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Abstract 

Most existing studies on association rules discovery focused on finding the association rules 

between all items in a large database that satisfy user-specified minimum confidence and support. 

In practice, users are often interested in finding association rules involving only some specified 

items. Meanwhile, based on the search results in former queries, users tend to change the 

minimal confidence and support requirements to obtain suitable number of rules. Under these 

constraints, the existing mining algorithms can not perform efficiently due to high and repeated 

disk access overhead. In this research, we present a novel mining algorithm that can efficiently 

discover the association rules between the user-specified items or categories via feature 

extraction approach. At most one scan of the database is needed for each query; hence, the disk 

access overhead can be reduced substantially and the query be responded quickly. 
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1. Introductions 

Data mining is the process of extracting previously unknown and useful information from a 

large database. It has been extensively applied to a wide variety of applications like sales 

analysis, healthcare, manufacturing, etc. A number of studies have been made on efficient data 

mining methods and the relevant applications. 

 Among the data mining problems, association rules discovery might be the most studied 

ones. This problem was introduced in [1]. Given a set of transactions, where each transaction is a 

set of items, an association rule is an expression X ⇒ Y, where X and Y are sets of item. An 

example of an association rule is: “25% of transactions that contain beer also contain diapers; 5% 

of all transactions contain both items”. Here, 25% is called the confidence of the rule, and 5% the 

support of the rule [1, 2]. Most existing work on this problem focused on finding the association 

rules among all items in a large database that satisfy user-specified minimum confidence and 

support [1-4, 6-7]. A number of studies were made to propose efficient methods for mining 

association rules by reducing either the CPU computation time or the disk access overhead [3-4, 

7]. Some studies considered the usage of sampling techniques for reducing the processing 

overhead [11, 12]. Srikant and Agrawal [9] incorporated into considerations the quantities of the 

items purchased in discovering association rules. Some approaches were proposed for mining 

generalized association rules [8, 10]. Sarawagi et al. [10] considered the integration of 

association rules mining with SQL in standard databases. 

 In practice, users are often interested in finding association rules involving only some 

specified items rather than all items in a query. Meanwhile, based on the search results in former 

queries, users might change the minimum confidence and support requirements to obtain suitable 

number of rules. In this scenario, the users tend to make several consecutive queries with 
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expected quick response time and different interested items, minimum confidence and support 

for potential rules, rather than wait a long time to get a lot of association rules for all itemsets in 

only partial of which the users are really interested. 

Under these item constraints, the existing mining algorithms have the following drawbacks:  

Firstly, they can not perform efficiently in terms of responding the user’s query quickly 

though they can perform well in finding the association rules among all itemsets. The main 

reason is that the existing mining algorithms are mostly designed in forms of several passes so 

that the whole database needs to be read from disks several times for each user’s query under the 

constraint that the whole database is too large to be stored in memory. This is very inefficient in 

considering the big overhead of reading the large database even though only partial items are 

interested in fact. The worse part is the existing mining algorithms will repeat reading the whole 

database several passes for a subsequent query even it involves the same specified items as the 

previous query but changes only the minimum confidence and support. 

Secondly, no guiding information is provided for users to choose suitable settings for the 

constraints (like support and confidence) such that an appropriate number of association rules are 

discovered. Consequently, the users have to use a try-and-error approach to get suitable number 

of rules. This is very time-consuming and inefficient. 

Srikant and Agrawal [8] introduced the problem of mining generalized association rules as 

follows: Given a set of transactions, where each transaction consists of a set of items, and a 

taxonomy on the items, we find associations between items at any level of the taxonomy. For 

example, given a taxonomy that says that jackets is-a outerwear is-a clothes, we may infer a rule 

that “50% of people who buy outerwear tend to buy shoes. 5% of all transactions contain both 
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these items”. This reflects the fact that the taxonomies over the items exist in many real-life 

applications.  

 In this paper, we also investigate another problem related to mining generalized 

association rules. We call the problem as “mining categorized association rules” and the scenario 

in this problem is as follows: 

 

1. Although the taxonomy may be used to model the hierarchical relationships of items in an 

application very well, people are often interested in association rules under a simpler 

taxonomy, i.e., the one-level category an item belongs to.  

2. Users are often interested in finding association rules involving only some specified categories 

rather than all categories in a query. Hence, constraints on categories will be specified. 

3. Users may make continuous queries, in which new requirements for parameters like support 

are set based on the previous query results. This is because the number of discovered rules 

may not be suitable. Therefore, quick response to users’ queries is needed. 

 

With the scenario as described above, the existing mining algorithms may not perform well in 

terms of responding the user’s query quickly. The main reason is that the existing mining 

algorithms are mostly designed in forms of several passes so that the whole database needs to be 

read from disks several times for each user’s query under the constraint that the whole database 

is too large to fit in memory. This is very inefficient in considering the big overhead of reading 

the large database even though only partial items are interested in fact. The worse part is the 

existing mining algorithms will repeat reading the whole database several passes for a 
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subsequent query even it involves the same specified items as the previous query but changes 

only the minimum confidence and support. 

A new approach is proposed in this paper for mining categorized association rules efficiently. 

The main features of the method are as follows: For each interested item or category, a 

compressed feature vector and feature record are built to represent the occurrence patterns of the 

items belonged to this category. The feature vector and feature record are built only once while 

reading the database first time. Then, the associations between the interested items or categories 

are constructed by using the feature record information and performing simple logical operations 

on the feature vectors without reading the large database again. Hence, all the disk access 

overhead, calculation time for mapping the items to belonged categories, and the calculation time 

for finding the associations between the categories can be reduced substantially. 

Besides, we also describe a methodology to provide users with useful information regarding 

the database to be mined, like the estimated number of potential rules under various settings of 

the constraints. Thus, users can make suitable constraint settings more easily and less mining 

processes are needed. 

The rest of the paper is organized as follows. We state the problem formally in Section 2. In 

Section 3, the proposed method is described in details. A conclusion and the future work is given 

in Section 4. 

 

 

2. Problem Statement 

In the following, we give a formal statement of the problem [1]: Let I = {i1, i2,…, im}be a set 

of items. Let D be a set of transactions, where each transaction T is a set of items such that T ⊆ I. 
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Associated with each transaction is a unique identifier, called its TID. An association rule is an 

implication of the form X ⇒ Y, where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. The rule X ⇒ Y has support s 

if s% of transactions in D contain X ∪ Y, and it has confidence c if c% of transactions in D that 

contain X also contain Y. Let IS ⊂ I be the set of items the users are interested. Given the 

constraints of IS, s and c, the problem is to find all association rules involving items contained in 

IS with support and confidence larger than s and c, respectively. Itemsets with satisfied support 

are called large itemsets. We call s and c as minsup and minconf, respectively. 

For the categorized association rules mining, the following information is complemented. 

Let C = { C1, C2,…, Cm } be a set of categories and M = {(ik, Ck)| ik∈ I and Ck ∈ C}be a set of 

mapping which specifies which category an item belongs to. Here, we assume that an item 

belongs to only one category. Besides, let IC ⊂ C be the set of categories the users are interested 

in the query the user wants to submit. The set of IC, s and c constitutes the mining constraints. 

Given the mining constraints, the problem is to find all categorized association rules involving 

items contained in IC with support and confidence larger than s and c, respectively. Category 

sets with satisfied support are called large category sets. We call s and c as minsup and minconf, 

respectively. 

To meet the goals mentioned in Section 1, we propose an intelligent and efficient data miner 

for discovering association rules as shown in Figure 1. The data miner consists of two 

components: a mining algorithm and the pre-miner, which exploits some sampling technique to 

analyze the database speedily. 

In the system model, initially an user submits a query with some mining constraints. After 

the association rules are detected, the user might change some of the mining constraints like IC 

for submitting subsequent query since the number of discovered rules may not be suitable. That 
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is, the user may make continuous queries based on previous mining results. The function of Pre-

Miner is to make speedy analysis of the database and then provide users with useful analyzed 

information, which can help users choose suitable settings for the constraints like support and 

confidence. The main techniques for the pre-miner are still under designing, but they will 

basically be based on some sampling methods since the purpose of pre-miner is to get estimated 

information of the database instead of the precise one. 
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1. Find all sets of items (or itemsets) that have transaction support above minimum support. 

2. Use the large itemsets to generate the desired rules. 

It was pointed out that sub-problem 2 is quite trivial as compared to sub-problem 1. Hence, 

most work focus on solving sub-problem 1, i.e., to find the large itemsets. In our problem, the 

focus shifts from itemsets to categories. Similarly, we will aim to find large category sets, which 

can be used to generate the association rules between categories easily. 

 

3. Proposed Methods 

 

In this section, we firstly describe some previous work on the defined problem. Then we describe 

in details the proposed mining algorithm and the pre-miner. 

 

3.1 Previous Work 

 

The problem of discovering the association rules can be decomposed into two sub-problems [1, 

2]: 

 

1. Find all sets of items (itemsets) that have transaction support above minimum support. 

2. Use the large itemsets to generate the desired rules. A general way to do this is examining all 

large itemsets, say ABCD and AB, and determine if the rule AB ⇒ CD holds by computing 

the ratio conf = support(ABCD)/support(AB). If conf ≥ minconf, then the rule holds. 
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Clearly the sub-problem 2 is quite straightforward once sub-problem 1 is resolved. Hence, 

most researches are focused on solving sub-problem 1. This research is also aimed at sub-

problem 1, too. 

A number of studies have been done on association rules mining [1-9]. Most of them follow 

the representative approach by Agrawal et al. [2], namely Apriori. The principle of Apriori is as 

follows. Let Lk denote the large itemset with k items (also called large k-itemset). The first pass 

of the algorithm scans the database and counts item occurrences to determine the large 1-itemsets. 

A subsequent pass, say pass k, consists of two phases. First, the large itemsets Lk-1 found in the 

(k-1)th pass are used to generate the candidate itemset Ck. Then the database is scanned and the 

support of candidates in Ck is counted. This repeats until the generated large itemsets become 

empty set. Using the notation defined in Section 2, the Apriori algorithm is as shown in Figure 2. 

 

Scan the database once to get large 1-itemsets L1; 
For (k=2; Lk-1 ≠ 0; k++) do begin 

Ck = apriori-gen(Lk-1); 
forall transactions t ∈ D do begin 
Ct = subset(Ck, t); 
Forall candidates c ∈ Ct do 
increase the count of c by 1; 
end 
Lk = { c ∈ Ck | c.count ≥  minsup} 
end 
Answer = union of all Lk ; 

 

Figure 2. The Apriori algorithm. 
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Agrawal et al. [2] showed that Apriori algorithm outperforms other mining algorithms due to 

the stable performance under various number of data items. However, it incurs the problem of 

high disk access overhead as stated in Section 1. In particular, this problem is more obvious 

when only partial data items instead of all items are interested. 

 

3.2 The Proposed Mining Algorithm 

 

The idea of the proposed mining method is to extract the features of the interested items and 

store them in  compressed vectors. Once the compressed vectors of the interested categories are 

built, all computations for the concurrent occurrences of the interested categories are made by 

Boolean AND operation by using the feature vectors without accessing the database again. 

Hence, the high disk overhead incurred in other mining algorithms due to multiple parses of the 

database can be reduced substantially. The algorithm of the proposed method is as shown in 

Figure 3. 

Central to the proposed mining method are two databases, namely Support DB and Feature 

DB. Feature DB records the feature vectors for the interested data items, while Support DB 

records the calculated support for each data item. When a user submits a query for mining a 

database with the constrained support s, confidence c and interested items IT, the proposed 

method firstly examines if the Support DB exists and builds it if it is absent. Building Support 

DB requires one pass of the whole database (recalled that the support for a data item is the 

number of total occurrences in ratio of the total number of transactions). During the scanning 

process, the Feature DB for the interested items is built, too (the details of building the feature 

vector for each interested item will be described later). Once Support DB is built and stored in 
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the disk, it takes very short time in further queries to determine L1 by accessing Support DB 

directly instead of scanning the whole database. After L1 is determined, any vectors of the 

interested items which do not exist in Feature DB will be built. 

 

 
 1) IF (Support DB is empty) 
  Scan the database to build Support DB and determine L1, and 
       build Feature DB for interested items; 
              ELSE 
  Retrieve Support DB and determine L1 and build Feature DB 
      for non-existent items; 
 2) k=2 
 3) Generate candidate large itemset Ck from Lk-1; 
 4) IF Ck is not empty 
  Obtain the count for each itemset in Ck by bitwise AND 
               operations on the items’ feature vectors and get Lk; 
  k=k+1; 
  go to step 3; 
 5) Answer = union of all Lk ;  
 
  Figure 3. Algorithm of the proposed mining method. 

 

 

 

 

 

 

 

 

 

 

 

 

The process for building the feature vector Vi for a data item Di is as follows. Basically, Vi is 

compressed form of a bit vector in which jth bit is set as 1 if Di appears; otherwise, it is set as 0. 

However, in considering the possibility of sparse occurrences of a data item in a large database, 

the consecutive 0 is counted and stored as a count index if the count is larger than 8 (since we 

use 1 byte as a segment). By storing the appearing feature of each interested item as a 

compressed vector separately, the size of the database to be accessed can be reduced greatly. 
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Hence, the disk overhead of scanning the whole database as existed in other mining algorithms 

can be reduced. 

Another alternative in designing the feature vector is to store only the location a data item 

appears. A range description can be used for consecutive appearances. This approach could be 

more effective than the method described in last paragraph in required size for each vector.  A 

detailed analysis will be made for contrasting their performance in the future. 

In generating and pruning candidate large itemset Ck from Lk-1, the proposed method uses the 

approach similar to Apriori. To count the number of occurrences for each candidate itemset Ck, 

the proposed method does not scan the whole database as Apriori does. Instead, only the vectors 

for the items contained in Ck are accessed for doing bitwise AND operations, and the count is 

obtained by counting the number of 1’s in the AND operated result.  

The candidates generating and counting process goes on until no candidate can be generated 

any more. Finally, the large data sets are the union of all Lk and the association rules can be 

obtained easily by using the constrained confidence c as described in Section 3.1. 

For mining categorized association rules, the proposed algorithm is modified slightly as 

shown in Figure 4. Central to our method are two databases, namely Category Support DB 

(CSDB) and Category Feature DB (CFDB). CFDB records the feature vectors for the interested 

category, while CSDB records the calculated support for each data item. When a user submits a 

query for mining a database with the constrained support s, confidence c and interested category 

IC, the proposed method firstly examines if the CSDB exists and builds it if it is absent. 
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 1) IF ( CSDB is empty) 
  Scan the database to build CSDB and determine L1, and 
       build CFDB for interested category; 
           ELSE 
  Retrieve CSDB and determine L1 and build CFDB 
      for non-existent category; 
 2) k=2 
 3) Generate candidate large category set Ck from Lk-1; 
 4) IF Ck is not empty 
  Obtain the count for each category in Ck by bitwise AND 
               operations on the category’s feature vectors and get Lk; 
  k=k+1; 
  go to step 3; 
 5) Answer = union of all Lk ;  
 
   Figure 4. Algorithm for finding large category set. 
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3.3 The Pre-miner 
Almost all existing studies on association rules mining focused on improving the 

performance of the mining algorithms [1-9]. However, one important problem ignored is 

how to set suitable constraints such that appropriate number of association rules can be 

discovered. Arbitrary settings of the constraints may lead to extremely large number of 

rules beyond user’s capability for analysis. Consequently, users have to adjust the 

constraints settings and conduct the time-consuming mining over again. 

The goal of Pre-miner is to provide users with useful information regarding the 

database to be mined, like the estimated number of potential rules under various settings of 

the constraints. Thus, users can make suitable constraint settings more easily and less 

mining processes are needed. 

The challenge lies in that the Pre-miner must be time-effective in analyzing the 

database while preserving reasonably accurate estimation; otherwise, users would rather do 

the mining directly. To meet this goal, some sampling techniques like in [10-11] are being 

developed to save processing time in parsing the large database. Meanwhile, visualizing 

approach will be deployed to clearly illustrate the analyzed results. 

 

 

4. Conclusions 
In this work, we propose an intelligent and efficient data miner for mining association rules 

with constrained items or categories in large databases. The proposed data miner consists of 

two components: a data mining algorithm named and a database analyzer called Pre-miner. 

The proposed mining algorithm can efficiently discover the association rules between the 

data items in a large database based on the dynamic constraints specified by the users. In 

particular, at most one scan of the whole database is needed for each query. Hence, the high 

repeated disk overhead incurred in other mining algorithms can be reduced significantly. 

  In the following, we give brief comparisons of the proposed method with Apriori-

based methods. For our problem, the merits of the proposed method are; 
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1. Less disk access overhead. For Apriori, the database has to be read k times if we found 

large category sets as many as Lk.. For our method, at most one database scan is needed 

for each user query. 

2. No repeated database access and computation occurs in our method. For two continuous 

queries from some user with different mining constraints, Apriori treats both queries 

equally and redo the mining tasks for each query. Consequently, all database access will 

be done repeatedly even though some of the information has been obtained in previous 

query. By taking this into consideration, the proposed method stores both the occurring 

patterns of the interested category and the mining result, such that no repeated database 

accesses are made. This will save considerable execution time. 

3. Less computation for mapping interested items into interested categories. With Apriori-

based methods, the mapping of interested items into corresponding category was 

calculated in each pass, incurring a big computation overhead. For our method, this 

computation was done only in the first pass since all further computations are done on 

the built feature vectors. 

 

Therefore, the method we propose can reduce both the disk access time and 

computation time greatly compared to Apriori-based methods. In particular, the 

improvement will be especially obvious under the following conditions: i) the interested 

category (IC) involves only some portion of all categories, 2) only the value of support and 

confidence are changed, and the IC is kept still, 3) several queries have been made with 

different IC. In this case, most feature vectors of the categories the users may query would 

be built already; hence, almost no database access is needed for all subsequent queries. 

We are also in designing an intelligent Pre-miner which can provide users the useful 

information regarding the database to be mined, like the estimated number of association 

rules under different settings of support and confidence. Hence, the users can make more 

suitable settings for the mining constraints to obtain appropriate number of rules. 
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