. It
can be shown that if two states are not �=SL�

3

-equivalent, then there is a region in
Ti which contains one state but not the other. It follows that if for each region
� 2 Ti, we have s 2 p�q i� t 2 p�q, then s�=SL�

3

t. This implies that �=SL�
3

has �nite
index.

For the second part, we show that L�3 is as expressive as the logic 9B�uchi, whose
formulas are the existentially interpreted B�uchi automata, and that 9B�uchi is
as expressive as L�3 . This result is implicit in a proof by [EJS93]. By induction on
the structure of an L�3 -formula ', we can construct a B�uchi automaton B' such
that for all transition systems S, a state s of S satis�es ' i� for some in�nite
source-s trace of S is accepted by B'. Conversely, given a B�uchi automaton B,
we can construct an L�3 -formula which is equivalent to 9B [Dam94]. Since the
state equivalence induced by 9B�uchi is trace equivalence, it follows that �=L�

3

is
also trace equivalence. ut

Corollary 3A The �=3 (trace) equivalence problem is decidable for the class
STS3 of symbolic transition systems.

13

3.3 Decidable Properties: Linear Time

De�nition: Linear-time �-calculus The linear-time �-calculus (also called
\L1" in [EJS93]) consists of the �-calculus formulas that are generated by the
grammar

' ::= p j x j ' _ ' j p ^ ' j 9
 ' j (�x : ') j (�x : ');

for constants p 2 � and variables x 2 X . The state logic L�3 consists of the

closed formulas of the linear-time �-calculus. The state logic L�3 consists of the
duals of all L�3 -formulas. ut

The following facts about the linear-time �-calculus and its dual are relevant
in our context (cf. the second part of the proof of Theorem 3A). First, both

L�3 and L�3 admit abstraction, and the state equivalence induced by both L�3
and L�3 is �=3 (trace equivalence). It follows that the logic L�2 with unrestricted

conjunction is more expressive than L�3 , and L�2 is more expressive than L�3 .
Second, the logic L�3 with restricted conjunction is more expressive than the
existential interpretation of the linear temporal logic Ltl, which also induces
trace equivalence. For example, the existential Ltl formula 9(pUq) (\on some
trace, p until q") is equivalent to the L�3 -formula (�x : q _ (p ^ 9
 x)) (notice

that one argument of the conjunction is a constant). The dual logic L�3 is more
expressive than the usual, universal interpretation of Ltl, which again induces
trace equivalence. For example, the (universal) Ltl formula pWq (\on all traces,

either p forever, or p until q") is equivalent to the L�3 -formula (�x : p ^ 8
(q_x))
(notice that one argument of the disjunction is a constant).

If we apply the symbolic semi-algorithm ModelCheck of Figure 2 to the region
algebra of a symbolic transition system S and an input formula from L�3 , then
all regions which are generated by ModelCheck are also generated by the semi-
algorithm Closure3 on input RS . Thus, if Closure3 terminates, then so does Mod-

elCheck.

Theorem 3B For all symbolic transition systems S in STS3 and every L�3 -
formula ', the symbolic semi-algorithm ModelCheck terminates on the region
algebra RS and the input formula '.

Corollary 3B The L�3 and L�3 model-checking problems are decidable for the
class STS3 of symbolic transition systems.

Remark: Ltl model checking These results suggest, in particular, a symbolic
procedure for model checkingLtl properties over STS3 systems [HM99]. Suppose
that S is a symbolic transition system in the class STS3, and ' is an Ltl formula.
First, convert :' to a B�uchi automaton B:' using a tableau construction, and
then to an equivalent L�3 -formula (introduce one variable per state of B:').
Second, run the symbolic semi-algorithm ModelCheck on inputs RS and . It
will terminate with a representation of the complement of the set of states that
satisfy ' in S. ut

14

?

�

?

� U

s

U

q

qp p

p

q

q

p t

Fig. 5. Distance equivalence is coarser than trace equivalence

3.4 Example: Rectangular Hybrid Automata

For every rectangular automaton, the (time-abstract) trace-equivalence relation
has �nite index [HKPV98]. It follows that the symbolic semi-algorithm Mod-

elCheck, as implemented in HyTech, decides all L�3 and L�3 model-checking
questions for rectangular automata. The rectangular automata form a maximal
class of hybrid automata in STS3. This is because for simple generalizations of
rectangular automata, the reachability problem is undecidable [HKPV98].

Theorem 3C The rectangular automata belong to the class STS3.

4 Class-4 Symbolic Transition Systems

We de�ne two states of a transition system to be \distance equivalent" if for every
distance d, the same observables can be reached in d transitions. Class-4 systems
are characterized by �nite distance-equivalence quotients. The region algebra of
a class-4 system has a �nite subalgebra that contains the observables and is
closed under Pre operations. This enables the model checking of all existential
conjunction-free and universal disjunction-free �-calculus properties, such as the
property that an observable can be reached in an even number of transitions.

4.1 Finite Characterization: Equi-distant Targets

De�nition: Distance equivalence Let S be a transition system. Two states
s and t of S are distance equivalent, denoted s �=S4 t, if for every source-s trace
of S with length n and target p, there is a source-t trace of S with length n and
target p, and vice versa. The state equivalence �=4 is called distance equivalence.

ut

De�nition: Class STS4 A symbolic transition system S belongs to the class
STS4 if the distance-equivalence relation �=S4 has �nite index. ut

Figure 5 shows that distance equivalence is coarser than trace equivalence (s and
t are distance equivalent but not trace equivalent). It follows that the class STS4
of symbolic transition systems is a proper extension of STS3.

15

Symbolic semi-algorithm Closure4

Input: a region algebra R = (P;Pre ; �;Di� ;Empty).

T0 := P ;
for i = 0; 1; 2; : : : do

Ti+1 := Ti

[fPre(�) j � 2 Tig
until pTi+1q � pTiq.

The termination test pTi+1q � pTiq is decided as in Figure 1.

Fig. 6. Predecessor iteration

4.2 Symbolic State-space Exploration: Predecessor Iteration

The symbolic semi-algorithm Closure4 of Figure 6 computes the subalgebra of
a region algebra RS that contains the observables and is closed under the Pre
operation. Suppose that the input given to Closure4 is the region algebra of a
symbolic transition system S = (Q; �;R; p�q; P). For i � 0 and s; t 2 Q, de�ne
s �Si t if for every source-s trace of S with length n � i and target p, there is a
source-t trace of S with length n and target p, and vice versa. By induction it is
easy to check that for all i � 0, the extension of every region in Ti, as computed
by Closure4, is a �Si block. Since �Si is as coarse as �Si+1 for all i � 0, and �=S2 is

equal to
T
f�Si j i � 0g, if �=S2 has �nite index, then �=S2 is equal to �Si for some

i � 0. Then, Closure2 will terminate in i iterations. Conversely, suppose that
Closure4 terminates with pTi+1q � pTiq. In this case, if for all regions � 2 Ti, we
have s 2 p�q i� t 2 p�q, then s �=S4 t. This is because if s can reach an observable
p in n transitions, but t cannot, then there is a region in Ti, namely, Pren(p),
such that s 2 pPren(p)q and t 62 pPren(p)q. It follows that �=S4 has �nite index.

Theorem 4A For all symbolic transition systems S, the symbolic semi-algorithm
Closure4 terminates on the region algebra RS i� S belongs to the class STS4.

Corollary 4A The �=4 (distance) equivalence problem is decidable for the class
STS4 of symbolic transition systems.

4.3 Decidable Properties: Conjunction-free Linear Time

De�nition: Conjunction-free �-calculus The conjunction-free �-calculus con-
sists of the �-calculus formulas that are generated by the grammar

' ::= p j x j ' _ ' j 9
 ' j (�x : ')

for constants p 2 � and variables x 2 X . The state logic L�4 consists of the

closed formulas of the conjunction-free �-calculus. The state logic L�4 consists of
the duals of all L�4 -formulas. ut

16

De�nition: Conjunction-free temporal logicThe formulas of the conjunction-
free temporal logic L34 are generated by the grammar

' ::= p j ' _ ' j 9
 ' j 93�d' j 93';

for constants p 2 � and nonnegative integers d. Let S = (Q; �; �; p�q; P) be a
transition system whose observables include all constants; that is, � � P . The
L34 -formula ' de�nes the set [[']]S � Q of satisfying states:

[[p]]S = ppq;
[['1 _ '2]]S = [['1]]S [[['2]]S ;
[[9
 ']]S = fs 2 Q j (9t 2 �(s) : t 2 [[']]S)g;
[[93�d ']]S = fs 2 Q j there is a source-s trace of S with

length at most d and sink in [[']]Sg;
[[93']]S = fs 2 Q j there is a source-s trace of S with sink in [[']]Sg.

(The constructor 93�d is de�nable from 9
 and _; however, it will be essential
in the 9
-free fragment of L34 we will consider below.) ut

Remark: Duality For every L34 -formula ', the dual formula ' is obtained by
replacing the constructors p, _, 9
, 93�d, and 93 by p, ^, 8
, 82�d, and 82,
respectively. The semantics of the dual constructors is de�ned as usual, such that
[[']]S = Qn[[']]S . The state logic L34 consists of the duals of all L34 -formulas. It
follows that the answer of the model-checking question for a state s 2 Q and an
L34 -formula ' is complementary to the answer of the model-checking question
for s and the L34 -formula '. ut

The following facts about the conjunction-free �-calculus, conjunction-free tem-
poral logic, and their duals are relevant in our context. First, both L�4 and

L�4 admit abstraction, and the state equivalence induced by both L�4 and L�4
is �=4 (distance equivalence). It follows that the logic L

�
3 with restricted conjunc-

tion is more expressive than L�4 , and L�3 is more expressive than L�4 . Second,
the conjunction-free �-calculus L�4 is more expressive than the conjunction-free

temporal logic L34 , and L
�
4 is more expressive than L34 , both of which also in-

duce distance equivalence. For example, the property that an observable can be
reached in an even number of transitions can be expressed in L�4 but not in L34 .

If we apply the symbolic semi-algorithm ModelCheck of Figure 2 to the region
algebra of a symbolic transition system S and an input formula from L�4 , then
all regions which are generated by ModelCheck are also generated by the semi-
algorithm Closure4 on input RS . Thus, if Closure4 terminates, then so does Mod-

elCheck.

Theorem 4B For all symbolic transition systems S in STS4 and every L�4 -
formula ', the symbolic semi-algorithm ModelCheck terminates on the region
algebra RS and the input formula '.

Corollary 4B The L�4 and L�4 model-checking problems are decidable for the
class STS4 of symbolic transition systems.

17

p

p

p

p

p

p

? ?

?

::::

s0 s1 s2

Fig. 7. Bounded-reach equivalence is coarser than distance equivalence

5 Class-5 Symbolic Transition Systems

We de�ne two states of a transition system to be \bounded-reach equivalent"
if for every distance d, the same observables can be reached in d or fewer tran-
sitions. Class-5 systems are characterized by �nite bounded-reach-equivalence
quotients. Equivalently, for every observable p there is a �nite bound np such
that all states that can reach p can do so in at most np transitions. This enables
the model checking of all reachability and (by duality) invariance properties. The
transition systems in class 5 have also been called \well-structured" [A�CJT96].
In�nite-state examples of class-5 systems are provided by networks of rectangular
hybrid automata.

5.1 Finite Characterization: Bounded-distance Targets

De�nition: Bounded-reach equivalence Let S be a transition system. Two
states s and t of S are bounded-reach equivalent, denoted s �=S5 t, if for every
source-s trace of S with length n and target p, there is a source-t trace of S with
length at most n and target p, and vice versa. The state equivalence �=5 is called
bounded-reach equivalence. ut

De�nition: Class STS5 A symbolic transition system S belongs to the class
STS5 if the bounded-reach-equivalence relation �=5

S has �nite index. ut

Figure 7 shows that bounded-reach equivalence is coarser than distance equiva-
lence (all states si, for i � 0, are bounded-reach equivalent, but no two of them
are distance equivalent). It follows that the class STS5 of symbolic transition
systems is a proper extension of STS4.

5.2 Symbolic State-space Exploration: Predecessor Aggregation

The symbolic semi-algorithm Reach of Figure 8 starts from the observables and
repeatedly applies the Pre operation, but its termination criterion is more eas-
ily met than the termination criterion of the semi-algorithm Closure4; that is,
Reach may terminate on more inputs than Closure4. Indeed, we shall show

18

Symbolic semi-algorithm Reach

Input: a region algebra R = (P;Pre ;And ;Di� ;Empty).

for each p 2 P do

T0 := fpg;
for i = 0; 1; 2; : : : do

Ti+1 := Ti [fPre(�) j � 2 Tig
until

S
fp�q j � 2 Ti+1g �

S
fp�q j � 2 Tig

end.

The termination test
S
fp�q j � 2 Ti+1g �

S
fp�q j � 2 Tig is decided as in

Figure 2.

Fig. 8. Predecessor aggregation

that, when the input is the region algebra of a symbolic transition system
S = (Q; �;R; p�q; P), then Reach terminates i� S belongs to the class STS5.
Furthermore, upon termination, s �=S5 t i� for each observation p 2 P and each
region � 2 T pi , we have s 2 p�q i� t 2 p�q.

An alternative characterization of the class STS5 can be given using well-quasi-
orders on states [A�CJT96,FS98]. A quasi-order on a set A is a re
exive and
transitive binary relation on A. A well-quasi-order on A is a quasi-order � on A
such that for every in�nite sequence a0; a1; a2; : : : of elements ai 2 A there exist
indices i and j with i < j and ai � aj . A set B � A is upward-closed if for all
b 2 B and a 2 A, if b � a, then a 2 B. It can be shown that if � is a well-
quasi-order on A, then every in�nite increasing sequence B0 � B1 � B2 � � � �
of upward-closed sets Bi � A eventually stabilizes; that is, there exists an index
i � 0 such that Bj = Bi for all j � i.

Theorem 5A. For all symbolic transition systems S, the following three condi-
tions are equivalent:

1. S belongs to the class STS5.
2. The symbolic semi-algorithm Reach terminates on the region alge-

bra RS .
3. There is a well-quasi-order � on the states of S such that for all

observations p and all nonnegative integers d, the set [[93�d p]]S is
upward-closed.

Proof (2) 1) De�ne s �S�n t if for all observations p, for every source-s trace
with length n and target p, there is a source-t trace with length at most n
and target p, and vice versa. Note that �S�n has �nite index for all n � 0.
Suppose that the semi-algorithm Reach terminates in at most i iterations for
each observation p. Then for all n � i, the equivalence relation �S�n is equal to

�S�i. Since
�=S5 is equal to

T
f�S�nj n � 0g, it has �nite index.

(1) 3) De�ne the quasi-order s �S5 t if for all observables p and all n � 0, for
every source-s trace with length n and target p, there is a source-t trace with

19

length at most n and target p. Then each set [[93�d p]]S , for an observable p and
a nonnegative integer d, is upward-closed with respect to �S5 . Furthermore, if
�=S5 has �nite index, then �S5 is a well-quasi-order. This is because s �=S5 t implies
s �S5 t: if there were an in�nite sequence s0; s1; s2; : : : of states such that for all
i � 0 and j < i, we have sj 6�S5 si, then no two of these states would be �=S5
equivalent.

(3) 2) This part of the proof follows immediately from the stabilization prop-
erty of well-quasi-orders [A�CJT96]. ut

5.3 Decidable Properties: Bounded Reachability

De�nition: Bounded-reachability logic The bounded-reachability logic L35
consists of the L34 -formulas that are generated by the grammar

' ::= p j ' _ ' j 93�d ' j 93';

for constants p 2 � and nonnegative integers d. The state logic L35 consists of
the duals of all L35 -formulas. ut

The following facts about bounded-reachability logic and its dual are relevant in
our context. Both L35 and L35 admit abstraction, and the state equivalence in-
duced by both L35 and L35 is �=5 (bounded-reach equivalence). It follows that the
conjunction-free temporal logic L34 is more expressive than L35 , and L

3

4 is more
expressive than L35 . For example, the property that an observable can be reached
in exactly d transitions can be expressed in L34 but not in L35 . Since L

3

5 admits
abstraction, and for STS5 systems the induced quotient can be constructed using
the symbolic semi-algorithm Reach, we have the following theorem.

Theorem 5B The L35 and L35 model-checking problems are decidable for the
class STS5 of symbolic transition systems.

A direct symbolic model-checking semi-algorithm for L35 and, indeed, L34 is easily
derived from the semi-algorithm Reach. Then, if Reach terminates, so does model
checking for all L34 -formulas, including unbounded 93 properties. The extension
to L34 is possible, because 9
 properties pose no threat to termination.

5.4 Example: Networks of Rectangular Hybrid Automata

A network of timed automata [AJ98] consists of a �nite state controller and an
arbitrarily large set of identical 1D timed automata. The continuous evolution
of the system increases the values of all variables. The discrete transitions of the
system are speci�ed by a set of synchronization rules. We generalize the de�nition
to rectangular automata. Formally, a network of rectangular automata is a triple
(C;H;R), where C is a �nite set of controller locations, H is a 1D rectangular
automaton, and R is a �nite set of rules of the form r = (hc; c0i; e1; : : : ; en),
where c; c0 2 C and e1; : : : ; en are jumps of H . The rule r is enabled if the

20

� � �

s1s0

p pq

Fig. 9. Reach equivalence is coarser than bounded-reach equivalence

controller state is c and there are n rectangular automata H1; : : : ; Hn whose
states are such that the jumps e1; : : : ; en, respectively, can be performed. The
rule r is executed by simultaneously changing the controller state to c0 and the
state of each Hi, for 1 � i � n, according to the jump ei. The following result is
proved in [AJ98] for networks of timed automata. The proof can be extended to
rectangular automata using the observation that every rectangular automaton
is simulated by an appropriate timed automaton [HKPV98].

Theorem 5C The networks of rectangular automata belong to the class STS5.
There is a network of timed automata that does not belong to STS4.

6 General Symbolic Transition Systems

For studying reachability questions on symbolic transition systems, it is natural
to consider the following fragment of bounded-reachability logic.

De�nition: Reachability logic The reachability logic L36 consists of the L35 -
formulas that are generated by the grammar

' ::= p j ' _ ' j 93';

for constants p 2 � . ut

The reachability logic L36 is less expressive than the bounded-reachability logic L35 ,
because it induces the following state equivalence, �=6, which is coarser than
bounded-reach equivalence (see Figure 9: all states si, for i � 0, are reach equiv-
alent, but no two of them are bounded-reach-equivalent).

De�nition: Reach equivalence Let S be a transition system. Two states s
and t of S are reach equivalent, denoted s �=S6 t, if for every source-s trace of S
with target p, there is a source-t trace of S with target p, and vice versa. The
state equivalence �=6 is called reach equivalence. ut

For every symbolic transition systemR with k observables, the reach-equivalence
relation �=R6 has at most 2k equivalence classes and, therefore, �nite index. Since
the reachability problem is undecidable for many kinds of symbolic transition sys-
tems (including Turing machines and polyhedral hybrid automata [ACH+95]),
it follows that there cannot be a general algorithm for computing the reach-
equivalence quotient of symbolic transition systems.

21

References

[ACH+95] R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hy-
brid systems. Theoretical Computer Science, 138:3{34, 1995.

[A�CJT96] P. A. Abdulla, K. �Cer�ans, B. Jonsson, and Y.-K. Tsay. General decidability
theorems for in�nite-state systems. In Proceedings of the 11th Annual Symposium on

Logic in Computer Science, pages 313{321. IEEE Computer Society Press, 1996.
[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183{235, 1994.
[AH98] R. Alur and T.A. Henzinger. Computer-aided Veri�cation: An Introduction to

Model Building and Model Checking for Concurrent Systems. Draft, 1998.
[AHH96] R. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic veri�cation of
embedded systems. IEEE Transactions on Software Engineering, 22:181{201, 1996.

[AJ98] P. Abdulla and B. Jonsson. Verifying networks of timed automata. In TACAS

98: Tools and Algorithms for Construction and Analysis of Systems, Lecture Notes
in Computer Science 1384, pages 298{312. Springer-Verlag, 1998.

[BFH90] A. Bouajjani, J.-C. Fernandez, and N. Halbwachs. Minimal model generation.
In CAV 90: Computer-aided Veri�cation, Lecture Notes in Computer Science 531,
pages 197{203. Springer-Verlag, 1990.

[Dam94] M. Dam. CTL� and ECTL� as fragments of the modal �-calculus. Theoretical
Computer Science, 126:77{96, 1994.

[EJS93] E.A. Emerson, C.S. Jutla, and A.P. Sistla. On model checking for fragments
of �-calculus. In CAV 93: Computer-aided Veri�cation, Lecture Notes in Computer
Science 697, pages 385{396. Springer-Verlag, 1993.

[FS98] A. Finkel and Ph. Schnoebelen. Well-structured Transition Systems Every-

where. Technical Report LSV-98-4, Laboratoire Sp�eci�cation et V�eri�cation, ENS
Cachan, 1998.

[Hen95] T.A. Henzinger. Hybrid automata with �nite bisimulations. In ICALP 95:

Automata, Languages, and Programming, Lecture Notes in Computer Science 944,
pages 324{335. Springer-Verlag, 1995.

[Hen96] T.A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th

Annual Symposium on Logic in Computer Science, pages 278{292. IEEE Computer
Society Press, 1996.

[HHK95] M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations
on �nite and in�nite graphs. In Proceedings of the 36rd Annual Symposium on Foun-

dations of Computer Science, pages 453{462. IEEE Computer Society Press, 1995.
[HHWT95] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi.HyTech: the next generation.
In Proceedings of the 16th Annual Real-time Systems Symposium, pages 56{65. IEEE
Computer Society Press, 1995.

[HK96] T.A. Henzinger and P.W. Kopke. State equivalences for rectangular hybrid
automata. In CONCUR 96: Concurrency Theory, LectureNotes in Computer Science
1119, pages 530{545. Springer-Verlag, 1996.

[HKPV98] T.A. Henzinger, P.W. Kopke, A. Puri, and P. Varaiya. What's decidable
about hybrid automata? Journal of Computer and System Sciences, 57:94{124, 1998.

[HM99] T.A. Henzinger and R. Majumdar. Symbolic model checking for rectangular
hybrid systems. Submitted for publication, 1999.

[KS90] P.C. Kanellakis and S.A. Smolka. CCS expressions, �nite-state processes, and
three problems of equivalence. Information and Computation, 86:43{68, 1990.

[vG90] R.J. van Glabbeek. Comparative Concurrency Semantics and Re�nement of

Actions. PhD thesis, Vrije Universiteit te Amsterdam, The Netherlands, 1990.

22

