
 

 

 

 

 

 

 

 

 

Copyright © 1999, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



ISSUES IN TCP VEGAS

by

Richard J. La, Jean Wakand and Venkat Anantharam

Memorandum No. UCB/ERL M99/3

10 February 1999



ISSUES IN TCP VEGAS

by

Richard J. La, Jean Walrand and Venkat Anantharam

Memorandum No. UCB/ERL M99/3

10 February 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University of California, Berkeley

94720



Issues in TCP Vegas

Richard J. La, Jean Walrand, and Venkat Anantharam

Department of Electrical Engineering and Computer Sciences

University of California at Berkeley

{hyongla, wlr, ananth}@eecs.berkeley.edu

Abstract

TCP Vegas uses an estimate of the round trip time (RTT) as a decision variable. In some

cases, this may cause a serious problem for its performance. We investigate these cases and

suggest a possible solution to rerouting and persistent congestion problems caused by TCP

Vegas.

1 Introduction

The Transmission Control Protocol (TCP) was first proposed and implemented to prevent the

future congestion collapses after the congestion collapses in 1986. Since then, it has gone through

several phases of improvement, and many new features such as fast retransmit and fast recovery

have been added.

Recently Brakmo et al. [2] have proposed a new version of TCP, which is named TCP Vegas,

with a fundamentally difierent congestion avoidance scheme from that of TCP Reno and claimed

that TCP Vegas achieves 37 to 71 percent higher throughput than TCP Reno. Ahn et al. [1]

have evaluated the performance of TCP Vegas on their wide area emulator and shown that TCP

Vegas does achieve higher efficiency than TCP Reno and causes much less packet retransmissions.

However, they have observed that TCP Vegas when competing with other TCP Reno connections,

does not receive a fair share of bandwidth, i.e., TCP Reno connections receive about 50 percent

higherbandwidth. This incompatibility property is analyzed alsoby Mo et al. [6]. They show that

due to the aggressive nature of TCP Reno, when the buffer sizes are large, TCP Vegas loses to

TCP Reno that fills up the available buffer space, forcing TCP Vegas to back off.



TCP Vegas has a few more problems that have not been discussed before, which could have

a serious impact on the performance. One of the problems is the issue of rerouting. Since TCP

Vegas uses an estimate of the propagation delay, baseRTT, to adjust its window size, it is very

important for a TCP Vegas connection to be able to have an accurate estimation. Rerouting a

path may change the propagation delay of the connection, and this could result in a substantial

decrease in throughput. Another important issue is the stability ofTCP Vegas. Since each TCP

Vegas connection attempts to keep a few packets in the network, when their estimation of the

propagation delay is off, this could lead the connections to inadvertently keep many more packets

in the network, causing a persistent congestion. In this paper, we will discuss these problems and

propose a solution to them. The remainder of the paper is organized as follows. In section 2 we

describe TCP Vegas. Section 3 discusses the problem ofrerouting and a proposed solution, which

is followed by the problem ofpersistent congestion in section 4. Then, we finish with conclusions

and future problems.

2 TCP Vegas

Following a series ofcongestion collapses starting in October of '86, Jacobson and Karels devel

oped a congestion control mechanism, which was later named TCP Tahoe [5]. Since then, many

modification have been made to TCP, and different versions have been implemented such as TCP

Tahoe and Reno.

TCP Vegas was first introduced by Brakmo et al. in [2]. There are several changes made in

TCP Vegas. First, the congestion avoidance mechanism that TCP Vegas uses is quite different

from that of TCP Tahoe or Reno. TCP Reno uses the loss of packets as a signal that there is a

congestion inthenetwork and has no way ofdetecting any incipient congestion before packet losses

occur. Thus, TCP Reno reacts to congestion rather than attempts to prevent the congestion.

TCP Vegas, on the other hand, uses the difference between the estimated throughput and the

measured throughput asa way ofestimating thecongestion state ofthe network. We describe the

algorithm briefiy here. For more details on TCP Vegas, refer to [2]. First, Vegas sets BaseRTT to

the smallest measured round trip time, and the expected throughput is computed according to
, WindowSize

Expected = .

where WindmvSize is the current window size. Second, Vegas calculates the current Actual

throughput as follows. With each packet being sent, Vegas records the sending time ofthe packet



by checking the system clock and computes the round trip time (RTT) by computing the elapsed

time before the ACK comes back. It then computes Actual throughput using this estimated RTT

according to

. , WindowSize
Actual

Then, Vegas compares Actual to Expected and computes the difference

Diff = Expected —Actual^

which is used to adjust the window size. Note that Diff is non-negative by definition. Define two

threshold values, 0 < a < /3. If Diff < a, Vegas increases the window size linearly during the next

RTT. If Diff > /?, then Vegas decreases the window sizelinearlyduring the next RTT. Otherwise,

it leaves the window size unchanged. What TCP Vegas attempts to do is as follows. If the actual

throughput is much smaller than the expected throughput, then it suggests that it is likely that

the network is congested. Thus, the source should reduce the fiow rate. On the other hand, if

the actual throughput is too close to the expected throughput, then the connection may not be

utilizing the available fiow rate, and hence should increase the fiow rate. Therefore, the goal of

TCP Vegas is to keep a certain number ofpackets or bytes in the queues of the network [2, 9]. The

threshold values, a and can be specified in terms of number of packets rather than flow rate.

Now note that this mechanism used in Vegas to estimate the available bandwidth is funda

mentally different from that of Reno, and does not purposely cause any packet loss. Consequently

this mechanism removes the oscillatory behavior from Vegas, and Vegas achieves higher average

throughput and efficiency. Moreover, since each connection keeps only a few packets in the switch

buffers, the average delay and jitter tend to be much smaller.

Another improvement added to Vegas over Reno is the retransmission mechanism. In TCP

Reno, a rather coarse grained timer is used to estimate the RTT and the variance, which results in

poor estimates. Vegas extends Reno's retransmission mechanism as follows. As mentioned before,

Vegas records the system clock each time a packet is sent. When an ACK is received, Vegas

calculates the RTT and uses this more accurate estimate to decide to retransmit in the following

two situations [2]:

• When it receives a duplicate ACK, Vegas checks to see if the RTT is greater than timeout.

If it is, then without waiting for the third duplicate ACK, it immediately retransmits the

packet.



• When a non-duplicate ACK is received, if it is the first or second ACK after a retransmission,

Vegas again checks to see if the RTT is greater than timeout. If it is, then Vegas retransmits

the packet.

3 Rerouting

TCP Vegas that was first suggested by Brakmo et el. [2] doesnot have any mechanism that handles

the rerouting of connection. In this section, we will show that this could lead to strange behavior

for TCP Vegas connections. Recall that in TCP Vegas BaseRTTis the smallest round trip delay,

which is an estimate of the propagation delay of the path .

First, if the route of a connection is changed by a switch, then without an explicit signal fi:om

the switch, the end host cannot directly detect it. If the new route has a shorter propagation

delay, this does not cause any serious problem for TCP Vegas because most likely some packets

will experience shorter round trip delay and BaseRTT will be updated. On the other hand, if the

new route for the connection has a longer propagation delay, the connection will not be able to tell

whether the increase in the round trip delay is due to a congestion in the network or a change in the

route. Without this knowledge the end host will interpret the increase in the round trip delay as a

sign of congestion in the network and decrease the window size. This is, however, the opposite of

what the source should do. When the propagation delay of connection i is dj, the expected number

ofbacklogged packets of the connection is Wi - ridi, where Wi is connection i's window size and n is

the fiow rate. Since TCP Vegas attempts to keep between a and /? packets in the switchbuffers, if

the propagation delay increases, then it should increase the window size to keep the same number

of packets in the buffer. Because TCP Vegas relies upon delay estimation, this could impact the

performance substantially. We have simulated a simple network in order to see how TCP Vegas

handles changes in propagation delay.

S2

10 Mbps, 33 IDS

1.5 Mpbs
10 ms

10 Mbps, 32 IDS

lOMbps, X S3

10 Mbps, 25 ms

Figure 1: Simulation network



Figure 1shows the network that was simulated. We have used real time network simulator (ns)

developed at Lawrence Berkeley Laboratory for the simulation. In the simulation there are two

connections. The propagation delay for connection 2 is 134 ms. We changed the delay of the link

that connects R2 and S3 to simulate the change in propagationdelay for connection 1, i.e., change

in route. The propagation delay of connection 1 is changed from 134 ms to 88 ms at t = 15 sec, 88

ms to 484 ms at i = 36 sec, and again from 484 ms to 88 ms at t = 60 sec. Connection 1 starts at

t = 0 sec and connection 2 starts at t = 2 sec. The packet size is set to 1,000 bytes.

test_inine

tvt.qyra'

0.00 10.00 20.<JO 30.00 40.00 50.00 60.00 70.00

Figure 2: Queue size under TCP Vegas

Time (sec) Vegas Modified Vegas

connectionl connection 2 connection 1 connection 2

14 16.87 14 16.87 14

34 17.82 14 17.82 14

60 6.82 25.56 24.64 19.63

70 7.70 22.56 15.33 14.63

Table 1: Window sizes.

Figure 2 and 3 represent the queue length and the packet sequences. In Figure 3 connections

are arranged in the increasing order from bottom to top. Each segment of a connection represents



Time (sec) Vegas Modified Vegas

connectionl connection 2 connection 1 connection 2

14 1,307 1,056 1,307 1,056

34 3,490 2,626 3,490 2,626

60 4,229 6,667 5,324 5,577

70 4,723 8,053 6,364 6,425

Table 2: Number of packets acknowledged.

90 consecutively numbered packets from the connection, and the distance between two segments

tells you how fast the connection is transmitting packets. For more details on how to read the

charts, refer to [4].

Figure 2 and 3 clearly show the impact of an increase in the propagation delay. The average

queue size drops considerably after t = 36 sec. This is due to that as soon as the propagation delay

increases, connection 1 interprets this as a sign of congestion and reduces its window size, which

in turn decreases the backlog at the queue. This decrease in window size manifests itself in Figure

3 between t = 36 and i = 40 as an increase in distance between successive segments. The window

sizes at various times are given in Table 1. Connection 1 window size drops from 17.82 at t = 34

sec to 6.82 at t = 60 sec. This results in a low flow rate as shown in Figure 3.



Since the switches in the network donot notify the connections ofchange in routes, this requires

that the soiurce be able to detect any such change in the route. We propose to use any lasting in

crease in the round trip delays as a signal ofrerouting. Let us describe our mechanism first.

(1) It uses same mechanism as TCP Vegas for the first K packets. When it receives the ACK
for the Kih packet, it computes the difference diff.estimate between baseRTT and RTTk, where

RTTk is the roimd trip delay ofthe Kth. packet. This difference provides a rough estimate for the
increase in the round trip delay due to its own packets queued at the switch buffers. Note that an

average ofseveral differences could be used instead ofone value. For simplicity we will assume that

we use one value for diff.estimate.

(2) After the ACK for the Kth packet is received, the source checks thesmallest round trip delay

ofevery N packets, which is denoted by baseRTTestimate. If the difference between the minimum

round trip time of N packets and baseRTT is larger than diff.estimate + min{(5- baseRTT, 7},

where 0 < (5 < 1 and 7 > 0 is a prefixed parameter, for L consecutive times, then the source

interprets this as a change in propagation delay, i.e., change in route, and

(a) sets the baseRTT equal to the minimum round trip time ofthe last N packets, and

(b) sets the window size cwnd to

, baseRTTestimate , /-v
cwnd = cwnd 7 r

baseRTT

The basic idea behind this mechanism is as follows. If the minimum round trip time computed

for N packets is consistently much higher than the sum of baseRTT and diff.estimate, then it is

likely that the actual propagation delay is larger than the measured baseRTT, and it makes sense to

increase baseRTT. However, it is possible that the increase is due to a persistent congestion in the

network. This is discussed in more details in the following section. Since the increase in delay forces

the soiurce to decrease its window size, the round trip delay comes mostly from the propagation

delay of the new route. Thus, the minimum round trip delay of the previous N packets is a good

estimate of the new propagation delay, as is baseRTT for the previous route. At first glance, the

new cwnd in (1) may seem more aggressive than it is. However, this is not true in general. Since it

takes a few round trip times before the source detects an increase in propagation delay, the window

size is reduced by the source before it increases it again. Thus, the window size before the update

is actually smaller than what it was before the rerouting took place, and the new window size is



still smaller than what it would be at an equilibrium where no connection changes its window size.

In order to compare the performance of this modified TCP Vegas to that oforiginal TCP Vegas,

we have simulated the same network in Figure 1 with the modified TCP Vegas. We have used the

values of K = 100, N = 20, S = 0.2, L = 4, and 7 = 100 ms.

test_inine

17.00

16.00

IS.OO

14.00

13.00

12.00

11.00

10.00

9.00

8.00

7.00

6.00

S.OO

4.00

3.00

ZOO

1.00

0.00

0.00 10.00 30.00 30.00 40.00 30.00 60.00 70.00

Figure 4: Queue size under modified TCP Vegas

As shown in Figure 4 and 5 imder modified TCP Vegas, connection 1 quickly detects the change

in delay and updates its haseRTT properly and resets the window size based on the new baseRTT

as shown in Table 1. This is very easy to see in Figure 5. As in Figure 3, firom t = 36 to t = 38

before connection 1 detects the increase in delay, the distance between successive segments grows.

However, once connection 1 detects the increase in the propagation delay, the gapstarts to close as

the window size is properly reset and increases linearly for a few seconds afterwards. This results

in much better performance for connection 1 as shown in Table 2. Between t = 34 sec and t =

60 sec, connection 1 successfully transmits 739 packets in TCP Vegas, whereas it transmits 1,834

packets in the modified TCP Vegas.

Moreover, in TCP Vegas, after the delay of connection 1 is reduced at t = 60, even though

its window size increases slightly, connection 1 still does not get a fair share of bandwidth due to

continuing aggressive behavior ofconnection 2. In the modified TCP Vegas, not only connection 1

picks up the increase in the propagation delay within a few seconds, it detects the decrease in the

propagation delay at <= 60 better and quickly decreases its window size. Table 2 shows that the



test.mine

0.00 10.00 20.00 30.00 40.00 50.00 «.» 70.00

Figure 5: Packet sequence under modified TCP Vegas

window sizes at t = 34 sec and t = 70 sec are comparable as they should be. Note that the average

queue size under the modified TCP Vegas is much more stable than under TCP Vegas. This is

obvious from that the TCP Vegas is designed to keep between a and p packets in the network

queues when working properly.

4 Persistent Congestion

Since TCP Vegas uses baseRTT as an estimate of the propagation delay of route, its performance

is sensitive to the accuracy of baseRTT. Therefore, if the connectionsoverestimate the propagation

delay due to incorrect baseRTT, it can have a substantial impacton the performance ofTCP Vegas.

We will first consider a scenario where the connections overestimate the propagation delays and

possibly drive the system to a persistently congested state.

Suppose that a connection starts when there are many other existing connections, the network

is congested and the queues are backed up. Then, due to the queuing delay from other backlogged

packets, the packets from the newconnectionmay experienceround trip delays that are considerably

larger than the actual propagation delay of the path. Hence, the newconnection willset the window

size to a value such that it believes that its expected number of backlogged packets lies between a

and p, when in fact it has many more backlogged peickets due to the inaecurate estimation of the

propagation delay of the path. This scenario will repeat for each new connection, and it is possible



that this causes the system to remain in a persistent congestion. This is exactly the opposite of a

desirable scenario. When the network is congested, we do not want the new connections to make

the congestion level worse. This samesituation may arisewith TCP Renoor TCP Tahoe. However,

it is more likely to happen with TCP Vegas due to its fine-tuned congestion avoidance mechanism.

52

S9

510

MO Mbps, 15 ms

10 ms

liMbps

10 Mbps, 11 ms

511

10Mbps, 5

512

S19

10Mbps, 5 ms

520

Figure 6: Simulation network

In order to demonstrate this, we have simulated a simple network shown in Figiure 6. In the

figure ten connections share a bottleneck. The connections have different propagation delays and

start at different times. The propagation delays and the starting times are given in Table 3. The

buffer sizes are set to 90. Every link has a capacityof 10Mbps except for the link that connects ill

and R2 and has a capacity of 1.5 Mbps. We purposely picked large buffer sizes in order to allow

congested network states.

Figure 7 and 8 show the queue sizes and the packet sequences. Note in Figure 7 that the

jumps in the average queue size after an entrance of a new connection increase for the first 15

seconds. This is due to the inaccmate measurement of the propagation delay along the path by the

connections as the network becomes more congested. The queue size increases with the number of

active connections. Even though the existing connections reduce their window sizes, the incorrect

measurement of the true propagation delay causes the new connections to set the window sizes to

larger values than they should be. Recall that in TCP Vegas each connection is supposed to keep

no more than /? packets, which is usually three. However, due to the overestimation of baseRTT by

the new connections, the average queue sizeincreases by considerably more than three after t = 10

sec each time a new connection starts, and the network remains in a congested state. This becomes

very obvious once the queue size settles down after tenth connection starts its transmission. At

10



Connection # Propagation Delay (ms) Starting Time (sec)

1 60 0.0

2 54 2.0

3 48 5.0

4 64 7.0

5 56 10.0

6 42 15.0

7 74 20.0

8 44 22.0

9 50 25.0

10 52 40.0

Table 3: Propagation delays and starting times.

t = 50 sec, the average queue size is almost 60 while there are only ten active connections. If each

connection had an accurate measiurement for baseRTT^ the average queue size should not exceed

30.

Another interesting thing to note from Figure 3 and Table 4 is that the later a connection starts,

the higher its flow rate is. This can be easily explained using the inaccurate baseRTT. The window

size of a connection is determined from baseRTT and the flow rate. Hence, if the baseRTT is much

larger than what it should be, then its window size willbe much larger than what it should. This

implies that the connection will have many more backlogged packets in the switch bufiers. Since

the flow rate of each connection is roughly proportional to its average queue size, the connections

with larger queue sizes receive higher flow rates.

These problems axe intrinsic in any scheme that uses an estimation of the propagation delay

as a decision variable. For instance, the window-based scheme proposed by Mo et al. [7] adjusts

the window size in such a way that it leads to a fair distribution of available bamdwidth. Since

this scheme uses a similar estimation of the propagation delay, the same problems will arises in

implementability issues.

One might suspect that the problem of persistent congestion could be flxed once RED gateways

are widely deployed over the network. RED gateways are characterized by a set of parameters.

11



test_red

queue

tve.queue

65.00

60.00

S5.00

50.00

45.00

35.00

30.00

25.00

20.00

15.00

10.00 20.00 30.00 40.00 50.00 «0.00 70.00

Figure 7: Queue sizes (Vegas with drop-tail gateways)

two of which are thresh and maxthresh [4]. When the average queue size is larger than thresh but

smaller than maxthresh, RED gateways drop packets with certain probability that is proportional

to the average queue size. If the average queue size is higher than maxthresh, they drop all arriving

packets. The main purpose of RED gateways is to maintain a certain level of congestion. When

the network becomes congested, RED gateways start dropping arriving packets. Since the packets

are dropped independently, it is likely that more packets from connections with higher flow rates

are dropped, forcing them to reduce their window sizes. This is simulated using the same network

in Figure 6 with thresh = 40 and maxthresh = 80. The simulation is run for 140 seconds.

Figure 9 and 10 show the queue sizes and the packet sequences of the simulation results. In

Figure 9 the average queue size stays around 45 when all ten connections are active which is much

lower than with drop-tail gateways. Therefore, RED gateways alleviate the problem of persistent

congestion. However, they do not take care of the second problem discussed above, which is the

discrepancy in flow rate tied with starting times. In fact, Table 4 shows that there is very little

difierence between with and without RED gateways.

One of reasons why RED gateways fail to achieve a more fair distribution of the bandwidth is

the following. Even though the connections with higher flow rates experience more packet drops,

since the packet drops happensparsely, TCP Vegas connections that adopt fast retransmit recover

quickly without slowing down much. One way of resolving this problem is initially getting all the

12



test_red

J .

mz/y/y/yy
mtu/yyyyyy
w!i////yyyyy

J I I L

0.00 10.00 20.00 30.00 40.00 30.00 00.00 70.00

Figiire 8: Packet sequences (Vegas with drop-tail gateways)

connections to overestimate propagation delays and let the connections back off almost simulta

neously, without causing synchronization of the connections. This can be achieved by the same

mechanism that was proposed in the previous section. When the network stays in a persistently

congested state, the connections interpret the lasting increase in the round trip delay as an in

crease in the propagation delay and updates their baseRTT. This creates a temporary increase

in congestion level in the network, and most connections, if not all, back off as they detect the

congestion. As connections reduce their window sizes, the congestion level will come down, which

allows the connections to estimate the correct baseRTT. Once most connections have an accurate

measurement of the propagation delay, the congestion level will remain low. Since RED gateways

drop packets independently, the synchronization effect will not be a big problem.

We have tested this idea with the same network to compare the performance of the connections

with the modified TCP Vegas. Figure 11 and 12 show the queue sizes and the packet sequences

of the connections. It is easy to see from Figure 12 and Table 4 that the available bandwidth

is more evenly distributed than in the previous two cases. Especially it is obvious that the last

three connections in Figure 10 receive much higher throughput than the others, whereas the same

connections receive about the same throughput as others in Figure 12. The connections that start

early lose some of the throughput they had as new connections start. They, however, do not continue

to reduce the window size as their baseRTTs get updated. This enables the existing connection to

13



Connection # Reno Vegas Vegas w/ RED Modified Vegas w/ RED

1 3,829 2,460 2,552 4,154

2 3,278 2,037 1,904 3,190

3 2,758 1,877 1,472 2,034

4 2,520 2,229 1,725 3,032

5 1,825 2,252 2,337 3,010

6 2,563 2,366 2,510 1,957

7 2,234 2,342 2,192 2,200

8 2,680 3,094 3,386 2,340

9 2,245 3,814 3,926 2,039

10 2,179 3,687 4,141 2,179

Total 26,111 26,158 26,145 26,132

Table 4: The number of packets transmitted.

effectively compete with the new connections as expected.

Note that when the congestion level is low, the connections can get a pretty good estimate of

the propagation delay without the help from the RED gateways and RED gateways do not need

to drop any packets. The problem arises only when the congestion level becomes high, and this is

when RED gateways are actively involved. Moreover, the temporary increase in congestion level

happens only when the network is already congested and a new connection starts. Therefore, the

number ofpacket drops should be minimal. Table 4 shows that less than 0.2 percent of the packets

are dropped by RED gateways in the simulation. This clearly demonstrates that when TCP Vegas

is used, RED gateways are an effective means ofcontrolling the congestion level without sacrificing

much of available bandwidth, while maintaining a fairness behavior of TCP Vegas.

5 Conclusion and Future Problems

In this paper we have discussed a few issues of TCP Vegas. We have shown that TCP Vegas could

cause a strange behavior when there is a rerouting in the network and connections do not detect

such change. We have demonstrated that a simple scheme that updates baseRTT when the round

trip delay is consistently much larger than baseRTT results in a much better performance for the

14



test.red

fi0.00

SS.OO

50.00

4S.00

40.00

3S.00

30.00

2300

10.00

. 0.00

20.00 40.00 00.00 S0.00 100.00 120.00 140.00

Figure 9: Queue sizes (Vegas with RED gateways)

connections that experience change in propagation delays. We have also shown that TCP Vegas

could lead the network to a persistent congestion if connections start at different times when the

network is congested. This problem could be solved using the combination ofthe RED gateways and

the same modification proposed f^^r the first problem ofrerouting. This brings about a more even

distribution of the bandwidth regardless of the staxting time and guarantees that the congestion

level stays around the desired congestion level by the RED gateways.

Finding the appropriate threshold values for the RED gateways, however, is still an open prob

lem. If the threshold values are set too low, it may cause too many packet drops initially before the

connections settle or the window sizes may never settle, which is undesirable. Another open ques

tion is finding the appropriate values for iV, <5, L, and 7 for the scheme that updates baseRTT.

If baseRTT is updated too often, it may result in an oscillation ofthe window size. On the other

hand, if it is not updated often enough, connections may take too long before they detect any

change in route. Further studies are required on these issues.

References

[1] J. Ahn, P. Danzig, Z. Liu, and L. Yan, "Evaluation of TCP Vegas: emulation and experimen".
Computer Communication Review^ Vol. 25, No. 4, pp. 185-95, Oct. 1995.

15



test_red

M////////////////////:

i: m/mm
i: wm/////r

1 I I — 1 I 1 ' Ume
0.00 2000 40.00 60.00 tn.OO 100.00 120.00 I40.00

Figure 10: Peicket sequences (Vegas with RED gateways)

[2] L.S. Brakmo, S. O'Malley, and L.L. Peterson. "TCP Vegas: New techniques for congestion

detection and avoidance". Computer Communication Review, Vol. 24, No. 4, pp. 24-35, Oct.

[3] L.S. Brakmo and L.L. Peterson. "TCP Vegas: end to end congestion avoidance on a global

internet", IEEE Journal on Selected Areas in Communications, Vol. 13, No. 8, pp. 1465-80,

Oct. 1995.

[4] S. Floyd and V. Jacobson, "Random Early Detection Gateways for Congestion Avoidance",

lEEE/ACM Transactions on Networking, Vol. 1, No, 4, pp. 397-413, August 1993.

[5] V. Jacobson, "Congestion avoidance andcontrol.", Computer Communication Review, Vol. 18,

No. 4, pp. 314-29, August 1988.

[6] J. Mo, R.J. La, V. Anantharam, and J. Walrand, "Analysis and Comparison ofTCP Vegas.",

Available at http://www.path.berkeley.edu/ hyongla, June 1998.

[7] J. Mo and J. Walrand, "Fair End-to-end Window-based Congestion Control", SPIE '98 Inter

national Symposium on Voice, Video, and Data Communications, Nov. 1998.

[8] W.R. Stevens, TCP/IP Illustrated, Vol. 1, Addison-Wesley Pub. Co., 1994.

[9] J. Walrand Communication networks : a first course. WCB/McGraw-Hill, Boston, MA, 1998


	Copyright notice 1999
	ERL-99-3

