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Abstract

We study the SIR performance of linear multiuser receivers in random environ
ments, where signals from the users arrive in "random directions". Such random
environment may arise in a DS-CDMA system with random signature sequences, or
in a system with antenna diversity where the randomness is due to channel fading.
Assuming that such random directions can be tracked by the receiver, the resulting
SIR performance is a function of the directions and therefore also random. We
study the asymptotic distribution of this random performance in the regime where
both the number of users M and the number of degrees of freedom L in the system
are large, but keeping their ratio fixed. Our results show that for both the decor-
relator and the MMSE receiver, the variance of the SIR distribution decreases like
l/L, and the SIR distribution is asymptotically Gaussian. We compute closed-form
expressions for the asymptotic means and variances for both receivers. Simulation
results are presented to verify the accuracy of the asymptotic results for finite-sized
systems.

1 Introduction

In a direct-sequence code-division multiple access (DS-CDMA) system, each user mod
ulates the information symbols onto its unique signature (or spreading) sequence. This

'Submitted to the IEEE Transactions on Information Theory.
^The research of this author is supported by the Air Force Office of Scientific Research under grant

F49620-96-1-0199, and by an NSF CAREER Award under grant NCR-9734090.
^The research of this author was done while visiting the department of EECS at Berkeley, under

partial support from grant IRI 9310670.



spreading of information provide additional degrees of freedom for communication. To
fully exploit the available degrees of freedom, linear multiuser receivers have been pro
posed to reduce or suppress the interference from other users. Prominent among these
receivers are the decorrelator [8, 9] and the minimum mean square error (MMSE) receiver
[26, 10. 14. 15].

k common performance measure for these linear receivers is the output signal-to-
interference ratio (SIR). Clearly, the performance of these linear receivers depend on the
signature sequences of the users. We focus on the common situation when the signature
sequences of the users are randomly and independently chosen. This model is relevant in
several scenarios: users may employ pseudo-random spreading sequences, or the transmit
ted signals from the users are distorted by independent multipath fading channels which
randomize the received signature sequences. While the sequences are random, we assume
in this paper that they are known perfectly at the receiver. In practice, this knowledge is
obtained through adaptation, channel measurements or an initialization protocol. How
ever, since the SIR performance of the users is a function of the signature sequences, it is
also random. We are interested in characterizing their distributions.

The random sequence DS-CDMA model is an example of a system where multiuser
receivers operate in a random environment. Another common example is a system with
multiple antennas at the receiver. If the fading from a user to each of the receive antennas
is independent, then diversity is achieved using multiple antennas to combat against the
possibility of deep fade at any single antenna. Moreover, by tracking the fading of different
users, linear multiuser receivers can be employed to suppress interference from other users
while demodulating one particular user. The SIR performance is again random, being a
function of the channel fading. This is very similar to the random signature sequence
scenario since in both cases, signals from different users arrive from "random directions",
where the directions are given by the signature sequences in the DS-CDMA system and
by the fading patterns at the different antennas in the multi-antenna system. Indeed, one
can think of the random sequence model considered in this paper as a canonical model
for a multiuser system with diversity.

In this paper, we analyze the performance of both the decorrelator and the MMSE
receiver in a random environment. The MMSE receiver is particularly interesting as it
maximizes the SIR among all linear receivers. While it is known [10] that both receivers
have the same near-far resistance (ability to reject worst-case interference), the MMSE
receiver performs strictly better when the powers of the interferers are controlled or when
they are relatively weak (such as from out of cell). The performance of the decorrelator,
on the other hand, does not depend on the interferers' powers. The SIR performance of
the MMSE receiver under power control will be studied.

In recent independent works [20, 24], it was shown that in a random environment,
the SIR of a user under both the MMSE receiver and the decorrelator converges to a
deterministic limit in a large system. The scaling is by letting the processing gain and
the number of interferers go to infinity, keeping the number of interferers per unit pro
cessing gain fixed. In a finite system, however, the attained SIR will fluctuate around



this limit. Such fluctuations determine important performance measures such as aver
age probability of error and outage probability, i.e. the probability that the SIR of a
user drops below a certain threshold. The main goal of this paper is to characterize such
fluctuations in various scenarios. We provide Central Limit theorems which show that un
der appropriate scaling, the fluctuations are asymptotically Gaussian. Moreover, we give
closed-form formulas for the variances of the fluctuations in terms of system parameters.
Our results are obtained using techniques from random matrix theory. While the analysis
of the deterministic limit involves only the asymptotic eigenvalue distribution of certain
random matrices, the characterization of the SIR fluctuation requires understanding the
asymptotic distribution of the eigenvectors as well as the fluctuation of the eigenvalue
distribution around the asymptotic limit. Both of these are current research topics in
random matrix theory and indeed our proofs exploit several recent results.

In related work. [6] has studied the problem of performance variability of linear mul
tiuser detection under random signature sequences. They derived a heuristic approxima
tion of the SIR performance of the decorrelator, and provided simulation results for the
MMSE receiver. In contrast, our analytical results are justifled by limit theorems and
they apply both to the MMSE receiver and to the decorrelator. In the context of sys
tems with antenna diversity, [25] have obtained related results on the performance of the
decorrelator under flat Rayleigh fading. In this paper, our results apply to general fading
distributions, not necessarily Rayleigh, which are of particular interest for distributed
antenna systems, where the antennas can be placed at different locations of a room or a
floor. In this scenario, the fading experiencedconsists of both small-scale (multipath) and
large-scale effects, and cannot be accurately modeled as Rayleigh distributed. It turns
out that relaxing the Rayleigh assumption complicates the analysis considerably.

Much of our results make only very weak assumptions on the distribution of the ran
domness and are therefore transparent to the specific random environment. For concrete-
ness. we will focus on the DS-CDMA system with random signature sequences throughout
most of the paper. In Section 2, we introduce the model. We analyse the performance
of the decorrelator and the MMSE receiver in sections 3 and 4 respectively, with our
main results being Theorems 3.3 and 4.5. Section 5 contains simulations validating the
accuracy of our asymptotic results. In Section 6, we briefly comment on the application
of our results to systems with antenna diversity. Section 7 contains our conclusions. The
proofs of the results are found in the appendices.

Duringthe finalstage of the preparation of this paper, wewere informed of independent
work by Mulleret al [13] on the performanceof the decorrelator. The relationship between
their results and ours will be discussed in Section 3. We were also informed of independent
work by Kim and Honig [7] who have presented em approximation for the variance of the
SIR under the MMSE. Unfortunately, no details were given about the derivation and we
are unable to compare our approach here with theirs.



2 Linear Receivers for DS-CDMA Systems

In a DS-CDMA system, each of the user's information or coded symbols is spread onto a
much larger bandwidth via modulation by its own signature or spreading sequence. The
following is a sampled discrete-time model for a symbol-synchronous DS-CDMA system:

M

y=^Mt +z, (1)
t=i

where 6,- G and s, € are the transmitted symbol and signature sequence of user m
respectively, and z is ^^(0,0-^/) background Gaussian noise. The length of the signature
sequences is L, which is the number of degrees of freedom, and M is the number of users.
The received vector is y G 3^^. We assume the 6,'s are independent and that E[bi] = 0
and E[bf] = P,, where Pi is the received power of user i (energy per symbol).

We view multiuser receivers as demodulators^ extracting good estimates of the (coded)
symbols of each user as soft decisions to be used by the channel decoder [15]. From this
point of view, the relevant performance measure is the signal-to-interference ratio (SIR)
of the estimates. We shall now focus without loss of generality on the demodulation of
user 1, assuming that the receiver has already acquired the knowledge of the spreading
sequences. For user 1, the optimal demodulator Ci that generates a soft decision 6i = cjy
maximizing the signal-to-interference ratio (SIR) at the output :

(c'iSi)^Pl

is the MMSE receiver [10. 14, 15].

The formulae for the MMSE demodulator and its performance are well known [10]:

6mm«(y) = + 'y (2)

and the signal to interference ratio (3 for user 1 is

/9 = Pis1(5iT5{ + ct2/)-^si (3)

where 5i := [s2,... , sm] and T := diag(P2,••• , Pm)-

We observe that the MMSE receiver depends on the received powers of the interferers.
The decorrelator is a simpler bpt sub-optimal linear receiver that operates without the
need of knowing the received powers of the interferers. It simply nulls out the interference
from other users by projecting the received signal onto the subspace orthogonal to the
span of their signature sequences. The vector of symbol estimates bjec generated by the
decorrelator for all users is given by:

bdec := {S'Sr'S'y,



where S [si,... ,sa/]- Here, the inverse is replaced by the pseudoinverse if S^S is not
invertible. Observe that if there were no noise, the estimates will be exactly the original
symbols, and hence it is the multiuser analog of the zero-forcing equalizer. Assuming that
5^5.is invertible, the SIR 7 of user 1 under the decorrelator is given by

7 = — (4)

Note that the performance of the decorrelator does not depend on the powers of the
interferers.

The formulas above for the SIR performance of various receivers can be numerically
calculated given specific choices of the signature sequences. In this paper, however, we
focus on the scenario when the sequences are randomly and independently chosen. In this
case, the SIR performance of a receiver is a random variable, since it is a function of the
spreading sequences, and we are interested in analysing its statistics. We will assume that
though the sequences are randomly chosen, they are known to the receiver once they are
picked. In practice, this means that the change in the spreading sequences is at a much
slower time-scale than the symbol rate so that the receiver has the time to acquire the
sequences. (There are known adaptive algorithms for which this can even be done blindly;
see [5].) However, the performanceof linear receivers depends on the initial choice of the
sequences and hence is random.

The model for random sequences: let sj = (iqj,... , r'Lj)^ j=T ... M. The random
variables Vifs are i.i.d.. having zero mean, variance 1 and a symmetric distribution. The
normalization by ensures that £^[||sj||̂ ] = 1, i.e. maintain a constant average power.
In practice, it is quite common that the entries of the spreading sequences are 1 or —1, but
our results hold for general distributions, which are useful when we look at other random
environments such as systems with antenna diversity. We will also make the technical
assumption that E[vfj] < 00. This last assumption can be relaxed (it is probably enough
to assume the 4th moment is finite), but we chose this slightly stronger assumption in
order to simplify the proofs.

3 Performance of the Decorrelator

We shall begin by studying the performance of the simpler decorrelator, before proceeding
to the MMSE receiver. The following result shows that in a system with large processing
gain and many users, the random SIR of a user converges to a deterministic limit. It is
proved independently in [20, 21] and [24].

Theorem 3.1 Let 7^^^ be the (random) SIR of the decorrelating receiver for user 1 when
the spreading length is L and the number of users M = [oLJ, where q > 0 is a fixed
constant. Then 7^^^ converges to 7* in probability as L —> 00, where 7* is given by

a<l

^ I 0 a > 1



In the scaling considered, the number of users per degree of freedom (or, equivalently,
per unit bandwidth) oc is fixed while the number of degrees of freedom grow. This scaling
makes sense as more users can be supported by a larger bandwidth. Observe also that the
above result holds regardless of the powers of the interferers, as the decorrelator nulls out
all interferers and therefore its performance does not depend on the interferes' powers.
Intuitively, this result says that for random signature sequences, the loss in SIR due to
interference from other users is proportional to the number of interferers per degree of
freedom.

Theorem 3.1 can be viewed as a law of large number. Though it gives the asymptotic
limit, this result does not provide any information about the fluctuation around the limit
for finite-sized system. This is the main consideration in this section. It is of interest
to consider only the case when the number of users is less than the number of degrees
of freedom, i.e. a < 1, because otherwise the limiting SIR is zero. Moreover, since the
performance of the decorrelator does not depend on the powers of the interferers, we can
just focus on the case when the interferers have equal received power P, i.e. T = PI.

The first step is to obtain a formula for the SIR performance under the decorrelator,
equivalent to but more useful for analysis than (4). It is known [10] that for the same
signature sequences, the asymptotic efficiency of the decorrelator and MMSE receivers
are identical, i.e.

lim = lim

where (3^^^ is the SIR under the MMSE receiver in a system with processing gain L. Using
eqn. (3) and (4), we therefore get

Let SiTSl = OFO^ be the spectral decomposition of 5i5j, where F = diag(Ai,... ^\i)
is a diagonal matrix with decreasing eigenvalues and 0 is an orthogonal matrix of the
eigenvectors of 5iT5J. Putting this in the above expression and evaluating the limit, we
get

^ =s\ODO'si (5)

where D = diag(0,... ,0,1,... ,1) and the number of I's in the diagonal of D is the
number of zero eigenvalues of 5i5{.

To provide some background for our analysis of the random SIR performance for
finite-sized systems, it is helpful to see first how Theorem 3.1 can be derived from the
representation (5). The essence is based on the following lemma, proved in [12].



Lemma 3.2 Let s = where v,'5 are i.i.d. zero mean, unit variance ran
dom variable with finite 4th moment. Let A he a deterministic L by L symmetric positive-
definite matrix. Then

£^[s'>ls] = A
L/

and

Var [s'^s] <

for some constant C\ which depends only on the fourth moment of Vi.

This lemma holds for any deterministic matrix A. Applying this Lemma by condi
tioning on A = ODO^ and observing that A and Si are independent, we obtain that

E[s[ODO's,] = jE[uD].

Also, XjnaxiODO^) < 1 and an application of Chebychev's inequality yields;

s'lODO'si - |tr£>4 0 (6)
L/

Furthermore, Bai and Yin [1] showed that the smallest eigenvalue of the random matrix
5{5i converges almost surely to a positive number, when a < 1. This implies that almost
surely for large L, the signature sequences of the other users are linearly independent and
the number of Ts in D is L - M + 1. This together with (6) and (5) immediately yields
Theorem 3.1.

Geometrically, the vector w = D^O^Si is the projection of the signature sequence of
user 1 onto the subspace V perpendicular to the signature sequences of other users. The
decorrelator demodulates user 1 by projecting the received signal onto w, and the SIR is
determined by the length of w. The above result says that in a large system, the amount
of energy of Si in V is approximately proportional to the dimension of that space. This
is what one would expect from the i.i.d. nature of the components of Si.

Observe that the above derivation of the asymptotic limit makes use of the convergence
of tr Z) (i.e. the dimension of the subspace V) but not any properties of 0, the eigenvectors
ofSiSl. In fact, it depends only on the randomness ofSi. However, when we are interested
in characterizing the fluctuations of the SIR around the asymptotic limit, asymptotic
properties of the eigenvectors are needed. The mathematical apparatus to deal with this
is established in Appendix A. The solution depends on {jld('), the asymptotic empirical
distribution of the eigenvalues of 0D0^\ this is given hy pld{x) = -1- (1 —a)<J(x —1).
Applying Corollary A.2 to this problem, we can then conclude that

VI

where

s\ODO^Si —ytr D
L/

N(Q,a)

a =2j x'iiD{x)-\-{E{v\,)-Z)\^j xhd(x)
= 2(l-a) + (B(vJ,)-3)(l-af



This together with the fact that tr D converges almost surely to T —M + 1 yields the
following theorem:

Theorem 3.3 For a < 1, as L -> oo,

where

a = 2(1 - q) + - 3)(1 - af

This theorem says that the fluctuation of the SIR around the limit is approximately
Gaussian with variance decrecising like 1/L and with a depending only on a and
the fourth moment of vu. Observe also the variance increases with £J[vn], and hence
is minimized when the entries take on +1 or —1 values only. It should be noted that
while the asymptotic limit depends only on the second moment of u,j's, the amount of
fluctuation around the limit depends on the fourth moment, and thus varies from one
distribution to another.

Since the truth of Theorem 3.3 depends entirely on the machinery developed in Ap
pendix A and the proofs there are rather technical, we would like to give some intuition
as to why it holds. Define

u=-^(uu...ulY := O'si.
Assuming that the signature sequences of the interfering users are linearly independent
(which holds with probability 1 in a large system), we have

First consider the special case when the entries Vij of the spreading sequences of user
1 are Gaussian. Then the u,'s are i.i.d. Gaussian N(0,1). In this case, 7^^! is Chi-square
distributed. This is basically the main result of [25], except that they considered complex
Gaussian u.j for their Rayleigh fading model. For large L, a direct application of the
Central Limit Theorem yields Theorem 3.3, with jE'fun] = 3.

We observe that in the special case of Gaussian u,j, the Central Limit approximation
is actually not necessary as the explicit distribution of 7^^^ can be obtained for finite L.
Moreover, the properties of the eigenvectors O play no role here, other than the fact that
O is independent of Si. The key recison is that the i.i.d. Gaussian distribution is isotropic,
i.e. invariant to orthogonal transformations, so that whatever 0 is , O^Si is also isotropic.

Let us now consider the general case where the u,j's are not necessarily Gaussian so
that Si may not be isotropic. In this case, O^Si has a complicated distribution dependent
on both the distribution of 0 and Si, and need not be isotropic. To analyse this problem.



we need to exploit a special property of the eigenvectors of 5i5{. In particular, we show
that even though Si may not be isotropic, as L -> oo, the vector u := 0*Si will be
asymptotically isotropic and moreover independent of |lsi||. (This fact is made precise in
Theprem A.l of Appendix A.) In essence, we show there that there is enough randomness
in O to make O^Si close to being isotropic.

This implies that we can write u as

llsill l|r|

where the r,'s are i.i.d. Gaussian A^(0,1) and independent of ||si||. Thus,

O'si SK ,ri)'
Ikll

and

L

Pr l|Sl

Using Central Limit Theorem, it can be seen that

Lllsill '̂ fs (8)
v/i

1

7z'
Irlp =5 1+•A=-4>2 (9)

« (l-a) +̂ 4>3 (10)
i=M

where the <p,'s are zero-mean jointly Gaussian and <f>i independent of <^2 and ^3. The
second moments of these random variables can be calculated as:

E[<t>l] = E[v\,] - 1; E[4>^^ = 2; = 2(1 - a)='

and

E[4>2<f>z] = 2(1 - a).

Using (8), (9), (10), we can perform a Taylor-series expansion of (7), keeping the first and
second order terms only, and obtain

7'̂ '« 4 1-a+̂ ((1 - a)^i - (1 - oc)4>2 +<h)
Direct computation reveals that the variance of the Gaussian fluctuation (1 —q:)(<^i —
^2) + <5^3 Is precisely a given in Theorem 3.3.



The essence of the above argument is based on the fact that the eigenvector matrix 0
of SiSI itself is in some sense asymptotically isotropic. A version of this phenomenon has
been proved by Silverstein [17]: he showed that given any deterministic vector Si whose
entries are either +1/\/L or —l/x/T, the random vector O^Si is asymptotically isotropic,
to the accuracy of the Central-Limit approximation. We show that this is true also when
Si is a random vector with i.i.d. elements of general distribution, but independent of
0. This fact is made precise in Theorem A.l in Appendix A, using the theory of weak
convergence.

An interesting observation from the above heuristic derivation is that the asymptotic
distribution of the SIR under the decorrelator depends on the distribution of v^js only
through that of ||si||^, i.e. the fluctuation of the received energy of the signal from user
1. In the special case when the signature sequence entries takes on -|-I/\/X or —I/\/T,
||si||2 = I and eqn. (7) simplifles to

A similar approximation weis proposed independently in [13]. However, the assumption
of O'si being asymptotically isotropic was made without justification. As was pointed
out, this matter is rather subtle as the property depends both on the distributions of 0
and Si.

4 Performance of MMSE Receiver

We now turn to analysing the performance of the MMSE receiver. In [21], it is shown that
in a large system, the SIR under the MMSE receiver converges to a deterministic limit.
While the results there apply to the general setting of users with unequal received powers,
we focus here on the case when the users are controlled to equal received power. This
would be the case when users are all in a single cell and have the same SIR requirements.
In this case, the limiting SIR has a simple closed-form expression, which is also obtained
independently in [24].

Theorem 4.1 [21] Let be the (random) SIR of the MMSE receiverfor user I when
the spreading length is L. Suppose the received powers of the users are all equal to P.
Then 0^^^ converges to 0* in probability as L oo, where 0" is given by:

(l-a)P 1 {1-ay{l + a)P 1
^ - 2<72 2+ V 4<t^ + 2<t2 +4

To provide some background in understanding our approach to analysing the random
performance in a finite-sized system, it helps to first give the basic intuition behind the

10



proof of Theorem 4.1. Recall from eqn. (3) that the SIR of user 1 under the MMSE
receiver is given by:

P = Ps{{SiTSl+a''I)-'si

where Si = [s2,... ,sm] and T = PI. In terms of the spectral decomposition STS^ =
OFO^ introduced in the previous section, where F = diag(Ai,... , A^), we have

3 = Ps\0[F ^<7^1)-^0'si.
Comparing this to the performance of the decorrelator:

7=^s\ODO's,,
where D = diag(0,... , 0,1,... ,1), we see that the expression for the MMSE receiver is
more complicated as it depends on the random eigenvalues of 5iT5{ as well. This reflects
the fact that the MMSE receiver attains a better performance by taking into account the
strength of the interferers rather than just nulling them out.

Nevertheless. Theorem 4.1 can be proved by, first, using Lemma 3.2 to show that for
large L

/3< '̂sa ytr(F + <7^/)-'.
Lf

Second, using results from random matrix theory [12, 16], it can further be deduced
that the empirical distribution of the eigenvalues of SiTSl converges to some limiting
distribution G'. Combining these facts, we obtain that 3^^^ converges in probability to

dCiX).

In [21], it is further shown how this limit can be explicitly computed to be (11). This
calculation is also done in Appendix C.

Following this train of thought, the random fluctuation of around the limit 3*
can be dealt with by decomposing into three terms:

/3'^'-ytr(F + cr^/)-' (12)
JL/

and

jtT{F +a^I)-' -E[0^% (13)
and

- /?• (14)

Note that the first term depends on Si and the eigenvector matrix 0, while the second
and third terms depend only on the fluctuation of the empirical eigenvalue distribution
of SiTSi around the limiting distribution G*. Just as for the decorrelator, the first
fluctuation can be characterized using the theory developed in Appendix A. Applying
Corollary A.2 there, we obtain:

11



Lemma 4.2

yJI -jtr(F + ^ JV(0, b)
where

='J
Note that

and

dG-{X) + {E(vt,)-3) \f—.J A+ CT" dG'(X) (15)

/ :dG^W = 0'

:dG'(X) =
d0'

d(a^y

Thus, to compute the second integral, we need only to differentiateeqn. (11) with respect
to We therefore get

2/3-(l+/3-)^ , ,

The above lemma says that the fluctuation of the first term (12) is of the order of
l/vT. Regarding the fluctuation of x^r(F + o-^/)"\ we have the following result, the
proof of which can be found in Appendix B.

Lemma 4.3

lim sup Var
L-^oo

E
.t=i

1

A,- + cr2
< oo

This says that the fluctuation of £tr(F + <7^7) ^around its mean is of the order at
most 1/7,, negligible compared to the first source of fluctuation (12).

Finally, concerning the deviation of the mean SIR from the limit 0", we have the
following result, proved in Appendix C.

Lemma 4.4

lim sup L —0") < oo
L—¥oo

This shows that the mean SIR is of order at most 1/L from the limit 0*. Combining
lemmas 4.2, 4.3 and 4.4, we have the following main result characterizing the asymptotic
distribution of the performance under the MMSE receiver.

Theorem 4.5 As L —> oo,

v/I(/3(^'-D4iV(0,6)

12



^(l+/3-)2 +a ^ ^ '^ '
and

.. (l-o)P 1 . 1(1-orP' , (l+a)P , 1
^ 2(72 2 V 4<7'' 2(72 4'

Moreover,
limsupL (E[(3^^^] —/S") < 00

L—¥00

This theorem says that while the asymptotic limit (3* can be expected to be a very
accurate approximation of the mean SIR for reasonably sized system (difference of order
1/L) , the fluctuations can be significantly larger (of order 1/\/L). This will be validated
by the simulation results in the next section.

would like to give some intuition underlying the proofof this result. This is similar
to our heuristic discussion on the deccorelator. Because of the asymptotically isotropic
distribution of O'si. we can write

O'si %i}^(ri,... ,rL)'
ll^ll

where the r,'s are i.i.d. Gaussian A'̂ (0,1) and independent of ||si||. Thus,

IklP ^ + <72
Using a process-level Central Limit argument together with the fact that the random
eigenvalue fluctuation is small, it can be shown that

L||s,l|̂ « l'r^4'i (17)
||r||^ 7= (18)

+ (19)
1= 1

where the 0,'s are zero-mean jointly Gaussian and independent of ^2 and d>z- The
second moments of these random variables can be calculated as:

2

=E[vt,] - 1; E[<i?^ =2; E^ =2 J
and

E[<i>2<i>z] = 2/?".

Using (17), (18), (19), we can expand (16) in the Taylor-series expansion, keeping the first
and second order terms only, and obtain the Gaussian approximation given in the main
theorem.

13
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5 Simulations and Numerical Results

To see how accurate the limit theorems are for finite-sized system, we compare the theoret
ical results with actual values obtained by simulations. All simulation results are obtained
by averaging over 10,000 independently generated samples, and will be considered as the
actual values of the statistics. Users are received at equal power P, and the SNR
is set at 20dB. The chips of the signature sequences have values -fl/\/L or -l/\/I. Fig.
1 and 2 display results for the MMSE receiver. In Fig. 1, we plot the limiting SIR /?"
(given by formula (11)), the mean SIR and the actual and theoretical SIR level
at one standard deviation below the mean. These curves are plotted 2is a function of a
(number of users per degree of freedom) for different system sizes: L = 16,32,64,128.
The theoretical SIR level 1 standard deviation from the mean is given by

where h is given by eqn. (15).

We make several observations. First, the mean is very close (3*^ and their difference
is much smaller than 1 standard deviation. For L = 32 and greater, the (3' and
curves are almost indistinguishable. This confirms our theoretical results, which predict
that /?" — is going to zero at least as fast as 1/L, while the standard deviation goes
to zero like l/vT. Second, the theoretical prediction y/bJZ of the standard deviation
is quite close to the actual standard deviation. Again, the two corresponding curves are
almost indistinguishable for L > 32. Third, the standard deviation compared to the mean
SIR is small where there are few users per unit processing gain, but quite significant when
there are many users. This is true even for L = 64.

Next, weinvestigate how accurate the Central-Limit results are in predicting the tail of
the SIR distribution. In Fig. 2, we compare the actual 1%-outage SIR with that predicted
by Theorem 4.5. (The 1% outage level is the value x such that Pr(5/P < x) = 0.01.
) We see that while the theoretical result is accurate when a is small (less than 0.5), it
tends to be over-pessimistic for a larger, when the achieved SIR is small. The accuracy
of the theoretical results becomes good for the entire range only when L = 128.

For the decorrelator, as we mentioned in Section 3 and was also independently pointed
out in [13], an alternative approximation is suggested by the heuristic (7). This does not
assume a Gaussian approximation to the various sums, but is only based on the fact that
Of is asymptotically isotropic. The random variable

Ei=M
T:

follows a Beta distribution, since the n's are i.i.d. A^(0,1). (See for example [3].) Hence
an approximation to 7^^! is a product of the independent random variable \\si\\^ and a
Beta distributed random variable. In the special caseof -|-1, -1 sequences, l|si||^ = 1 and
this approximation simply becomes a Beta distribution. The approximation is applied
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to calculate the 1%-outage level for the deccorelator in Fig. 3. The result is compared
to the actual 1%-outage level, as well as the Central-Limit approximation provided by
Theorem 3.3. We see that even for L = 16, the Beta distribution approximation is very
accurate, and in fact indistinguishable from the actual values for L > 32. On the other
hand, the Central Limit approximation, while accurate for small q, tends to be over-
pessimistic for a close to 1. This suggests that for moderate L, O^Si is already very
close to perfectly isotropic. On the other hand, the Gaussian approximation to rf
and X)f=M introduces errors which are only negligible when L is quite large. Thus,
when L = 128, all three curves (actual, Beta distribution approximation. Central Limit
Theorem approximation) merge.

6 Antenna Diversity

In the previoussections, we havefocused on the DS-CDMA system with random signature
sequences. Another example of a random environment in which linear multiuser receivers
operate is a system with multiple antennas for providingspatial diversity. These antennas
can be arranged in an array located at a single basestation, or they can be distributed
in geographically different locations in which case they provide macro-diversity. Antenna
elements co-located in an array mainly serves to combat multipath fading., while a dis
tributed antenna system can combat larger scale fading effects. In any case, performance
can be improved by adaptive combination of signals received at the various antenna ele
ments depending on the channel strengths. A general baseband model for such a system
with flat fading is given bv:

M

t=i

where 6, is the transmitted symbol of the zth user, and y is a L-dimensional vector
of received symbols at the antennas. The vector z is i.i.d. complex circular symmetric
Gaussian noise with variance per component The vector h,- represents the (flat) fading
of the ith user at each of the antennas. Let hj = {vij/y/Z.,.. .vijly/LY- We will assume
a fading model in which Vij are i.i.d. circular symmetric random variables with variance
E[|u,jp] normalized to be 1, to keep the total received energy at the antennas constant,
irrespective of the number of antennas. The circular symmetry arises naturally when
shifting from a high carrier frequency to the baseband. We will also assume the signal
constellation is circular symmetric as well, so that 6,- is circular symmetric. The average
received power of all users are assumed to be the same, jF[|6,p] = P. We let a = [M/LJ
be the number of users per antenna element.

Assuming that the receiver can track the fading perfectly, the MMSE receiver is the
optimal linear receiver in maximizing the SIR of each user 1. The decorrelator nulls out
the interference from other users. The performajice of both of these receivers is a function
of the channel fading at the current time, and is therefore random.

The similaritv of the multi-antenna model with the DS-CDMA system is obvious, with
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the signature sequences replaced by the channel fading vectors. The only differenceis that
the entries of H are now complex rather than real as in the signature sequences. Rigorously
speaking, Theorem A.l which we used for analysing the DS-CDMA problem, although
undoubtedly true for general symmetric distribution of u,j's, is only proved for real u,j.
(The proof of Lemmas 4.3 and 4.4 carries over verbatim to the complex case, c.f. for a
similar argument [2]). However, we expect that Theorem A.l can be generalized to the
case when u,j is complex circular symmetric. Based on this assumption, the performance
of the decorrelator in the multi-antenna system can be approximated by (in analogy to
(7)):

/'llhi

' t=M

where r,'s are i.i.d. zero-mean complex circular symmetric Gaussian random variables
with E[|r,p] = 1. This assumes q < 1. Note that in the case of the Rayleigh fading
model, u,j's are circular symmetric Gaussian and the approximation becomes exact, and
this specializes to the result of [25]. For large L, applying the Central Limit Theorem,
7^^^ can be further approximated by a Gaussian random variable with mean (1 —a)P/<7^
and variance

1(^^y {2(1 -a) +(Elh.ri -3)(1 -ap} .
For the MMSE receiver, the SIR performance can be approximated, for large L, by a

Gaussian random variable with mean 0' and variance

1 i 23-{l+lS-)' I ,p.. .......11^77^717^+(SIM 1- 3) i/')
where 0' is given by eqn. (11).

7 Conclusions

In this paper, we studied the SIR performance of the decorrelator and the MMSE receiver
in a random environment. Such random environment may arise in a DS-CDMA system
with random signature sequences, or in a system with antenna diversity where the ran
domness is due to channel fading. We showed that for the two receivers considered, the
variance of the SIR distribution decreeises like 1/L, and the SIR distribution is asymptoti
cally Gaussian. We computed closed-form expressions for the variances for both receivers,
and observed that the relative amount of fluctuation is large when there are many users
per degree of freedom and the achieved SIR is low.

Simulation results show that the asymptotic mean and variance computed from the
theory are very accurate approximations for even moderate system size and for a wide
range of a (number of users per degree of freedom). On the other hand, when the
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achieved SIR is small and system size only moderate, the Gaussian approximation is not
very good for approximating the tail of the SIR distribution (1% outage, for example.)
Based on insights gained from the theory, an alternative approximation based on the
Beta distribution is derived for the performance of the decorrelator. This approximation,
observed independently in [13], is very accurate for moderate system size and for the
whole range of a.

There are several interesting directions for future work. One remedy to offset the
random fluctuation of the SIR is through power control. The interesting question is then
to characterize the distribution of power required to keep the SIR at a desired level. The
problem is complicated by the fact that all users will vary their powers simultaneously to
achieve their individual desired SIR. However, we conjecture that in the scaling considered
in this paper, the performance of a user is insensitiveto the powervariations of other users
and depends mainly on its own power. This would then imply that the power distribution
can be computed as that of the reciprocal of the SIR calculated in this paper.

Another interesting question is to characterize the empirical distribution of SIR levels
of the users across the system. Contrast this with the SIR distribution of a particular
user, which is what we computed in this paper. We conjecture that in a large system,
some kind of "weak asymptotic independence" between users will hold and with high
probability the two distributions are very close.
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Appendices

A Asymptotically Isotropic Eigenvectors

In this section, we develop the machinery required to prove Theorem 3.3 and Lemma 4.2.
Theorem A.l quantifies precisely what it means to say that the eigenvectors of a random
matrix are asymptotically isotopic. Its proof uses heavily ideas from Silverstein [17] and
so we adopt his notations.

Notations We let Xn = (xi, ••• ,a;„) denote random vectors with |lx„|| = =
1, and let Zn = denote arbitrary random vectors in 9?". As in [17], we let

... be i.i.d. random variables with Evfj = 1, Evij = 0, Evfj < oo and symmetric

distribution. With V; = , let and define ^ —> y ^
j=i,-s{n) n -)• oo

(0, oo).

Let Mn = OnAnOJj denote the spectral resolution of Mn, with A„ a diagonal ma
trix whose entries, the eigenvalues of Mn, are arranged in nondecreasing order, and On
denoting an orthonormal matrix consisting of the eigenvectors of Mn-

Let denote a sequence of i.i.d., independent of {u,} random variables, with
Ezi = 0. EzJ = 1. Ezf < oc. with symmetric distribution. Let

where r) denotes a Gaussian random variable with zero mean and variance = Ezf —1,
and the convergence, due to the CLT, is in the sense ofdistributions. Letting W°(') denote
a Brownian bridge, define yn = [y\-,"'ynY = 0\^Zn where Zn = ,Zn). Introduce
the process

[nt]

The main result of this section is the

Theorem A.l

{2n(<)}<€(0.l) A {W° + , (20)

where and rj are independent and the convergence is in the sense of distributions in
D[0,1], the space of right continuous functions with left limits (ROLL), equipped with the
Skorohod topology.
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To see why this says that the vector yn is asymptotically isotropic, consider the special
case when Zn is an i.i.d. Gaussian random vector, i.e. isotropic to start with. Then is
also an i.i.d. zero-mean Gaussian vector which is clearly isotropic. It is not difficult in this
case, to verify by a standard functional Central Limit Theorem that Theorem A.l holds.
What Theorem A.l says is that y„ will be asymptotically isotropic even in the general
case when the 2,'s are not. It's truth depends on the asymptotic isotropic property of the
eigenvector matrix 0„.

A consequence of Theorem A.l, of use to us in this paper, is the following. Suppose
Dn is a diagonal matrix (possibly random) with entries monotone on the diagonal and
eigenvalue distribution := ^ such that fiD possesses a continuous
c.d.f. Fd{x) with support on some compact set [0,a], with possibly a jump at 0. Denote
by Nn = OnDnOl, and let

On = YnDnyl

Here and in the sequel, we use E to denote expectation w.r.t. the randomness incurred in
D„, {2,} and M„. Note that

1 1 r
-EBn = -iEtr Dn -^n^oo / .
n n Jo

Corollary A.2 As n -> 00,

yT(e„-tr£i„) A.VCO.al). (21)
where

<^1 =J -A(j xiiD(dx)\ (22)

Proof of Corollary A.2 Let F„(x) = L^idy) denote the number of eigenvalues of
Dn not larger than x. Then, (assuming does not possess multiple eigenvalues except
possibly at 0),

On -tiDn = ^ n)
t= l ^ ^

n

N/^y^(D„).,(^„((D„)+) - Z„((D„)S))
i=l

\/2n j xdZn(Fn(x)^
—\/2n J Z„ ^Fn(x)^da:.
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{x„:||x„||

Since Fn{x) converges to the continuous F£)(a:), the weak convergence of Zn{') is carried
over to that of ZniFn(-)). and the latter converges in distribution to the Gaussian process

+^Fd(x)U[0.oo) •
Hence,

^(e„ -trD„)-^ J°x +̂ dFoix)
=̂ J\xdFD{x) +jj" d^WiFoix)) .

The convergence (21) and the value of the variance in (22) follow from evaluating the
variance of the limiting Gaussian process. D

Proof of Theorem A.l The proof is a modification of the argument presented in [17].
Let = L E?=i^(An).. , and F^(x) = L{^"(dy) denote the number ofeigenvalues of
A„ smaller than x. It is well known that LjJ" A in the sense of weak convergence of
distributions, with F^(y) = fj fJ-\[dy) denoting the appropriate distribution function.
Then F^(x) F^(x)^ uniformly, c.f. the argument in [17, pg. 1176].

By Theorem 4.1 in [17], for any fixed sequence of vectors with

F-i n —¥ oo
1=1

we have that

in the sense of convergence of laws in 9?®^. In particular, it follows that for any sequence
6n ^ 0,

d := (23)

•S, M "•
where dc{a,b) denote the distance between the laws of the random variables a, 6 in, say,
the Levv-Prohorov metric.
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Next, note that

and further

=

where are random variables taking values in 9R®®.

Let £n = n~2 , and let An = {Xn : ||x„|| = 1,]C?=i < ^n}- Note that

4 i .4
_ n Z^i=l

oo

r=l

1 Z' < .fr ,.2

^Vim; '

p(7^^A„]<C^ 0.
Vlpnll / n n-^oc

Let LJ" denote the law of conditioned on z^, let L" denote thelaw of{J a:'"diy(F^(x))}^i,
and let d(u,^) denote the Levy-Prohorov distance between the laws v,fi. Then, using (23),

d(^",L'^)<P(^eAn)+d 0. (24)
\l|z„|| / n —> OO

This, together with the convergence -¥ J x^dF^(x) and A^(0, t/), imply
that

Zl +Zl^yx'dW'[F\x))Y^ +̂ ^Jx^dF^{x)Y (25)
where t; is a 7V(0,cr,,) random variable independent of W°.

The next step consists of inverting the time change in (25). In view of the argument
in Page 1191 of [17], (20) follows from (25) as soon as some tightness holds, that is as
soon as one shows that for some C > 0,

E(z„(f„(0)))'' <C£;(f„(0))' (26)
and for any 0 < xi < X2,

e(z„(F„(x2)) - ZniF^y <Cf(f„(x2) - F„(xi))', (27)
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(compare with Theorem 4.2 of [17]). In fact, the proof of these facts follows closely
the proof in [17], whose notations we adopt here. Since the proof of (26) is similar, we
consider below only the proof of (27). Let P" = {P,y} denote the projection matrix on
the subspace of spanned by the eigenvectors of Mn having eigenvalues in [a:i,X2]. One
checks immediately that

2n(F„(X2)) -Z„(f„(x,)) =

With 7,j = ZiZj^ one sees that the LHS of (27) satisfies

e(z„(F„(x2)) - Z„(F„(xi)))''

\

- 3 (̂ fX] +E[X^(^,' - l)^n
i^j / \»=1

= c(h + h),

for some constant c independent of n.

Following the same argument that led to (4.10) in [17], one finds that

h = ^ (l2(rj - 2)£.-J(FzffF(F,\Fi^3) +3(n - 2)(n - 3){Ezl)*E{P^,Pl)
+12(n - 2)(n - 3)(£2f)"£(£,2F23F34F1,) +2E{P^^){Eztf)

Using the fact that P is a projection matrix, we have that

Pi3 = X] -^317^11 + P32A2 + PzzPiz •
j>4

Using the fact that expectations are invariant with respect to permutations, we conclude,
as in [17], that

(n —2)(7t —3)P(Pi2P23P34Pi4) ^ PP12 d" 2P(PiiP22-Pi^2) "h ^PPiiPi2
< EPuP22 + 2E(P^,P^^) + 2P(PuP22Pi'i)
< PP11P22 d" 2E{P11P22) d- 2P(PiiP22)

= 5P(PiiP22)

where we made repeated use of P^j —PnP22 and Pn > max(PiiP22, Pn). Similarly,

(n - 2)E(P^2Piz) < P{PnP^2) < ^22) < £^(^11^22)

27



and

leading to

we obtain

leading to

Hence.

(n - Z)E(P?,Pi,) < E(PM

(n - 2)(n - Z)E(Pl^Pl) <(n- 2)E[P^^P3z)

However, using the identity

^33 I PijPij d" ^11-^11 +^13^13 j —P33P1I 1
\j¥1.3 /

(n - 2)E(Ps3P^^) + EP^,P33 + EP^^Pss = EPnP33,

(n —2)EP33P\2 ^ PPli P33 = EP\\P22 '

(n - 2)(n - Z)E[P^^Pl) < EPuP22 •

Combining the above, we conclude that

h £ AijE^(PiiP22)

for some constant A'l which depends on Ez^ only. Similarly, for some constant A'2 inde
pendent of n,

h < lEP^, +̂ -^^^(EP?,P^,)[E(zJ-iry
< —EP]'', + A2E(Pii P22) •

n

Hence, for some A'3 independent of n,

C(h +l2) < A3filEP.^^^^-^E(P,iP22)
\n n

= =^^3(P„(l2)-Pn(Xl))',
as required. •

B Proof of Lemma 4.3

Throughout this proof, we follow the notations of Section 4, while for simplicity taking
P = 1. That is, we consider the matrix 5i := [s2,... ,sm], and denote by the
eigenvalues of SiS\. The case for general P follows directly from a rescaling of <t^.
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We use various constants C, C,-, whose values may change from line to line and are
always independent of L (but may depend on a). We also use constants A'p, whose values
may change from line to line, and which are independent of L and a.

Before starting, we recall the Burkholder inequality, c.f. [4]: If {^,} is a martingale
difference sequence with respect to an increasing filtration i.e. 0, is Qi measurable and
E{6i\Qi-i) = 0, then, for any p > 1,

1=1

< KpE
i=l

p/2

(28)

Using the fact that if is square integrable then —E{OflQi-i) is again a martingale
difference sequence, and iterating [log2pl times this inequality, one also gets that for
P ^ 2^

j=i

< + AVf: E(0figi.,)

p/2

(29)
1=1 , 1=1

W'e emphasize that in (28) and (29), A'p does not depend on k. Let A;= (5i5j + cr^I) V
Noting that

M

J=2

we let Aj := (5'i5{ + —SjSp~L Since

^ 1

1=1

we need only estimate A(tr.4 —Atr A)^.

Let Tj = a(s,-,2 < i < j), and write Aj(-) = E(-\!Fj). Using the identity

s]Ahj
tr Aj —tTA= r-j— ,^ 1+ s]AjSj

we have that

M

tiA —EtvA = Ejtr A —Aj-itr A
3=2

M M

- Ej.,)tvAj +Y,(Ej - Ei-i)Y^.
3=2 3=2 ^ ^

M
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We now define

aj =-tT(A]), aj =s'jA]sj - aj "> = ^ l +L'̂ EtrA'

0 = s'jAjSj - L~'EtrAj Q = s'jAjSj - L-'trAj.

Using some algebra, one arrives at

f^(Es - Ej-i) 'J' = b '̂̂ Ejoj-bl^EiaiQ
j=2 '^3 3 3 j=2 3=2

M

-bl Y,{Ej - £,-i)(a,0 - s'̂ Ajs^u^iCf)
3=2

:= Wi - W2 - W3 .

Hence, since 0 < a < 00 and bi is uniformly bounded due to <t > 0, it will be enough to
estimate E{Wi/bL)\ E(Wilbl)\ i = 2,3.

Turning to the first term, note that Ej(aj) is a martingale difference sequence, i.e.
Ej^i{Ejaj) = 0. Hence, by Burkholder's inequality (29), for each p > 2, there exists
some universal constant Kp such that

M ( f ^ \ / M ^
E(\\\lbLf =E(J^(Ejaj)f <K, E a,+E(

' (30)

Let 1l denote the vector (1,1,..., 1) in 3?^. Then, since the eigenvalues of the matrices
Aj are bounded above by cr^, we have for p = 2,4 that

M M

Y^(E,QjY < ^ Ea^ = MEal < MC^E\\s'̂ - < CsM/I" . (31)
j=2 j=2

On the other hand,

a,0^ < Ei., ((s, - L-'IHLYA](Si - 1,-'/^^) +2L-"H'A](si - I-'/'U))'
< Csi-'.

Combining the above estimates, with p = 2, one gets that

E(W,lbi.f<C-,.

The estimate for is similar, modulo the following auxiliary results, valid for p = 2,4:

EdQl") < CtL-'/', E(\Q - Ql" < 0,1-"'^ (32)
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implying that

£(101") < (33)

To see (32), recall Lemma 2.7 of [2], which represents a variant of Lemma 3.2: There
exists for each p > 2 a universal constant Kp such that, for any deterministic matrix D,
and any vector of i.i.d. random variables x = (xi,... ,a:n) with Exi = 0 and Ex\ = 1,

E|x^Z)x - tiDl^ < KpiEiMHiDD'Y '̂' + E\x,\^nT(DDY'')'

Taking p = 2,4, x = Sjx/T, D = Aj and the expectation with respect to Sj, and using the
independence of Aj and Sj together with ti Aj < , we obtain that

Si-.dOl") < C•9L-"/^ (34)

and hence EdCjl^) < . On the other hand, letting for any j > 2 A2j = (A2 -
sjsj) \ and noting that still tr A^j <

^10-or = £:ic2-6r = ^
1 ^-^(Ejtr A2 - Ej-itv A2)

= E

= E

j=3

1 ^—̂ (£'jtr(^2 —A2j) —Ej-itv(A2 —̂2j))
>=3

M

IY^(E, - Ej.,)-
i=3

M

+ s'jAijS,

Ah
p/2

< Cio LP/2 '

where the Burkholder inequality (28) was used in the next to last step.

Returning to the estimateon W2lb\, recall that all Oj-s are deterministically bounded,
uniformly in L. Therefore, using Burkholder's inequality (29) in the first step, and (34)
in the third.

M M M

E\ Y, £,(a,0)P < C„ ECY Ej.^(Ei(aiQ)f) +Y EmuiQ)
i=2 \ j=2 j=2

/ M M \

< Cn E(Y Ei-Mif) +Y ^ C,,(ML-'),
\ i=2

proving the desired estimate on 14^2•

The argument involving IT3 is similar, only simpler: First, note that WjsjAjSj is
bounded uniformly, and so is ujj. Therefore, using again Burkholder's inequality (28) in
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the first step,

(M
- Ei.,)(ociQ -

j=2

^ (E --Ei-OCoiO -s;yl,VKj))'j
M

< ChX; {E(aiQf +EiCi)) ={M- l)(E(a\e,) +EiCi))
j=2

In view of (33), we need only to recall from (31) that £^(0:2) ^ C\^L~^. •

Remark Another possible route to the proof of Lemma 4.3 is as follows. Note that the
function (1 + x/<t^)"^ is analytic in the (open) disk |a;| < cr^. For > (1 + \/q)^, this
disk includes the support of the limiting measure G"'(*), which is [P(l —y^a)^,P(l +
y/a)^]. Expanding in Taylor series the function (1 +x/(t'^)~^ up to order k = Clog L, and
controlling the reminder by using the analyticity, it follows that Lemma 4.3 holds as soon
as, for some Ci large enough, k < Ci(logL),

(All constants C,- are taken to be independent of L). Such an estimate is the main result
in [19], who under stronger moment assumptions deal with Wigner matrices and not
with sample covariance matrices, and show that (35) actually holds for k = o(y/L). But
for sample covariance matrices, one may use the same construction as [19], except that
instead of considering paths to ^ 22 U as in [19], one considers paths
^0 —> jo —> ^1 —^ Ji ••• —> ik jki where im € {1,... , L} and jm € {1,... , M}. The
parameter s in [19] is replaced by a pair 51,52 with si -|- S2 = 5, keeping the random walk
parameterization as in [19]. We do not see however how to extend this argument to the
range < P(1 + \/q)^. On the other hand, for > P(1 + y/a)^, the argument in [19]
actually shows that ~ 0*) is asymptotically normal.

We note that for k = o(log£/ loglogL), the cruder estimates contained in [18, Lemma
1] are enough to yield (35): indeed, for p finite and independent of L this is the content of
the proof there, while by bounding there the number of set partitions of {ii,... , ... , ij.},
{/ti,... , fcr, fcj,... , k'j.} one extends the conclusion to /c's as above. Unfortunately, this
technique seems to break down when k = 0(log L).

We finally note that besides the condition E{vfj) < 00, the assumption E{vfj) < 00
was used only in bounding W3; a tightening of this argument, valid under the condition
E(vfj) < 00, seems possible, following [2, Section 4], but we do not pursue this direction
here.
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C Proof of Lemma 4.4

Define

St := [si, S2,... , Si_i, s,+i,... ,

and

5 := [si,S2,... ,Sa/].

As in Appendix B, we will for simplicity take P = 1. The general result follows from a
rescaling of Now,

= s;(5,-5,' + . (36)

is the SIR attained by user i. In [21, Eq. (27)], a key equation relating the achieved SIR's
of the users and the trace of (55' + wcis derived:

1 ^ /t2
= + (37)i 1 + L

It follows from Lemma 3.2 that

:= E(3l'-^) = E [i-'tr(5,5; + ct'/)"'] .

Let

:= E[L-hT(SS' + (7^1)-'].

It follows from lemmas 4.2 and 4.3 that for large L, each of the is close to which
in turn is close to Moreover, Z/~Hr(55' + is also close to Substituting
these approximations into (37) gives us an approximate fixed point equation in 0^^^:

1 + /?(^)

The exact fixed point equation has a unique positive solution, which is precisely the
limiting value /?". (In fact, the formula (11) for 0' is obtained by solving this quadratic
equation.) Thus, to estimate how far 0^^^ is from 0'^ we need estimates on how far each
of the 5-^^ deviates from 0^^K This is the main idea of the following development.

One can write

=Is [tr (SiS\ +tr^/)-' - tr (55' +ff^/)"'] .
By the matrix-inversion lemma,

(StS\ -f a''!)-' - (55' -f a^/)-! = (5i5.- + <j''l)-'sis\{SS' + cr^/)"!
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so

= \jE [tr {(SiS\ +<7^/)-'s.s!(55' + |

= jE [tr (s[(55' +a''l)-\SiS\ +<r='/)-'s,)]

s,-

(j'^L
(38)

Also,

Var[/?! '̂] E - i,-'tr {SiS'i +<r'/)-' +L-'tr (5,-5.' +cr^/)"' - #')]
£|'(/?! '̂-tr(5i5.' +<7'/r')'
+2£ [(/3;^> - L-hi{SiSl +

(i-)+£ Z,-'tr(5,S.' + tr2/)-'-/3}

By Lemma 3.2, the first term above is bounded by C\<7^ jL for some constant Ci that
depends only on the fourth moment of un, and the second term is 0. By Lemma 4.3, the
third term is bounded by C2/L^ for some constant C2 independent of L and i. Hence
Var[/?,-^^] < C3IL for some constant C3 independent of L and i.

Combining this with (38), we can now write:

pW ^ p{L) ^

where

and

\E[A] '̂]\ <^

for some constant C4 independent of L and i.

Substituting (39) into the key equation (37),

M
A/ 1 1^ =l-^tr(S5' +<r^/)-'.

Let i/P := A(^V(1 Then,
1 1 1 2 1(1 - i/i + 12?

1+ p{L) 1+ /3(A 1+1+ (1 + iiY
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for some {,• := satisfying G U . Note that

/?(^) _ 0iL)
iL)I/) ' =

1 +

> —1 +
1

> -1 +
1 + cr'

since > 0

since < l/a^.

Hence (1+ ^t) ^ ^ C's for some deterministic constant C5 independent of L, Substituting
in (41) and taking expectations, using the fact from (40) that

ie|a!")i <i

and that

£[I-'tr(55'+(T'/r'] = y8'̂ ',

we get, for some Ce independent of L,

M M

L L(l+/5(^))

and hence, for some C7 independent of L,

-1+<7^,9''''

a —

a

- 1 +
1 +

But i3' := /(A + cr^)~^dG''(A) is the unique solution of the equation

Q

<

<-'t'

C7

Q —

1+/?
—1 + <7 /? —0 ,

and moreover, it can be easily seen that the solution of this equation is a differentiable
function of the right-hand side at 0. Hence,

lim supL(y5^^^ —/?"•) < 00
L—¥00

The lemma now follows from (38).
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