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Abstract

Given a deterministic, non-blocking hybrid system, we introduce the notion of its hybrid
manifold (or hybrifold) with the associated hybrid flow on it. This enables us to study
hybrid systems as (generally non-smooth) dynamical systems from a global geometric
perspective. We introduce the notion of topological conjugacy of hybrid systems and
locally classify Zeno states in dimension two. We show that the Zeno phenomenon
is due to nonsmoothness of the hybrid flow and propose several ways of detecting and
removing it. A stability result, capturing examples such as unstable + unstable = stable,
and completely characterizing stable hybrid equilibria in dimension two, is proved in the
last section.

1 Introduction

In this paper we present a unifying approach for treatment of hybrid systems. We define the
notions of the hybrid manifold (or hybrifold) and hybrid flow, which enable us to study the
hybrid system “in one piece”, that is, as a single, generally non-smooth dynamical system.
It is well known that even simple smooth dynamical systems can exibit a very complicated
behavior which makes their global study very difficult using analytical methods. This is why
developing qualitative (i.e. geometric and topological) techniques has been at the center of
smooth dynamics, ever since Poincaré’s foundational work at the end of the last century.

*This work was supported by the NASA grant NAG-2-1039, the Swedish Foundation for International
Cooperation in Research and Higher Education, Telefonaktiebolaget L.M. Ericsson, ONR under N00014-97-
1-0946, DARPA under F33615-98-C-3614, and ARO under DAAH04-96-0341.



Having established a reasonable framework for the geometric study of hybrid systems as
dynamical systems, we focus particularly on the Zeno phenomenon, which does not occur in
smooth dynamical systems. We study its causes, ways of removing it from the system, and
classify it in dimension two. This classification is with respect to the notion of topological con-
Jjugacy borrowed from dynamical systems: two systems are conjugate if they are qualitatively
the same.

The last section of the paper deals with stability of isolated hybrid equilibria. We prove
a theorem which explains, among others, examples in which a stable hybrid equilibrium is
composed of unstable classical equilibria.

2 Preliminaries

2.1 Definitions and examples

We start with the following, relatively standard definition of a hybrid system.
Definition 2.1 An n-dimensional hybrid system is a 6-tuple
H=(Q,E,DX,G,R),

where:

Q@ ={1,...,k} is the collection of (discrete) states of H, where k > 1 is an integer;

E C @ x Q is the collection of edges;

D ={D; :1 € Q} is the collection of domains of H, where D; C {i} x R" for all i € Q;

X ={X; :1 € Q} is the collection of vector fields such that X; is Lipschitz on D; for all
i € Q; we denote the local flow of X; by {¢i}.

o G ={G(e): e € E} is the collection of guards, where for each e = (1,7) € E, G(e) C Dy;

o R = {R. : e € E} is the collection of resets, where for each e = (i,7) € E, R. is a
relation between elements of G(e) and elements of D;, i.e. Re C G(e) x Dj.

A few remarks are in place here.

Remarks

(a) We choose to differ from the more standard terminology in which domains are called
invariants. Since there is nothing dynamicaly invariant about these sets, we prefer to
reserve the term for later, more appropriate use.
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(b) Note that we do not consider the set of initial states as a separate item in the definition
of a hybrid system. This is because we will restrict ourselves to studying only so called
non-blocking systems in which all points can be initial conditions.

Figure 1: A hybrid system.

(c) The above definition clearly allows a hybrid system to be a very wild object. An important
question is: what properties should the domains, guards, resets and vector fields in H
satisfy to get a large enough class of hybrid systems about which something useful can
be said. Soon we will deal with this question in detail and focus our attention on such
a class of hybrid systems (which we will call regular).

(d) If a reset relation R. is actually a map G(e) — Dj;, with e = (i,5) € E, instead of
(z,y) € R, we write y = R.(z).

(e) Observe that domains D; lie in distinct copies of R™. However, we will sometimes abuse
the notation and consider the domains as subsets of a single copy of R". We also set

D =D,
i€Q
and call this set the total domain of H, and

G=|JGle), R=|]JR(G(e)),

e€EE eeE
G={G(e):ec E}, R={R(G(e):ecE}.

(f) To every hybrid system H we can associate its graph, ['(H), with elements of () as vertices
and E as the set of edges.

Given H, the basic idea is that starting from a point in some domain D; we flow according to
X; until (and if) we reach some guard G(7, 7), then switch via the reset R; ), continue flowing
in D; according to X; and so on.



Figure 2: The water tank example.

Example 2.1 (Water Tank WT) Heren =2,k =2, F = {(1,2),(2,1)},
D1={1}XC, D2={2}XC,

where C = [}, 00) X [l2, 00),

Xi=(w—v,-v)7, X,= (—v1,w — v,)7,

G(1,2) = {(1,:131,:1:2) € D1 T = 12}, G(2,1) = {(2,:121,1172) € .D2 Ty = 11},

and
R(1,2)(1)w1712) = (27 Ty, al2)7 R(2,l)(27 lla m2) = (la lla 3:2)-

The interpretation is as follows (cf. Fig. 2). For i € Q, x; denotes the volume of water in
tank 7, v; is the constant rate of flow of water out of tank ¢, and /; is the desired volume of
water in tank :. The constant rate of water flow into the system, dedicated exclusively to one
tank at a time, is denoted by w. The control task is to keep the water volume above /; and
l; (assuming the initial volumes are above {; and [, respectively) by a strategy that switches
the inflow to the first tank whenever z; = /; and to the second tank whenever z, = 5.

Example 2.2 (Bouncing Ball BB) This is a simplified model of an elastic ball that is
bouncing and losing a fraction of its energy with each bounce. We denote by z, its altitude
and by z, its vertical speed. Heren =2, k=1, E = {(1,1)},

Dl = ‘{(131,.'1?2) : .'ZI]'Z 0}? X1($1,3}2) = (w%—g)Ta

G(1,1) = {(0,z2) : z2 <0}, R,1)(0,22) = (0, —cas),
where g is the acceleration due to gravity and 0 < ¢ < 1 (cf. Fig. 3).

Example 2.3 (Bouncing m-Ball BB(m)) The only difference between this and the previ-
ous example is that we have m different domains in which the ball can bounce and after each
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Figure 3: Bouncing ball.
bounce the ball switches to the next domain in a cyclic order. That is, n =2, k=m > 1,
E={(1,2),(2,3),... ,(m=1,m),(m,1)}, and for all : € Q,
D; = {i} x {(z1,22) : 21 20}, G(5,5+1) = {i} x {(0,2;) : z, < 0},

Riii+1)(3,0,72) = (¢ + 1,0, —cz,),

where we conveniently identify m + 1 := 1. Note that here the domains are just different
copies of the closed right half-plane in R

Example 2.4 (Ball Bouncing on an N-step Staircase BBS(N)) Here a ball is bounc-
ing on an N-step staircase. Assume that step i = 1,..., N has width w; > 0 and height
h; > 0, and define W, = ) -, w; and By = >oiw, hi. Assume also that the ball loses a pro-
portional amount of its vertical velocity (z;) with each bounce and that the ball has constant
horizontal speed (z3). Denote by z, its vertical position. Then we have: @ = {1,... ,N +1},
E={(1):1<i<N+1}U{(1,2),...,(N,N+1)},andfor 1 <i< N+1:

D = {i} x [hi, 00) x (=00,0] x (=00, b,
G(t,7) = {(z1,22,23) € D; : 2y = iz,-}, Riiy(i, 21, 29, 23) = (3, 21, —CT2, 3)
and X;(z1,zs,23) = (72, —g,v)7. Furthermore, for 1 <i < N:
G(i,t 4+ 1) = {(z1,22,23) € Di 1 23 =i}, Riip)(i,x) = (1 +1,x%).
For more details see [JLSM].

Example 2.5 (Two Saddles 52())) Here(seeFig. 4)n=2,k=2,1>0, E = {(1,2),(2,1)},
the domains are two copies of the square § =[~1,1] x [-1,1], i.e. for 7 € Q,

D; = {i} xS, Xi(z1,22) = (/\xl"—$2)Ta Xa(z1,22) = (—xl,/\xz)T,

G(1,2) = union of the vertical sides of D;, G(2,1) = union of the horizontal sides of D,

R j(i,2) = (4,2), for all (¢,5) € E.
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Figure 5: T%(a).

Example 2.6 (Flow on the 2-torus T%(a)) Wehavea > 0,n =2,k =2, E = {(1,2),(2,1)},
D; = {i} x K, where K = [0,1] x [0,1] is the unit square, X; = X, = (1,a)T are constant

vector fields,
G(z,7) = {z} x Supper, G(3,7) = {i} x Sright,
R(:’,i)(ia L, 1) = (i’xa 0) and R(i,j)(ia 1, y) = (.77 0, y)a

where 1,5 = 1,2, 7 # j, Supper = [0,1] x {1} and Sygpy = {1} x [0,1) denote the (closed)
upper and (half-closed) right side of K. Note that R ;)({i} x Supper) = {i} X Siower and
R 5 ({t} x Sright) = {5} X Sieft, with the obvious meaning of Sjoyer and Sief;.

If we proceed as is usually done in geometry and identify {¢} X Supper with {i} X Sjower Via
Ry;iy and {1} X Siighy with {5} x Sjery via Ry j) (where i,5 = 1,2, 7 # j), we obtain the standard
2-torus with a smooth flow with slope « on it. This is a baby-version of a construction we will
later apply to more general hybrid systems.

Keeping in mind the examples above, we formally define the notion of an execution of a hybrid
system.

Definition 2.2 A (forward) hybrid time trajectory is a sequence (finite or infinite) T =
{1;}iLy of intervals such that I; = [r;,7]] for all j > 0 if the sequence is infinite; if N is finite,
then I; = [r;,7}] for all0 < j < N —1 and Iy is e?ther of the form [Tn,T)\] or [Tn,7N). The
sequences T; and T} satisfy: 7; < T} = T;41, for all j.



One thinks of 7;’s as time instants when discrete transitions (or switches) from one domain
to another take place. If 7 is a hybrid time trajectory, we will call N its size and denote it by
N(7). Also, we use (1) to denote the set {0,...,N(7)} if N(r) is finite, and {0,1,2,...} if
N(7) is infinite.

We will say that 7 is a prefiz of an execution 7/ = {I} ;‘;’0 if N < N’ (where the inequality
is taken in the extened real number system), and for 0 < 7 < N, we have I; = I ;5 furthermore,
if 7 has finite size, then we must also have Iy C Ij.

Definition 2.3 An execution (or forward execution) of a hybrid system H is a triple x =
(7,9,2), where T is a hybrid time trajectory, q: (t) = Q is a map, and x = {z;: j € (1)} is
a collection of C' maps such that z; : I; & Dy;jy and for all t € I,

25(t) = Xo(5)(3(2))-
Furthermore, for all j € (1), we have
(4(G),9(G+1)) € E, =i(7]) € G(q(5),q(j + 1)),

and
(xj(T;)ax:i—H(TjH)) € R(q(qu(j.'.l)).

For an execution x = (7, ¢, ), denote by 7o, (x) its ezecution time:

NG)
= '—r)= 1 ! — To.
oo (X) ;0 (=)= lim /-

Definition 2.4 An execution x is called:
e infinite, if N(7) = 00 or Teo(Xx) = 00;
o a Zeno execution if N(7) = 00 and Teo(Xx) < 00;
e maximal if it is not a strict prefiz of any other execution of H.

The last statement means that there exists no other execution x’' = (7/,¢’, ') such that 7 is
a strict prefix of 7/ and z = z’ on 7 (in the sense that z; = ) on I; for all j € (7)).

Note that in Examples 2.1 (WT), 2.2 (BB) and 2.3 (BB(m)) every execution is Zeno. The
same can be shown for Examples 2.4 (BBS(N))if 0 < ¢ <1 and 2.5 (52())) if 0 < X < 1.
On the other hand, every execution in Example 2.6 (T?%(«)) is infinite with infinite execution
time.

We say that an execution x = (7, q,z) starts at a point p € D if p = zo(7) and 70 = 0. It
passes through p if p = z;(t) for some j € (7),t € I;, 1 > 7.

Given p € D, it is not difficult to see that there are many ways in which a hybrid system
can accept several executions starting from or passing through p. For instance, this happens
if at least one of the resets is a relation which is not a function.

-~7



Definition 2.5 A hybrid system is called deterministic if for every p € D there exists at most
one mazimal execution starting from p. It is called non-blocking if for every p € D there is
at least one infinite execution starting from p.

Necessary and sufficient conditions for a hybrid system to be deterministic and non-blocking
can be found in [LJSE]. Roughly speaking, resets have to be functions, guards have to be
mutually disjoint and whenever a continuous trajectory of one of the vector fields in X is
about to exit the domain in which it lies, it has to hit a guard.

2.2 Standing assumptions

From now on we will assume that every hybrid system H = (Q, E,D,X,G,R) in this paper
satisfies the following assumptions.

(A1) H is deterministic and non-blocking.

This means that every point in D is the starting point of a unique infinite (and therefore
maximal) execution of H.

(A2) Each domain D; is a contractible n-dimensional smooth submanifold of R", with
piecewise smooth boundary. No two smooth components of the boundary meet at a zero angle.

Recall that a space is contractible if it can be shrunk to a point (or more formally, if it
is homotopically equivalent to a point). Note that this implies that the domains are con-
nected. A manifold is called piecewise smooth if it is the union of finitely many smooth pieces.
By smooth we will mean of class C'®, unless specified otherwise.

The non-zero angle requirement eliminates, for instance, cusps in dimension two, but does
not eliminate “corners”. Thus for domains of a hybrid system we allow disks, half-spaces,
rectangles, etc.

(A3) FEach guard is a piecewise smooth (n — 1)-dimensional submanifold of the boundary
of the corresponding domain. The boundary of each guard is piecewise smooth (or possibly

empty).

(A4) Each reset is a piecewise smooth homeomorphism onto its image. The image of
every reset lies in the boundary of the corresponding domain.

Recall that a map f between (piecewise) smooth manifolds M and N is called piecewise
smooth if M can be decomposed into finitely many pieces such that f is smooth on each one

of them.

(A5) Anysetsin GUR (i.e. closures of guards and images of resets) can intersect only
along their boundaries. Furthemore, if p € GU R, then p can be of only one of the following
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Figure 6: p; is of Type (Roman) i (1 <7 < 4).

four types (cf. Fig. 6):
Typel : p€eintGUint R;
Type II : p € G U OR and there exists exactly one set S € G UTR which contains p;

Type III : p € G U AR and there exist sets Si,...,5 € GUR (I > 2) such that p €
5, N ...N38S; and some neighborhood of p in S; U ...U S is homeomorphic to R*™!;

Type IV : p € 3G U 8R and there exist sets Sy,...,8 € GUR (I > 2) such that p €
051N ...N 38, and some neighborhood of p in S; U ...U S, is homeomorphic to R’_,‘_‘l.

Assumption (A5) ensures that intersections of guards and images of resets (that is, their clo-
sures) are sufficiantly nice. This in particular means that the configuration around ps in Fig.
6 is not allowed.

(AB) For alle = (i,j) € E, X; points outside D; along G(e), and X; is points inside D;
along im R..

This means that if p € G(3,5), ¢ = R(;j)(p), then there exists € > 0 such that ¢',(p) € intD;
and ¢7(q) € intD;, for all 0 < ¢ < ¢, where int denotes the interior of a set. In particular, we

have that Xj is transverse to the smooth part of G(e) and X is transverse to the smooth part
of im R,, the image of the map R..

(A7) Each reset map R. extends to a map R. defined on a neighborhood of G(e) (the clo-
sure of G(e)) in D; such that R, is a piecewise smooth homeomorphism onto its image, which,

in turn, is a neighborhood of im R, in D;. Each vector field X; can be smoothly extended to a
neighborhood of D; in {i} x R".



The last one is a fairly technical assumption the need for which will become apparent later.
Note that all the examples provided above satisfy this (as well as all other) assumptions. For
instance, in Example 2.2 (BB), we can take Ry 1)(z1,22) = (21, —cz2).

Definition 2.6 A hybrid system which satisfies assumptions (A1) - (A7) will be called regular.

Given H, define a map
@H : Qo - D ,
(where Qo C R x D will be specified later) as follows. Let p € D be arbitrary. Because of (A1),

there exists a unique infinite execution x(p) = (7, ¢, ¢) starting at p. For any 0 < ¢ < Too(X(P))
there exist a unique j € @ such that t € [r;, 7;). Then define

®8(t, p) = z;(t).
To define ®H(¢, p) for negative t, set
8 (t,p) = @' (~¢,p),

where H' is the reverse hybrid system (Q', E', D, X', G", R’ ) defined by:

¢ Q'=Q,D=D, X! =-X;foralli € Q;

e (i,7) € E' if and only if (j,i) € E;

o forall e = (,5) € £, G'(e) = R;,»(G(j,)) and R, = R;1.
It can easily be checked that H' satisfies (A1) - (A7) if H does.

Let o be the largest subset of R x D on which ®¥ is defined.

For instance, in Example 2.2, for any p # 0, ®BB(t,p) = 0,ast — Teo(X(P)), where x(p) is
the unique infinite execution starting at p. Note, however, that x(0) makes no time progress,
i.e. ; = 0 for all j > 0, but it involves infinitely many switches at the same, i.e. initial point,
which happens to be fixed by the reset map.

Theorem 2.7 (a) Qo contains a neighborhood of {0} x int D in R x D.
(b) For allp € D, %(0,p) = p. Furthermore,
O™ (t, @8(s,p)) = OH(t +5,p),
whenever both sides are defined.

PROOF: (a) If p € int D;, then since X; is Lipschitz on D;, ¢ — #i(p) is defined on a neigh-
borhood of 0. Furthermore, there exists a neighborhood U of pin int D; and € > 0 such that
for each p’ € U, t — ¢}(p') is defined on (—¢, ). Thus (—¢, €) x U is a neighborhood of (0, p)
in R x int D;. This proves (a).

(b) The first statement in (b) is clearly true. The second one follows from (Al). m
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3 The hybrid manifold and hybrid flow

The basic idea in construction of the hybrid manifold from a hybrid system is simple: “glue”
the closure of each guard to the image of the corresponding extended reset via the extended
reset map. We make this more precise below and then show basic properties of the newly
constructed object.

3.1 The hybrifold
Let H be a regular hybrid system. On D let ~ be the equivalence relation generated by

p ~ Re(p),

for all e € E and p € G(e). Collapse each equivalence class to a point to obtain the quotient
space
My =D/~.

Definition 3.1 We call My the hybrid manifold or hybrifold of H.1

Denote by 7 the natural projection D — My which assigns to each p its equivalence class
p/ ~. Put the quotient topology on My. Recall that this is the smallest topology that makes
7 continuous, i.e. a set V C My is open if and only if #=!(V') is open in D.
Define the hybrid flow of H,
\I)'H = MH,

by
UH(t,m(p)) = @M (2, p).

Here Q = {(t,7(p)) : (t,p) € Qo}. In other words, orbits of ¥¥ are obtained by projecting
orbits of ®® by 7. By the ®H-orbit of p we mean the collection of points ®H(¢,p) for all
possible t (i.e. all ¢ such that (¢,p) € §).

Let us run this construction on some of the examples listed above.

Example 3.1 (WT continued) Without loss we assume that [, = l; = 0. To obtain Mwr
we have to identify the z;-axis from D, with the same axis from D; via R(; ) and similarly
with the zs-axis.

It is not difficult to see that My is homeomorphic to R? (see Fig. 7). However, Mwr
has a singularity (or “corner”) at 0 = 7(1,0,0), i.e. m does not define a smooth structure on
Mwr. Note that every execution starting at = # 0 converges to 0.

Example 3.2 (BB continued) Here we have to identify the negative part with the positive
part of the z;-axis. The resulting space Mpp is again homeomorphic to R? (see Fig. 8), but
7 again does not define a smooth structure on it. As in the previous example, UBB(¢,z) — 0,
as t = Teo(x(z)), for all  # 0.

!The authors thank Renaud Dreyer for suggesting the term hybrifold. The term “manifold” will be justified
by Theorem 3.2.
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Figure 7: Hybrid manifold and on orbit of the hybrid flow for WT.

Figure 8: Hybrifold and an orbit of the hybrid flow for BB.

Example 3.3 (BB(m) continued) For simplicity assume m = 2. Then we see from Fig. 9
that Mpp(2) is smooth and diffeomorphic to R?. However, the hybrid flow is not smooth.

Example 3.4 (52()\) continued) Mg,(,) is homeomorphic to the 2-sphere; it is not equipped
with a smooth structure by #.

Example 3.5 (T?(a) continued) We already observed that M72(4 is the standard 2-torus

and 97°(®) is a smooth linear flow on it. If « is rational, then every orbit is closed; if a is
irrational, then every orbit is dense in T2.

The following theorem establishes some basic properties of the hybrid manifold.

Theorem 3.2 (a) My defined above is a topological n-manifold with boundary.
(b) Both My and its boundary are piecewise smooth.

(c) The restriction w|;pt o : int D — 7w(int D) is a diffeomorphism.

Recall that M is called a topological n-manifold with boundary if it is Hausdorff and every
point in M has a neighborhood homeomorphic to either R™ or the closed upper half-space
R} = {(z1,... ,%a) : z, > 0}. Points having the latter property are said to be on the bound-

ary OM, which is a topological (n — 1)-manifold.

12
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Figure 9: Hybrifold and an orbit of the hybrid flow for BB(2).

PROOF OF THE THEOREM: (a) Recall that the quotient of a manifold M by an equiva-
lence relation p is HausdorfT if and only if the graph of p is closed in M x M. In our case, the
graph of ~ is
{(p,p) : p~ P} =ApU | J{(p, Re(p)) : p € G(e)},
e€E

which is easily checked to be closed. Here Ap = {(p,p) : p € D} is the diagonal of D x D.

This shows why in the definition of ~ we needed to identify p and R.(p) not only for
p € G(e), but also for p € 0G(e), since G(e) may not be closed (in which case My would not
necessarily be Hausdorff); this is why we had to use the maps ..

We sketch the rest of the proof of (a) when n = 2. In higher dimensions the proof is
similar, but much more cumbersome to write.

Assume z € My. We need to show that there exists a neighborhood of z in My which is
homeomorphic to R? or Ri.

Let z = w(p), for some p € D. If p is not identified with any other points, i.e. if it is not in
G UR, then either p € int D or p € 8D — (G U R). In the former case, p has a neighborhood
V contained in the interior of a single domain, homeomorhic to R?; since 7 is 1-1 on V, n(V)
is homeomorphic to R?. In the latter case, p has a neighborhood W contained in a single
domain, disjoint from G U R and homeomorphic to RZ. Since = is 1-1 on W (nothing in W
gets glued to anything else), m(W) is homeomorphic to Ri. This completes the case when p
is identified with no other points.
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If p € GU R, then according to (A5) we must consider the following four cases (cf. Fig.
10):

Case 1: p is of Type I. Then there exists a unique e = (i,5) € E such that either p €
int G(e) or p € int(im R,). Without loss we can assume the former. Then p is identified
with p' = R.(p); note that #=!(z) = {p,p'}. There exist neighborhoods V' (in D;) and
V' (in D;) of p and p’ respectively, homeomorphic to R and R? (the closed lower half
plane), respectively. If U = #(V U V’) and V and V’ are small enough, it is not difficult
to show that U is homeomorphic to R%. Thus z € int My.

Case 2: p is of Type II. Then p is on the boundary of exactly one set S € GUR. Without
loss we may assume S = G(e) for a unique e = (¢,5) € E. Then p gets identified
with (a unique point) p' = R.(p) € 0(im R.); observe that 7=1(z) = {p,p'}. There
exist neighborhoods V (in D;) and V' (in D;) of p and p’ respectively, homeomorphic to
Rﬁ, and R? (the closed lower half plane), respectively. Note that only a proper subset
of the boundary of V is identified with a proper part of the boundary of V’. So, if
U=n(VUV'), and V and V' are small enough, it is not difficult to show that U is
homeomorphic to R%. Thus z € M.

Case 3: p is of Type IIL. Then there exist sets Sy,...,S5 € GUR with { > 2 such that
p € 051N...N3JS,, and there exists a neighborhood W of p in S, U...US; homeomorphic
to R. Clearly, we must have [ = 2.

The sets Sy and S, are both contained in the same domain, say D;,. Assume that
7~Yz) = {p1,.-. ,Pm}, Where py = p, and p; € D;,. Let ¢; = (i;,i;41)ifj=1,... ,m—1
and ey = (im,?1). Without loss we may assume that

Si=imR.,, S:=0G(ea),

and

for j = 2,...,m. Each point p; is also of Type III, so for each j there exists a neigh-
borhood W; of p; in im R.;_, UG(e;) (with Wi = W) such that W; is homeomorphic to
R. We can than find a neighborhood V; of p; in D;; such that V; N dD;; = W; and V;
is homeomorphic to Ri. Note that not all e;’s have to be in E, i.e. represent allowed
discrete transitions. However, by (A5) only be the following two cases can occur:

o Ife;e Eforall j=1,...,m,then U =7(V;U...UV,) is a neighborhood of z
homeomorphic to R? and hence z € int My.

e Ifone ej isnot in E, then U =wn(LU... U \7, U...UV,) is a neighborhood of
homeomorphic to Ri. Thus ¢ € OMy. Here © denotes omission.

Case 4: p is of Type IV. Impossible if n = 2.

14



Case 3
Figure 10: Proof of Theorem 3.2.

This completes the proof when n =2. u

Remark. It needs to be pointed out that in dimensions greater than two a hybrid manifold
can be a very complicated object, as one can realize by trying to imagine Mpps(n). However,
it enables us to study the dynamics of a hybrid system on a single phase space. Advantages
of this fact will become apparent soon.

If ¢:[0,1] » My is a smooth curve contained in m(int D;) for some 7 € @, define its
arclength by

(c) = / 1T~ ()] dt,

where T'm denotes the tangent map (i.e. the derivative) of #. This makes sense by part (c)
of Theorem 3.2. If c is a piecewise smooth curve in My, e.g. ¢ =} ¢; with ¢; smooth (and
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contained in the projection of the interior of a single domain), define
o) = Hc;).
i

Define a distance function on My,
dH : MH X MH — R,

by: for z,y € My, let du(z,y) be the infimum of #(c) where ¢ : [0,1] - My is an arbitrary
piecewise smooth curve such that ¢(0) = z, ¢(1) = y. Then we have:

Theorem 3.3 (Mu,du) is a metric space and 7 is a piecewise isometry. The topology induced
by dy coincides with the quotient topology on My.

PROOF: That (Mwu,dn) is a metric space is a standard fact from the theory of piecewise
smooth manifolds. That 7 is a piecewise isometry follows from the definition of dy. Namely,
for each i € Q, 7|ipt p. : int D; — w(int D;) is an isometry.

That du-topology coincides with the quotient topology on My is also immediate by defi-
nition of dz. =

3.2 The hybrid flow

Next we establish some basic properties of the hybrid flow.

Let ¥ := UM be the hybrid flow of H, as defined above. For each ¢t € R and z € My, let
M(t) = {y € Mu : ¥(t,y) is defined},
and
J(z) = {s € R: ¥(s,z) is defined}.

Observe that if = m(p), then J(z) N [0,00) = [0, 7o(x(p))). Also, for ¢ > 0, M(¢) contains
all points z = 7m(p) such that 7,(x(p))) > t. As usual, x(p) denotes the unique execution of
H starting at p.

If M(t) is not empty, denote by ¥, : M(t) - My the time t map of U, defined by

Ty(z) = U(t, z).

Recall that a function (in particular, vector field) is said to be smooth on a closed set F if
it is the restriction of a smooth function defined on a neighborhood of F. Then we have the
following theorem.

Theorem 3.4 Suppose each vector field X in X is smooth (in addition to being globally
Lipschitz). Then:
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(a) For each z € My the map t — W,(z) is continuous and, if J(z) is not a single point,
piecewise smooth on J(z). More precisely, it is smooth except at (at most) countably
many points in J(z).

(b) Each map ¥, is injective.
(c) Whenever both sides are defined:
THT () = U, ().

(d) There is an open and dense subset of @ on which U is smooth.

PROOF: (a) Let z = w(p) for some p € D. Let x(p) = (7,q, ) be the unique execution of H
starting at p (i.e. 70 = 0 and zo(0) = p). Recall that for positive ¢, Uy(z) = 7®H(2, p) = nz;(t),
if t € [7;,7]). Thus it is enough to check continuity of ¢ — W:(x) at 7; = 7j41, for j > 0. But
recall that ¢ — ®H(¢, p) is continuous from the right, with discontinuities of the first kind only
at 7j, j > 0. Since z;(7;) € G and

7r("'31'(7}{)) = m(z;41(Tj41))
for all 7 > 0, it follows that

lim U(z) = lim 7wz;(t) = 7zj1(mi41) = Yo(2),
t—)'r;— t—pri— J
which shows that ¢ — ¥,(z) is continuous on J(z) N [0, c0).
Continuity of ¢ — U,(z) for negative t follows by observing that ¥ (z) = ¥H¥'(z) (¢ > 0),
where H' is the reverse hybrid system to H.
The extreme case when J(z) = {0} happens when = = m(p) for some p € D such that:

pPE G(eo), 1= Reo(p) € G(el)’ p2 = Rel (Pl) € G(e2), etc.,

for a sequence eg, €1, €z,... in E. Then ¢t — U,(z) is trivially continuous.
Assume now that J(z) is not a single point. With the notation as above, we have that for
T <t<T]
d
7 2i(@) = Tr(Xo(5)(24(1));

which proves that ¢ — W¥,(z) is piecewise smooth. Here T'w denotes the tangent (or derivative)
map of 7. It is defined at z;(¢) because z;(t) € int D for 7; < ¢ < 7j and 7 is smooth on int D.

(b) Injectivity of U, follows directly from uniqueness of executions through any point.

(c) Follows from the analogous property of ®H.

(d) For a proof of this fact see [LJZS]. =

17



i\
\/

Figure 11: Flow in R? topologically conjugate to ¥%7,

4 Conjugacy of hybrid systems

In this section we discuss the following question: when are two hybrid systems qualitatively
the same? For that purpose we borrow the notion of conjugacy from the theory of dynamical
systems. Roughly speaking, two dynamical systems are conjugate if their phase portraits look
qualitatively (or topologically) the same. Similarly, two hybrid systems are conjugate if their
hybrid flows are conjugate. We now make this more precise.

Definition 4.1 Two hybrid systems Hy and H; are said to be topologically conjugate (de-
noted by Hy ~ H3) if there exists a homeomorphism h : My — Mys which sends orbits of
UH1 ¢ orbits of UH2,

If My, and Mug happen to be smooth manifolds of class C™ (r > 1) and h is a C"
diffeomorphism, then H; and Hy are said to be C"-conjugate.

As usual, by the orbit of a point z under a (local) flow {¢;} we mean the set of points ¢;(z)
for all t for which ¢;(z) is defined.
We usually think of & as a change of coordinates so that two hybrid systems are topologi-
cally conjugate if their hybrid flows are the same up to a continuous coordinate change.
Note that conjugacy does not necessarily preserve the time parameter ¢. If it does, it is
called equivalence.

Example 4.1 WT is topologically conjugate to BB. This can be seen in the following way.
Assume Myt is embedded in R? in such a way that its “origin” coincides with the point
(0,0,0) and Mwr lies entirely in the upper half space Ri. Let P be the plane z3 = 0 and let
h : Mwr — P be the orthogonal projection. Then A is a homeomorphism which sends orbits
of UWT to the orbits of the flow ® in Fig. 11.

By smoothing ® along the y-axis, we get that it is topologically conjugate to a (smooth)
spiral sink at the origin, e.g., the flow of the linear vector field corresponding to the matrix

a=| 710
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Similarly, we obtain that UB2 is topologically conjugate to the flow of A. Since conjugacy
is an equivalence relation, we get that WT = BB, as claimed. We will see later that in
dimension two this picture is typical.

Example 4.2 T?%(1) is not conjugate to T?(v/2). Even though the hybrifold for both hybrid
systems is the same (the 2-torus), every orbit of T%(1) is closed, while every orbit of T%(+/2) is
dense in T2. Since conjugacy always sends closed orbits to closed orbits, the statement above
follows immediately.

Example 4.3 Suppose o; < 0 < F;fori = 1,2, and a; # a; or B; # B2. Let A; = diag(ai, 5).
Then the flows of A; and A; both have a saddle at the origin of R? and are topologically
conjugate. However, they are not smoothly conjugate, because if they were, it is not difficult
to check that their corresponding eigenvalues would be the same.

Ideally, one would like to be able to classify all hybrid systems up to topological conjugacy
(smooth conjugacy being too strong a notion). Unfortunately, this attempt fails even for
smooth dynamical systems on compact boundaryless manifolds of dimension greater than
two, as can be seen in the standard dynamics literature (for instance, [PdM]). However, it
turns out that it is possible to obtain a fairly detailed picture of the local behavior of 2-
dimensional hybrid flows near a point called Zeno state. We will show this in Section 6. In
the next section we investigate such points.

5 w-limit sets and the Zeno phenomenon

It has to be pointed out that Zeno executions do not arise in physical systems and are a
consequence of modeling over-abstraction. Therefore, one wishes to avoid such executions.
However, from a mathematical viewpoint, the Zeno phenomenon poses several interesting
questions: for instance, what is its topological cause? Is there a checkable criterion which
guarantees the non-occurence of Zeno? How should the original system be modified to remove
Zeno executions? In this section we show that, in short, the topological cause of Zenoness is
a lack of smoothness in the hybrid flow and that the Zeno phenomenon can be removed by
smoothing out the hybrifold and the hybrid flow on it.

Since we would like to study the long term behavior of executions of hybrid systems, we
define the following notion (keeping the previously introduced notation).

Definition 5.1 A point y € My is called an w-limit point of z € My if
— I H
y= lim ¥, (z),

for some increasing sequence (tn,) in J(x) such that t,, — 7oo(z), as m — oo. The set of all
w-limit points of z is called the w-limit set of 2 and is denoted by w(z).
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By 7w (z) we denote the execution time of the unique execution of H starting from p, where
z = m(p); that is, Teo(Z) = Too(x(p)). It is easy to check that this is a well defined element
of the extended real number system. In other words, w-limit points for z are accumulation
points of the orbit of z.

Suppose z € My and denote by E.(z) the set of discrete transitions which occur infinitely
many times in the execution starting from z. If E,,(z) is empty, then the orbit of z eventually
ends up in a single domain D; (that is, its image under 7 in the hybrifold) in which case

w(z) C n(Dy).

This means that every point y € w(z) is an accumulation point of the orbit of a single vector
field, namely X;. We will call such a point y, a pure w-limit point.

If Eo(z) is nonempty, then every w-limit point for z is a result of both the continuous and
discrete (i.e. hybrid) dynamics of H and will accordingly be called a hybrid w-limit point of
z.

Theorem 5.2 For every z € Mu, w(z) is invariant with respect to the hybrid flow. That is,
ify € w(z), then
UH(y) € w(z),

forallt € J(y).

PROOF: See [LJZS]. =

5.1 Properties of Zeno executions

A special case of an w-limit point is a Zeno state:
Definition 5.3 A point z € My is called a Zeno state for z if z € w(z) and T (z) < 00.

We will also refer to points in 7~!(z) as Zeno states in H.

For example, the “origin” of Mwr (as well as Mpp and Mpp(y)) is a Zeno state for every
pointf. Moreover, for each z, w(z) contains only one Zeno state. We now show this is always
the case.

Theorem 5.4 If the execution starting from x € My is Zeno, then w(z) consists of ezactly
one Zeno state for x and

w@)c [ =(Gle)): (1)

e€E ()
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PROOF: Let p € n7!(z) be arbitrary and, as before, let x(p) = (7,q,z) be the unique
execution starting from p. For j > 0, let A; = m(z;(/;)). Then A; is an arc in w(Dy;)) of the
¥H_orbit of z. Since X;’s are bounded along x(p) (cf. [ZJL]) and x(p) is Zeno, we have that

Z IAJI < 09,

3=0

where |A;]| is the length of A;. Therefore, A = [J; A; is a bounded set and hence it has an
accumulation point, z. Clearly, 2 € w(z) and 2 is a Zeno state for z.

Suppose there exists another accumulation point of A or equivalently, another Zeno state
z' for . Then we have:

: H : H
z =n11_r)rg° U (), 2= Jl_lf.}o \I,t;n(x))

for some increasing sequences (t.,) and () in J(z) such that ¢,,,1,, = 7eo(z), as m — oco. If
Ty = \Ilf'ln(x) € A;,, and T, = \I’gn(:l?) €A,

for some j,, 5/, — 00, we obtain:

d@m,zp) < D |AI=0

{=min(jm,j},)

as m — 00. Thus z = 2’. This completes the first part of the proof.

To show (1), let w(z) = {z}, and let e = (i,5) € Eo(z). Then there exists a sequence
(zm) of points in D; such that: z,, is on the forward orbit of z and z,, — z as m — co. Thus:
z € w(D;). Similarly, z € m(D;). But n(D;) N 7(D;) C n(G(e)), so z € m(G(e)). Since this
holds for all e € E(z), the proof of (1) is complete. =

Note than in all the Zeno examples above none of the flows involved in creating the Zeno
state has an equilibrium at the Zeno state. The following lemma shows that this is not a
coincidence.

Lemma 5.5 A Zeno state is not an equilibrium. More specifically, if z € My is a Zeno state,
then for every p € n~1(2), if p € D;, then Xi(p) # 0.

PROOF: Let 2z be a Zeno state for z. Consider the lift of the orbit of by 7 to D and let us
concentrate on its “trace” in a.particular domain which it visits infinitely often.
More precisely, there exist 7 € @, e = (i,7),¢ = (4,i') € E and p. € D; such that
7(p«) = z and L
p. € im R. N G(e').
Furthermore, there exists a sequence (py,) in im R, converging to p., and a sequence (t,,) of
positive numbers such that:

Gn = ¢, (pm) €G(€) and 7w =Yt < 0.
m=0
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Recall that {¢7} is the (local) flow of the vector field X := X ;on Dj.

Let A, be the arc tangent to X and connecting p,, and gy, (i.e. A, is the X-orbit of py,),
and denote by |An| its length. Finally, let K C D; be a compact set containing p, and A,
for all m > 0. It exists, because p,, — p., as m — oco.

The intuition is as follows: we start from po, flow by time ¢ to go when we reach the guard
G(€') and are taken outside of D; by a reset. We enter D; again at p;, flow by time ¢, until
we reach ¢, etc. '

To complete the proof, assume p, is an equilibrium for X. Then ¢}(p.) = p. for all t € R.
If p € An, then p = ¢](pn) for some 0 <t < £,,, so we have:

IX(G) = 1X() ~ X(p.)]
Lp-p]
LI (pm) — ¢1(p.)]
Clpw — p.1.

IA T IA

where L is the Lipschitz constant of X and C = L max{|D¢}(q)]: 0 <t < 7o, g € K} < 0.
From this inequality we get that

| X4 := max [X(p)] < Clpm — pu]),
PeAm

for all m > 0.
Next observe that
IAmI Sim II‘X"Am7

50 |Am|/| X[ 4, — 0, as m — co. However, by the non-zero angle requirement in (A2), there
exists a constant a > 0 such that |An| > a |pm — p.|, for all m > 0 (cf. Fig. 12). Thus:

| Am| a
—_— 2> =>0,
1Xlan = C

a contradiction. Therefore, X(p.) #0. =

Example 5.1 (equilibrium + cusp = Zeno) Consider the following one-domain hybrid
system:

D={(z,y) eR*:y 20, —f(y) <z < fy)}
G={(-f(¥):y):y 20}, R(=f(v),y) = (fey),cy),
X(z,y) = (-z—y,z—y)".
Here 0 <c <1, f:[0,00) — [0,00) is a smooth function such that f(0) = 0 and for all y > 0,

fly) <42

In particular, f/(0) = 0, which means that D has a cusp at 0.
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Pm

dm = {m (pm)
G(€')

2=

Figure 12: Lemma 5.5.

The vector field X has a spiral sink at the origin, and the time ¢ map of its flow is the
composition of the counterclockwise rotation by ¢ (in radians) and contraction by e™*.

Let pp be an arbitrary nonzero point on the right side, S, of D and let x the execution
starting from po. Let (pn) (2 sequence) be the intersection of x with S; let pm = (f(¥m), Ym)-
Let ¢, be the time it takes for the positive X-orbit of p,, to reach G. Then:

lpms1] = ¢ etm "Pm I,

SO

m-—1

1Pl = c™ exp (- Z ti) Ipol, and ym <™ yo.
1=0

Let 0., be the angle between the line Op,, and the positive y-axis and 7, the angle between

the positive y-axis and the line 0p/,, where p, is the intersection of the positive X-orbit of

pm and G. Then

S(ym)

tm = Om + 1 < 20, = 2arctan —— < 2y, < 2c¢™ yo.
Ym

Therefore, Y t,, converges and 0 is a Zeno state despite the fact that it is an equlibrium for
X. This shows the importance of geometry of domains and assumption (A2).

Before we proceed, we need to remind the reader of the following flow box theorem for
smooth flows. Namely, assume that X is a smooth vector field on an openset U CR", pe U
and X(p) # 0. Then there exists a neighborhood V of p in U (called a flow boz for X at p)
such that on V the flow of X i smoothly equivalent to the flow of the vector field aizl’ i.e. the
flow

(t,ml,... ,xn) — (IL’I +1t,29,... ,.’Bn).
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Figure 13: Zeno state at a cusp which is an equilibrium.

This means that in a neighborhood of any of it nonsingular points, the flow of a smooth vector
field has a particularly simple form.
Now we can prove the following theorem.

Theorem 5.6 Suppose H is a hybrid system such that its hybrid flow UH is smooth. (This
in particular means that its hybrifold My is smooth.) Then H admits no Zeno executions or
equivalently, there are no Zeno states in My.

PROOF. Assume the contrary and let z € My be a Zeno state for some point z. Since
the hybrid flow ¥ is smooth, it is generated by a smooth vector field on My, which we
denote by X. By Lemma 5.5, X(z) # 0. Therefore by the flow box theorem, UH is trivial
in a neighborhood of z, which implies that z = lllfm(x)(:c). But then ¥H(z) is clearly defined
beyond the Zeno time 7 (), which is impossible.

In general it may not be easy to check whether, given H, the hybrifold My is smooth.
Even if it were, non-smoothness of the hybrid flow may cause Zeno (cf. BB(2)). However,
the following result provides an easily verifiable criterion for smoothness of UH.

Theorem 5.7 Suppose that My is smooth and for every e = (i,j) € E, X; and X; are

~ — —

R.-related on G(e). That is, for every p € G(e):
TRe(Xi(p)) = Xj(Re(p))° (2)
Then the hybrid flow is smooth.

PROOF: Define a vector field Y on My as follows. If + € My, then = = n(p) for some p € D;.
Set
Y(z) = T=(Xi(p))-

We will show that Y is well defined.
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If pis not in GUR (i.e. p/ ~ is a single point), then there is no ambiguity in the definition
of Y(z).

If p € GUR, then the ambiguity arises because p is identified with some p’ via an extended
reset map. Assume that p € G(e) for some e € E and let p' = R.(p). Since 7o R, = =, (2)
and the chain rule yield

Tn(Xj(p')) = Tn TRE(Xi(p))

= T(mo R)(Xi(p))

= Tr(Xi(p))-
Therefore, Y is well defined.

Next we show that Y is smooth. Let X the vector field on D which coincides with X; on

D; for all i € Q. Since D;’s are mutually disjoint and each X; is smooth, X is smooth. The
assumption that My is smooth means, in particular, that the projection 7 is smooth. By
definition of Y, the vector fields X and Y are w-related. Therefore, since X and 7 are smooth,

soisY.
Smoothness of ¥ now follows directly from the fact that ¥ generates it, i.e.:

d
4t O\I,:{(x) =Y(z),

forallz€e My. =

Example 5.2 Consider BB(2). Here we have:
Xi(z1,72) = (22,—9)T = Xo,  Rij)(i, 21, 22) = (4, 31, —cx2),
where (7,7) = (1,2) or (2,1). Therefore,
T R(12)(X1) = (22,c9)T # Xa,
so the hybrid flow for BB(2) is not smooth, as we already knew.

Example 5.3 It is not difficult to check that in case of T%(a), (2) is satisfied for every o > 0.
Thus T?%(c) does not admit Zeno, as was already shown above.

Corollary 5.8 IfH is a hybrid system satifying condition (2), then H accepts no Zeno exe-
cutions.

Next we discuss two ways of removing Zeno from a hybrid system. They are: smoothing
and suspension.



Figure 14: Smoothed water tank Mmootk

5.2 Removal of Zeno

Suppose that H is a regular hybrid system and that z € My is a Zeno state. We have seen
that My in a certain sense has a singularity at z. Consider the following ways of removing
such singularities.

Smoothing. Suppose that My can be equipped with a smooth structure which induces the
same topology as the original one and denote the smoothed hybrifold by Moot (cf.
Fig. 14). Note that My and M;***** are homeomorphic. It is not guaranteed that the
hybrid flow ¥H will be smooth on Mgt If, however, ¥H is smooth with respect to
the differentiable structure on M§**°**, then Theorem 5.6 implies that there are no Zeno
states in Mg["°**. We say that we have removed Zeno by smoothing.

Hybrid suspension. ? The basic idea is to “interpolate” executions between guards and
images of corresponding resets, i.e. to make “instantaneous” discrete transitions given
by reset maps “last” some time e. The constructions goes as follows. Let ¢ > 0 be
arbitrary and assume e = (7,5) € E. Instead of gluing @ to im R, via R., first
enlarge the domain D; by

D; = D: U(G(e) x [0,€]),
and then identify 5
(p,€) ~ Be(p),

for every p € m. Denote the space obtained by this identification for all e'€ E by
S¢Mpy and by 7¢ the quotient (i.e. identification) map. On each G(e) x [0, ¢], consider the
trivial “vertical” flow: (p,s,t) = (p,s+t) (p€ G(e),0< s < ¢, t € R). Denote by 5¢¥H
the flow on S°My obtained by projecting via ¢ this flow (for each e € E) as well as ®H.
We will call S¢My the e-suspended hybrid manifold and S*UH the associated e-suspended
hybrid flow (see Fig. 15). (This construction resembles the standard suspension of a
map; cf. e.g. [PdM].)

It is immediate by construction that for ever ¢ > 0, S*UH accepts no Zeno-type execu-
tions.

*We thank Morris W. Hirsch for suggesting this idea in a recent conversation.
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suspension of B3,y . .1 !

.. *" .~ suspension of R(; q)
D2 . . !

Figure 15: e-suspended water tank S*Mpyr.

6 Classification of Zeno states in dimension two

We show that in dimension two, every hybrid flow near its Zeno state locally looks like the
hybrid flow of WT near O.

Theorem 6.1 Let H be a 2-dimensional hybrid system and suppose that z € My is a Zeno
state. Then there is a neighborhood U of z in My and a neighborhood V of 0O in Myt such
that UH|;; is topologically conjugate to W7 |y .

PROOF: Let z be the Zeno state for some o € My, and denote by xo the execution starting
from zo. Assume

1 2)={=a,...,z},

and z; € D; (if this is not the case, reorder the domains). We can, without loss, assume that
the execution xo = 7~!(xo) visits Dy, Ds,... ,D;, Dy, D,,. .. respectively.
Denote
Aj=imR(;_,;, B;= G(,7+1),

so that z; € Z;OFJ (1 <5 £ 1). (Here we identify 0 with [ and {+1 with 1,i.e. Rp1) = Ry 1)
and G(I,l+1) =G(l,1).)

1. We claim that for each j there exists V;, a neighborhood of z; in D; such that every
execution starting in A; NV, — {z;} reaches B; N V; — {2,}.

To prove this, let V; be the region in D; bounded by A;, B; and a single arc of ¥, and let
p € A;NV; —{z;} be an arbitrary point. The execution x(p) cannot intersect Xo, so it must
reach B; NV;. If it passes through z; before it reaches B; N V; — {z;}, then every execution
starting from a point in A; between p and z; must pass through z;. But this is impossible
since, according to Lemma 5.5, z; is not an equilibrium of X; (here we also used the fact that
X points inside D; along A;). Therefore, x(p) reaches B; N V; — {z;}.

Let V =UV, and U = =(V).

2. We now investigate the only two possibilities:
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Figure 16: Local picture around z;.

o Case 1: 9D; is smooth at z;. Then it follows immediately from (A6) that X; is tangent
to dD; at z;. Therefore, by 1., in a smooth flow box around z;, the local picture is as
in part (A) of Fig. 16. (Recall that X; extends smoothly to a neighborhood of D;.)

o Case 2: 9D; is not smooth at z;. Because of 1., it is not difficult to see that the local
picture around z; looks like part (B) of Fig. 16.

3. In fact, in both cases, up to a continuous change of coordinates, the local picture
around z; looks like part (B) of Fig. 16, but with A; and B; straight line segments. To
construct a topological conjugacy between ¥ near z; and ¥W7 near 0, subdivide D; of WT
into [ — 1 subdomains Dj,...,Dj_; by | — 2 rays from the origin. Let D = D,. Define a
hybrid system WT; by: the domains are Dj,..., D}, the vector fields X ; are the restrictions of
the vector fields of WT to the corresponding new domains, and the resets are identity maps.

It is easily seen that X; on V; is topologically conjugate to X} on Dj. Call the conjugating
homeomorphism %;. Glue the ;’s together to obtain a homeomorphism A between UH on U
and W7 on a neighborhood of 0. Since ¥W7t is clearly conjugate to ¥W7, the proof of the
theorem is complete. =

7 Stability of Hybrid Equilibria

Recall that if ¢; is a local flow generated by a smooth vector field X on some set U (in R”
or any manifold), then p € U is an equilibrium for X (equivalently: for ¢;) if X(p) = 0
(equivalently: if ¢,(p) = p for all ¢ € R). In case of a hybrid system there is usually more
than one vector field at play, and even in the case when there is only one, resets are involved
in generating the hybrid dynamics. Taking this into account we define a hybrid equilibrium
as follows.

Definition 7.1 Let H be a hybrid system. A point z € My 1s called an (hybrid) equilibrium
for the hybrid flow UH if UH(¢,2) = 2 for all t € J(z).

Equivalently, * € My is a hybrid equilibrium if the hybrid dynamics of H, consisting of reset
maps and local flows of H, map 7~!(z) to itself. For example, any Zeno state is a hybrid
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equilibrium despite Lemma 5.5; however, hybrid dynamics make no time progress at this kind
of equilibrium. The following definition distinguishes those hybrid equilibria which are created
from equilibria of vector fields in H in the standard sense.

Definition 7.2 A point * € My is called a standard equilibrium for U® if it is a hybrid
equilibrium and for each p € 7~ 1(z), if p € D;, then p is an equilibrium for X; (i.e. Xi(p) =0).
It is called a pure equilibrium if it is standard and belongs to w(int D).

Note that the only dynamics involved in creating a pure equilibrium are those of a single
vector field. We now define the notions of (Lyapunov) stability and asymptotic stability of
hybrid equilibria in analogy with those from dynamical systems.

Definition 7.3 An equilibrium z, of UH is called (Lyapunov) stable if for every neighborhood
U of z, in My there exists a neighborhood V of z. in U such that for every x € V,

VH(z) € U for all t € [0,70(z)).
If V can be chosen so that in addition to the properties described above,

. H _
iy )= 2

then z, is asymptotically stable.

The following examples serve as a warning.

Example 7.1 (stable + stable = unstable) Let Hgg, be defined as follows (cf. [LLN]):
Dy = {1} x {(z,y) : 2y 2 0}, D2 ={2} x{(z,y) : 2y < 0},

G(112) = {1} X {((L‘, y) = 0}’ G(z, 1) = {2} X {(m,y) Y= O}a
Rij (i 2,y) = (j,2,y)  where (4,5)=(1,2) or (2,1),
Xi(z,y) = (=2 + 10y, 100z — y)T, Xa(z,y) = (—z + 100y, —10z — y)".

Then 0 is a spiral sink for both X; and X;. However, it is not difficult to see that all executions
spiral away from the origin. In fact, if pp is a point on, say, the z-axis, then the execution
starting from po first returns to the z-axis at a point p; such that p; = 7ssupo, where

o = ( 100 )4 iy
o exP(W;ro=oo‘)V 1000



Example 7.2 (unstable + stable = stable) Define a hybrid system Hyg, by (domains are
in polar coordinates):

Dy ={1}x{(r,0):r 20, a <0< B}, Dy={2}x{(r,0):r>0, 0<8<aorf<0<2r},

X1($, y) = (—13, y)T" X2($7y) = (—III - Y, = y)Ta
G(1,2) = {1} x {(z,bz) : 2 > 0, b=tan B}, G(2,1) = {2} x {(z,az): 2 >0, a = tana},
R(l,2)(17377 y) = (2,z,y), R(2,l)(2a3’ay) = (1,z,y).

We take 0 < a < f < /2.

Then 0 is a saddle for X; and a spiral sink for X,. If py € G(2,1) is an arbitrary nonzero
point let p; € G(2,1) be the first intersection of the forward execution from po with G(2,1).
It is not difficult to check that p; = 7,4,p0, Where

B~a—27 a(l + b2)
b(1+a2)

Nuss = €

For a fixed b (and ), 7yss — 0 as a,a — 0, so we can choose the parameters so that ,,, < 1.
Then 0 is an asymptotically stable standard equilibrium for H .

Example 7.3 (unstable 4 unstable = stable) Define a hybrid system Hyy as follows:
keep the domains, guards and resets the same as in the previous example, with a different
choice of parameters which will be specified later. Let

-Xl(m’ y) = (_m7y)T7 X2(x7 y) = (x - YT+ y)T'

Let po and p; have the same definition as in the previous example. Then p; = NuusPo, Where

2n—pta |1 +0%)

Nuus = € T+ . oy

b(1 +a2)’

It is not difficult to see that 7,u, — 0 as @ — 0 (with b fixed), s0 7uys < 1 for a sufficiently
small. Then 0 is an unstable equilibrium for both X; and X, (a saddle for X;, spiral source
for X;), but an asymptotically stable equilibrium for the hybrid dynamics.

Therefore, the situation is more complicated than in the case of a single dynamical sys-
tems. OQur next goal is to formulate a stability result in terms of linearized data of the hybrid
system at the equilibrium, which encompasses the above examples.

In the subsequent text, we use the following notation: if X is a vector field on a manifold
M with local flow ¢; and f : M — R a function, X f will denote the derivative of f in the
direction of X:

(X1(e) = | 16w = 110X,
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G(1,2)

D, / o G(2,1)
1

Figure 17: Unstable + unstable = stable.

For a map h : (A,d4) — (B, dg) between metric spaces, let

: _ o 28U(9), f(P)
Llpp(f) B qu—I?{p} dA(q) p) .

This is the Lipschitz constant of f at p.

Lemma 7.4 (Poincaré maps) Suppose z. € My is an isolated (not necessarily standard)
equilibrium for UH and

ﬂ_l(m-) = {Pl,- .. 1p1}7

where p; € D;;. Suppose that for some neighborhood W of ., every execution starting in W
has the same “itinerary”, that is, if x € Dy, then its hybrid trajectory visits

TI'(D,'j),W(D,'Hl), . ,TI'(D{I),ﬂ‘(D;l), PN

respectively, for all 1 < 7 <.
For each j, let

AJ =1im R(ig—l,ij) N ﬂ'—l(W), BJ = G(Z_-,a'lj-l-l) N W_I(W))

and define a map
hj : Aj - Bj

as follows: h;j(p) is the first intersection of the positive X;;-orbit of p € A; with B;. Let 7;(p)
be the time it takes for this orbit of p to reach B;, and suppose that 7; is bounded above on
some neighborhood of p; in A; (for all1 < j <1). Let

Bi = Lippjhja
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Figure 18: Theorem 7.4.

v; = "ijR(ij’ij'Pl)"

{
77=H#j Vi

i=1

and

Ifn <1, then z, is asymptotically stable. If iimH =2 and n > 1, then z. is unstable.
PROOF: For each j define a first-return map P; : A; — A; by
P;=hjy10Rjp10---ohjoRohjoR 0 ---0hjoR;,
where R; = Ry;;i.,,)- Then P;(p;) = p;, and
Lip,, P <pi---m-ni-- <1
Therefore, there exists a ball V; around p; in A; such that for all p € V;:
I1P;(p) — P;(p3)] < cilp — pill,
where ¢; < 1. Thus P; maps V; into itself and for all p € V},
|1P7*(p) = pill = | F}"(p) — P (pi)] < }'lp = pil = 0,

as m — o0o. Since this is true for all j = 1,...,/, and the times 7; are bounded in V; (if we
take V; sufficiently small), it follows that in My, every execution in 7(|JV;) converges to ..

Observe that if dimH = 2, then for all j, Lip,, P; is equal to 7 (because the norms is the
absolute value and |ab| = |a||b]), so > 1 clearly implies instability. m

To see how things (such as boundedness of 7 and smoothness of k) can go wrong even in
a very simple situation, consider the following example.
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Example 7.4 Let n = 2, p, = 0, X(z,y) = (—z,y) and thus ¢(z,y) = (e7*z, e’y). Assume
A is the graph of 2 = 2? (z > 0), and B : y = z (z > 0). Then it is not difficult to check
that for p = (z,2?%) € A — {0}, 7(p) = ; log 2, which is unbounded as z — 0+, and
h(p) = vz (1,1),
which is neither smooth not Lipschitz at 0.
In the subsequent text we will use the following notation. For a piecewise smooth (n — 1)-
dimensional submanifold A of R" with piecewise smooth boundary 04, and a point p € 94 at

which the boundary of A is smooth, denote by T'f A the set of all vectors v € T, A which point

“inside” A. More precisely, v € T;} A if there exists ¢ > 0 and a smooth curve ¢ : [0,¢e] = A
such that ¢(0) = p, ¢(0) =vand ¢(t) € A—0Aforall0 <t < e

Lemma 7.5 Let X be a smooth vector field in R™ with flow {¢:}, and assume p, is an isolated
standard equilibrium for X. Let

f:U-{pn}—=R

be a smooth submersion, where U is a bounded neighborhood of p.. Suppose A and B are two

closed sets which are also (n — 1)-dimensional submanifolds of U with boundary, and assume
the following holds:

(a) p. € ANB;
(b) 0<m_ SXme.}. OnU—{p,};

(¢) a- £ f<ay on A and B= f-1(b), where ay <b.

(d) There exists 7. > 0 such that
e™L(T}A) C T} B,
where L = Ty, X. Recall that T, ¢, = €.
Then for every p € A, the forward X-orbit of p, O+(p), reaches B, defining a map
h:A— B

by
h(p) = O+(p) N B = ¢.(5)(p)s

where 7(p) is the smallest t > 0 such that ¢,(p) € B. Moreover, T is bounded, h is Lipschitz
and its Lipschitz constant at p. is

Lip,, b = [€™"|z,.al (3)
— \/,\max[(e'r.LS)Ter,LS]’ (4)

where Amax denotes the largest (in absolute value) eigenvalue, and S is an n X (n — 1) matriz
whose columns form an orthonormal basis of Ty, A and belong to T} A.
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PROOF: Let us first show that for all p € A — {p.}, the forward orbit of p reaches B. Since
f(p) € [a-,a4], we have, for t > 0,

fon) = 1)+ [(X6p) ds
€ [a-+m_t,aq +myt],

so since f is continuous on U — {p.} and a4 < b, there exists a unique 7(p) € [—ABl —L@]

such that f (qS,(p)p) = b and f(¢:p) < b, for all t € [0, 7(p)). This shows that O, (p) reaches B
as well as that 7 is a bounded function on A — {p,}; namely,

b — a4 b —a_
< <
my - T(p) - m_

Next, let us show that 7(p) — 7. as p — p.. Observe that ¢, A and B are tangent to each
other at p,. Therefore,
£(¢r.p, h(p))

d(h(p), p.)
as p — p., where £(¢,p, ¢,p) denotes the arclength of the indicated segment of the X-orbit of

p. So in particular £(¢..p, h(p)) = £(¢r.p, ér(»)p) = 0 as p — p., and thus, for p € A — {p,}
we obtain:

— 0,

|/(¢r.p) — f(R(p))] my. £(é-.p, h(p))

<
- 0,

as p — p.. Hence:

) -ml <[ :')(Xf)(dnp) dt’ = f(énp) = F((P))] = O,

as p — p.. This shows that 7(p) = 7.
By the implicit function theorem, 7 and A are smooth functions on A — {p.}, and

Toh(v) = dr(v) X (h(p)) + Tpér()(v), (5)
for all p € A— {p.} and v € T, A. Since 7 is bounded, it follows that
p— "TP¢T(P) "

is bounded, so to prove that & is Lipschitz it remains to show that |d7(v)X (h(p))] is bounded
(or better: converges to 0) at p., with |[v| = 1.
Let g : V — R be a submersion defined on some neighborhood V of p, such tha.t g
1s constant on B and ¢ := infpey inf)y=1 |[dpg(v)| > 0. This means that the “co-norm” or
“minimum norm” of d,g is bounded below by § on V. Then dg(T,A(v)) = 0 and by (5)

dr(v)(Xg)(h(p)) = =—dg(Tp-()(v))
— —dg(eT‘Lv)
= 0, (6)
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as p — p.. Therefore, for p € A — {p.}, v € TLA, |v| =1:

XN = o) Xo)n(a)] Tl
= Zldr(V)(Xa)(h(p))
- 0,

as p — p.. This proves that h is Lipschitz as well as formula (3). The expression for [e™%|z,, 4]
in (4) follows from the following lemma. m

Lemma 7.6 Let F : R" — R" be a linear isomorphism and let E be a k-dimensional subspace
of R*, where 0 < k < n. Choose an n x k matriz S whose columns form an orthonormal
(relative to the standard Euclidean inner product on R") basis for E. Define the norm of the
restriction of F to E by:

|Flell = sup{|F'(v)| : v € E, |v| =1}.
Then:

IF|E] = vV Amaxl(FS)TFS).

- PROOF: Note first that S7.S is the k x k identity matrix. If v € E, then v = Su for a unique
u € R* soif [v| = 1, then 1 = vTv = uTSTSu = uTu = |u|?, hence |u| = 1 also. Therefore we
have:

|Flel = sup{|F(v)|:v€E, |[v]=1}
= sup{|FS(u)|:u e RF, |u|=1}
= sup{VuTSTFTFSu:u € R¥, |u| =1}
= sup{y/(STFTFSu)-u:u € R*, |u|=1}
= VAmul(FS)TFS]

as claimed. =

The following main theorem is an analog of the linearization theorem for stability of
equilibria of a single dynamical system. In the hybrid case, the linearized data include, besides
the derivatives of the vector fields at the equilibrium, the tangent spaces at the equilibrium
of guards and images of resets involved in the hybrid dynamics near the equilibrium.

Theorem 7.7 (Stability via Linearization) Let z. € My be an isolated standard equilib-
rium for UH and

Tl'_l(.’]’:.) = {pl,--' ’pl}?
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where p; € D;; and 1 < j <. Suppose that there exists a bounded neighborhood W of =, and
foreach1<j<la smooth function

fi :Uj—{pj} - R,
where U; is a neighborhood of Di; Nw=Y(W) in {i;} x R*, such that:
(a) p;j € Aj N B;, where
Aj =mR;,_,;)NUj, Bj=Glij,i::1) 0 U;,

forall1 < j <. Assume further that A; and B; are differentiable at p;.
(b) a7 < f; < al on Aj, and B; = m, for all j, for some numbers a;j < aj‘ < b;.
() 0<mj < XyfySm} onU—{p} (1<j<).
(d) For each j there exists T; > 0 such that

(THA;) C TLB,
where L; = T, X;,.

For1<j <, let S; be an n x (n — 1)-matriz whose columns form an orthonormal basis for
Tp;A;j and belong to TFA;. Let

B = \/ Amax[(€7%s 5;)T ki 53],

and
Vi = "ij R(ij:ij+l ) "
Define

{
nu(e.) = [ .
i=1

If nu(z.) < 1, then z. is an asymptotically stable hybrid equilibrium. If dimH = 2 and
nmu(z.) > 1, then z, is unstable.

Remarks.

(i) Condition (b) says that B; is the closure of a level set of f; while A; is “almost” a level
set of f;. The function f; measures the progress trajectories of Xi; make towards B;,
starting from A;.

(ii) Condition (c) says that the time-7; map of the linearization of the flow of Xi, at p; (i.e.

T¢}’) maps TfAj to T,} B;. This means that at least on the level of linearizations, B;
is reachable from A; in a bounded amount of time.
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(iii) Note that we do not require [ > 2, i.e. there may be only one state involved in creating
the hybrid dynamics near z.. However, the theorem doesn’t work for pure equilibria
(that is, we do not allow z. € int Mu).

PROOF: Follows immediately from lemmas 7.4 and 7.5. =

Let us now test the above theorem on our warning examples given at the beginning of the
section.

Example 7.5 It is not difficult to see that Heu, Huss and Hyys satisfy the conditions of
Theorem 7.7, with the function arctan(y/z) as f; (for all j). A simple computation shows:

THsu (0) = Nssu > 11 NMHus (0) = Nuss < 1-; and THus (O) = Nuus < 1,

affirming the statements made in those examples.

Example 7.6 Define a 3-dimensional hybrid system H by: D; = {1} x5, D, = {2} xR® - §,
where

S={(z,y,2):2>0, y>22* z€ R}U{(2,9,2): 2 <0, y 2 —z(z —¢), z€ R},
and
G(1’2) = {(x,y,z €D :y= .’132}, G(2,1) = {(:v,y,z) €Dy:y= —:L‘(.’B—C)},

for some constant c. Let X,(z,y,z) = (—z—y,2—y, —\12) and X5(z,y,2) = (2—y,T+y, A22),
where 0 < A2 €1 < A;. Then it is not difficult to check that

mu(0) = e,
where v = arctanc, so if ¢ > 0, then 0 is asymptotically stable.

Example 7.7 The following example illustrates some limitations of the stability theorem.
Let H be a 3-dimensional hybrid system with

Di={1} xK xR and D, ={2} xR*- K xR,
where K = [0,00) X [0,00). Let
G(1,2) = {(z,y,2z) € D1 : 2 =0}, G(2,1) ={(z,y,2) € D2 :y =0},

and
Xl(x’y) Z) = (.'L' - Y, + Y, —)\12), X?(xsyaz) = (—l' -Y,T— y7A2Z)9

where A;, A, > 0. The resets are identity maps.
Then the full trajectories of X, are spirals around the z-axis which increase in radius
and converge to the zy-plane. The full trajectories of X, are also spirals around the z-axis,
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but they decrease in radius and diverge from the zy-plane. It is not difficult to check that,
with notation from Theorem 7.7, p; = €™/2, py = €¥™2/2, 50 ni(0) > 1 and the theorem is
inconclusive.

However, the flows can be decoupled into their zy- and z-parts the analysis of which shows
that if A; > 3\, then 0 is an asymptotically stable hybrid equilibrium of H. The reason
Theorem 7.7 does not provide the same answer, intuitively speaking, is because it is not able
to measure the small amount of contraction around O in the flows of both X; and X5, which
turns out to be sufficient for asymptotic stability. Namely, on G(2,1) the flow of X; contracts
in only one direction (and expands in the other) and similarly for the flow of X; on G(1,2).
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