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Abstract

The theory of recycling is presented as the foundation of a correct-by-construction methodology to reuse Intellectual Properties (1P)
cores for building complex digital systems while reducing the number of iterations in the design process. The recently proposed theory of
latency insensitive protocols lies at the basis of the present work. Latency insensitive systems are synchronous distributed systems, whose
JSunctionality is robust with respect to arbitrary variations in interconnect latency. However. the same robustness is not guaranteed for
the performance of the design, which indeed may experience a notable degradation. This paper presents a simple, yet rigorous, method
10 (1) model the key properties of a latency insensitive system, (2) analyze the impact of interconnect latency on the overall throughput,
and (3) optimize the performance of the final implementation.

1 Introduction

As system complexity increases and market windows continue to shrink, effective reuse of existing designs or Intellectual Property
(IP) cores seems the only way to produce a reliable design within a reasonable time [6, 19]. In fact, most semiconductor companies
share both a strong will to broaden IP reuse and an open complaint towards the effectiveness of the tools offered by the EDA companies
to meet this request [20, 24). ‘

If to permit an easy trade, reuse and assembly of individual components of the chip is the goal, the new design methodologies
should primarily facilitate (if not automatically provide) the solution of the communication and synchronization issues which arise
while assembling pre-designed components. In this perspective, it is necessary to define a methodology which effectively addresses
the increasing impact of interconnect delay in future design generations. Despite the increase in number of layers and in aspect ratio,
the RC delay of an average metal line with constant length is getting worse with each process generation [17, 211 !. This effect, -
combined with the increases in operating frequency, die size, and average interconnect length, makes interconnect delay becoming a
larger fraction of the clock cycle time [18]. Furthermore, while the number of gates reachable in a cycle will not change significantly
and the on-chip bandwidth that wires provide will continue to grow, the percentage of the die reachable within one clock cycle will
decrease dramatically: we will soon reach a point where more gates can be fit on a chip than can communicate in one cycle [8, 16].

On-chip communication has been cheap for a long time. This fact has lead to a number of architectural models that rely on low-
latency to shared global resources. The popularity of these models is due to the fact that they provide the most uniform computational
framework and the best functional unit utilization. As suggested in [16], this focus on function rather than communication is the
fundamental conceptual roadblock to overcome. Meanwhile, currently available CAD flows force the designers to iterate many times
between synthesis and layout, because the two steps are performed independently and synthesis uses statistical model that do not estimate
the post-layout wire load capacitance accurately (timing-closure problem) [6, 14].

Long-term solutions must involve the adoption of interconnect structures with predictable performance [6], the definition of compu-
tational models that explicitly account for communication costs [16], and the development of machine architectures which expose their
communication structure to the software compilers (1, 10]. A step in all these directions is represented by the latency insensitive design
methodology, which has been recently proposed in literature [5). Furthermore, this methodology may also accelerate the solution of
the IP integration problem: in fact, it is fairly easy to assemble complex latency insensitive systems by reusing synchronously-specified
functional modules because their interaction is controlled by a communication protocol that is insensitive to the latency of the channels
connecting them. Yet, although the functionality of a latency insensitive system is robust with respect to interconnect delays, the same
is not necessarily true for its performance. In [5], the authors do not address this problem nor do they suggest a technique for analyzing
the latency/throughput trade-offs.

!Introducing copper metalization and low-k dielectric insulators helps reduce interconnect delay, but these one-time improvements will not suffice in the long run as
feature size continues to shrink {18, 19].



Combinational

Output
Registers
i

Primary

Outputs

Logic

State
Registers

Figure 1: A Sequential Module.

In this paper, we introduce the theory of recycling as a formal way to capture the communication and synchronization properties of a
latency insensitive system, thus enabling the analysis of the impact of a particular increase in latency (of one, or more, channels) on the
overall system performance. This directly addresses the fundamental cause of the timing closure problem, while reducing the amount
of iterations between logic synthesis and physical design and, ultimately, the entire design process time. Meanwhile, it simplifies the
integration of IP components coming from different sources, thus handling the design complexity by reusing IP cores. Finally, allows
us to derive a procedure that optimizes directly the system throughput, and that, in the case of a design made entirely of pre-designed IP
blocks, provides the best achievable performance.

In Section 2 we discuss the realization of a hardware design by assembling Register-Transfer Level (RTL) modules as an example of
a design approach based on IP reuse. The latency insensitive design methodology is summarized and criticized in Section 3. In Section 4
we give the definition of lis-graph as a formal model to represent the key properties of a latency insensitive system. This model allows
us to specify the notion of recycling as a rigorous way to model the variations in latency of different wires and to compute exactly its
impact on the performance of the system (Section 5). Finally, Section 6 illustrates the previous concept through the analysis of a case
study, an implementation of the MPEG-2 Video Encoder.

2 Assembling IP Cores

The latency insensitive methodology together with the ideas proposed in the present work can be used to design complex distributed
systems by assembling IP modules, which may be hardware blocks as well as software modules. However, in the rest of this paper we
focus on synchronous digital circuits and we propose to design them by putting together IP cores having the structure of Figure 1, i.e.
~ sequential circuits where: (1) any path between an input port and an output port contains one and only one register, which latches the
output signal at the end of the path, and (2) both the state and output registers are controlled by a common clock signal. Such modules
are commonly used to implement finite state machines (FSM), but any arbitrarily complex pipelined datapath can be seen as a cascade of
stages having this structure. We indifferently refer to circuits with this structure as sequential modules, FSM modules, or RTL modules
and, from now we assume that all IP cores that we encapsulate and compose to derive digital systems have these characteristics.

Example 2.1 A Multiplier-Accumulator (MAC) is a very common digital circuit, because it facilitates the implementation of an opera-
tion as Y x(n) - y(n — k), which is ubiquitous in filters and vector arithmetic [13]. Fig. 2 illustrates an implementation of a MAC circuit:
inX and inY are the input values to be multiplied, inD forces the accumulator register to be preset to the value of inB, inTag controls the
index of the partial sum, and, finally, outT and outW are the outputs representing the sequence of indexed partial sums. If inX and inY
are two N-bit signals, regM a (2 - N)-bit signal, and regA a ((2-N) + M)-bit signal (as well as regC, inB and outO), then 2™ repetitive
MPY /ACC operations can be performed without overflow. We decompose the block diagram of the MAC in three major subcircuits,
such that each of them can be realized with an RTL module. Then, we represent the structure of the system with a directed graph as
illustrated in Fig. 3: nodes v;,v3,v4 are associated to modules M2,M3, M4, while nodes v, and vs represent respectively the input and
the output buffers. The operations performed at each nodes are defined as follows, where s/, denotes the value of the signal traveling on
arc a' during the n-th clock cycle: node v, performs s§ = s3_, -s%_,, while node v3 does two operations, one for each leaving edges,

namely s =s8_, +57_, and

~

s = Sp1 ffsrlt-l =1
" Ss_l +S7_l lfS,!‘_l =0
Finally, node v4 composes the current result of a MAC operation with a tag index, i.e. 5§ =s5_, ®s3_, and s}% =s>_,. Table 1 illustrates
a possible MAC behavior spanning 12 clock cycles, during which the following computations are performed: m, = X, - Yn, Wn = 2, ®tn,



-~

-
-
-
-
-

PR
Se.o A 4 y
J, My ; w;fm
' )
[ lnTag 9 | mg?s 1 )
] [ [ « [l
- ' w '
- ] ] "
L} ’
1
1)

-------

(RI
| EQ I REQ
-5 ;-i\

wle =T oy

.

MPY

:

£ !

\\‘ ¢
NOw ~d

]

]

]

1

]

[

[mee J;

d

-

R

¢
. )

]
]
Y
[
[y
e g

Ik

R _—. .-

- ‘g
IREO'

-
-
-
---------

*****

Figure 2: Block Diagram of a MAC circuit.

regD -> a1
regB ->a2
regX -> a3
regY -> a4
regT -> a5

2 a6 a8 regV ->a6
regC -> a7
al regA -> a8

a7 outw -> a9
outT -> a10

Figure 3: Graph representing the RTL structure of the MAC.
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The advantage of providing an RTL specification of a digital system using sequential modules is that it is easy to derive the timing
constraints imposed by each of them. In fact, the longest combinational path inside a module dictates the minimum clock period ®; which
makes it operate correctly. Therefore, the task of specifying a large digital circuit can be decomposed in sub-tasks aimed to specify RTL
modules having close 7;. This approach permits to handle the complexity of the overall design, by separating functional specification
from performance analysis: once all modules are composed, the final system works correctly as far as it is running with a clock satisfying
the constraint imposed by the slowest module, i.e. a clock having a period 7t > max;{m;}. Thanks to its simplicity, this approach has
been the basis of most digital design methodologies during last two decades, but its effectiveness is based on the assumption that the
delay of any path connecting two modules is comparable to delay of the combinatorial paths inside the slowest modules in the system.
Until the interconnect delay has been small with respect to gate delay, it has been easy to effectively decompose the system in such a
way that inter-module combinational delays and intra-module wire delays are comparable. As discussed in the previous section, this is
in not going to be the case for chip realized with DSM technologies. On the other hand, to estimate the delay of global interconnect early
in the design process (e.g. at the floorplan phase) is extremely difficult and may easily lead to over-constrain the design, thus resulting in
poor performance. We argue that to design high-performance complex digital system is necessary a methodology which (1) facilitates
the composition of sequential modules in pipeline mode and (2) allows the potential insertion of extra-stages between one module and
the other with the only purpose of buffering signals propagating on long wires. A new approach based on these ideas has been recently
presented in literature and we discuss its pros and cons in the next section.

3 Latency Insensitive Systems
In [5], Carloni et al. have proposed a methodology to design very large digital systems by assembling IP cores exchanging data

on point-to-point communication channels in accordance with a latency insensitive protocol. The protocol guarantees that a signals
composed of functionally correct modules, behaves correctly independently from the delays of the channels connecting the modules.
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Table 1: Example of a behavior of the MAC circuit

As a consequence, a hardware implementation of the system can be automatically synthesized such that its functional behavior is robust
with respect to large variations in wiring delays between modules. In fact, a long wire having a delay larger that the desired clock period
can be pipelined in shorter segment by inserting special memory elements called relay stations, which buffer the signals traveling along
the wire. The latency insensitive methodology can be summarized as follows:

1. the designer specifies a system as a collection of sequential modules (called pearls), whose interaction relies on the synchronous
hypothesis, i.e. signals take one clock period to move from one pearl to another;

2. each pearl is encapsulated within an automatically generated shell: a shell is simply a collection of buffering queues (one for each
port) plus the control logic that interfaces the pearl with the latency insensitive protocol;

3. traditional logic synthesis and place & route steps are applied to derive the layout of the chip implementing the system;
4. every wire whose latency is greater than the clock period is segmented by distributing on it the necessary amount of relay stations.

The only pre-condition required by this methodology is that the sequential modules be stallable, meaning that their operation can be
frozen for an arbitrary amount of time without losing their internal state. This is a weak requirement because most hardware systems can
be made stallable, for instance, implementing a gated clock mechanism. Observe that the final implementation of a latency insensitive
system doesn’t necessarily have to be synchronous, in the sense that is controlled by a single clock signal reaching every point on the
chip. For instance, the relay stations as well as the overall communication architecture can be realized using asynchronous logic.

The big advantage of a latency insensitive design is that its functionality is robust with respect to arbitrarily large variations in wire
delays as proven in [5]. Unfortunately the same can not be said for the performance of the design. In fact, the mechanism to implement
a latency insensitive communication architecture is based on the distinction between informative event and stalling event. According to
the synchronous specification of the system, at each clock cycle n every sequential module receives a new informative event on each
input port and emits an informative event on each output port, the latter being the result of the processing based on the informative
events received up to cycle (n —1). Hence, no stalling events travel between the modules at the specification level. However, the
presence of relay stations in the final implementation does introduce stalling events: in particular, the initialization value stored inside
each relay station is a stalling event. According to the latency insensitive protocol, if a module receives one (or more) stalling event
at a given clock cycle it means that misses one (or more) data item to perform the computation and, therefore, it is forced to stall,
generating a new stalling event for each output port (meanwhile the informative events received on the other input ports are stored in
the shell queues). This mechanism does not affect the overall performance if the design does not present any feedback path between
the sequential modules, but obviously this a condition too strong to demand. In [5] Carloni et al. do not present an analysis of the
impact of their ideas on the system performance. In the following section we propose a formal model to analyze the properties of a
latency insensitive system, which allows us to define the notion of recycling as an elegant way to capture the latency variations of the
communication channels and to compute exactly the final throughput of the system.

4 Latency Insensitive System Graphs

In this section, we formally introduce latency insensitive system graphs (lis-graphs) as a way to model the structure of a latency
insensitive system, and we give the notion of lis-graph behavior, which allows us to capture their communication and synchronization
properties.

Definition 4.1 A lis-graph G = (s,t,V,A,w) is a weighted directed connected graph (V,A,w), where w(a;) € Z*? for each arc a; € A,
with two special nodes: a source s € V with 0 indegree and 1 outdegree, and a sink t € V with 0 outdegree and 1 indegree.

2Z* denotes the set of non-negative integers.



Figure 4: Lis-graph for the MAC of Figure 3.

Definition 4.2 Given a lis-graph G = (s,1,V,A,w), the single arc as leaving source s is called source arc, while the single arc a; entering
t is called sink arc. The core of a lis-graph G is the directed graph (V \ {s,t},A\ {as,a; },w).

Using lis-graphs we can focus on the structure of a latency insensitive system, without getting lost into the details of the logic
inside each module. Every lis-graph node (but source and sink) is associated to a pearl/shell pair, while the weights on the arcs denote
the amount of relay stations on the corresponding channels. The source and the sink model the interaction of the system with the
environment inside which it operates. As we know from the previous section, the initialization value stored inside inside each relay
station is a stalling event, while the output register of each module is initialized with an informative event according to the synchronous
specification of the system. Therefore, an arc a; with weight w(a;) = 3 indicates that during the first cycle of system operation there
are 3 stalling event occupying the 3 buffering spots on the corresponding channel. At the subsequent cycle the first stalling event will
be withdrawn by the receiving module M, at the end of the channel, while the first informative event will be put on the channel by the
sending module M;: this informative event will be read by M, only 3 cycles later, after the remaining two stalling events. ’

The fact that changing the number of relay stations on some channels does not change the functionality of the system motivates the
following definition of lis-graph equivalence.

Definition 4.3 Two lis-graphs G = (s,t,V,A,w) and G' = (s,t,V,A,w') differing only for some weights are said structurally equivalent,
or, simply, equivalent (G = G'). The reference lis-graph of a class of equivalent lis-graphs is the graph Grey = (5,t,V,A,Wrs) s.t.
Va; €A, (w,,,.f(a;) = 0).

Example 4.1 The graph of Fig. 3 represents the RTL structure of the MAC circuit of Fig. 2. This graph is also the core of lis-graph
G=(s,t,V,A) of Fig. 4, with V = {s,v1,v2,v3,v4,vs,t} and A = {a;,ay,a;,a3,a4,as,as,a7,az,a9,a10,4; }, which is obtained adding the
source and the sink vertices. D

Two distinct arcs of a lis-graphs which respectively enter and leave the same vertex are in a dependency relation.
Definition 4.4 Given a lis-graph G = (s,t,V,A,w), for all vertices u\,u2,v € V, arcs ay = (uy,v) and a; = (v,u2) are in a dependency
relation a; <4 a; (ay depends on az). If and only if a1 <4 a3, a; is a predecessor of ay and a; is a successor of ay. Given an arc a,
PRED(a) and SUCC(a) denote respectively the sets of predecessors and successors of a. Obviously, PR ED(a;) = SUCC(a,) =0
holds for any lis-graph.

Example 4.2 Referring to the lis-graph of Fig. 4, we have a3 < a¢ and as <4 ag. Then, PR ED(as) = {a3,as}, while SUCC(ag) =
{a7,as}. Further, a self-loop a = (v,v) depends on all arcs entering v (including itself), while all the arcs leaving v depend on it. In
Fig. 4, this is the case of a7 = (v7,v7), for which PR ED(a7) = {a1,a2,a6,a7} and SUCC(a7) = {a7,as}. a

We are not interested in capturing the particular value of a signal traveling on a wire from a module to another at a given clock cycle,
but we want to know whether that signal represents an informative event or a stalling event. The progressive trace of a signal (associated
to a channel represented by an arc in the lis-graph) is used to represent an interleaved stream of informative events and stalling events:
the value j of a natural number in a trace denotes the ordinal of the j-th informative event while the T symbol denotes a stalling event.

Definition 4.5 Let s be a signal with L informative events, let K be the index of the last informative event, and let T C IN be the set

of indices of the stalling events between 1 and K, where IN is the set of natural numbers. The progressive trace, (or, simply, trace) G of
signature L and co-signature set (or; simply, co-signature) T is an infinite sequence of symbols of INU {t} s.t. the n-th term is

T ifsp=7
wm{ T I

J ifspisthe j-thelementinss.t. s, #7

Given a progressive trace ©, its signature is denoted as ||6||, while its co-signature set is denoted as {G).

Example 4.3 Consider arc ay of the lis-graph of Fig 4. This arc represents the feedback path of module M3 in the MAC of Fig. 2.
Consider the behavior reported in Table 1 and observe particularly the values of signal 57 associated to regC. Now, assume that a latency
insensitive implementation of the MAC presents only one relay station, placed exactly in the middle of this feedback path. Hence
w(a7) =1, while w(a;) =0 for i # 7. Since the initialization value stored in any relay station is T, the sequence of events on the



w(as)=0
wial)=1
wia2)=2
wi{ad)=0
wiat)=0

Figure 5: The Lis-graph of Example 4.4.

Olas) =1234567891011 t1...
oa)=t12t13t45t16Tt78TT9t01lTTT...
ola)=tt11231t141561tTt77t89t 0TIl TT...
Gla)=I11127t34t151t6771T81910TttlltTT...
olay) =121Tt37451T67T781T9 1101l TTTT...

Figure 6: Behavior 8 of Example 4.4, having ||B|| = 11.

feedback path is s’ =Tz Tz2T23T24 Th) T26T27 T 28 T29 T T... The corresponding progressive trace, having signature o]l = 10 and
and co-signature (o) = {1,3,5,7,9,11,13,15,17} is6=11712131t41t516171 8191 1... The subtrace of o from the 7-th to the
12-thterm is 67,12 =14 1576 and its signature is ||07,12] = 5. a

Only after receiving at each input channel the j-th informative event, a module is able to produce (at the next clock cycle) the
(j + 1)-th informative event for each of its output channels. If this is not the case, it means that one or more input channels present a
stalling event. Therefore, the module stalls, “consuming” the stalling events, producing output events on all output channels, and storing
those informative events which can not be processed in the shell queues. To capture the essence of this mechanism we use the notion of
lis-graph behavior.

Definition 4.6 Given a lis-graph G = (s,t,V,A,w), a trace assignment (6(a; ), ... ,0(aya})) is a tuple of progressive traces in one-to-one
correspondence with the arcs of A. For each arc a; € A, o(a;) denotes the progressive trace associated to a;.

Definition 4.7 A behavior B of a lis-graph G = (s,t,V,A,w) is a trace assignment (c(ay),... o(a))) s.t. Vi € |A| the n-th term of o(a;)
is ’

(T ifne(l,w(a)]
1 ifn=w(a)+1
(lon-1@@)ll+1) i (n > w(a;)+2) and
MACHER (llon-1(a)ll < L) and (¢))
Va, € PRED(a;)
(lon—w(a;)—1 (@)l = llGn-1(an)ll)
L T otherwise

where L € IN is called the behavior signature (also denoted as ||B||). The set of behaviors of G is denoted as B(G).

Example 4.4 Given the lis-graph of Fig. 5, the behavior B = (6(a;), 6(a;),6(a2),6(as3),0(a;)) with signature ||B]] = 11 is illustrated
in Fig. 6. Notice that trace o(a;), being associated to the source arc a;, is independent from the other traces. Observe that w(a)) =1
and w(az) = 2, the first symbol of o(a;) as well as the first two symbols of 6(a;) are 7. Then, consider that PR ED(a;) = {a1} and
PRED(a3) = {az2}. For all n € N, the n-th term of trace 6(a;) depends on the (n-3)-th term of a(a)) since w(az) = 2 and the n-th
term of trace 6(a3) depends on the (n-1)-th term of o(a2) since w(a3) = 0. Finally, arc g, and a; have a common set of predecessors
containing a; and a3. However, 6(a,) and o(a;) depend “practically” only on trace 6(a3), since o(a3) is constantly lagging behind
6(as) with respect to the amount of informative events seen up to any instant. In particular, the n-th term of trace o(a,) depends on the
(n-1)-th term of 6(a3) because w(a,) = 0, and the n-th term of trace 6(a;) depends on the (n-2)-th term of o(a3) because w(a;) = 1. O

The definition of lis-graph behavior is reminiscent of the firing semantic of an event graph, a common abstraction used to model
discrete event systems [2]. In fact, the presence of either T or a natural number on an arc a; = (vj,vk) can be seen as the result of the
processing completed by vertex v; in accordance with the lis-graph firing semantic expressed by the following rules:

e Independence Rule: Every vertex v; fires the first informative event (corresponding to natural number 1) independently. However,

a trace associated to arc a; = (vj,v;) with weight w(a;) starts with w(a;) stalling symbols and only the (w(a;) + 1)-th symbol
corresponds to the value 1 independently “produced” by v;.

® And-Causality Rule: Every vertex v; fires the n-th event only after the (n — 1)-th event has appeared on all arcs entering v o

6



This firing semantic is equivalent to Definition 4.7 and suggests that a lis-graph models a cyclic system [2). Obviously, this is true as far
as the core of the lis-graph contains at least one cycle among some of its nodes (in the most trivial case the only cycle could be simply a
self-loop as in Figure 4). For cyclic systems, the cycle time T; of arc a; is defined as

T; = lim M 2)

n—eo

where #;(n) denotes the time at which trace o(a;) associated to arc a; presents the n-th informative event (i.e. natural number n). Since
the system is cyclic, for all arcs a;, 7; = T and the previous equation gives the cycle time T of the entire system. The cycle time is
equal to the inverse of the system throughput 9 (i.e., the rate at which informative events appear on the channels) and, represents the
key performance metric for the system: for all informative events n > 1, the difference |(#;(1) + T - n) —£;(n)| is bounded [4, 9, 22] We
naturally refer to cycle time 7'(G) and throughput 3(G) of a lis-graph G, meaning the cycle time and the throughput of the system model
by G. Furthermore, the cycle time coincides with the maximum cycle mean of lis-graph G, defined as

w(C) +|C]

3
CI ) 3

A = A =

(6) = egh©) = g
where A(C) is the cycle mean of a cycle C of G, w(C) is the sum of the weights of the arcs on C, and |C] is equal to the number of arcs
on C 3. A cycle whose mean coincides with the maximum cycle mean is said critical. The maximum cycle mean can be found solving
the Maximum Cycle Mean Problem, for which many algorithms have been proposed, dating back to Karp’s Algorithm [15] 4.

Example 4.5 Lis-graph G = (s,t,V,A) of Fig. 5 contains one cycle C = (a;,a3,a3) with |C| = 3. Since w(a1) = 1,w(az) =2,w(a;3) =0,
the maximum cycle mean of G is A(G) = ( ﬂcﬁﬂ) =833 _ 3 Then, the throughput is 8(G) = 0 = 3- o

If no cycles are present in the lis-graph core, both cycle time and throughput are equal to 1. This confirms the intuition, because
lis-graphs with no cycles represent pipelined systems with no feedback paths: hence, for any possible weight assignment on the arcs,
there exists a natural number k after which, all T in the system have been ejected through the sink  and only informative events travel
on the channels, thus delivering the best possible communication throughput. If the lis-graph core contains only one strongly connected
component, all its cycles can be detected in O((|V| +|A]) - (K + 1)) operations, where K is the number of cycles in the graph [23].
Finally, the most general case is when the lis-graph core contains more than one strongly-connected component: being a directed graph,
a lis-graph can be efficiently partitioned in strongly-connected components using Tarjan’s Algorithm [25]). Then, the maximum cycle
mean can be determined for each strongly connected component and the largest of these means is clearly the maximum cycle mean for
the lis-graph.

5 Recycling

As discussed in Section 3, moving from the specification of a system to the final layout, the latency of some communication channels
may be higher than the clock period, due to the length and the delay of the wires implementing them. In particular, from the analysis of
the layout we can determine for each wire what is the smallest multiple of the desired clock period which is larger than its delay. If this
multiple is greater than 1 then the wire is marked illegal. The presence of illegal wires in the layout implies that the final implementation
is not correct. To capture this concept in our model we attach to each arc of the corresponding lis-graph a value denoted as the length of
the arc.

Definition 5.1 A lis-graph G = (s,1,V,A,w,!) is annotated iff a length [(a;) € IN is associated to each arc a; € A.

Definition 5.2 Let G = (s,,V,A,w,l) be an annotated lis-graph. G is legal iff Va; € A, (w(a;) > 1 (@i)—1). Anarca; € A s.t. (w(aj) <
l(aj) — 1) is an illegal arc.

All the definitions given for lis-graphs are naturally extended to annotated lis-graphs.

Now, thanks to the latency insensitive methodology, we can correct the final layout by introducing the necessary amount of relay
stations to make sure that the delay of each wire is less than the desired clock period. Similarly, a non-legal annotated lis-graph G can be
transformed into an equivalent legal annotated lis-graph G’ by simply incrementing the weights of its arcs by the appropriate quantity.
Since G = G/, for all behaviors of G there is a correspondent equivalent behavior of G'. This transformation is called recycling.

Lemma 5.1 Let G = (s,1,V,A,w,l) be a non-legal annotated lis-graph. A legal annotated lis-graph G' = (s,1,V,A,w',1) equivalent to
G is obtained from G by adding the quantity Aw(a;) = I(a;) ~ | —w(a;) to the weight of arc a;, where i € {1, ]A]).

3The usual definition of the cycle mean of a cycle Cis A(C) = %’— asin [2, 15]. We added the term |C] to the numerator, because the firing of a lis-graph node takes
one time unit, modeling the fact that every module in a latency insensitive system is sequential.
4See [9] for a survey of the proposed algorithms.
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Proof. For all i € [1,|A]], w'(a;) = w(a;) + Aw(a;) = I(a;) — 1. Hence, by definition 5.2, G’ is legal. Further G’ = G, since G and G’
differ only for their weights. o

Although recycling is an easy way to correct the final implementation of the system and satisfy the timing constraints imposed by
the clock, it doesn’t come without a cost. In fact, augmenting the weights of some arcs of G (i.e., inserting memory elements on the
communication channels) may increase the maximum cycle mean of G (i.e., increase the cycle time of the system modeled by G and,
symmetrically, decrease its throughput). This is always the case if any arc a;, whose weight w(a;) is augmented, belongs to the set
of critical cycles of G, simply because the numerator in Equation 3 increases by the quantity Aw(a;) while the denominator remains
unaffected. It may also happen that increasing the weights of some arcs makes a non-critical cycle of G becoming a critical cycle
of G'. In any case, after completing the recycling transformation, we may exactly compute the consequent throughput degradation
AB(G,G') = 8(G) —8(G’), using one of the following methods:

e solve the Maximum Cycle Mean Problem for graph G', and simply set §(G’) = TL"');

e after establishing the set 4 of cycles having at least one arc whose weight has been augmented, increment the cycle mean of each
element C of 4 by the quantity ﬁ - X;Aw(a;), where a; are the arcs of C which have been corrected. Let A* be the maximum
among all these cycle means, then

0 if \* <A(G)
! —_ - -
AB(G,G') = { %GF) otherwise

Example 5.1 Consider the lis-graph G = (s,t,V,A,w) of Fig. 4, representing the MAC of Fig. 2. Let us study the following two cases:

(a) Assume that all arcs have zero weights, i.e that the vector of weights associated to (ay,a;,a2,a3,44,as,a¢,a7,a8,a9,a10,a;) is
w = (0,0,0,0,0,0,0,0,0,0,0,0). Now, assume that after completing the implementation of the MAC, the wires associated to arcs ay,
az and ag are illegal wires, e.g. the first two have a delay between 1 and 2 clock periods, while the third one has a delay between 2
and 3 clock periods. Hence, we annotate the lis-graph with the vector of arc lengths / = (1,2,2,1,1,1,1,1,3,1,1,1). Then, to avoid
illegal arcs we must insert at least one relay station on both arc a; and a and two relay stations on arc ag. In other words we transform
the weight vector into w’' = (0, 1,1,0,0,0,0,0,2,0,0,0). Not only the final design is functionally equivalent, but the performance of the
system remains unaffected! In fact, the added relay stations will contain t symbols as initial values and will provoke a certain amount
of stalling in the down-link nodes (in particular, node v, will stall once, while node v3 and v4 will stall twice), but after few instants
the system will reach its steady state processing data with throughput 8(G’) = 1. The corresponding lis-graph behavior is illustrated in
Fig. 7.

(b) On the other case, assume that only the wire associated to a7 has a delay larger than 1 clock pericd, particularly between 2
and 3 clock periods. Then we legalize the annotated lis-graph G’ by setting only w(ay) = 2, while the other weights could stay equal
to 0. Since w(a7) belongs to a cycle of the lis-graph (it is a self-loop!), the system throughput becomes 9(G') = %, with degradation
AS%(G,G') = 66%, as illustrated in Fig. 8. o

Observing case (a) of the previous example, we see that the shell encapsulating the module corresponding to node v; must have a queue
of length 1 at the input port of the feedback path associated to a7. Similarly, the shell corresponding to node v4 must have a queue of
length 2 at the input port of the path associated to as. All the other shells do not need to have any queue. Since the arcs having non-zero
weight are not part of any cycle (i.e. no relay stations are inserted on feedback paths), this queues are necessary only for the few clock
cycles elapsing before the system reaches its steady state. Instead, for case (b), we see that we would need to insert infinite queues at the
input ports of the paths associated to a2,a4,as and ag. Since infinite queues can not be realized in practice, the only choice is to adapt
the throughput of the rest of the system to the one of cycle a;. This is why a critical cycle dictates the throughput of the overall system.
In this particular case to *“slow down” the rest of the system is sufficient to reduce the input throughput. From a theoretical point of
view, this can be achieved by simply adding a self-loop to the source node and putting a couple of extra relay stations on it. Obviously,
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Figure 8: Case (b) of Ex. 5.1: 8(G') = },(A8(G,G') = 66%).

in practice, this corresponds to slow down the environment inside which the system operates. In general, if lis-graph G contains more
than one strongly connected component, the recycling transformation must be decomposed in two steps:

1. (legalization). After deriving the the annotated lis-graph G’, legalize it by augmenting the weights of the wires by the appropriate
quantity, as specified in Lemma 5.1;

2. (equalization). Compute the maximum throughput 8(S;) = %f € ]0, 1} which is sustainable by each strongly connected component
Sk € G’ (recall that 9(S) is equal to the inverse of the maximum cycle mean A(Sk). Equalize the throughputs by adding a quantity
ng € Z* to the denominator of each 9(S;). This corresponds to augment by a quantity n; the weight of the critical cycle C; € S;, i.e.
to distribute n extra relay stations among the corresponding paths. To find the quantities ny is necessary to solve the optimization
Problem 8.2 specified in the Appendix.

As Example 5.1 illustrates, the key to avoid big performance losses while recycling a lis-graph G is to avoid being forced to augment
the weights of those arcs which belong to a critical cycle C of G. Furthermore, as Equation 3 suggests, for the same w(C), the smaller
is the cardinality |C]| of the cycle the worse is the loss in throughput for G. The worst case is clearly represented by self-loops.

These considerations must be kept in mind while partitioning the functionality of the system in tasks to be assigned to different IP
cores. It is true that the latency insensitive methodology guarantees that no matter how bad is the final implementation of the system (in
terms of lengths of the wires realizing the communication architecture), it is always possible to fix it by adding relay stations. Still, to
achieve good performance, one should adopt a design strategy based on the following guidelines:

e all modules should put comparable timing constraints on the global clock (i.e. the delays of the longest combinatorial paths inside
each module should be similar);

¢ modules whose corresponding lis-graph nodes belong to the same cycle should be kept close while deriving the final implemen-
tation.

In general, the insertion of relay stations should be completed by an automatic tool as part of the physical design process (similarly to
the buffer insertion techniques available in current design flows [7]). In fact, the real advantage of the latency insensitive methodology is
the new freedom offered to “move around the latency” once the final implementation has been derived: not only problematic layouts can
be fixed without changing the design of the individual modules, but also latency/throughput trade-offs can be explored and optimized up
to the late stages of the design process. Meanwhile, the traditional design methodology, which relegates this exploration at the floorplan
level, is losing effectiveness, because the interaction among the components of a modern system on silicon is becoming too complex, as
the following case study illustrates.

6 Case Study: MPEG-2 Video Encoder

Examples of SOC are not abundant in literature. We have chosen an MPEG-2 Video Encoder [3] as an example for illustrating our
method. This encoder has been first (in 1996) implemented as a chip-set with two integrated circuits, and three years later as a single
chip [11, 12]. Figure 9 illustrates its functional diagram. We assume that this diagram corresponds also to the block diagram of the final
implementation and that, at each clock cycle, every block in the pipeline provides a new informative data item to the down-link block: in
other words, at every cycle, on each arc we have either a stalling symbol or a data value which is not a don’ care for the receiving block.
We understand that this may not always be the case at this level of granularity, because, for instance, the Quantizer may take more than
one clock cycle to produce a result which can trigger a new computation of the down-link Inverse Quantizer. Still, the presence of these
types of don’t cares may only help from the performance point of view and, in any case, to address the relationships between them and
the latency insensitive protocols goes beyond the scope of this paper. The lis-graph G for the MPEG-2 Video Encoder is reported in
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Figure 9: Block Diagram of a MPEG-2 Video Encoder.

Figure 10: The Lis-graph of the MPEG-2 Video Encoder.

Fig. 10 and contains 6 distinct cycles:

G = {ay,a0,a12}
()} {as,a11,a14,a12}

G = {ais,a17,a18,a19,a3}

Cs = {as,as,a6,a7,a8,09,a10,a13}

Cs = {aa,as,as,a7,a3,a9,a11,a14,213}

Co = {as,a1,a8,a9,a11,a15,a17,a13,a19,a20}

Most arcs are common to more than one cycle, e.g. ay is contained in C;,Cz,C4,Cs, and Cg ,but others are contained only in one cycle,
e.g. ayg is part only of Cs. Finally, some arcs, such as a3 are not contained in any cycle. We already know that increasing the weight
of these arcs does not affect the system performance. But, what about the ones belonging to one or more cycles? Can we compute
the degradation in performance in advance? As a matter of fact, yes. Figure 11 reports the results of the analysis that can be done
based on the lis-graph model. The six curves in the chart are associated to the above cycles and their shapes should be interpreted as
follows: each point of curve C; shows the amount of system throughput degradation which is detected after setting the total sum w(C;)
of the weight of the arcs of C; equal to integer x, with x € [0,20]. Obviously, the underlying assumption is that C; is a critical cycle of
G, and this limits the choice of those arcs of C; whose weights can be augmented. For example, assume that w(C,) = 5, as a result of
summing w(ag) = 4,w(a11) = 1,w(a1a) =0, and w(a;2) = 0. In this case C; is definitely not a critical cycle. In fact, its cycle mean
is M(Cz) = 22 = 3 =2.250, while, even if w(aig) = w(ai2) = 0, cycle C;, with w(C;) = w(ag) = 4, has a larger cycle mean, exactly
AMC)=42=5=2333
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Figure 11: Analysis of Throughput Degradation for the MPEG-2.

As Figure 11 confirms, the best way to avoid losing performance is to increase the weights of those arcs that belong to bigger cycles.
While performing the recycling transformation this may or may not be possible: for example if the length of arc a)g is big, cycle C)
will ultimately dictate the system throughput. However, in general the latency insensitive methodology allows us to push around relay
stations without need of re-designing any module. This, may be useful for example to reduce the length of an arc such as ag, which
belongs to both big and small cycles, while increasing in exchange the length of ajg, which is only part Cs: assuming that, before
re-balancing, /(ag) = 3 and I(a;9) = 1, while, after re-balancing, they become respectively 1 and 3, and assuming that all other arcs have
unit lengths, we have a final throughput of % =0.833 instead of -g— = 0.6, a 38% improvement.

7 Conclusions

A methodology based on the theory of latency insensitive protocols has been recently proposed in literature [5]: a latency insensitive
system is a synchronous digital system composed by functional modules exchanging data on point-to-point communication channels
in accordance with a communication protocol that allows them to operate independently from the latencies of the channels. As a
consequence, a hardware implementation of the system can be automatically synthesized such that its functional behavior is robust with
respect to large variations in wiring delays between modules. However, the method does not guarantee the same robustness for the
performance of the design, which indeed may experience a notable degradation. In [5], the authors do not address this problem nor they
suggest a technique for analyzing the latency/throughput trade-offs. We have presented the definition of lis-graph as a formal model to
analyze the properties of a latency insensitive system. The model allows us to specify the notion of recycling as a rigorous way to capture
the latency variations of the communication channels and to compute exactly the final throughput of the system. By discussing a case
study (an industrial MPEG-2 Video Encoder) we have illustrated how the present work enables the exploration of latency/throughput
trade-offs at any stages of the design process, thus facilitating the integration of pre-designed IP cores on a single chip. Future work will
focus on the application of these concepts to the optimization of the computation/communication trade-offs that arise while designing
software compilers for those machines which have a communication architecture with variable latency [1].
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PairEqualizer (a.b.a’.b') {
/* Find pair (n.n') s.t. g2 = 7)%. */
n=n"=0.d=b.d =V
while (§ # %) {
if (§>9){

d=d+n

"= l'a-d'n—a’-b'l
}
else {

d=d+n

n = ra -d;a-b ']
}

}

return (n,n’)

Figure 12: Algorithm to solve Problem 8.1.

8 Appendix

Let Z* denote the set of nonnegative integers, Z* the set of positive integers, and Q™ the set of positive rationale numbers. For all
a,beZ*,(0<ax<b)letdyy:Z* — Q" be the infinite sequence whose n-term is §q.5(n) = 3%-. Clearly, ¢, is decreasing monotone
and converging to 0 The following lemma shows that for all pairs (a,b), there ex1sts a posmve mteger B such that one term of sequence
$a,p(n) is equal to 5 L and, furthermore, that the sequence touches all the values 37—~ for Jj=1,2,..., while converging to 0.

Lemma 8.1 Va,b € Z*,(0<a<b), B Z*,(B>[2]), st Vi Z', a-ez* (¢,,,,(n)_8+j

Proof. For all a,b € Z*,(0 < a < b), and for all j € Z* suppose O,5(7) = B+J Then, i =a- (B + j)— b. Now, let B= [2], thena-B s

the smallest integer greater than (or equal to) b and for all j € Z*, i is a nonnegative integer. O
Any two sequences ¢, and ¢, share an infinite set of common terms. The following lemma provides a pair of equations to find

one of these common terms.

Lemma 8.2 Va,b,d',b' € Z*,(0 <a <b),(0<d <V'), IR,7 € Z* 5.t. P () = O i (7).

Proof. For all a,b,a',b' € Z*,(0 <a <b),(0<a <¥),let B=[2] and p' = [;;] Then, apply Lemma 8.1 for the two sequences
Ga,6,0x p» With B = max{f,B'}. Therefore, Vj € Z*, 3,7’ € Z* s.t. §g(71) = B+1 = g p (7). ]

However, we are interested in finding the first common term between two sequences 0a, and Oy 4. Since the two sequences are
decreasing monotone this means that we are looking for the pair of positive integers n,n’ s.t. 0o () = ¢ » (') and n+n' is minimum.
This problem can be casted as the following instance of the Integer Linear Programming (ILP) problem.
Problem 8.1 Given: Two pairs of nonnegative integers (a,b), (a’,') € (Z*)? and such thata < b, a’ < b'.
Minimize: The cost C = n+n’ over all nonnegative integers n,n’ € Z*.

al

btn b+n

Subject to : 4@

Lemma 8.2 guarantees that this problem has solution, since there exists an infinite number of pairs (n,n’) which satisfy constraint (4).
Fig. 12 reports a a simple algorithm to solve this problem.
Problem 8.1 can be extended to the case of K pairs of nonnegative integers as follows.

Problem 8.2 Given: K pairs of nonnegative integers (a;,b1), (a2,b2),...,(ak,bx) € (Z*)?
Minimize: The cost C = Z,’f:, n; over all nonnegative integers n; € Z*.

ay
T R )

The solution of this problem can be obtained by applying recursively the procedure in Figure 12 on a binary tree computational struc-
ture, where each node corresponds to one call of the procedure. In fact, the final solution is independent from the order adopted to
subsequently select pairs of fractions to equalize.
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