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Simulation Techniques for Noise in Non-Autonomous Radio
Frequency Circuits

Amit Mehrotra Alberto L Sangiovanni-Vincentelli

Abstract

In this paper we consider the problem of noise analysis
for non-autonomous nonlinear RF circuits in presence
of input signal phase noise. We formulate this prob
lem as a stochastic differential equation and solve it
in the presence of white-noise sources. We then relate
this solution to results of the existing nonlineax time-
domain and frequency-domain methods of noise anal
ysis and point out the modifications required for the
present techniques. We illustrate our technique using
an example.

1 Introduction

In high speed communication, instrumentation and
signal processing applications, random electrical noise
that ememates from devices has a direct impact on crit-
icgJ high level specifications, for inst£tnce, bit error rate
(BER) or signal to noise ratio (SNR), blocking perfor
mance, spectral leaikage. Hence predicting noise in such
systems at the design stage is extremely important. RF
circuits are usually analyzed for their steady state be
haviour imder one or more periodic excitations. In a
typical RF system, some amplifiers and other analog
circuits such as mixers, filters and oscillators do not
operate in small signal condition. These circuits usu
ally have one or more letrge signal time-varying inputs
which cause the statistics of the circuit noise sources
to be time varying. Hence stationary noise analysis
techniques, a la SPICE, are inadequate for analyzing
the noise behavioinr of such circuits since they do not
capture important non-linear aspects such as frequency
translation of noise spectra.

Several techniques have been proposed, both in the
tune domain [Hul92, DLSV96, OTIS93] and in the fre
quencydomain [RLF98, RMM94], for predicting noise
performance for nonlinear circuits. Both these classes
of techniques take advantage of the fact that for most
RF applications, the circuit is driven by periodic (or
guosi-periodic) signals. Hence only the steady state
performance of the circuit over a small time inter
val, usually over one period of the input signal is suf
ficient to describe its behaviour. Harmonic balance

techniques assume that the periodic circuit response
can be expressed in terms of a small number of har
monics £ind solve the nonlinear algebraic equations for
each harmonic. Time domain techniques use finite
difference Newton or shooting methods to obtain the
steady state response of the circuit. Noise analysis is
then performed by linearizing the circuit auround this
time varying response. The underljdng assumption is
that small perturbations, deterministic or stochastic,
result in small deviations in the response of the cir
cuit, leading to additive noise in the case of stochas
tic perturbations. This assumption is rigorously jus
tified for stable non-autonomous systems in the pres
ence of large deterministic signals. If the noisy input
signed can be represented as an additive noise over and
above the deterministic periodic signal, the small de
viation assumption is again justified. The input signal
noise can be assumed to be a circuit noise source with

equivalent statistics, at the input node. These tech
niques conclude that the circuit noise statistics are pe
riodically time-varying in presence of periodic inputs.
However, [TKW96] conclude that only the stationary
component of this noise is important without giving a
mathematically rigorous justification. The popular use
of noise figiure of the individual blocks in a receiver path
to compute its overall noise performsince also assumes
that the output noise is stationary. On the other hand,
[RLF98] conclude that this notion of noise figure is not
sufficient to characterize the output noise and resort
to computing the full cyclostationary statistics at the
output of a block.

However, it has been shown [DMR98] that it is not
mathematically rigorous to view the oscillator output
as a deterministic signal with additive phase and am
plitude noise. This is due to the fact that linear pertur
bation ansdysis is not valid for autonomous systems. A
mathematically consistent representation of the oscilla
tor output is a sum two wide-sense stationsiry stochsis-
tic processes: a large signal output process with phase
deviation which has the statistics of a Wiener process
(Brownian motion) emd a "smsdF amplitude noise pro
cess. Hence approaches that attempt to perform sta-
tionary/cyclostationary noise analysis of non-linear RF
driven systems (e.g. mixers etc.) need to be carefully



re-examined.

This paper addresses the problem of formulating
and solving the circuit equations in presence of noisy-
oscillator input signal, which is assumed to the sum
of a "small" amplitude deviation process and a large
stochastic process, derived from the noiseless oscillator
output by introducing Brownian motion phase varia
tion. Our main results are sununarized below:

• It is shown that the output of nonlinear non-
autonomous systems in the presence of period
input with Brownian motion phase deviation, is
asymptotically wide-sense stationeiry.

• The Lorentzian spectrum of the input signal and
the characteristics of the Brownian motion input
phase deviation process are preserved at the out
put.

• Noisy input is shown to contribute a wide-band
amplitude noise term at the output of the nonlin
ear circuit. This appears as a white noise source
modulated by the time derivative of the steady
state response of the system.

• Associated modifications to the existing cyclosta-
tionary noise analysis dgorithms, both in the time
and frequency domain are suggested.

The intuition behind these results is the fact that the

non-autonomous system in conjunction with the driv
ing oscillator can be viewed as a composite large oscil
lator. Hence the observations made in [DMR98] about
the output of the noisy oscillator carry over to this com
posite system which is also autonomous. However, for
the nonlineeur circuits the frequencies of interest typi
cally are far away from the input signal frequency (or
any harmonics of that) and hence the noise due to the
pheise deviation process in the frequency range of in
terest is small, compared to the wide band amplitude
noise process. Hence, in contrast to the oscillator phase
noise analysis, we concentrate on the amplitude noise
process here.

The rest of the paper is organized as follows. In Sec
tion 2 we introduce some basic mathematicad notation

about non-autonomous systems. We begin our anal
ysis (Section 3) by briefly reviewing the system noise
equations in presence of a deterministic large periodic
input signal. We then analyze the noiseless system
with input signal phase noise only and show that the
general noise anedysis is an extension of this case. Fi
nally (Section 4) we demonstrate our technique with
an example.

2 Mathematical Preliminaries

The dynamics of a unperturbed non-autonomous sys
tem can be described by the following system of differ
ential equations

X= f(x) bo(t) (2.1)

where x G K" is a vector of state variables, f(x) :
R" —> R" and 6o(i) : R R" is deterministic T-
periodic input. We assume that this equation satisfies
the Cauchy-Peano existence and uniqueness theorem
for the initial value problem [Gri90]. We further as
sume that the system is stable in the sense that in the
absence of 6o(t), the steady state solution of this equa
tion is 0. We assume that the steady state solution
of this system (in presence of 6o(<)) given by Xs(t),
which is gdso periodic with period T. This assumption
is justified for almost all non-autonomous RF compo
nents except frequency dividers where the output is pe
riodic with a larger period T'. The analysis we present
here is therefore not valid for frequency dividers.

We are interested in the response of this system in
the presence of noise, both in the form of circuit intrin
sic noise D(x)^(t) and phzise noise in the input signal of
the form bo(t-i-a(t)) where D(-) : R" describes
the connectivity and modulation of the noise sources,
^(•) : R -> RP are white noise sources and a(-) : R —>• R
is the phase deviation process of the input signal which
is a scaled Brownian motion process, i.e., of the form
\/cB(t) where c is the rate of increase of the -variance.
Hence the modified system is governed by the following
differential equation.

X= f(x) + bo(t H- Q;(t)) -I- D(x)^(t)

or equivalently, in stochastic differential equation form
as

dx = /(x)dt + bo(t + a(t))dt •+• D{x)dBp{t) (2.2)

where Bp{t) is a p-dimensionad Browniztn motion. For
sake of simplicity, we use the state equation formu
lation to describe the system. These results and
techniques can be extended to the mixed differentiatl-
algebraic equation formulation (for instance, as in mod
ified nodal analysis (MNA)) of the form ^^^+/(a?) =0
in a straightforward manner.

3 Noise AngJysis of
Autonomous Systems

Non-

We begin with a brief re-view of classical cyclostation-
ary noise analysis.



3.1 Cyclostationary Approach

Consider the above system of equations (2.2) but with
ideal input source signal 60(^)5 i-e.,

daja = f(x)dt + bo{t)dt + D{x)dBp{t) (3.1)

Assume that the perturbed response of this system is
®a(t) + 2/(t) where y{t) is the small stochastic deviation
of the response of the system. Substituting this in (3.1)
we have

da;a(t) + dy{t) = f{xa{t) + y{t))dt + bo{t)dt
+ D {xa{t) + y{t))dBp{t)

Linearizing f{xs{t) + y{t)) auround ^^(t), ignoring y{t)
in the etrgument of B{-) and using that fact that rcs(t)
satisfies (2.1), the above equation reduces to

iv(t)» g y{t)dt + £>(a:a(t))dBp(<) (3.2)
I,(t)

where ^ j ^̂=J{t) is the Jacobian of f{x) ev?iluated
at Xa(t). Since Xs{t) is T-periodic, it follows that J{t)
is also T-periodic. Since D{xs{t)) is also T-periodic,
and the system of equations is linear in y{t), the above
system of equations describes a linear periodic time-
varying system of equations governing the deviation of
the circuit response and y{t) is also cyclostationary.
The time-varying statistics of y{t) are usually com
puted by considering the periodic time-v£irying noise
£is an input to a linear periodically time-var3dng sys
tem corresponding to (3.2) which is computed directly
from the steady state response of the circuit.

3.2 Response to Input Signal Phase
Noise

We now introduce our approach to solving (2.2). To
illustrate the basic principles we will assume that the
nonlinear circuit itself is noiseless, i.e., D{x) = 0. We
will relax this assumption later. As indicated eeirlier,
the additive amplitude noise component of the input
signal can also be absorbed in the circuit equations so
we will only consider an input signal which has phase
deviation but no amplitude noise, i.e., of the form 60 (t+
a((t)). Hence (2.2) reduces to

X—f{x) + bo{t + a(t))

or equivalently

da; = /(a;)d< + 6o(t + a(t))dt (3.3)

where as before a{t) = y/cB{i). Assuming that c is
small, i.e., the input signal phase noise is small and

the system is stable, the response of the system is of
the form .

a:s(f+ a(f)) + T/i(t)

where yi{t) is assumed to be small. By choosing the
response to be of this form, we are assuming that the
circuit is able to follow any variations in instantaneous
input frequency. This is a valid assumption if input
signal phase noise (i.e., c) is assumed to be small and
the nonlinear circuit is stable (non-oscillatory).

Definition 3.1 Define s{t) = t + a{t).

Also let

i (i) = ^ and Xa(t) =

We note that

dXa{s{t)) = Xa(s(f -|-dt)) - Xs(s(t))

=Xa(s(t))ds(t) +ix,(5(f))[d5(t))^
=X3(5(t))(dt +v^cLB(t)) -I- ^Xa{s{t))dt

where we have used the f8w:t that (dt)^ = dtdB{t) = 0
and (dB(t))^ = dt [0k98]. Notice that the second term
in the above expansion is due to the fact that dB{t) is
of the order of v^. Substituting this expression in
(3.3) and linearizing /(x) around Xa(s(t)) we obtain

<i2/i(*) +®a(s(<))(d* +y/cdB{t)) +|x5(s(t))dt
/(Xa(s(t)))dt +

dx
yi(t)dt-|-6o(«(t))d<

I,(a(t))

Since Xg{t) is the steady state solution of (2.1),

dx-^(s(t)) =f{Xa{s(t))) -I- bo{s{t))

emd hence

d2/i(t) = J(s(t))2/i(t)dt-|-Mi(»(t))dB(t)

+ M2(s(t))dt
(3.4)

where Mi(t) = —y/cxg{t) and M2(t) = —0.5cXa(t) are
also T-periodic.
Remark:

• The term Mi{s{t))dB{t) represents a white noise
source modulated by the time derivative of the
steady state response. This means that phase
noise in the input signal results in a time-varying
wide-band noise at the output of the nonlineeir cir
cuit.

• The periodic coefficients J, Mi and M2 are eval
uated at s{t) = t + a{t) and not at t.



• (3.4) is a stochastic differential equation which
is linear in yi{t) and the terms Mi{s{t))dB{t)
and M2{s{t))dt represent two inputs to this lin
eal- system. Hence j/i(<) can be represented as
2/11 (<) + 2/12(i) where yii(t) satisfies

dyii (t) = J(s(t))yii(t)dt + Mi{s{t))dB{t) (3.5)

and 2/12 (i) satisfies

d2/i2(i) = J {s{t))yi2{t)dt + M2{s{t))dt (3.6)

To solve (3.5) we maJce the following useful observa
tions:

Definition 3.2 Define U{t) as

U{t) = y/cB{t) mod T

Lemma 3.3 The solution of (3.5) is the same as the
solution of

dyiiit) = J{t + U{t))yii{t)dt + Mi{t + U{t))dB{t)

Proof: Follows from the fact that J{t) and Mi{t) are
T-periodic. •

Lemma 3.4 Asymptotically U(t) is a random process
which is uniformly distributed between 0 and T for ev
ery t.

Proof: Obvious. •

Definition 3.5 Define r = t + U{t) and zii(r) =
yii(^)-

Then using the fact that c is small, it follows that
(3.5) is equivalent to the following equation

d2ii(r) = J(r)2ii(r)dr-|- Mi(r)dB(r)

Note that this- equation is in the exact same form as
(3.2). This means that 211 (r) is a cyclostationary pro
cess. Moreover, since J(-) is the Jacobism of a stable
system, if Mi(r)iy(r) is small, zii(r) is small for all r.
Hence the above analysis is consistent.

Using the fact that yii{t) = zii{r) = zii{t + U{t))
and U(t) is uniformly distributed between 0 and T for
all t.

Theorem 3.6

• 2/11 (^) ^ stationary

• The autocorrelation E [2/ii(t)3/i'i(t + r)], where
2/11 (t) is the solution of

dyii{t) = J{t + Q!(t))2/ii(t)dt
+ Mi(<-|-a(i))dB(<)

is the stationary component o/E [zii{t)z
where zn (t) is the solution of

dzii = J{t)zii{t)dt + Mi{t)dB{t)

Proof: [Pap91] •
Now we consider (3.6). Defining 212(5) = 2/12(0 as

before we conclude that 212(5) satisfies the following
differential equation

dzi2 = J(s)2i2(5)ds + M2(5)ds

Using the same arguments we can conclude that the
steady state solution 212(5) of the above equation re
mains small and bounded for small c's. 2/12 (t) = 212 (t+
a(t)) is therefore a wide-sense stationary stochjistic
process with a noise spectrum which is very similar
to the spectrum of Xs{t -}- Q!(f)) except that it is much
smaller in magnitude. Hence as indicated in Section 1
this tjrpically contributes to noise power outside the
frequency band of interest.

3.3 General Noise Analysis

We now consider (2.2)

dx = f{x)dt -h6o(t+ a(t))dt -f D{x)dBp{t)

We assume that the response of the circuit is of the
form

x,(t-h a(t))-I-yo(<)

Proceeding exactly as in the previous subsection, we
conclude that yo{t) —yoi{t) -f yo2(^) where yoi(i) sat
isfies

dyoi(i) = (5(0)2/01 (<)dt+ Mi{s{t))dB{t)
+ Mo{s{t))dBp{t)

(3.7)

where B{t) and Bp{t) zire uncorrelated and Mo{t) =
B(x3(0)- yo2{i) is still given by (3.6). (3.7) can be
rewritten as

d2/oi(0 = J{s{t))yoi{t)dt-\-M{s{t))dBp+i{t)

where

M{t)=[Mi{t) Mo{t)] andBp+i(0 =

Corollary 3.7

• 2/01 (i) w stationary

Bit)
Bp(t)

The autocorrelation E [2/01 (t)2/oi(^ +''")]> where
2/01 (<) is the solution of

ti2/oi(t) = J{t + a{t))yoi(t)dt
M{t + a{t))dBp+i{t)

is the stationary component o/E [zoi{t)zQi{t r)]
where zoi{t) is the solution of

dzQi —J{t)zoi{t)dt + M{t)dBp+i{t)



Hence we conclude that we can still use the existing
nonlinear noise simulation algorithms for predicting
noise in the non-autonomous nonlinear systems with
a couple of modifications.

• We need to add Einother noise source to the noise

equations corresponding to the phcise to wide
band amplitude noise conversion of the input sig
nal phase noise by the nonlinear system. For this
we first need to perform noise analysis of the oscil
lator(s) to determine the phase noise performance
of the input signed.

• We only used to consider the stationary compo
nent of the cyclostationaxy noise statistics com
puted by the algorithm.

Remark: The above analysis makes the assumption
that the input signal phase noise are uncorrelated with
the circuit noise sources and noise coming from any
other input port. Consider the case when the LNA in
the receiver path is driven by a small desired signal
and a large blocker. The blocker acts as an LO for
the nonlinearities present in the LNA. Hence the LNA
output consists of a large in-band blocker along with
LNA output noise which is correlated to the blocker.
Noise analysis of subsequent blocks will have to take
this correlation into account until the in-bamd power
of the blocker drops below the noise floor. This can
be problem can be finessed by analyzing the c£iscade
of circuit blocks till the in-band power of the blocker
is negligible. This does increetse the circuit size but if
efficient algorithms coupled with iterative linear solvers
are used, the running time incresises almost linearly
(actually 0(n logn)).

4 Experimental Results

The noise simulation sdgorithm is implemented in
MATLAB. We use the time domain technique pre
sented in [DMR98] for performing noise simulation for
oscillators and the harmonic balance based technique
presented in [RLF98] to perform the noise smalysis
of the non-autonomous portions of the circuit. The
steady state response of the circuit £tnd the Jacobians
are computed by performing transient simulations in
SPICE3 emd later handed over to MATLAB.

We illustrate our technique using an example. Con
sider the oscillator shown in Figure 1. The beisic con
figuration is a Colpitts oscillator. This circuit has 11
state variables and 8 noise sources, c was computed to
be 3.19X10~^® sec whichcorresponds to relative noise
power of 98.1 dBc/Hz below the carrier at an offset
frequency of 100 kHz. This oscillator is used to gen
erate the 2.2 GHz LO which drives the mixer shown

Figme 1: Colpitt's oscillator

-[Q| J
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Figure 2: Gilbert cell based mixer

Figure 3: Increase of mixer NF with input signal phase
noise



in Figure 2. The mixer circuit has 53 state variables
along with 46 noise sources (excluding the one added
for the oscillator noise contribution). The RF signal is
assumed to come from a 50 port at 2.4 GHz. The
noise figure of this mixer at the IF port at 200MHz,
without the contribution of the LO phase, noise was
computed to be 9 dB. Including the effect of LO phase
noise, the noise figure increased to 10.85 dB.

Figure 3 shows the increase in noise figure (from the
noiseless oscillator case) as a function of c for this cir
cuit. This increase is negligible for c < 1 x lO"^® sec
but as c increases beyond this value, the noise figure
degrades rapidly. This cross-over point is the value of
c where the input signalphase noisestarts dominating
over the circuit noise. This also suggests that for this
particular mixer, it is an overkill for the LO to have
phase noise performance better than 113 dBc/Hz at
100 kHz offset.

5 Conclusions

This paper addresses the problem of performing
noise simulation for non-autonomous nonlinear circuits
driven by large periodic signals which are themselves
generated by oscillatorsand therefore have phase noise.
We showed that noise at the output of these systems
is stationary and that we can use a modified version of
existing nonlinear noise simulation techniques to eval
uate noise performsmce. We illustrate this technique
using a simple example.

This technique, as presented here can only handle
white noise sources. However for noise with long-term
correlations, i.e., flicker noise, the steps outlines above
are not rigorously justified. [DLSV96] used the mod
ulated stationairy noise model to analyze flicker noise.
However, the asymptotic arguments in this formulation
need to be carefully examined before these results can
be carried over to the flicker noise case as well.
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