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Abstract

The well known waterfilling power allocation policy maximizes the sum capacity
of parallel Gaussian channels. We consider multiaccess vector channels with additive
colored Gaussian noise and asymmetric user power constraints and completely char
acterize the sum capacity of this channel. We show that the sum capacity of the
multiaccess vector channel is upper bounded by that of corresponding parallel Gaus
sian channels and that our solution (optimal powers and user signal directions) has
a waterfilling structure. Two common examples in a wireless communication system
that fall under this model are direct sequence code division multiaccess and multiac
cess channels with multiple antennas at the receiver. The multiaccess vector channel
models communication from users within a cell to the base station and interference

from those users communicating with neighboring base stations is modeled by additive
colored noise. Our characterization of the sum capacity allows us to conclude a Schur-
saddle property: the sum capacity is Schur convex in the additive noise covariance and
Schur-concave in the user powers.

1 Introduction

This paper considers multiaccess vector channels: multiaccess channels where users have
multiple degrees of freedom. Two multiaccess channels that fall under the purview of this
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model and are commonly used in wireless communication systems are Direct-Sequence Code
Division MultiAccess (DS-CDMA) and Space Division MultiAccess (SDMA) which is a mul
tiaccess channel with multiple antennas at the receiver. The number of degrees of freedom
in DS-CDMA model is the processing gain and in the antenna model it is the number of
antennas at the receiver. The signal direction at the receiver ofany user in the CDMA model
is its spreading sequence (assuming frequency flat fading) and in the antenna model it is the
vector of path gains from the user to the different antennas at the receiver. We assume
colored additive noise in the multiaccess channel independent of the users, which models
interference from users talking to neighboring base stations. This assumption means that
the interference from outside the cell cannot be controlled but can be measured and esti
matedstatistically. We restrict ourselves to the case when the users aresymbol synchronous.
A fundamental performance measure of multiaccess channels is sum capacity (equivalently
spectral efficiency), defined as the maximum sum ofrates ofusers per unit degree offreedom
at which the users can transmit reliably. Our focus in this paper will be to identify the
largest possible sum capacity as the signal directions of the users vary. In the DS-CDMA
model the corresponding signal directions will be optimal signature sequences of the users,
optimal in the sense of yielding the largest sum capacity of the multiaccess channel.

In previous work, the capacity region of a symbol synchronous DS-CDMA channel was
characterized in [6]. The problem ofcharacterizing the maximum sumcapacity ofDS-CDMA
channels with white additive noise was first attempted in [4], which solved the symmetric
user power constraint case. In [7] the general case of asymmetric user powers with additive
white noise was solved and a simple recursive algorithm was provided to construct the
corresponding optimal signature sequences. In the SDMA model with white additive noise,
[5] characterized the capacity region and also obtained an expression for the maximum
sum capacity when user powers are symmetric. The results in [7] covers the asymmetric
user power constraints case for the SDMA model (with white additive noise) as well. In
this paper we completely characterize the maximumsum capacity of the multiaccess vector
channel with asymmetric user powers and colored additive noise.

We first show that the sum capacity of the multiaccess vector channel is upper bounded
by the sum capacity of a sequence of parallel Gaussian channels. Here the number of par
allel channels equals the number of degrees of freedom of the vector channel. The additive
Gaussian noise variances in the parallel channels are the eigenvalues of the covariance ma
trix of the additive colored noise in the vector channel. Also the power available for the
transmitter in the parallel Gaussian channels is equal to the sum of the power constraints of
the users. Our characterization of sum capacity and the optimal user signal directions and
powers in the multiaccess vector channel has the following waterfilling interpretation. We
refer to the directions of eigenvectors of the covariance matrix of the additive colored noise
as "channels".



If all the user power constraints are "not too far apart" relative to the problem size
(number of degrees of freedom and number of users) and the additive noise variances
then the user signal directions are chosen so that the power in the channels follows the
waterfilling strategy. This is a necessary andsufficient condition for the sum capacity of
the multiaccess vector channel to equal the sum capacity of the corresponding parallel
Gaussian channels.

If one of the user power constraints is large relative to the problem size and the other
user power constraints and the additive noise variances, that user alone should be in
the channel with the smallest noise variance (this is achieved when that that user has
signal direction equal to the eigenvector ofthe covariance matrix ofthe additive colored
noise corresponding to the smallest eigenvalue). Then the problem reduces to that of
one lesser user and one lesser degree of freedom.

If one of the noise variances is relatively large, then the user signal directions axe chosen
orthogonal to that direction. The problem then reduces to that of one lesser degree of
freedom.

Our solution maJces the notions of "not too far apart" and "relatively large", in the descrip
tion above, precise. This characterization of the optimal user signal directions allows to
derive the following qualitative properties of the sum capacity:

1. For fixed user power constraints, the sum capacity is convex in the additive noise
covariance matrices. Furthermore, for fixed eigenvectors of the noise covariance matrix,
the sum capacity increases when the eigenvalues of the covariance matrix are "spread
apart" while maintaining the same average noise variance.

2. For fixed additive noise variances, the sum capacity is concave in the user power con
straints. Furthermore, the sum capacity decreases when the user powers are "spread
apart" while maintaining the same total user power constraint.

The precise notion of "spread apart" is provided by the majorization partial order on real
vectors and we provide a brief summary of this partial order in Appendix A. We explain
briefly the multiaccess vector channel model and the problem formulation in Section 2.
Section 3 contains our main results on the characterization and properties of the maximum
sum capacity. Section 4 contains the proofs of our main results and we conclude with a
summary of the optimal user signal directions in Section 5.



2 Multiaccess Vector Channels and Sum Capacity

2.1 Model

There are K users in the channel and N denotes the number of degrees of freedom. In
the DS-CDMA model, this means that the processing gain is N, and in the antenna model
it means that the number of antennas at the receiver is N. Both K and N will be fixed
throughout this paper. A baseband representation of the received signal in one symbol
interval at the receiver is

K

Y = Y.^iXiJrZ (1)
1= 1

where Si,.. .,s/c are the received signal directions of the users, thought of as elements of
In the CDMA model, s,- is the received signature sequence of user i and in the antenna

model it is the vector of path gains from user i to each of the antennas. We assume that the
received signal directions are normalized such that the energy per unit degree of freedom is
unity, i.e., sjs,- = 1. The input symbols are represented by independent real random variables
Xi,..., X/f. The received user powers are given by Var (X,) = p,- for each user i. Z is an
additive colored Gaussian noise vector with covariance matrix S with positive eigenvalues
0"l < < • •• < <^N'

2.2 Problem Formulation

Fix the signal directions si,..., sk- The sum capacity of the vector MAC in (1) is

mdixI(Xi,,..,XK;y)

where the maximum of mutual information between the inputs and the output vector Y is
over all distributions Fi,..., on R with variances upper bounded hy pi,... ,pK respec
tively. Proceeding as in [4], we see that this maximum is achieved when the distributions
of all the random variables are Gaussian and thus we arrive at the following generalization
of the result of [6] for colored additive noise. The sum capacity in nats per unit degree of
freedom of the multiaccess channel in (I) is given by

C^US, D, E) =^ logdet (/ +E-'5£>5') (2)
where we have written S = [si,...,s/c] and D = diag{pi,... ,Pa:}- Our main focus in this
paper is to characterize the maximum sum capacity:

C.p,(D,E)tfmaxC,.„(5,£),S) (3)



where S is the set of all N x K real matrices with all columns having I2 norm equal to 1.
Since V5 G <S, we have QS G 5 for every orthonormal matrix Q, it follows from the structure
of Csum in (2) that Copt S) depends only on the eigenvalues of E.

2.3 Parallel Gaussian Channels

Consider the following parallel Gaussian channels (our notation is from Section 10.4 of [1]):

Yj = Xj +Zj, Zj ~M(0,<7?) j = l...N

where the Gaussian noise is independent from channel to channel. The total power constraint
on the input is E < P. Denoting the sum capacity (the maximum sum of rates per
unit channel at which all information can be transmitted in each of the channels reliably) of
this channel by Cp(P, E) we have

Cp(P,S)= max ^J^log(n-|L) . (4)
{(-I ii=p}^

For notational ease, we have represented the noise variances by a covariance matrix E that
haseigenvalues (rf,..., cr^. It is very well known that the optimal allocation ofpowers follows
the waterfilling policy E[X?] = r}j = (/? - for some /? >0such that EjLi Vj = P. A
further explicit expression for the waterfilling policy is as follows: Define the set /C«,/ to be

1 • ivr
Observe that if A; G then every / such that af > al also belongs to Since we have
ordered the variances < cr| < ••• the set /Cu,/ is of the form {k^...N} for some
l<A;<Ar4-l (ifA; = Ar-|-l, then by convention we take )Cu,f to be empty). The waterfilling
policy is simply

nt =0,k<l<N, and ^ i<j<k.

Then (4) becomes

(5)



On the other hand, for every 5" 6 «S, the sum capacity of the multiaccess vector channel (1)
is

C,um(5,£>,S) = ^logdet(/ +2-'5£>5')
~ 2^>'J'QSDS'Q'̂ for some orthogonal Q

where we have denoted the diagonal entries of QSDS^Q^ by di,..., and used the Hadamard
inequality in the derivation of the last step. Since d, = tiSDS^ = trZ), comparing with
(4) we arrive at the following simple upper bound to Copt (Z?, S):

ap^(Z),S) <Cp(trZ?,E) .

Though this upper bound is completely expected, our characterization of the sum capacity
Copt {D, E) shows that ifthe user powers are not too "spread apart" (in a relative sense that
depends on the size of the problem and E) the upper bound can actually be attained. We
identify necessary and sufficient conditions on the user power constraints and the eigenvalues
of the noise covariance matrix so that this upper bound is met.

3 Sum Capacity Characterization

Our main result is the solution of the optimization problem in (3) and thus the charac
terization of Copt- Our solution completely characterizes the structure of the op^zma/signal
directions (the S that achieve the maximum in (3)) and we also provide a combinatorial algo
rithm that explicitly constructs the optimal signature sequences. We also analyze properties
of Copt as a function of D and E and give intuitive explanations for these properties.

3.1 Solution of the optimization problem (3)

To begin with, observe that the dimension of the linear span of the signal directions is at
most ZZ, and thus if A'' > Zf we should always restrict the signal directions to that subspace
(of dimension at most K) which contains the eigenvectors of E corresponding to the smallest
K eigenvalues. Hence, without loss of generality, we assume that K > N. We begin with
the following definition.



Definition 3.1 For any x = (a:i,... ,Xn) € K", let

a^(i] > ••• > a:[„]

denote the components of x in decreasing order, called the order statistics of x.

Towards solving the optimization problem (3) we first make a (natural) change of variables
from 5 G<S to the vector of eigenvalues (denoted by p) of SDS^ + diag{crj,..., a%}. With
this change of variable, we claim the following:

Lemma 3.1

(6)

where C is a polyhedron in the positive orthant ofR^ defined by

fJ-i > Vz = 1... AT
C = (/zi,..., /i^) : ELi H > Ei=i P[3\ + <7I, Vi = 1... Af - 1

Uti N=Ef=i Pi +Ef=i crj
(7)

We relegate the proof of this result to the next section. We now proceed to give a combina
torial algorithm that solves the optimization problem (6) in at most N steps, and propose
the following greedy algorithm Aon C. Recall that we have ordered the eigenvalues of S as
(^\ < crl < ••' < (T%.

Input K, AT, (pi,.. .,pk) and (crj,..., ajj).

Output p* G C.

Update 1. Initialization: i = \,j = N and pj = 0, VA: = 0... A/".

2. Termination: If i > j stop and output the vector (pj,... ,//3^). Else, go to Step 3.

3. Let

n—max ^^k=lP[k] +Emrrl ~Em^{t,...,i} Pm ^^ / , 2 \ ^ I ^ ;1
(8)

(a) If 77 = (j? then set pj := ctj and j := j —1. Go to Step 2.

(b) If >? = then set := ,,,Vm = i...,j and
i := j. Go to Step 2,



(c) If 77 = i X:Lo (p[«+ik] +^i+k) for some / G{z,..., j} then set := 77, Vm =
. .^l and z := / + 1. Go to Step 2.

Our formal claim on the behavior of this algorithm is below. We delay the proof of this
result to the next section and now analyze some properties of the algorithm A that shed
some insight into the structure of/z", thevector ofeigenvalues of +diag {crj,..., cr^}.
We conclude this section with some properties of the maximum sum capacity Copt{D^ S).

Theorem 3.1 The output jx* of the combinatorial algorithm A achieves the maximum in
(6).

3.2 Properties of Algorithm A

1. The function (/zi,... ,/ZAr) (->• log ^ is concave and thus the optimal solution a*
IS the vector with components "least spread out" in C.

2. The algorithm stops after at most N steps. Since at least one component of p* is
updated in each step, this observation is completely clear.

3. The updates of the components of /z* by A are in non-increasing order. Hence ^ is a
greedy algorithm in the sense that the algorithm first sets the largest component ofp to
the smadlest value it can attain and then reduces the problem to one lesser dimension.

4. The special case of E = <7^I was addressed in [7] and algorithm A reduces to the
following simple form (Section 3, [7]): Define the set /C C {1,..., to be

{, . ^f=i pA{Pk>Pj} \

It follows that if k E IC then for every user I with power constraint pi > pk also belongs
to AC. The optimal solution fx* is simply

fi'i = Pi + ,1 ^ K. and p] = j ^ AC .

The physical intuition is that for every k £ JC, the user k is oversized, i.e., its power is
large relative to the power constraints of the other users and the degrees of freedom.
Every oversized user is given an independent channel (In the DS-CDMA context, this
is done by allocating oversized users signature sequences that are orthogonal to all the
other signature sequences).



5. In the special case when D = pi, then again, algorithm A has a simple structure.
Observe that in this case, Case 3(c) of the algorithm will never be reached and this
makes the algorithm have the following simple form. Define the set K, to be

1 • ' N-EiL.
Observe that if k £ K. then every I such that af > al also belongs to /C. Thus JC is of
the form {k,..., N} for some 1 < k < N -{• I (by convention k = N I denotes JC to
be empty). The algorithm A simply outputs

pi = af, I < k< N and pj = —^ 1< j < A; .
A; — 1

The physical intuition is that for every k E JC, the "channel" (the direction specified
by the eigenvector of S corresponding to the eigenvalue al) k is oversized and has
noise variance al large relative to the other noise variances and the number of users
and degrees of freedom in the MAC. We recognize that the simple form of A coincides
with the waterfilling policy in (5). Thus the case of D = p/ is a sufficient condition for
the sum capacity Copt to be equal to the corresponding parallel Gaussian channels sum
capacity Cp. A formal statement that identifies a necessary and sufficient condition
will be made in Section 5.

3.3 Properties of Copt {D,S)

Consider a multiaccess channel with additive white noise and variance a^. Suppose we make
one of the noise variances, say ajf much larger than the rest while keeping the average of the
variances equal to a^. The users can avoid usingsignals in the direction of the eigenvector of
S correspondingto the large eigenvalue alf and benefit from a reduced averagenoisevariance
(since the overall average noise variance is still a^). Thus we expect that the maximal sum
capacity of the latter channel will be more than the maximal sum capacity of the additive
white noise channel. We make this intuitive idea precise in the following proposition.

Proposition 3.1 Fix D, the diagonal matrix of user powers. Then Copt{D,l^) is convex in
E. Also, Copt (D, E) > Copt (^5^) every E and S be such that ({Tj,..., cr^) majorizes

Majorization is a partial order that makes precise the notion that the components of one
vector are "more spread out" than are those of another vector with the same sum of com
ponents. Appendix A has a short introduction to this partial order. Thus Proposition 3.1



says that for fixed user power constraints, Copt increases if the noise variance becomes "more
colored" while keeping the total noise variance (trE) constant. On the other hand keeping
the additive noise variances fixed, if the user power constraints are cisymmetric keeping the
total user power fixed it is intuitive that there is lesser flexibility in choosing fi. We make
this precise below:

Proposition 3.2 Forfixed E, Copt E) is concave in D andfurthermore, for every D ^ D
such that (pi,...,pk) majorizes (pi,... ,pk) we have Copt > Copt (^,2).

We conclude that Copt (S,D) is a concave (and Schur-concave) function in D and convex
(and Schur-convex) in E (see Appendix Afor the notation). Thus Copt is a saddle function
in D and E (in fact Copt is also a "Schur-saddle function" in the sense of the results of
Propositions 3.1 and 3.2). This saddle function is reminiscent of the famous Shannon saddle
function property of mutual information:

l{Xy,SXg +Z) >l(Xg-,SXg +w) >i{x-,sx+w) .
where X \s a, K dimensional random vector with covariance matrix D and Xg is a. K di
mensional Gaussian random vector with the same covariance matrix D. Also, Z is a. N
dimensional noise vector with covariance matrix E and W is a, N dimensional Gaussian
noise vector with the same covariance matrix E. Our result says that Copt, the maximum
value of I (X;SX -i-W^ (maximum over SeS and independent distributions on Xsubject
to a variance constraint), is a saddle function in D and E. The formal proofs of Proposi
tions 3.1 and 3.2 are in the next section.

4 Proofs of Main Result

4.1 Proof of Lemma 3.1

We begin with the followii^ claim. For any n x n positive semidefinite matrices Aand B
with vector ofeigenvalues ..., and ..., Ajf respectively,

log det (/ -f AB) <inax log (l + (9)
1=1

where 5„ is the permutation group ofsize n. This claim follows direction from Corollary 1 of
[2]. Fix S GS. The set : Q € 0(Ar)} is also in S (here 0(N) is the standard notation

10



for the orthogonal group) and for every element QS in this set, the matrix QSD[QS)* has
the same vector of eigenvalues denoted by ..., . Furthermore, using (9) there
exists a Q G 0(yV) such that

1=1 \

Thus (3) can be rewritten as

N ( AS
logdet (/ +T.-'QSD{QS)') =El°g 1+^

1 ^
= + . (10)

In Section 3 of [7] we show that the set spanned by A^^^ as S varies over S is given by

: (Ai,...,A;v,0,...,0) majorizes (pi,... ,pA')} • (H)

For every AG>C'i, Section 4 of [7] outlines a procedure to construct S GS (m N steps) such
that SDS^ has vector of eigenvalues A. We briefly recall below the key steps of this procedure
which will be useful later in the paper cis well. Fix AG jCj. Appealing to Lemma A.3, there
exists a symmetric matrix H with eigenvalues Ai,..., Ajv,0,...,0 and diagonal elements
Pii"'iPK' Let G be the normalized eigenvectors of H corresponding to
the eigenvalues Ai,..., Xjsj. Let V* = [viV2 •••vyv]. If we let A to be the diagonal matrix
with entries Ai,...,A;v, then H = V^KV. Now define S = h.^VD~^. Then, since the
square of the I2 norms of the columns of S are the diagonal elements of 5*5, we verify that
5*5 = D~2HD~2 has unit diagonal entries concluding that 5 G 5. Section 4 of [7] also
outlines a simple recursive algorithm that constructs a symmetric matrix given its diagonal
entries and eigenvalues. Writing p,- = A,- -f c? we can rewrite (10) as

^ a-
Copt = log "4 (12)

where

r -l( X p,- > <7?, Vz = I... yv 11 -<J^,0,...,0) majorizes (pi,...,Pa:) j

Define the set

Pi - <^i > P2 - > " ' > PN - ^ '

and observe that this definition is identical to that in (7). Consider the following claim:

Vp G jCi, there exists ft ^ C such that // majorizes ft. (13)

11



The map C : (^i,... ,^iv) log ^ is Schur-concave (see Definition A.3) in Ci and thus
Cifi) <C (//) for every fi majorized by /u. This combined with (13) completes the proof of
the lemma. We now show (13). Suppose // € and ^ ^ C. Then there exits at least one
pair of indices (i,j) such that

i > j, and - <j? > fjij - or? .

Define the vector ji that differs from fi only in the components indexed by i and j as

jii = fij - a] + <7? and fij = //,• - a} + a].

It is seen that

ft € Ci and that fii —erf > fij —af and
<7? —<7?fii = a/ii + (1 - a) fij, fij = (1 - a) fi, + afij where o; = — ^ € [0,1) .
fJ'i - N

Thus fi is majorized by fi (See Example A.2). By interchanging every pair [i,j) with this
property we can sequentially construct ft that is majorized by fi and belongs to C. This
verifies the claim in (13). •

4.2 Proof of Theorem 3.1

We denote the optimization problem in (6) by ^ = (K,N,(pi,.. .,pk) and
the region over which the Schur-concave function

C:(/Ji,... ^log^
,=1 ^1

is maximized by £ ("P). We begin with some preliminary observations about algorithm A.

2iHjZL^i=i_L >max |cr^, '̂='(^^0+ .)^ /=1... AT —l| then algorithm Aoutput
p* has all equal components. Hence we have that p* is majorized by p for any p £ C
(see Example A.l). This will complete the claim that p* is indeed the optimizing
argument. We henceforth assume that this case does not occur.

2. The algorithm A updates the components of p* in non increasing order. In other
words, the order of updates of algorithm A is //["j],...

3. For any p € C we have < //[ij. This observation is trivial since ry in Step 3 of ^ is
always less than or equal to //[q for every p £ C.

12



4. If/ij = crj for some j then it follows that fxj = af for every j < I < N,

Our proof that the output of algorithm A. is optimal is by induction. First consider the case
N = 2 and arbitrary K >2. Sincefor every £ Cv/e have < /i[i] and = fii
we conclude that y.' is majorized by y and thus C {y*) > C (y). This completes the proof.
We now make the induction hypothesis that the output of A is optimal for all AT < n and
all K > N. We show that the output of A is optimal for = n + 1 and any K > n + 1.
Let us denote this problem by 7^ = (K^ N, (pi,.. -^Pk) j •••?^n))- Suppose y £ Cis the
optimal argument to the optimization problem in (6) and the output y* of A is such that

^ (^[1],... We now proceed to get a contradiction to the hypothesis
that y is the optimal solution to (6).

1. Suppose y[i] = y^^y

(a) If //fij = (m(2]»• ••'̂ [N]) output of A to the reduced
problem V' = [K, N- l,(pu... ,pk) ,(af,..., . By hypothesis y[i] =

= ajj and thus (yi,... £ ^(^')- By induction hypothesis
0 {^P[2]i •"j A^Iat]) ^ C(yi,... ,yN-i)' Since y[j] ^ yy-^ for some j 6{2,..., A/"} we
have by the strict Schur-concavity of C that C (//*) > C (//). Thus we arrive at a
contradiction to the hypothesis that y is the optimal argument in (6) completing
the proof.

(b) If ^ ) for some I 6 {1,..., A^ —1} then from Awe have y* [1] =
y1 = ••• = y^. Using the fact that y £ C we arrive at y^^ = yy] = yi =
•" = yi. Thus (//f+i,...,yl^^ and (yi+i-,...,yN) belong to C(v'̂ where V' =
(^K -I, N-I, {pi+i,..., pic), (af+i,..., (T^) ). By the induction hypothesis (pf+j,..., yj^)
is the optimal argument of Cin £ (v'̂ and hence C ,•••, pjv) >^ (M/+i ?•••
contradicts the hypothesis that y is the optimal argument of C in C{V)^ com
pleting the proof.

Pi+y^ <r?
(c) As observed earlier, we do not need to consider the Ccise when pjij = 'tv '

since in this case y" is the optimal argument.

2. Henceforth we take yy] > y^y

(a) Let /ifi, = a% = y'j^. Let 1 < j < A^ be the largest index such that yy] = yj.

i. Suppose j = N. Since Nyy] > Pi + there is some 1 < / < A
such that yi < yi^ = p[i] = cr^. Thus we can define a vector y differing from

13



y, only in components indexed by N and / as follows:

i^N =IJ-N —e, ^/ =/// +e, where c=min|^ >q.
It is clear that jl £ C(V) and that jx is majorized by (x. Thus C [jx) < C (jx)
and we arrive at a contradiction to our hypothesis that fi was optimal on
C(V).

ii. Suppose j ^ N. Suppose further that fii = fX2 = ... = ixj. By definition we
have fij+i <fXj and by hypothesis that j^Xj >jaj^ >X)i=i (p[t] +<^i)' Hence
we can define a vector jx differing from fx only in components j and j' + 1 by

u ' I - Mj+i 1^3 - S=i (p[i] + cr?)fXj =(Xj-e, fXj+i =fXj+i-\-e, where e=mm I ^ ^ \^

It is clear that jx € C(V) and that jx is majorized by fx and we arrive at
a contradiction as before. Now suppose that all of fxi,...ixj are not equal.
Then there must exist some I < I < j such that fxi < fXj. Then we can define
a vector jx differing from fx only in the components j and I by

1^3 =y,j -e, /i/ =/f/ +e, where e=minj^-' ^
As before jx ^ C (V) and jx is majorized by fx arriving at the contradiction.

(b) Let /xfij = '̂=' some 1</<A. Then >(7%. Let 1<j <Nhe
the largest index such that ix[i] = fXj.

i. Let j = N. By definition and hypothesis, /xn = //[i] > fX[2] ^ ^N- Further
more, NfX[i] = NfxPi + Hill Hence there exists 1 < / < A such
that Pi < ppj. We can then define a vector jx differing from p only in the
components indexed by N and / by

Pn
. 1 . {Pn - Pi PN - <7n\=Pn -t. Pi = Pi + e, where t =mm< 2 ' —2~^ I

and the contradiction follows as before.

ii. Let j ^ N. Suppose pi =: p2 = -" = pj. Then we have jpj = >

J>[i]ELi (P[i] Furthermore pj > p'̂ ^^ > a] and pj+i <pj. Hence we
can define a vector jx differing from p only in the components indexed by j
and j + 1 by

. . / w- w+1 w- w- S=i (p[.i +<^f)N= Pi+i =Pj+i+«i where £=mm ^ 2 '— 2

arriving at the contradiction as before.

14



This exhausts all the Ccises and completes the proof of Theorem 3.1.

4.3 Proof of Propositions 3.1 and 3.2

Fix E and consider D and D such that (pi,..., jo^-) majorizes (pi,... ,Pk")- In the notation
of the proof of Lemma 3.1 using the transitivity of the partial order of majorization we have

C[{K,N,D)cc[(K,N,D) .

Thus C(^K,N,D,S^ CC(K,N,D,T,) and Copt is Schur-concave in Dfor fixed E. To see
concavity, fix Di and D2. From (12) and (13) we can write for j = 1,2

Copt (Dj, S) =^ max log (l +^) (14)
2N xec'(K.N,D,)i^j V ct)

where

£' (K, N, D) = £'1 (K, iV, Z>) n {Ai > A2 > •••> Aw > 0} .

Observe now that if A*''' € C' (K,N,Dj) for j = 1,2, then for every a € (0,1)

aA'" + (l-a)A(''€£'(/if,Af,aOi + (l-a)£>2) . (15)

Using the concavity of the logarithm, we have for every a € (0,1), from (14),

aCoptiDt,'S:) +{l-a)Copt(D„'S) < , max ^f]bg (1 +{x(j)ec'{K,N,Dj),j=h2}2N y (Ti

< max ^ log f1+
{Ae£'(/C.N,aD,+(l-a)£)2)} i=i \ )

= Oopt{oiDi{1 —a) D2,^)

where we used (15) in the second step. This shows Proposition 3.2. Now fix D, E ajid E.
Here E and E are such that the vector of their eigenvalues (arranged in nondecreasing order)

eig (E) = ((jJ, majorizes eig (e) = (aj,..., .
We will show that

Copt{D,j:) —(^opt {D,eigiZ))> Copt {D,eig (t)) —Copt •
Appealing to Lemma A.2, it suffices to show that for every T-transform T

Copt{D,eig(E)) > Copt(D,T{e\g(m , (16)
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Without loss of generality, T(eig(E)) can be taken to be diflferent from eig(E) only in the
entries indexed by i and j for some 1^ J ^ N. We can then write for some a € (0,1)

T(eig (S)).. =cj^ a<T? +(1 - a) a], and T(eig (S)). =a] +(1 - a) <r? .
Now, from (14),

C„(D.=ig(E)) . + + +̂
- C„ (D,T(=ig (£)»+if {̂,„g (. +|j+ _

+ -log(l +̂ ]} • (17)
Now, on. C (/r, iV, D) we have Xi > Xj and recalling that af < <7j we arrive at

l°s(l +̂ )+'°s(l +̂ ) >lo6(l +̂ )+log(l +̂ ] . (18)
Using the convexity of the map a: log (l + ; a > 0, and applying (18) in (17) we
have shown that Copt {D,e\g (E)) > Copt (Z), T(eig (E))). To see the convexity of Copt in the
covariance matrix S, fix any two noise covariance matrices E and S. From (14) we have,
using the convexity of the map a: >-)• log (l + ; a> 0,

otCopt{D,E)-^{l-a)Copt[D,t) > ^ max J]log('l +— )
^ ^ 2N xec'{K,N,D) ^ V ao-- + (1 - a) cr? J

= Copt {D, oeig (E) +(1 - a) eig (e))
> Cop<(ll,eig(QE +(l-a)E))
= aopi(l>,aE +(l-a)E)

where we used Lemma A.l in conjunction with the earlier proof of the Schur-convexity of
Copt for fixed D (expressed in (16)) in arriving at the last but one step. This shows the
convexity of Copt in E and completes the proofof Proposition 3.1. •

5 Discussion

The general scheme to construct the optimal signal directions is contained in our proofs of
the main results: Lemma 3.1 and Theorem 3.1. We summarize this construction below.
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Denote the eigenvector of S corresponding to the eigenvalue (t| by qj for I < j < N and
write Q = [gi,..., 9/^]. We first use algorithm A to generate fi' and construct the vector
A* = (a'I + o-J,... -}- (7^). We then use the recursive algorithm in Section 4 of [7] to
construct 5 6 5 such that the matrix SDS* is the diagonal matrix diag {AJ,..., A]^}. Then
the optimal signal directions S* are given by QS. However, the structure of A yields more
insight into the nature of the optimal signal directions 5" and this allows the following more
succinct characterization and construction of the optimal signal directions.

1. We begin with the first iteration of A. If Step 3(a) is reached, then we set A](^ = 0.
This means that the optimal signal directions are orthogonal to q^. Thus this allows
us to recursively reduce the problem to one with only —1 degrees of freedom.

2. IfStep 3(b) is reached, then we set A^ = —<7?, 1 < j < A^. We use the recursive
algorithm of Section 4, [7] to construct 5 6 5 such that SDS^ = diag{Aj,..., A](^}.
Then the optimal signal directions are 5* = QS. This step terminates the algorithm
and completes the construction.

3. If Step 3(c) is reached for 1 < / < AT, then we have Aj^j = A^ = ^ <
j < I. For expository ease, we assume that the users are ordered according to their
power constraints, i.e. pi > P2 ^ ^ Pk- By hypothesis that Step 3(c) is reached for
/, and by construction, (AJ,..., AJ") majorizes the vector (pi,.. .,pi). Thus we can use
the procedure in Section 4, [7] (summarized in the proof of Lemma 3.1) to construct
a / X/ matrix 5/ such that 5/diag{pi,... ,p/} 5/ = diag{AJ,... Aj}. We construct the
optimal signal directions for the first / users (these have the largest power constraints)
as [sj,...,sj'] = [gi,..., <7/] 5/. The following is a key observation: recall that the
output p* of >4 is in £ and hence (AJ,..., AJ(^,0,...,0) must majorize (pi,.. -iPk)- By
construction of Aj',-j = A*, 1 < i < / above, we must have

(AJ+1 ,..., A;;^, 0...,0) majorizes (p/+i,...,p/r) • (19)
Recalling the construction of 5* 6 5 from A* from the proof of Lemma 3.1, we see from
(19) that we can construct theN—lxK—l matrix 5fsuch that 5/diag {pi+i,... ,Pa:} Sj =
diag ..., A]|̂ }. We then let the optimal signal directions for the remaining K—I
users to be [5*^.1,..., sj^-] = [9/+1,..., ^/v] Sj. We emphasize the point that each of the
optimal signal directions of the first I users are orthogonal to each one of the optimal
signal directions of the remaining K —I users. Furthermore, the first I user signal
directions span the I dimensional subspace span{91,... ,g/} while the signal directions
of the remaining K —I users span the orthogonal complement of this subspace. Thus
if Step 3(c) is reached in the first iteration of A^ this observation allows us to identify
the user signal directions for the first I users and recursively reduce the problem to one
of / fewer users and I fewer degrees of freedom.
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4. In Section 3.2 and in the proof of Theorem 3.1 we have identified certain key properties
of A. We summarize below the physical insights gained from these observations.

(a) Consider the first iteration ofA. Step 3(a) is reached if the largest noise variance
(T^ is "much larger" than the other noise variances (in a sense made precise by
.4). Our optimal signal directions are chosen in this case to be orthogonal to
and thus they avoid "directions" of high noise variance. We emphasize that this
step is never reached if all the noise variances are equal.

(b) Suppose Step 3(c) is reached for some 1< / < A^. This means that the average of
the largest / user power constraints is "much larger" than other averages ofuser
powers in a sense that depends on the noise variances as well (made precise by
A) and the optimal signal directions are assigned to these / users so that they
span a subspace (of dimension I) given by span {qi,..., 9/}. Thus these signal
directions lie in the subspace with least noise and furthermore the other user
signal directions are orthogonal to this subspace. We emphasize that this step is
never reached if all the user powers are equal.

In Section 3.2 we observed that \i D - pi then the algorithm A output is identical to the
waterfilling policy in (5). Thus D= p/ is a sufficient condition for the sum capacity Copt to
be equal to the upper bound Cp. The following proposition identifies the precise condition
when this equality holds.

Proposition 5.1 Copt (D,E) = Cp (trD, S) if and only if

/Pi +Ef=,,xl{ N '{7U / • (20)max

Proof Our first claim is that a necessary and sufficient for equality of Copt and Cp is
that Step 3(c) of algorithm Ais never reached. This follows the kct that when Step 3(c)
is never reached, A simply reduces to the waterfilling allocation of (5) in Section 2.3 (this
reduction of A was shown explicitly for the case Z) = p/ in Section 3.2). Necessity of (20)
for Step 3(c) to be not reached in the first iteration of A is obvious from inspection. We
complete the proof by showing the sufficiency of (20) for Step 3(c) to be never reached. In
the first iteration of A^ (20) ensures that Step 3(c) is not reached. Furthermore, observe
that if Step 3(b) is reached, then the algorithm terminates (this statement is true on any
iteration of the algorithm). Now suppose that for some 1 < A: < iterations, A has not
terminated and Step 3(c) has never been reached. This means that for each of the first k
iterations. Step 3(a) is reached. It follows that = PN-i = 2= 0,... A; —1. We

18



now show that in iteration A; + 1, Step 3(c) is not reached. In iteration k 1, Step 3(c) is
not reached if

, 2\\ ^ /E£.P. + Ef=-,'=<Tj 2 1
\15 j-I TTTk

By the induction hypothesis for iteration k that did not terminate, we have pi +
cT]<{N-k-^l) Thus

E^l Pi +12f=i^ CTj {N —k-\-l) _ <^N-k+l
N-k - N-k N-k'

_ 2 2
— ^^N-Jk+l ^ CTn '

Using this inequality and (20), we have shown (21) completing the proof.

A Majorization

Majorization makes precise the vague notion that the components of a vector x are "less
spread out" or "more nearly equal" than are the components of a vector y by the statement
X is majorized by y.

Definition A.l For x, j/ € IR", say that x is majorized by y (or y majorizes x) if

< E,-=i2/tt], A; = l...n-1
Et=i f^ti] = Ei=i y[t\

A comprehensive reference on majorization and its applications is [3]. A simple (trivial, but
important) example of majorization between two vectors is the following:

Example A.l For every a G K" such that E)?=i = U

(ai,...,a„) majorizes f-,
\n n nj

Another important example that we will use often is the following.
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Example A.2 Fix a GM" not of the form when all its components are equal. Let i and j be
a pair of indices such that ai > aj. Define a G that differs from a in only the components
indexed by i and j by

hi = ai —e, Cj = aj + c, for some e G

Then a is majorized by a.

ai - aj\

' 2 J

Let A and B be two symmetric matrices of dimension n x n. Let and A^ denote the
vectors ofeigenvalues ofA and B respectively. The following result (Theorem 9.G.1 in [3])
shows that the eigenvalues oi A A B (the components of the vector A^+^) are less spread
out than the sum of the order statistics of the eigenvalues of A and B:

Lemma A.l For any two symmetric matrices A and B,

..., is majorized by (AjJj +A^j,..., A(i] +A^])'

A permutation matrix Q of dimension n x n is a matrix with each entry equal to either 0
or 1 such that each row and column has exactly one entry equal to 1. A T-transform is a
doubly stochastic matrix of the form

T = al {I —a)Q

for some a G [0,1] and some permutation matrix Q with n —2 diagonal entries equal to 1.
To see the operation of a T-transform, let y = (yi,..., t/„) GM". Let Qki = Qik = 1 for some
indices k <1. Then Qy = (yi,. ••,yjk-i,y/,yA+i, •.. ,y/_i,yfc,y/+i,... ,y/<') and hence

^2/ = (2/i»• ••,yk-uotyk + (1 - a) VuVk+u ••',yi-uQyi + (1 - a) yjt,y/+i,...,yn)

The following is a fundamental result from the theory of majorization (Lemma 2.B.1 in [3]).

Lemma A.2 If x is majorized by y then there exists a sequence of T-transforms 7i,... ,T„
such that x = Ti''' T2Tiy and I < K.

It is well known that the sum of diagonal elements of a matrix is equal to the sum of its
eigenvalues. When the matrix is symmetric the precise relationship between the diagonal
elements and the eigenvalues is that of majorization:
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Lemma A.3 (Theorem 9.B.1 and 9.B.2 in [3]) Let H be a symmetric matrix with di
agonal elements /ii,..., /i„ and eigenvalues Ai,..., A„ we have

(Ai,...,A„) majorizes (/ii,...,/in)

That /i = (/ii,..., hn) and A= (Ai,..., A„) cannot be compared by an ordering stronger than
majorization is the consequence of the following converse: If hi > - - - > hn and Ai > • ••A„
are 2n numbers such that A majorizes h, then there exists a real symmetric matrix H with
diagonal elements ^i,..., /i„ and eigenvalues Ai,..., A„.

We will also need the following definition:

Definition A.2 A real valued function (j) : R is said to be Schur-concave if for all
x,y € 7^" such that y majorizes x we have <l>{x) > 4>(y)- Say that <j> is strictly Schur-
concave if y majorizes x and y ^ x implies that (t>(x) > (t>(y).

An important class of Schur-concave functions is the following (Theorem 3.C.1 in [3]):

Example A.3 If g : R ^ R is concave then the symmetric concave function <f>(x) =
IZr=i5^(®t) is Schur-concave.

A function g is Schur-convex if —5* is Schur-concave.

References

[1] T. M. Cover, and J. A. Thomas, Elements of Information Theory., New York: Wiley,
1991.

[2] S. W. Drury, "A bound for the determinant of certain Hadamard products and for
the determinant of the sum of two normal matrices", Linear Algebra and Applications,
199:329-338, 1994.

[3] A. W. Marshall, and I. Olkin, Inequalities: Theory of Majorization and its applications.
Academic Press, 1979.

[4] M. Rupf and J. L. Massey, "Optimum sequence multisets for Synchronous code-division
multiple-access channels", IEEE Transactions on Information Theory, Vol 40(4), July
1994, pp. 1261-1266.

21



[5] B, Suard, G. Xu, H. Liu and T. Kailath, "Uplink channel capacity of space-division-
multiple-access schemes", IEEE Transactions on Information Theory^ Vol 44(4), July
1998, pp 1468-1476.

[6] S. Verdu, "Capacity region ofGaussian CDMA channels: the symbol-synchronous case",
in Proc. 24th Allerton Conf.^ Oct. 1986, pp. 1025-1034

[7] P. Viswanath and V Anantharam, "Optimal sequences and sum capacity ofsynchronous
CDMA systems", IEEE Transactions on Information Theory^ vol. 45(6), Sept. 1999,
pp. 1984-1991.

22


	Copyright notice 1999
	ERL-99-47

