
 

 

 

 

 

 

 

 

 

Copyright © 1999, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



DONT CARE WIRES IN

LOGICAUPHYSICAL DESIGN

by

Philip Chong, Yimjian Jiang, Sunil BChatri, Subama Sinha
and Robert Brayton
CAD Research Group

Memorandum No. UCB/ERL M99/52

1 November 1999



DON'T CARE WIRES IN

LOGICAUPHYSICAL DESIGN

by

Philip Chong, YimjianJiang, Sunil Khatri, Subama Sinha and Robert Brayton
CAD Research Group

Memorandum No. UCB/ERL M99/52

1 November 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University of California, Berkeley

94720



Don't Caxe Wires in Logical/Physical Design

Philip Chong, Yunjian Jiang, Sunil Khatri, Subarna Sinha, Robert Brayton
CAD Research Group, U.C. Berkeley

November 1, 1999

Abstract

A layout is obtained before the complete functional
ities of individual cells are set. In particular, given
an initial decomposition of a logic module, we deter
mine, for each input to the nodes of the multi-level
network, a set of "compatible"alternate wires, i.e. for
every pin of the network, there is a set of sources.
These sets are compatible, like don't cares in logic;
any combination am be used (as long as there is ex
actly one source for each pin) and each combination
determines a different set of functionalities within the
cells. SPFDs [10, 1, 9] are used tofind compatible sets
of alternate wires. We use this wiring flexibility to
construct a vhreplan; the final assignment of sources
to pins depends on the ease with which the resulting
netlist can be placed and wired. Once an assignment
is chosen, the logic within each cell is determined.
This partially reverses the classicalapproach of doing
logic synthesis first, followed by physical layout and
leads to an "information" driven placement methodol
ogy. We show results demonstrating total wire length
improvements using this new flexibility.

1 Introduction

Recent studies and projections point to the growing
importance of wire delays as IC technologies continue
to advance. This leads to the notion of wireplan-
ning in place of floorplanning [8]; i.e. create a plam
about how individuEil blocks may communicate, per
haps without fully knowing the functionality of those
blocks. In pure wireplanning, this concept is t£iken
to the extreme, by merely looking at dependencies
to determine what connections ultimately have to be
made, but not deciding a priori what particular com
putations are made in a block or even which blocks
are to be built. After a plan for the information flow
is made, logic functionalities are determined. An ex
ample of this is the work of Gosti et al. [4].

In this paper, we explore the concept of don't c£u:e
wires which partially reverses the classical approach

of doing logic synthesis flrst, followed by physical lay
out. A layout is obtained before the complete func
tionalities of individual blocks are set. In particular,
given an initial decomposition of a logic module, we
determine, for each input to the nodes of the multi
level network, a set of alternate wires. Thus for every
pin of the network, there is a set of sources. These
sets are like don't cares in logic; any combination can
be used (as long as there is exactly one source for
each pin) and each combination determines a diflfer-
ent set of functionalities. In this sense the sets are

compatible. Once an assignment of sources to pins
is chosen, the logic within each block is determined.

We make the final assignment of sources to pins
dependent on the ease with which the resulting netlist
can be placed and wired. Thus a wireplan is chosen
for the blocks, and then the logic is finalized.

We show how to use SPFDs (sets of pairs of func
tions to be distinguished) [10, 1, 9] to find compatible
sets of alternate wires. We use this wiring flexibil
ity to construct a wireplan. In Section 2, we give
some details about SPFDs and how compatible wire
sets can be constructed. Section 3 gives some meth
ods for the initial logic decomposition and the mo
tivation for the particular approach used. Section 4
poses 2in assignment problem of somrces to pins which
minimizes the total wire length, given a placement of
modules. We show that the problem is NP-complete
and give a heuristic that works well with the prob
lem instances that arise. Section 5 gives two methods
that we have experimented with, for using don't care
wires in placement algorithms. Section 6 gives the
details and results of the experiments we conducted.
Section 7 concludes and describes future work that

needs to be done in this area.

2 SPFDs and Compatible Wire
Sets

We give an intuitive description of the concept of
SPFDs (for a formal discussion on SPFDs, refer to



(10, 1, 9]).- Consider a multi-level network of combi
national nodes. Each node is associated with a logic
function expressed in terms of its immediate fanins.
Each fanin provides information to the node by giv
ing different values for certain combinations of pri
mary inputs to the module; it distinguishes differ
ent pairs of input minterms. The output of a node
has a similar role; it must also distinguish different
pairs of minterms for its fanouts. As long as each
node plays its role, the particular logic function at the
node is irrelevant for the functionality of the module.
SeverzJ inputs of a node often distinguish the same
pair of minterms. Hence there is some freedom in
choosing which pairs to assign to which inputs; the
only requirement is that the union of all the pairs
of minterms distinguished by all the inputs covers
the pairs of minterms required to be distinguished
for that node. An SPED for an input is a particu
lar choice of pairs of minterms which must be distin
guished by that input. Once the SPED choices have
been made, there may be different sources (nodes in
the circuit) which can supply the required informa
tion, i.e. have enough distinguishing power. This al
lows different sources for each pin. In other words,
we can choose one of several don't care wires for any
input.

The actual logic function at the node will depend
on which sources were assigned to which input pins
since the information coming through each pin de
pends on the somce chosen. However, once the in
formation supplied to each pin is known, the logic
function can be determined. Even then, there is a
lot of flexibility for the function, since there axe still
many don't cares that can be used.

Since we want the freedom to choose the source

for each pin independent of the choices made for the
other pins, we need the sets of alternate wires to
be compatible. This is similar to compatible don't
cares for the nodes of a logic module, where we want
to be able to choose the value for a particular node
independent of the values chosen for the other nodes.
So compatible sets must guarantee that the total in
formation coming into a node through its input pins
is enough to supply the information required for that
node's required distinguishing power.

Definition 1 Given a set of sets of nodes R = {Hfc},
a selection is a ordered set of nodes {rji,..., }
such that rjk ^ Rk-

Definition 2 A set {iZib} is compatible if for any
selection of {Rk), there exist logic functions at each
node such that the implied netlist implements the pri
mary output functions.

We can create compatible sets of alternate wires
using the following procedure.

Procedure 1 (Constructing a Compatible Set)

1. Starting from the outputs and proceeding in a
backward topological order, for each node r} in the
network, and each of its input pins, a, compute
their SPFDs, SPFDrj and SPFD^r. Once this is
done, each SPFD represents the set of minterms
which must be distinguished by that node or in
put. See [9] for the details of this computation.

2. Initialize for each node rj,

ex{ri) = {77} U TFO{r})

and for each input pin, a of rj, let R^ = {77'}
where rf is the current source of a. Rg^ will even
tually represent the set of alternate wires for a.

3. Starting from the inputs and proceeding in some
topological order, at each node rj, do the follow
ing:

(a) Let C = es^n)

(b) For each fanin wire a of rj:

• Find an T}' ^ C such that SPFD„ Q
SPFDr,,.

• Include rf in Rg, Rg = Rg\J {77'}-
• Update exfjf) = eafjt) U ex{rf). (This

is done to avoid cycles in the resulting
network.)

• This continues until no more nodes can

be added to Rg.

The set obtained by the procedure has the fol
lowing property.

Lemma 2.1 For any selection of{Rg}, the resulting
network is acyclic.

Although the above procedure produces a particular
set, any set with the following two properties will suf
fice for compatibility.

Theorem 2.1 Any set of sets of nodes {i2<r} satis
fying

1. for any selection, the resulting netlist is acyclic,
and

2. rj' eRg-

is compatible.

SPFDg C SPFDr,'.

Thus to form a compatible set of alternate wires
it is sufficient to madce sure that whatever netlist is

chosen, it is acyclic, emd that each alternate's SPED
covers the original input's SPED.



3 Initisd Decompositions

Recent work on noiseless fabrics [5] led to a re-
examination of the use of multi-level PLAs as a gen
eral logic synthesis technique, even for implementa
tions where noise is not a major concern. The net
work is decomposed and clustered into PLAs with
the target of absorbing the most wires interneilly in
each PLA such that the resulting PLA network has
no cycles. During this clustering no placement in
formation is known, so we use the heuristic that the
smaller the number of connections, the better the de
composition. This usually leads to a smaller number
of PLAs. During clustering, the logic is minimized
and the PLA folded. The result is constrained to be

within given bounds (dictated mainly by delay and
noise constraints within the PLA) in the number of
rows and columns.

After clustering, a set of compatible alternates is
generated for each input connection. Once the final
netlist is chosen, the logic inside a PLA may chzinge
and no longer fit within the bounds. We experimen
tally determined how much the resulting PLAs can
change. Note that the number of inputs and outputs
does not change for a given PLA.

We experimented with the following method for ini
tial decomposition: we decompose a network into a
set of PLAs of medium size (e.g. 10-15 inputs, 1-5
outputs, 15-25 cubes). These PLAs are the nodes
in our logic network. A set of compatible wire sets
is generated using SPFDs. These are fed to a place
ment tool that selects the best set of alternate wires.

The finsd placement and the best choices are fed bsick
to the logic synthesis program which determines the
logic functionality of each PLA, sind then minimizes
and folds it. The final areas and logic functionalities
2ire returned to placement for fined optimization of
the placement.

4 An Assignment Problem

Evaluating the total wire length of a placement re
quires that a selection of alternate wires be made.
We thus have the following problem.

Alternate Wire Choice Problem (AWC)
Given a point placement of pins, and a set {Ra} of
candidate sources for each input pin, find the selec
tion which minimizes the sum of the half perimeters
of the hounding boxes of the nets.

Theorem 4.1 The Alternate Wire Choice (AWC)
Problem is NP-complete.

Proof: The associated decision problem is to: deter
mine if there exists a choice of alternate wires such

that the sum of wire lengths is a;t most k. Clearly this
problem lies in NP; a certificate for this problem is
the choice of alternates for each input pin. Given this,
the total wire length can be evaluated in polynomial
time and compared to k.

To show NP-completeness, consider a reduction of
SAT to AWC. Take a SAT formula F in conjunctive
normal form. Let vi,..., be the variables which
appear in F. In the corresponding AWC problem,
create a cell located at coordinates (0,0) with outputs
oi, o'l,..., o„, ojj corresponding to the literals Vi and
their complements. Now create a cell at coordinates
(2,0) with inputs ai,...,a„, and for each input Oj
construct two alternate wires, one &om Of and one
from oj. This structure represents the assignment of
values to the vsiriables the wire from Of to is
chosen if Vi is assigned to 1, or the wire firom oj to Ot
is chosen if Vi is assigned to 0.

Finally create a cell at coordinates (1,0) with in
puts &i,...,each input bi corresponds to a clause
Ci in F. For eeich input bi, construct alternate wires
corresponding to the literals in &«• has an altemate
wire from Oj (oj) iffCi contains the literal Vj (vj).

Now consider the choices of alternates for eacii 6<,
given some choice of zdtemates for the OjS, i.e. under
some assignment to the variables vj. If some literal Vj
(vj) ofCiwas given a value of1under the assignment,
then the alternate for bi may be chosen to be the
corresponding oj (o^). Thus, if all the clauses can
be satisfied under the given assignment of variables,
then there exists a choice of alternates for the inputs
bi such that for all 1 < j < n, either output Oj or Oj
has no connecting wire chosen. Then there is a choice
of alternate wires for bi which gives a total wire length
of exactly 2n.

Conversely, if the given assignment does not satisfy
Ci, then some alternate wire for bi must be chosen
from an unselected output, say Oj. The net attached
to Oj then has length 1, and the length of the net
attached to Oj is 2, so the total wire length must be
greater than 2n.

Thus a satisfying assignment of the variables ex
ists iff the constructed AWC problem has a solution
with wire length less than or equal to 2n. This re
duction can be done in polynomial time, so AWC is
NP-complete. •

Branch and bound techniques can be applied to
solve AWC exhaustively. However, for efiiciency we
propose the following algorithm to solve the AWC
problem.

Procedure 2 (Semi-greedy Algorithm for AWC)
PHASE I

1. For each pin with altemate wires, temporarily



disconnect it from the current net

2. For each net form the bounding boxes of the cur
rently connected pins. These partial bounding
boxesform a lower bound on the total wire length.

3. For each pin with alternate wires, if its pin po
sition is inside one of the partial bounding boxes
for its candidate wires (the original wire plus its
alternates), assign it to that net. No increase
has been caused by this assignment, and hence
the partial assignment seen so far must be part
of an optimum assignment.

4. For each remaining pin with alternate wires,
compute the "delta" costs if it is assigned to each
of the candidate nets. There is a net assignment
which increases the total net length by the least
amount. Choose this assignment and update the
chosen net.

5. Continue step 4 until all pins have been assigned.

PHASE II

1. For each pin which is an extreme of the bound
ing box of its currently assigned net, temporarily
release it from its assignment, and compute the
best net to put it in and its delta decrease cost in
doing this. Note that the delta decrease is non-
negative.

2. Choose the pin with the maximum delta decrease
and reassign the pin to the new net.

3. Repeat 1 and 2 until the best delta is 0.

Notes:

• After PHASE I, there may be pins that can be
moved to different nets to improve the total cost.

• After step 2 in PHASE II, the deltas need to be
updated efEciently.

• During PHASE II, a pin may be reassigned more
than once. To speed up the process, one may
want to "lock" a pin once it is reassigned once.

• After PHASE II (with no locking), the solution
is locally optimal, in that there is no pin which
can be moved to a new net such that the totsd

cost is decreased. However, there might be a set
of pins that can be reassigned all at once which
decreeises the cost.

5 Two Placement Algorithms

If we consider the edternate wire choices for each input
pin sind optimize for both area and total wire length,
we have a two dimensional solution space: physical
placement and logical connection. Given a physical
placement of the blocks as points in the physiced di
mension, choosing the best set of logical connections
is NP-complete (Section 4). Similarly, given a set
of connections, choosing the best placement is also
hard. Here we give two approaches to tackling this
combined problem.

Throughout this discussion the wire length for a net
is estimated by the half perimeter of the bounding
box for all terminals connected to the net. Ex£u:t

pin positions are not considered; pin locations me
estimated by the center points of blocks.

5.1 Sequence-Pair Approach

We explored a modified sequence petir-based simu
lated annealing placement algorithm. A sequence
pair is a representation of the physical relations of
rectangular blocks placed on a two dimensional plane
(7]. Given a sequence pair (r+,r_), the horizontal
constraint graph eind the vertical constraint graph of
the rectangles are implicitly contained in the repre
sentation. One of the area-optimal packings under
the constraints can thus be obtained in O(n^) time
by applying the longest path algorithm. There are
(n!)^ possible different sequence pairs for n blocks.
If block orientation is also considered, the solution
space is (n!)^2". Thus simulated annealing is gener
ally applied to search the space.

The approach we have experimented with is to give
up some optimality in the logical connection space,
and heuristically choose a good set of connections for
each placement move. The heuristics described in
Section 4 cam be evaluated in linear time in terms of

the number of nets that have alternate wires. This

is in the worst case O(n^) in terms of the number
of blocks, which is comparable to the evsduation of
the layout for sequence pairs. After the placement
converges, one can stfford to search for the best set of
connections in the other dimension.

Three types of simulated annealing moves are used:
swapping two blocks in one sequence, swapping two
blocks in both sequences, smd 90 degree rotation. A
tjrpe-one move disturbs the placement significantly,
and thus is given higher probability at high temper
ature. A type-three move is given higher probability
at low temperature. For each move, the layout is le
galized and minimized for 8u:ea, and the semi-greedy
wire selection is applied to give the new cost. After



convergence, we apply a branch and bound method
to solve the AWC problem exactly.

5.2 Mincut Placement Approach

We sdso examined the use of a mincut placement al
gorithm [2] to evaluate the placement of a netlist with
alternate wires. Our approach differs from traditional
mincut placement techniques by using alternate wires
to change the cut costs during the recursive biparti-
tioning of the design. Choosing alternates for wires
on a cut net may prevent that particular net from
being cut at all, thus reducing the cost. We there
fore evaluate the cost of a partition by accounting for
such effects. This reduction in cut cost will generally
translate to a reduction in wire length for the final
placement; alternate choices which prevent nets from
being cut during bipartitioning will generally corre
spond to the selection of shorter local wires.

We modified the FM partitioning algorithm [3J to
account for edternate wires. After recursive bipar
titioning is applied to a design, partitions are ad
joined in a quadrature fashion [2] to obtain a place
ment. As well, additional wirelength minimization
heuristics are used to guide the placement. Both low-
temperature simulated annealing and a greedy com
paction method are used to further improve the final
layout. Finally, the AWC problem is solved for this
layout using branch and bound to obtain the wire
choices.

6 Experimented Results

We performed three experiments to demonstrate the
power of edternate wires. In all cases, our cost fimc-
tion W21S area + 2 • wirelength where wirelength was
measured as the total of the half-perimeter bound
ing boxes of the nets, and area was the total layout
area. Our main objective was wire length, motivated
by DSM concerns, with some control on the area.

Experiment I The first experiment W8a to decom
pose eaich example into a set of PLAs as described in
Section 3. Table 1 shows the results of this decom

position. The number following the design name is
related to the maximum physical width allowed for
each FLA in the decomposition [5]. The resulting
number of PLAs for each design is shown in the PLAs
column, and the total number of input pins on these
PLAs is shown in the IPins column.

We then generated alternate wire sets for each of
these examples. The number of pins with alternate
wires for each example is shown in the APins column
under the Regular heading (the Maximum columns

are described in Experiment III below). The percent
age (in parentheses) of input pins which have alter
nate choices is also shown. The average number of
alternate choices for each of these pins is shown in
the Alts colunm.

We then did the following comparisons:

1. We placed the PLAs without using alternate
wires. The total wire lengths for these initial
placements (using the two placement methods)
eire shown in the Init column of Tables 2 etnd 3.

2. We applied the ssime placement algorithms on
the PLAs using alternate wires. The percent
age improvement in wire length over the initial
placement is shown in the Reg column in the two
tables.

3. The chosen best wires were returned to logic syn
thesis and the functionalities of the PLAs were

determined according to the wire choices. An
other plsicement was performed using the new
PLA areas, and the resulting wire lengths were
compared to the initial results. The improve
ment in wire lengths over the initial placement
is shown in the Resyn column in the tables.

Experiment II Additionally, when the function
ality of the PLAs are finalized, we can do "wire-
removal" [9, 6] eind pleice the final netlist. This gives
a further reduction in total wire length, shown in the
Final column in Tables 2 and 3. These numbers are

with respect to the Init column. To fgdrly assess the
power of alternate wires alone, we performed wire re
moval on the initial netlist (without alternate wires);
the corresponding comparison of wire length gains
for the placed designs are shown in the WR column,
which gives the percentage gain of wire removal ver
sus the initial placement without wire removal.

Experiment III In the above results, there is a
fairly high correlation between the improvement in
wire length and the percentage of wires that have
alternates. Note that the percentage of wires with al
ternates for the examples is smedl (on average about
7.5%). As an additional experiment, we wanted to
see what would happen if there were more wires with
alternates. To this end, we ignored the acyclic con
straint when generating alternates. In addition, for
each wire, we computed its minimum SPFD [9] and
designated another wire as an alternate if its SPFD
covered this minimum SPFD. The resulting number
of pins with alternate wires and the average number
of choices for estch of these is shown in the Maximum

columns of Table 1. This generated only a few more
wires with alternates (their average increased to 9%),



although the average number of alternates on wires
with at least one alternate increased substantially.

The wire length improvement over the initial place
ment using these extended sets of alternate wires are
shown in the Max columns of Tables 2 and 3. This fig
ure loosely indicates an upper bound on the possible
improvement due to alternate wires alone, and should
be compared to the Reg column. As expected, the re
sults obtained correlate with the increased number of

wires with gJternates.

6.1 Discussion

We also examined the change in total areas of the
placed designs when alternate wires axe iised. For
Experiment I {Resyn column), the worst-case final
placed area increase was26%. For Experiment II {Fi
nal column), the worst-case area increeise was 30%.
However, on average the area increase was less than
3% for each experiment. Thus for the average case
the use of alternate wires does not affect the final
layout area greatly.

We experimented with different cost functions for
sequence pair based placement. For a cost function of
the form: a •areo -I- ^ •vrirelength^ we collected place
ment results for (a,/?) = {(1,0), (1,1), (1,2), (0,1)}.
As expected, higher a yields better area and higher
0 yields better wire length. For each combination of
Of and the results with alternate wire choices al
ways give roughly the same gain in wire length. The
results shown in Table 2 are that of (a,/3) = (1,2).

As noted, the gains in wirelength achieved is very
much correlated with the percentage of pins which
have alternates. When these were increased from

7.5%{Regular) to 9% {Maximum) in Experiment III,
the gain in wire length went from 6.8% to 10.7% for
sequence pair, and 6.3% to 9.7% for mincut.

In some cases, there is em increase in wire length
when alternate wires are introduced. There are two

explanations for this. First, the placement algorithms
used are non-deterministic, so random variations will
occur. Second, for the mincut placement, the corre
lation between the cut sizes in the recursive bipar-
titioning and the final placement wirelengths is not
exact. Thus, having the alternate wires effect the cut
costs may in fact mislead the mincut algorithm.

The sequence pair approach gives better wire-
lengths on small examples, while the mincut tech
nique does well for the leirgeexamples. The sequence
pair approach gave a smaller area overall, though.

Regular Msucimum

PLAs/ APins Alts APins Alts

Design IPins #{%) # #(%) #
alu2-5 18/233 32(13.7) 28.44 37(15.9) 37.43

apex6-5 37/553 21(3.8) 16.10 27(4.9) 81.56

apex7-4 12/157 9(5.7) 22.22 12(7.6) 38.75

apex7-5 11/146 5(3.4) 14.40 6(4.1) 55.83

count-4 6/67 4(6.0) 12.75 4(6.0) 30.25

count-5 6/68 3(4.4) 21.67 3(4.4) 35.00

term1-4 15/186 23(12.4) 19.61 29(15.6) 37.03

term1-5 12/170 11(6.5) 32.55 15(8.8) 44.00

ttt2-4 7/73 7(9.6) 14.00 7(9.6) 15.29

ttt2-5 8/85 9(10.6) 15.22 10(11.8) 18.30

x4-5 24/269 19(7.1) 34.05 28(10.4) 32.64

Table 1: Characterization of Examples

Design Init Reg Resyn Final WR Max
alu2-5 4003.0 18.2 22.8 28.0 8.5 26.4

apex6-5 14120.5 1.0 3.6 3.6 -0.8 1.2

apex7-4 2051.5 3.9 22.5 29.3 15.4 7.5
apex7-5 1810.5 7.1 14.3 14.3 4.7 7.6

count-4 448.0 10.4 9.7 9.7 9.0 10.0

count-5 470.5 4.7 2.7 2.7 2.7 4.7

term1-4 2902.5 12.7 32.5 32.5 18.0 23.2

terml-5 2810.0 5.6 26.3 22.6 16.7 14.6
ttt2-4 609.0 7.0 8.2 8.2 7.2 6.7

ttt2-5 792.5 7.8 3.7 3.7 11.5 7.7

x4-5 4105.0 -3.0 9.3 9.3 5.8 8.5

average 3102.1 6.8 14.1 14.9 9.0 10.7

Table 2: % Wirelength Improvement, Sequence Pair

Design Init Reg Resyn Final WR Max

alu2-5 4048.0 27.7 26.2 22.8 10.9 25.7

apex6-5 11079.0 -0.8 -0.1 4.5 -0.9 3.9

apex7-4 2085.0 4.9 24.7 31.1 14.5 8.4

apex7-5 1801.5 -4.2 7.2 7.2 3.7 5.6

count-4 450.5 10.3 12.5 12.5 9.5 11.7

count-5 482.5 6.0 5.1 5.1 3.2 6.0

terml-4 2901.5 17.0 36.0 36.0 12.7 17.9

terml-5 2825.5 7.2 19.0 21.6 13.3 10.9

ttt2-4 633.0 6.9 8.6 8.6 8.5 6.9
ttt2-5 790.0 1.1 4.7 4.6 6.6 8.3

x4-5 3386.5 -6.4 2.0 -0.4 6.2 1.3

average 2771.2 6.3 13.3 14.0 8.0 9.7

Table 3: % Wirelength Improvement, Mincut



7 Conclusions

Work

and Future

We presented initial experiments using don't care
wires. We used both sequence-pair simulated anneal
ing and mincut petitioning approaches to placement
to tsike advantage of don't cee wires. In the future
we will look at larger examples, as well as veiations
on placement, decompositions, and generation of al
ternate wire sets. However, the results obtained so
far are quite encouraging smd definitely show an sid-
vantage in using don't care wires.

The biggest gsiin will come from being able to gen
erate more alternate wires. One possibility is to de
crease the size of the PLAs. In oiu: current experi
ments, the PLAs have up to five outputs each. This
means that each input furnishes this information to
five outputs. Hence a wire can be replaced only if
another wire also can furnish all this information. It

is as if for each input there are five wires internal to
the PLA, amd am input cam be replaced only if adlfive
internal wires can be replau^ed by amother wire.

Relaxing the acyclic constradnt and using the mini
mum SPFD merits further exploration. The rationale
is that although the alternate wires generated aure not
valid, they contain useful information. In some sense,
these axe used during placement to obtain am "infor
mation" driven plaicement. Thus a plawrement is seen
to be good if for each node, the information it re
quires is neaxby. Once a good plawiement is obtained,
a node can be implemented by gathering enough of
the neau'by information to cover the information re
quired. One can imagine possibly increaising the num
ber of inputs to a node but still improving the wiring,
since the inputs aure locad.

We noticed that of our two methods for placement
(with total wire length as the dominant factor in the
cost), the bipaurtitioning followed by a low tempera
ture amnealing gave the best results on the lau-ger ex
amples compaured to pure simulated amnealing. This
suggests that simulated annealing is not well suited
to placement with wire length minimization.

Future experiments include:

1. Using SPFDs to do wire removal using the fi-
nad placement information. For example, we
may wamt to replaice a long wire with a shorter
one. The wire removad/replacement done in the
present experiments did not do wire replatcement
using plaicement information.

2. Since simulated annealing seems to be not well
adapted for wirelength as a cost function (we
speculate that the underlying cost surfau:e is too

jagged), we want to experiment with a new place
ment method based on nonlinear programming
applied to a "smoothed" version of the problem.

3. Although we have confined our studies to decom
position into PLAs, we are not limited to this.
Another possibility is to keep the logic nodes ais
single functions, do a placement of these using
alternate wires, and then a technology mapping
which takes into account placement information.

We know how to generate alternate wire sets for com
binational logic modules, but ultimately we would like
to use don't care wires at the chip level. Thus we need
to either extend the methods of SPFDs, or explore
other methods for generating alternate wire sets for
sequential circuits.

Acknowledgements

This research was supported partially by the SRC
(under grant number 683), the GSRC/Marco center
at Berkeley, and the California micro program with
our industrial sponsors. Motorola, Fujitsu, Synopsys,
and Cadence.

References

[1] R. Brayton. Understanding SPFDs: A new
method for specifying flexibility. In Workshop
Notes, International Workshop on Logic Synthe
sis, 1997.

[2] Melvin A. Breuer. Min-cut placement. Journal
of Design Automation and Fault-Tolerant Com
puting, l(4):343-362, October 1977.

[3] C.M. Fiduccia and R.M. Mattheyses. A linear-
time heuristic for improving network paxtitions.
In IEEE Design Automation Conference, pages
175-181, 1982.

|4] W. Gosti, A. Narayan, R.K. Brayton, and A.L.
Sangiovanni-Vincentelli. Wireplanning in logic
synthesis. In Proceedings of the International
Conference on Computer-Aided Design, pages
26-33, 1998.

[5] S. Khatri, R. Brayton, emd A. Sangiovanni-
Vincentelli. A VLSI design methodology using
a network of PLAs embedded in a regular lay
out fabric. TechnicadReport UCB/ERL M99/50,
Electronics Reseaurch Laboratory, University of
California, Berkeley, May 1999.



[6] S. Khatri, S. Sinha, A. Kuehlmann, R.K. Bray-
ton, and A.L. Sangiovanni-Vincentelli. SPFD
based wire removeil in a network of PLAs. In In
ternational Workshop on Logic Synthesis, 1999.

[7] H. Murata, K. Fujiyoshi, S. Nakatake, and
Y. Kajitani. VLSI module placement based on
rectangle-packing by the sequence-pair. IEEE
Transaction on CAD, 1996.

[8] R.H.J.M. Otten and R.K. Brayton. Planning for
performance. In Proceedings of the 35th Design
Automation Conference, pages 122-127, 1998.

[9] S. Sinhaand R. K. Bra3dion. Implementation and
use of SPFDs. In Proceedings of the International
Conference on Computer-Aided Design, 1998.

[10] S. Yamashita, H. Saweida, and A. Nagoya. A
new method to express functional permissibili
ties for LUT based FPGAs and its applications.
In Proceedings of the International Conference
on Computer-Aided Design, 1996.


	Copyright notice 1999
	ERL-99-52

