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ABSTRACT

We compared human and computer means of recognizing images. For human vision we presented one target icon
and two decoy icons, in random order in aforced choice paradigm. Superimposed were different levels of noise
and blur, two ofthe major degradation processes in images. For computer vision we used matched filters with
appropriate shapes for the target and decoy icons as the means of recognition of the same pictures with noise and
bim. We found similar behavior in human and computer vision. As expected, clear noiseless pictures resulted in
pertect performance, while very degraded pictures reduced performance to chance levels. There were also
interesting differences. Humans were better than computers for very blurred pictures with little noise; evidently
umans have agood deal ofspatial differentiation capability. Computers were better in regions with moderate

^r and agood deal ofnoise; likely, the noise destroys the shape consistency necessary for human recognition.
Ihe scanpath theoiy oftop-down active human perception suggests that human 'matched filters' produced by
internal computation or analogic reasoning have similar roles to the masks in the computer vision scheme that
were pre-constructed by the human experimenters.

1. INTRODUCTION

Pattern recognition is an important area ofcurrent research that impinges on signal processing, information
theory, and computer vision. On the other hand, human vision carries out its processes at several different
conceptual ^d anatomical-physiological levels. Lower level vision has to do with early processing ofthe retina
image and thus with physical parameters of the image, such as contrast, spatial frequency, and color. In computer
vision, much offoe carefol work going on at this lower level may be considered as pre-processing of the image
or later stages. Middle level vision and binocularity have to do with the construction or interpretation of3D

representation of2D information arriving onto the two retinas. Higher level vision is largely atop-down process
and involves both symbolic non-iconic representation and operational top-down spatial and sequential instructions
to eye movements in order to match representations in an iconic fashion to the subfeatures (Stark and Choi 1996)
Explorations are now ongoing with the use of bottom-up image processing and image classification algorithms to
suDstitute tor some aspects oftop-down recognition (Privitera and Stark, 1998).

^tched filters, MFs, ^ an efficient way for extracting signals from noise (Turin, I960). In the early 60's an
^lofiTu^y '̂'1? ! classifying sequences oftime series events (Stark et1962). Historically, the above series of papers started with simple digital Fourier analyses ofbiological noise.
Here aseries ofsinusoidal and cosinusoidal waves were cross-correlated, frequency by frequency and time shift
by tune shift, against the noise time series for which aspectrum was desired. However, by using template filters
or MFs constoct^ as inverse time fiinctions ofevent shapes, episodic temporal events in the time series were
better identified. It then appeared as ifasinusoid could also be considered as aMF for performing frequency

Human and computer recognition. Okubo and Stark. University ofCalifornia, Berkeley, 29 March 1999.



analysis. Recent work from our laboratory includes the application oftop-down MFs in computer visual search
(Stark etal, 1992) and in 2D pattern recognition (Sun and Stark, 1994, personal communication).

The enemies ofeasy image recognition are noise, blur and clutter. In the experiments and simulations to be
presented, we have used a number of levels and types of noise and a number of levels of blur. We then studied
their effect on the ease ofimage recognition using human subjects and also computer algorithms. Clutter is a
more complex matter. Although noise was originally defined as someone else's telephone conversation
interfering with one sown; it has now come to be defined in terms ofstochastic processes. Thus, interfering
signals with patterns similar to the desired signals have had to be renamed; in the image world, the term clutter
appears to have been assigned this role.

The aim ofpresent paper is to study similarities and differences in top-down human and computer vision.

2. METHODS

Target and Decoy Images Binary test images for the experiment, 'car*, 'van' and 'truck' (Figure 1), were 64 x64
pixels or 110 X110 mm in size. These three kinds ofvehicles with added noise and blur were used as the targets.
Targets free ofnoise or blur were 60 x30 mm for 'large' type (left column) and 30 x 15 mm for 'small' type
(right column).

Figure 1. Target and Decoy Icons
Three large (left column) and small (small) icons. Coordinates in pixels. Note binary luminance and simple vector line drawings.

Blur and Noise Added. We added three types of noise: 'plus noise' (a cross five pixels in length); 'salt noise'
(one pixel set to 255); and 'salt and pepper noise' (one pixel with polarity reversed). Control experiments
indicated that the effects ofdifferent noise types were similar. Noise ratios were set from 0to 60 %; the fraction
ofchanged pixels times 100 was the per cent. For each displayed image condition, the type ofvehicle and noise
type and level was chosen randomly. Stimulus pictures with target and added noise were then blurred toone of
seven levels ofsigma (see below), also chosen randomly (Figure 2). Clearly, both noise and blur added
difficulties for both human and computer recognition processes attempting to identify the target icon type
displayed.

Figure 2. Added Noise and Blur

... cross-noise (upper row) and blurred with sigma equal to 2(right); truck with salt noise, 30% (middle row) and blurredwith sigma equal to 6(right); van with salt and pepper noise, 60% (lower row) and blurred with sigma equal to 12 (right).

AFourier transform method was used to blur the target icons (Figure 3). By multiplying the Fourier transform
(upper right) ofthe original picture (upper left) by the Fourier transform (middle right) of the blurring aperture
(middle left) the product (lower right) also in Fourier space was obtained. Then by inverse Fourier transform, a
blurred picture back in the spatial domain (lower left) was obtained that could be presented to either human or
computer vision processes. Direct convolution ofthe picture and the aperture is more computationally
demanding. The extent of blur isdefined by the sigma, the standard deviation ofthe Gaussian distribution
(middle left). The sigma varied from zero to twelve pixels in extent, in increments oftwo pixels.

Figure 3. Blurring Methodology
Target plus cross noise (upper right) and its Fourier transform (right); aperture (middle row) and its Fourier transform (right).

Fourier product oftarget and aperture (lower row, right) with inverse transform back to spatial domain (left).

Experimental Arrangements. The distance between the subject's eyes and the computer display was set to be
0.5 m. The 64 x 64 pixel stimulus display window on the computer screen was 110x110 mm and thus 12.5
degrees ofvisual angle, considering that one radian equals the 0.5 mdistance (Figure 4). The thickness ofthe
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vehicle contour lines were only 1 pixel or 6.8 arc minutes; to place this in visual units, recall that 20/20 vision
requires resolution ofone arc minute.

Figure 4. Experimental Arrangement
Note distanceof subjectfrom displayand sizes of Images and iconsthat togetherdefinevisualangles(see text).

ExperimentalProtocol Thenumber of target conditions was 266; thiswas determined bythethree types of
noise, seven noise levels, seven blur levels, and two target sizes(Figure5); note that zero noisewas one condition
for all three types of noise. For each target condition, ten instances of itwere randomly presented throughout the
experiment to the subject for onesecond. It thendisappeared, leaving onlya cross mark on the screen to aid in
fixation. The subject made a 'forced choice' signaled by pressing one ofthree keys, soasto identify which one of
the three targets had been presented, even ifhe felt that he could not make the discrimination. After the subject
responded, the next image appeared. The experiments onthe large and small targets were separately conducted.
While a number ofcontrol experiments were done on several subjects, all ofthe data reported here were collected
from one subject in about ten two-hour long sessions. Much ofthe time was employed in the computer
recalculating target conditions because of computer memory limitations.

Figure 5. Multiplicity of Targets, Noise and Blur
Note two sizes oftargets (left column), three types ofnoise (next column) seven levels ofnoise (next column), and seven levels

of blur sigma (right column) yielding 266target images inall.

Computer Vision Experiment For each condition, the cross-correlation between the possibly noisy and blurred
image and each ofthe six templates was calculated and the vehicle type with the highest correlation was chosen as
the recognition response. Itshould be noted that the MFs for recognition and the target icons were all centered
with respect to the 64 x64 pixel display image area; we did not try to solve the location approximation problem
here (Sun and Stark, 1994, personal communication). The fraction ofcorrect responses was adopted as
probability ofrecognition, PR. For comparison with human vision, this MF method was expanded; several
somewhat different MFs were generated all employing the template matching methodology. Their comparisons
with human vision and with each other proved to be most interesting in terms ofdefining a likely form for the
human matched filter.

3. RESULTS

Human Forced Choice The surface (Figure 6, lower left) represents the recognition behavior ofa human
subject deciding as to which ofthe presentations is the target car and correctly rejecting the decoy icons, truck and
van. The amount ofadded noise, in percent ofpixels converted to noise signal is indicated on the y-axis and the
amount ofblur, in size ofthe spread function sigma in pixels is indicated on the x-axis. The performance, as
percent ofcorrect choices, is shown on the vertical, z-axis; 33% is chance level, 100% is perfect choice. Alevel
of67% represents behavior halfway between these extremes. This level ofthe surface is indicated by the
performance function' (thick line) as is its projection on the noise-blur plan. Note very successful performance

with low noise and no blurring and only random levels ofchoice for large amounts ofnoise and blurring; thus we
achieved afull range ofbehaviors with our domains ofblur and noise. Also, there is aslope to the 2-D
performance function indicating atrade-off so that fairly successful behavior is possible with much noise and
little blurring or with little noise and much blurring. Human vision is quite sensitive to noise; possibly the noise is
very effective in destroying shape consistency for recognition. We noted in earlier control experiments the type
ofnoise, when normalized by number ofpixels modified, does not seem to be particularly important. Human
vision is fairly robust to blur. Remember from information theory that blur does not destroy information but just
smears or reallocates itover the image. Blurred information can be reconstructed using lenses for real images or
by spatial differentiation. Especially, in regions ofsmall amounts ofnoise, the human appears to be able to
reconstruct the image even in spite ofthe largest amount ofblur with sigma equal to twelve. Size ofthe pattern to
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be recognized, also explored in earlier control experiments, did not seem to interact with the effect ofthe blur or
the ability ofthe human to reconstruct the image for recognition.

Figure 6. 3D Performance Surfaces
Coordinate axes: Noise in per cent pixels occupied by any ofthe noise types, and Blur, with sigma in pixels. Vertical

Performance scale ranged from perfect recognition success, 100%, to chance levels. 33%. Note "Performance Function" line (heavy line)
representing the intersection ofthe performance surface with the plane at 67% success, halfway between extremes; also the projection of
this performance line onto 2D Noise-Blur Plane. Human performance (lower left). Computer performance (lower right), and Joined
performance function (upper).

Computer Vision Again the 3D surface (see Figure 6, lower right) can represent the MF choice of the target
icon from the decoy icons. Note successful behavior is prominent with low noise and little blurring and choice
failure to rise above the chance level is exhibited at high noise levels with much blurring. Trade-off between
levels ofthese two destructive processes can also be seen. In general, noise and blur, two basic characteristics of
image degradation, act in similar fashion for both human and computer vision (Figure 6, upper; joining the results
of humanand computervision).

Comparison between human and computer vision The 'performance function', the projection ofthe 67%
success line onto the 20 noise-blur plane represents acut ofthe 3D recognition surface with the horizontal plane
at that level ofrecognition. This function clarifies the similarities and differences between human (dotted lines)
and computer vision (solid lines). Both human and computer functions show trade-off between the two image
degradation procedures as expected (Figure 7, upper, human; and lower, computer).' The region labeled "b"
represents a portion ofthe plane wherein computer MF processes are more successful in recognition than the
human. The region labeled "a" represents aportion ofthe plane wherein human recognition processes are more
successful than the computer MF algorithm. Region "a" defines a low-noise region ofthe noise-blur plane with a
great deal ofblur; evidently the human has the capacity to carry out spatial differentiation toovercome some of
the blurdegradation from the image.

7. Performance Functions; Matched Filter, MFl, Entire ImageArea
Human (upper and dotted lines), computer MFl (lower and solid lines) and both (middle) performance functions indicating

similarities and differences. See text for discussion ofregions "a" (vertical hatching) and "b" (oblique hatching). Note the blur is the blur of
the target images, notof MFl (seetext).

4.- DISCUSSION

Varying the matched filters. The standard algorithm, MFl, "Entire Image Area", that has been the source of
our results above, demonstrated similarities and differences from human vision. To recall, MFl used the entire
image area, either about three times larger in area than the large targets and icons or six times larger in area than
the small targets and icons. Examples ofthese MFls (Figure 1) yielded the performance and noise-blur plane
(Figure 7, lower).

In order to extend and understand those findings, we constructed three additional MF algorithms: MF2, "(within)
Contoured Area Only"; MF3, "Vector Lines (of icons) Only"; and MF4, "Blurred Lines (of icons)". MF2 was
restricted to the area within the contours (Figure 8, middle row) for the cross-correlation comparisons shown in
the noise-blur plane (Figure 8, lower). MF3 employed only the vector graphic lines ofthe target icons (Figure 9,
middle row). MF4 was also restricted tothe vector graphic lines ofthe icons, but these were blurred to the full
extent ofthe image space (Figure 10, middle row). These different properties provided interesting results.

Figure8. Performance Functions; Matched Filter, MF2, Contoured Icon Area Only
Target image (upper being matched by three MF2 templates equal toonly the contoured area (middle row); this was set tobe the

rectangular area shown inblack. Comparison ofMF2 (solid line) with human (dotted line (lower). Also see text.
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Figure 9. Performance Functions; Matched Filter, MF3, Vector Lines Only
Target image (upper being matched bythree MF3 templates equal toonly the vector lines (middle row). Comparison of MF3

(solid line) with human (dotted line (lower). Also see text.

Figure 10. Performance Functions: Matched Filter, MF4, Blurred Lines
Target image (upper being matched by three MF4 templates equal tothe lines blurred (middle row). Comparison ofMF4 (solid

line)with human(dottedline (lower). Note closefit! Also see text.

Performance in thenoise-blur plane. The result ofthese additional MFs when cross-correlated with the target
images with the additional blur and noise (Figure 8,9 and 10, upper-panels) are shown in the noise-blur planes
(Figure 8,9 and 10, lower-panels, solid lines). Also shown in these several lower panels are the result ofhuman
vision experiments (dotted lines) for comparison; these functions have also been brought together in one figure
(Figure 11).

Figure 11. Comparison of Performance Functions of the Four MFs
Comparison ofMFs (solid lines) with human (dotted lines). Recall that MFl used the entire image area. MF2 was restricted to

within the contoured icon area only; and MF3 employed only the vector lines ofthe icons. MF4 used the lines ofthe icons, yet these were
blurred to the fiill extent ofthe image space. The properties provided by these different definitions yield the comparative results ofthis
figure. Graphs taken from Figures 7, 8, 9, and 10 that also illustrate filter patterns. Regions "a", "a-prime", "b", "b-prime" and "c"
provide insight into thehuman MFs postulated toexist intop-down human vision and are described intext.

Human vision robustness to blur. When we compare human vision with computer orMF vision, we see that
the human performs better in recognition tasks in region "a" ofvery high blur and low noise in the lower right
portion ofthe noise-blur plane (Figure 11, upper left, MFl). This is consistent for all four MF types. Recall the
closer the performance line isto upper right 'failure' comer ofthe noise-blur plane, the more resistant the
recognition processes are to noise and blur. The phenomenon ofrestricted computer vision MF sensitivity to blur
is especially prominent for MF2 and MFS; note regions "a-prime". These two MFs, using only the area within the
contour, MF2, oronly the vector graphic lines, MFS, become more sensitive to blur even in the regions oflow
noise.

Computer vision robustness to noise. The original MFl performed better than human vision in the region of
high noise and low blur (Figure 11, upper left, region "b"). This performance advantage shmnk to very tiny
remnant for the other three MFs that operated in only limited areas and over vector graphic lines, region "b-
prime . There was even reversal shown where MF2 and MF4 ofperformed not aswell ashuman vision in
another tiny region "c". Evidently, using the entire image space made MFl robust to noise as compared to human
and thus itwould be the selected filter for operation in the high noise range.

Matching human vision with a matched filter. Finally note the close approximation ofMF4 tohuman vision
(Figure 11, lower right); not only are the two performance curves almost identical, but they show the same trade
offslope between nose and blur. Recall that MF4 consists ofblurred iconic lines; this suggests that likely the
internal human recognition icons, over-learned for this repetitive recognition task, have something ofthe nature of
widely blurred iconic lines.

Human Vision Matched filters are top-down 'a priori* models, that is, previously known shapes ofobjects to be
compared with bottom-up information — in our experiment the noisy and blurred target and decoy icons.
Human vision also has top-down and bottom-up processes. First there is the scanpath, a top-down procedure for
visiting important subfeatures ofapicture and secondly, something akin to iconic MFs, for comparing with visual
information traveling to the brain ffom the eye (Stark and Choi, 1996). Scenes in pictures are often complex with
many simpler subfeatures geometrically and meaningfully arranged in space. Human vision has adapted to these
types of informational signal presentations by arranging to scan from subfeature to subfeature. Onto each
subfeature, an eye movement fixation superimposes the high-resolution fovea ofthe eye. Our 'apriori'
expectations as to the locations ofthe subfeatures give rise to repetitive sequences ofrefixation saccades termed
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the "scanpath". Our 'a priori' expectations for an individual subfeature can be thought ofas having the
appropriate MF available for cross-correlation with the bottom-up image information. Perhaps this takes place
via a feedback interaction between layers 1,2 and 3(the top-down locus) with layers 4and 5(the bottom-up
locus) ofthe visual cortex (Stark etal, 1999). Consideration ofthe likelihood ofthe serial versus parallel nature
ofthe scanpath in top-down human vision (Noton and Stark, 1971) could be applied to computer vision. Here,
parallel processes could more easily, or perhaps with some additional computer complexity, visit the seven, plus
orminus two, subfeatures ofthepicture orobject in a synchronous manner.

5. CONCLUSION

Experiments are presented that provide insight into the efficacy ofcomputer vision algorithms, such matched
filters to overcome noise and blur in images in acharacteristic, but simplified recognition task. Human vision for
the same task has also been studied. Close comparison of these sets of results in the 'Noise-Blur' plane
demonstrates similarities and differences between computer vision and human vision. Both computer and human
use top-down vision for recognition, 're-knowing' apattern, both have similar sensitivities to noise and to blur,
and both demonstrate trade-off between these two stressors. By varying the nature of the template matched
filters, we believe we have come close to understanding the approximate forms that the human 'internal spatial-
cognitive models for this task may take within the iconic comparison mechanism ofthe visual cortex.
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Target image (upper being matched by three MF4 templates equal to the lines blurred (middle row).

Comparison of MF4(solid line)with human (dotted line(lower). Noteclosefit! Alsosee text.
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Target image {upper being matched by three MF3 templates equal to only the vector lines (middle row).

Comparisonof MF3 (solid line) with human(dotted line (lower). Also see text.
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row); this was set to be the rectangular area shown in black. Comparison ofMF2 (solid line) with human (dotted line
(lower). Also see text.
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