

Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DATA FLOW AND CONTROL OPTIMIZATIONS

FOR HARDWARE AND SOFTWARE

CO-SYNTHESIS IN EMBEDDED SYSTEMS

by

Bassam Tabbara and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M99/31

15 June 1999

DATA FLOW AND CONTROL OPTIMIZATIONS

FOR HARDWARE AND SOFTWARE

CO-SYNTHESIS IN EMBEDDED SYSTEMS

by

Bassam Tabbara and Alberto Sangiovanni-Vincentelli

Memorandum No. UCB/ERL M99/31

15 June 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University of California, Berkeley

94720

Data Flow and Control Optimizations for Hardware and Software
Co-synthesis in Embedded Systems

Bassam Tabbara *

Alberto Sangiovanni-Vincentelli
EECS Department, U.C. Berkeley, Berkeley, CA 94720

{tbassam, albertojOeecs.berkeley.edu

Research Report

Abstract

Current co-design methodologies of control domi
nated hardware software systems suffer from ineffi
cient hardware (HW) and software (SW) synthesis of
the various reactive system tasks. In order to improve
synthesis quality, we propose a methodology that in
corporates data flow in addition to control optimiza
tions performed on a suitable task representation in a
hardware and software co-design environment. We in
troduce our approach here, and report initial results of
our investigation which show that performing such op
timizations can lead to size and performance improve
ments in both the synthesized hardware and software.

1 Introduction and Overview

Embedded systems are very prevalent in today's so
ciety and promise to be even more common and found
in many of the things we interact with on a daily ba
sis. Applications vary from today's airplane or car
controllers, and cellular phones and pagers to the fu
ture's autonomous kitchen appliances, and transporta
tion vehicles.

These various applications not only require that the
implementation be reliable and cost-effective, in addi
tion they impose constraints on the hardware and the
software components of the system. Invariably, the
system must be efficient i.e. speed of execution of
the software, and performance of the hardware must
be adequate. The system must also be small in size
if it is to fit seamlessly in common objects therefore
both code size of the software and silicon area of the

hardware must be within bounds.

1.1 Reactive System Co-synthesis
While others have developed computational mod

els especially suited for data processing applications

*SRC Graduate Fellow under contract DC-324-028

y

EFSM

Mapping
CDFG

Figure 1: Reactive System Co-synthesis

(such as SDF [13] or DDF [6]), or proposed a uni
fied model for control and data flow modeling (such
as [8]), we are strong proponents of the separation
of function and communication [15], in heterogeneous
control-dominated embedded systems since the sepa
ration of concerns is ideal for architectural trade-offs,
in addition it makes component re-use quite straight
forward. This is why, in this work, we assume a model
of computation and a functional decomposition that
represents the design as a network of EFSMs £is in [4],
and [17].

Current software and hardware co-synthesis strate
gies for control-dominated applications are aimed at
efficient (fast and compact) implementation of a re
active decision process [2]. Data flow aspects are ne
glected; it is generally assumed that software compil
ers and hardware Register Transfer Level (RTL) com
pilers will address these optimizations.

The typical synthesis process, as shown in Fig
ure 1, starts with design capture using finite state
machines extended with operations and data compu
tations referred to here as Extended Finite State Ma

chines (efsms). The EFSM of each system module is
then mapped in this flow onto a Control Data Flow
directed acyclic Graph (cdfg) which is then used to
generate reactive hardware or software. A transition
of the EFSM is performed by executing a path in the
CDFG when the task is invoked.

While the CDFG is ideal for representing the reac-

SI S2

,a:» a+ 1

" aF=5 I f'ap'a+l

:Statei=i-| »staters2

Figure 2: Data Flow Optimization and the CDFG
Representation

tive tcisks to be synthesized since it can be used for
both early size/speed estimation as well as synthe
sis of the hardware and code generation of the soft
ware, this representation hides much of the control
flow across invocations of the reactive module, and
consequently data cannot be fully propagated. This
limits data flow optimizations, as well as control opti
mizations that depend on this data, to just optimizing
paths in the CDFG DAG without considering the op
timizations across paths. We illustrate this using a
simple example shown in Figure 2.

The example shows an EFSM with a constant propa
gation opportunity that would save a needless addition
operation. The a = 5 operation of SI and the a = a
-F 1 of 82 can be combined into one a = 6 operation
in 82. This optimization cannot be easily identified in
the CDFG representation since it is distributed across
two invocations of the reactive task (first for state SI
and second for state 82).

1.2 Our Contribution

We introduce here a design representation for each
system task that is able to capture the EFSM descrip
tion, and is at the same time suitable for performing
data flow and control optimizations. We show that
performing data flow and control optimizations at the
design representation level will directly reflect posi
tively on the size and performance of both the synthe
sized hardware and software. We are currently evalu
ating this optimization for synthesis approach by in
corporating data flow and control optimizations into
the co-synthesis flow of a typical co-design environ
ment that targets reactive controllers ([4])). In the
sequel we describe the key ideas behind our approach.

2 Data Flow and Control Optimization
Approach

Our proposed optimization approach is divided into
2 phases:

1. Architecture Independent: EFSMs are consid
ered individually; data flow analysis and intra-
EFSM optimizations are performed. The opti
mizations here are useful for both size and perfor
mance improvement since they involve removing
redundant and useless tests and assignments, and
in general decreasing the number of variables in
the design.

2. Architecture Dependent; Optimizations in
this stage rely on architectural information to per
form additional optimizations tuned to the de
sign target and typically involve some trade-off
between size and performance.

• 8cheduling and Resource Allocation for
Hardware: The interconnection of EFSMs

is considered; issues such as resource shar
ing, communication overhead, scheduling
and pipelining are addressed for hardware
optimization.

• Instruction Selection for Software: Instruc

tion selection, allocation, and scheduling
is performed for software using approaches
similar to those being developed by the
SPAM project [9].

2.1 Architecture Independent Data Flow
and Control Optimizations

2.1.1 Previous Work

Previous work in control is mostly based on BDD-
based optimization [3] techniques for Control Flow
Graphs (CFGs) such as [5]. The limitation of these
optimizations is that they neglect the data and are
in fact "data value blind"; control optimizations that
can result from data analysis (such as dead code elim
ination, and copy propagation for example) are not
available to such techniques.

The two most relevant bodies of work to our re

search are:

• High Level 8ynthesis for Silicon Compilation

• Code Optimization Techniques for Software Com
pilation

High level synthesis for silicon compilation has been
an active research area in the past 2 decades. The
focus of such techniques however has been mostly

on approaches for scheduling, allocation, and bind
ing of the specification (usually a Hardware Descrip
tion Language (HDL)) to the hardware implementa
tion. General optimization techniques such as com
mon sub-expression extraction, and constant folding,
are applied in a local fashion [14].

The literature is rich in data flow optimization tech
niques, most notably classical optimization techniques
of [11], [10], and recent work by [7], [1], and [16]. Most
of that work, however, has focused on hand-wriiien
code optimization. In fact the architecture indepen
dent and dependent parts are most often mixed to
gether in a general optimizing compiler intended usu
ally for code optimization of a specific component pro
cessor and instruction set.

2.1.2 Intermediate

CLIF

Design Representation:

We have developed an intermediate design representa
tion called C-Like Intermediate Format (CLiF) for each
module in the system. This representation is able to
capture the EFSM semantics and behavior, and is suit
able for data flow analysis.

CLIF textual intermediate format consists of a se

quence of TEST and ASSIGN instructions eis fol
lows:

• TEST instruction

if (condition) goto label

• ASSIGN instruction

dest = op(srcf)
dest = srcl op src2

The format hcis no aliasing i.e. no side effects; op
erations involve ASSIGNing to the target a result
of a computation performed by using instructions on
one or two source operands (typically referred to in
the software compilation domain as quadruples), or
TESTing a variable and performing a resulting ac
tion. The control statement is the infamous goto
statement. The format has C syntax, and supports
all the unary and binary arithmetic, boolean, and re
lational operators in C.

The true representation is of course the clif flow
graph where each EFSM state is represented as a node
(label in the textual representation). Edges represent
control flow labeled with conditions and outputs. A
simple CLIF flow graph, along with its textual rep
resentation is shown in Figure 3. The Figure shows
many opportunities for data flow and control opti
mizations such as eliminating the a = b -f c oper
ation since it is useless (a is defined again before the

CLIP

Flow Graph

:)' cHitimlibI

y-1

SI

»-b*c

• 'X

condl "

cond2 - icondl;

CLIF

Te,Ytual Representation
si:

(cniiC =\0) / oulpul(a)

X = X♦ y;
X «•X + y.
a = b ♦ e;
a "x;

condl •(ycitl);
cond2 •> Icondl:
ir(cond2)ootoSfl.O
output • a;
goto 31 loop V

output • b:
goto SI:

Figure 3: CLIF Flow Graph and Textual Representa
tion

EFSM CLIF
Optimized

CLIF
CDFG

Data Flow/Control

Optimizations

Figure 4: Proposed Optimization and Synthesis Flow

result of the said operation is used), and performing
dead code elimination on the (cond2 ==1) branch

since y is always equal to 1 upon entry to state SI,
consequently cond2 is 0.

2.1.3 Our Optimization Flow

We propose to add data flow and control optimization
at the design representation level. The purpose of the
approach would be two-fold: a) raise the abstraction
level, and allow optimization to be reflected in both
hardware and software synthesis, b) incorporate pow
erful classical data flow and control optimizations that
have a tremendous potential for improving the quality
of the synthesized output. Our modified co-synthesis
flow is shown in Figure 4. After the CDFG is generated
we proceed with reactive synthesis.

2.1.4 Data Flow Analysis £Uid Optimization

In order to implement intra-EFSM optimizations we
need to be able to identify instructions and variables
that can be eliminated in CLIF. To that end we are de

veloping an optimizing compiler that examines blocks
in the design flow graph in order to statically collect
the data flow and control information of the task. This

is referred to as data-flow analysis. Data flow informa
tion can be collected by setting up and solving a sys
tem of equations that relate data at various points in
the module behavioral description. The general equa
tion is of the form:

Node.pass = Node.gen+ {Node.reach —Node.kill)

This equation means that the information passed
along to other nodes in the flow graph is the informa
tion generated in this block or the information reach
ing this block but not killed in the block. Such an
equation is called the dataflow equation. The notions
of "generating" and "killing" depend on the desired
information. Moreover, for some problems, instead of
proceeding along the flow of control, we may need to
proceed in the opposite direction.

The optimizer solves a set of such data flow equa
tions using the iterative methodwhich has been shown
to be a general (i.e. applies to arbitrary flow graphs)
and optimal [11] method for the data gathering prob
lems we solve [12]. Our goal is to optimize for speed
and size.

The types of problems we solve to gather informa
tion about the design include:

• Control flow analysis

• Variable reaching definitions and uses

• Available expression computation

The code improvement techniques and transforma
tions we perform include:

• Unreachable block elimination

• Normalization

• Copy propagation

• Constant propagation and folding

• Common sub-expression simplification and ex
traction

• Code motion

Control optimizations through data flow analysis
include:

• Dead code/store elimination

• BDD size reduction by shrinking support due to
the reduction in variable tests.

3 Preliminary Results
Initial experimental results are very encouraging

and have shown a measurable improvement in the
quality of the synthesized hardware and software on
the order of 10-20% on control-dominated examples
with greater improvement results the more abundant

data computations are. Design representation level
optimizations seem to assist the lower (abstraction)
level optimization algorithms and heuristics as well.
This is because typically the lower level algorithms
deal with smaller granularity optimizations and there
fore perform better on smaller inputs.

4 Future Research Opportunities
Aside from completing and expanding on the archi

tecture independent optimizations such as addressing
data flow as well as control specifications (e.g. C func
tions for data, SDL for control). We plan to explore
opportunities in Function Architecture Co-design. An
attributed version of the CLIF format serves as an ex

cellent mechanism for function/architecture co-design.
By analyzing the EFSM functions in the network, an
automated design assistant can recommend suitable
architectures for implementation (e.g. instruction se
lection). On the other hand, architectural constraints
specified by the user can feed further optimization op
portunities back to the function, and the assistant can
then attempt to massage the function to meet these
constraints (e.g. operator strength reduction).

Acknowledgment
Thanks goes to Abdallah Tabbarafrom UC Berke

ley, and to Luciano Lavagno and Felice Balarin from
Cadence Design Systems for their continued assistance
and support. The authors also wish to thank the SRC
who is funding this research under the Graduate Fel
lowship Program.

References

[1] Aho, A. v.; Sethi, R.; Ullman, J.D., "Compil
ers: Principles, Techniques, and Tools" Addison-
Wesley^ 1988.

[2] Balarin F.; Chiodo M.; Giusto P.; Hsieh H.; Ju-
recska A.; Lavagno L.; Passerone C.; Sangiovanni-
Vincentelli A. L.; Sentovich E.; Suzuki K.; and
Tabbara B., "Hardware-Software Co-Design of
Embedded Systems: The POLIS Approach",
Kluwer Academic Publishers, MA, USA, May
1997.

[3] Bryant, R. "Graph-Based Algorithms for Boolean
Function Manipulation" IEEE Transactions on
Computers, 1986.

[4] Chiodo M., Giusto P., Hsieh H., Jurecska A.,
Lavagno L., and Sangiovanni-Vincentelli, A.,
"Hardware/software Co-design of Embedded Sys
tems" IEEE Micro, Vol. 14, Number 4, pp. 26-36,
1994.

[5] Chiodo, M.; Giusto, P.; Jurecska, A.; Lavagno,
L.; Hsieh, H.; Suzuki, K.; Sangiovanni-Vincentelli,
A.; Sentovich E., "Synthesis of Software Programs
for Embedded Control Applications", DAC, June
1995.

[6] Choi, C.; Ha S. "Software Synthesis for Dynamic
Data Flow Graph", IEEE International Workshop
on Rapid System Prototyping, June 1997.

[7] Chow, F.C. "A Portable Machine-Independent
Global Optimizer-Design and Measurement",
Ph.D. Thesis, Stanford University, 1983.

[8] Grotker, T.; Schoenen, R.; Meyr, J., "Unified
Specification of Control and Data Flow", IEEE In
ternational Conference on Acoustics, Speech, and
Signal Processing, 1997.

[9] Hanono, S.; Devadas, S. "Instruction Selection,
Resource Allocation, and Scheduling in the Avis
Retargetable Code Generator".

[10] Kam, J.B., Ullman, J.D. "Global Data Flow
Analysis and Iterative Algorithms" J. ACM, 1982,
pp. 111-126.

[11] Kildall, G. "A Unified Approach to Global Pro
gram Optimization", ACM Symposium on Princi
ple of Programming Languages, 1973, pp. 194-206.

[12] Lemone, K. A. "Design of Compilers: Tech
niques of Programming Language Translation",
CRC Press, 1992.

[13] Murthy, P.K.; Bhattacharya, S.S.; Lee, E.A.,
"Joint Minimization of Code and Data for Syn
chronous Dataflow Programs", Journal of Formal
Methods in System Design, July 1997.

[14] Goossens, G.; Lanneer, D.; Vahoof, J.;
Rabaey, J.; Van Meerbergen, L.; De Man, H.
"Optimization-based Synthesis of Multiprocessor
Chips for Digital Signal Processing, with CATHE
DRAL II", International Workshop on Logic and
Architecture Synthesis for Silicon Compilers, 1988.

[15] Rowson, J.; Sangiovanni-Vincentelli, A.,
"Interface-Based Design", DAC, 1997.

[16] Tjiang, S.W.. "Automatic Generation of Data-
Flow Analyzers: A Tool for Building Optimizers",
Ph.D. Thesis, Stanford University, 1993.

[17] Vahid, F., Gajski, D. "Incremental Hardware
Estimation During Hardware/Software Functional
Partitioning", IEEE Transactions on VLSI Sys
tems, Sept. 1995.

	Copyright notice 1999
	ERL-99-31

