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Abstract. In shared-memory multiprocessors sequential consistency offers a naturcil
tradeoff between the flexibility afforded to the implementor cind the complexity of the
programmer's view of the memory. Sequential consistency requires that some inter
leaving of the local temporal orders of read/write events at different processors be a
trace of serial memory. We develop a systematic methodology for proving sequential
consistency for memory systems with three parameters —number of processors, num
ber of memory locations, and number of data values. From the definition of sequenticil
consistency it suffices to construct a non-interfering observer that watches eind reorders
read/write events so that a trace of sericd memory is obtmned. While in general such
ein observer must be unbounded even for fixed values of the parameters —checking
sequential consistency is undecidable!— we show that for two peiradigmatic protocol
classes —lazy caching «ind snoopy cache coherence— there exist finite-state observers.
In these cases, sequential consistency for fixed parameter values ceui thus be checked
by language inclusion between finite automata.

In order to reduce the cirbitrcu-y-parameterproblem to the fixed-pcirameter problem,
we develop a novel framework for induction over the number of processors. Cleissiccil
induction schemas, which are based on process invairicints that are inductive with re
spect to an implementation preorder that preserves the temporal sequence of events,
are inadequate for our purposes, because proving sequential consistency requires the re
ordering of events. Hence we introduce merge invariants, which permit certain reorder-
ings of read/write events. We show that under certain reeisonable assumptions about
the memory system, it is possible to conclude sequential consistency for any number
of processors, memory locations, and data values by model checking two finite-state
lemmas about process and merge invariants: they involve two processors each accessing
a maximum of three locations, where each location stores at most two data values. For

both lazy caching cind snoopy cache coherence weare able to discharge the two lemmas
using the model checker MOCHA.
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1 Introduction

Shared-memory multiprocessors are an important class ofsupercomputing sys
tems. In recent years a number of such systems have been designed in both
academia and industry. The design of a correct and efficient shared memory is
oneof the most difficult tasks in the design ofsuchsystems.The shared-memory
interface is a contract between the designer and the programmer of the multi
processor. In general, there is a tradeoff between the ease of programming and
the flexibility of shared-memory semantics necessary for an efficient implemen
tation. Not surprisingly, a number of abstract shared-memory models have been
developed.

All abstract memory models can be understood in terms of the fundamen
tal serial-memory model. A serial memory behaves as if there is a centralized
memory that services read and write requests atomically such that a read to a
location returns the latest value written to that location. Coherence^ requires
that the global temporal order of events (reads and writes) at different processors
be a trace of serial memory. Sequential consistency [Lam79] ignores the global
temporal order and requires only that some interleaving of the local temporal
orders of events at different processors be a trace of serial memory. Although se
quential consistency is a strictly weaker property than coherence, the absence of
a synchronizing global clock between the different processors in a multiprocessor
makes a sequentially consistent memory indistinguishable from a serial memory.
Compared to coherence, sequential consistency clearly offers more flexibility for
an efficient implementation; yet, most real systems that claim to be sequentially
consistent actually end up implementing coherence. In an effort to get more
flexibility for implementation, memory models that relax local temporal order
of events at each processor have been developed in recent years. This has been
achieved at the cost of complicating the programmer's interface. These mem
ory models such as weak ordering, partial store ordering, total store ordering,
and release consistency [AG96] relax the processor order of events in different
ways and provide fence or synchronization operations across which sequentially
consistent behavior is guaranteed.

We focus on the verification of sequential consistency for two reasons. First,
the interface provided by sequential consistency is clear, easy to understand, and
widely believed to be the correct tradeoff between implementation flexibility
and complexity of the programmer's view of shared memory. In fact, there is
a trend of thought [Hil98] that considers the performance gains achieved by
relaxed semantics not worth the added complexity of the programmer's interface
and advocates sequential consistency as the shared-memory interface for future
multiprocessors. Second, even relaxed memory models have fence operations
across which sequentially consistent behavior should be observed. Hence, the
techniques developed in this paper will be useful for their verification also.

' Implementors of cache-based shared-memory systems have used the notion of cache
coherence for a long time but the definition of coherence as stated here was first
given in [ABM93].



High-level descriptions of shared-memory systems are typically parameter
ized by the number n of processors, the number m of memory locations, and the
number v of data values that can be written in a memory location. A param
eterized memory systems consists of a central-control part C and a processor
part P. Both C and P are functions that take values for m and v and return a
finite-state process. An instantiation of the system containing n processors, m
memorylocations, and v data values is constructed by composing C{7n, v) with n
copies of P{m, v). We would like to verify sequential consistency for all values of
the parameters. However, sequential consistency is not a local property; correct
ness for m processors (locations, values) cannot be deduced by reasoning about
individual processors (locations, values). The following observations about real
shared-memory systems, which we assume in our modeling, are crucial for our
results. We assume that the memory system is monotonic and symmetric with
respect to both the set of locations, and the set of data values. Monotonicity in
locations means that every run of the system projected onto a subset of locations
is a run of the system with just that subset of locations. Monotonicity in data
values means that a sequence is a run of the system with some set of possible
data values if and only if it is a run of the system with a larger set ofdata values.
Symmetry in locations means that, if o" is a run of the memory system, and A/
is a permutation on the set of locations, then A/(o-) is also a run of the memory
system. Finally, symmetry in data values means that, if cr is a run of the memory
system, and A,, is any function from data values to data values, then A,;(o-) is
also a run of the memory system.

Even for fixed values of the parameters, checking if a memory system is se
quentially consistent is undecidable [AMP96]. The main reason for the problem
being undecidable is that the specification of sequential consistency allows a pro
cessor to read the value at a location after an unbounded number of succeeding
writes to that location by other processors. In real systems, finite resources such
as buffers and queues bound the number of writes that can be pending. It is
sufficient to construct a witness that observes the reads and writes occurring
in the system (without interfering with it) and reorders them while preserving
the order of events in each processor such that a trace of serial memory is ob
tained. We call such a witness an observer. If a finite-state observer exists, then
it can be composed with a fixed-parameter instantiation of the memory system
and the problem of deciding sequential consistency is reduced to a language-
containment check between two finite-state automata which can be discharged
by model checking. In the concrete examples we have looked at (see below),
we have indeed seen that a finite-state observer exists for fixed values of the
parameters.

However, our goal is to verify sequential consistency for arbitrary values
of the parameters. Towards this end, we first develop a novel inductive proof
framework for proving sequential consistency for any number n of processors,
given fixed m and v. Inductive proofs on parameterized systems [KM89] use an
implementation preorder and show the existence of a process invariant such that
the composition of the invariant with an additional process is smaller than the



process invariant in the preorder. The preorders typically used —for instance,
trace containment and simulation— preserve the temporal sequence of events.
Since wecheck a sufficientcondition for sequential consistency by the mechanism
of an observer that reorders the read/write events of the processors in the system,
preorders that preserve the temporal sequence of events do not suffice for our
purpose. Our inductive proof strategy first determines a process invariant I\
of the memory system with respect to the trace-containment preorder to get a
finite-state abstraction that can generate all sequences of observable actions for
any number of processes. We then find a merge invariant In such that (1) the
single-process memory system containing In is sequentially consistent, and (2)
there is an observer that maps every run <7 of In\\P that can be produced in
an environment of Ii to a run a' of In, such that the read/write events in <t'
are an interleaving of the read/write events of In and P in <7, and the traces
obtained from u and <7' are identical. Given a run 7 of the memory system with
n > 1 processors, we use the observer to create a run 7' of the memory system
with n —1 processors, such that 7 and 7' are identical when projected to the
events of the first n —2 processors, and the read/write events of the (n —l)-st
processor in 7' are an interleaving of the read/write events of the (n - l)-st and
n-th processors in 7. By doing this n times, we generate a run of the memory
system with a single processor, which is sequentially consistent by the base case
of the induction.

The induction demonstrates sequential consistency for any number of pro
cessors, but given m and v. We would like sufficient conditions under which
using fixed values for m and v lets us conclude sequential consistency for all m
and V. To that end, we impose three requirements on the process and merge
invariants. The first two requirements —symmetry and monotonicity on mem
ory locations— are identical to the corresponding assumptions on the memory
system. The third requirement is called location independence. A process is loca
tion independent if it has the property that a sequence of events is a run of the
process with m locations if the m sequences obtained by projecting onto indi
vidual memory locations are runs of the process with a single location. We show
that if the two invariantssatisfy location symmetry, location monotonicity, and
location independence, and the observer is location and data independent, then
it suffices to do the induction for three memory locations and two data values.
As a result, the correctness of the memory system can be proved by discharging
two finite-state lemmasusing a model checker —one that proves the correctness
of the process invariant, and another that proves the correctness of the merge
invariant.

Our proof framework can be applied to a variety of protocols; in particular,
all cache-coherence protocols described in [AB86] fall into its domain. Wedemon
strate the method by verifying two example protocols —lazy caching [ABM93]
and a snoopy cache-coherence protocol [HP96]. The correctness of lazy caching
has beenestablished before by manual proofs [ABM93,Gra94,LLOR99]. The cor
rectness of the snoopy cache-coherence protocol is argued informallyin [HP96].
Finite-state observers exist for both these examples. In both cases, the proof of



a parameterized system was reduced to finite-state lemmas in the way described
above, and discharged by our modelchecker MOCHA [AHM"^98]. Manual effort
was required to construct the process and merge invariants, and the observer,
and to verify that the assumptions on the memory system and the requirements
on the invariants and observer are indeed satisfied.

Related work. We use process induction for the verification of an abstract
memory model. We list related work along two axes —work that verifies ab
stract memory models, and work that verifies systems with an arbitrary number
of processes. [MS91,CGH"*"93,EM95] verify finite instantiations of parameter
ized memory systems using automatic techniques. [PD95] automatically proves
correctness for an arbitrary number of processors but is limited to coherence.
[LD92,LLOR99,PD96,PSCH98] verify abstract shared-memory models for all
values of parameters but the proofs are not automatic. [GMG91,Gra94,NGMG98]
offer sufficient conditions for the satisfaction of sequential consistency that can
then be checked on the memory system. [KM89] gives an inductive proof frame
work for proving the correctness of parameterized systems. [BCG89,WL89,ID96]
and [GS97,EN98] verify parameterized systems but they are not concerned with
the specific problem of verifying memory models.

2 Parameterized Memory Systems

2.1 I/O-processes

We use I/O-processes that synchronize on observable actions to model memory
systems. Formally, an I/O-process A = (Pnv(A), 06s(A), 5(A), 5/(A),T(A)) is
a quintuple with the following components:

- A set Priv{A) of private actions and a set Obs{A) of observable actions,
such that Priv(A) n Obs(A) = 0. The set Act{A) is the union of Priv{A)
and Obs{A). Private actions are outputs, whereas observable actions can
be both inputs and outputs. The set of extended actions 11{A) is given by
Priv{A) X {out} \J Obs{A) x {in, out).

- A finite set 5(A) of states.
- A set 5/(A) C 5(A) of initial states.
- A transition relation T{A) C 5(A) x /7(A) x 5(A) satisfying the property

that for all s G 5(A) and tt G Obs{A) x {in}, there is a state s' G 5(A) such
that (s, n, s') G T{A).

For all TT G /7(A), the first component is denoted by First{ir) and the second
component by Second(ir). A sequence of extended actions tti, 7r2,..., tt/,. of A is a
run if there exist states sqi sii S2) •••>Sk such that sq G 5/(A) and (s,-, tt,-, s,+i) G
T(A) for all 0 < i < k. The projection operators First and Second are extended
to runs in the natural way. The set of all runs of the I/O-process A is denoted by
i7(A). A run is closed if Second{iTi) = out for all actions tt,- in the run. For any
set /? C Act (A), the restriction of the run cr to /? is the subsequence obtained
by considering the elements from (3 x {in, out} in <t, and is denoted by [<T]p. For



any run (t of I/O-process A, the restriction of a to Obs{A) is called a trace. We
say that tr{a-) is the trace obtained from the run a. The set of all traces of the
I/O-process A is denoted by r{A).

Let Ai and A2 be two I/O-processes. We say that Ai refines A2, denoted by
•^1 -^21 if (1) 06s(j4i) C Obs{A2), and (2) every trace of Ai is a trace of A2.
The I/O-processes Ai and A2 are compatible if (1) Priv{Ai) r\Act{A2) = 0 and
(2) Priv{A2) ni4c/(/li) = 0. The composition A = i4i||.(42 of two compatible
I/O-processes Ai and A2 is the I/O-process A such that

- Priv{A) = Priv{Ai) UPriv(A2), and 06s(>l) = 06s(>li) UObs{A'>).
- 5(>l) = 5(yli) X5(/l2), and SiiA) = Si{Ai) x Si{A2).
- ({siiS2),7r, (<i,<2)) € T{A) iff one of the following three conditions holds:

1. TT = (a, in) and for A: = 1,2, if a G Act{Ak) then
{sk,{a, in),tk) 6 T{Ak) otherwise Sk = tk-

2. TT = (a, out) and (si, (a, out),ti) 6 T{Ai), and if a G Act{A2) then
(s2, (a, i«),i2) € T(A2) otherwise S2 = <2-

3. TT = (a, out) and (s2. (a, out),t2) € T{A2), and if a G Act(Ai) then
(si, (a, in),ti) G T{Ai) otherwise si = <1.

Suppose that Ai and A2 are compatible I/O-processes. A run <t = tti, 7r2,..., tt^
of Ai can be closedby A2 if there is closed run o' of A1IIA2 such that First{o-) =
First{[a']Act{A,))-

2.2 Parameterized memory systems

A parameterized memory system M has three parameters —the number n of pro
cessors, the number m of memory locations, and the number v of data values. The
parameterized memory system M is built from two parameterized I/O-processes
C and P which have two parameters —the number m of memory locations, and
the number v of data values. Intuitively, the I/O-process P represents a single
processor in the system and C represents a central controller. The I/O-process
M{n,m,v) is built from the I/O-processes C{m,v) and P{m,v) by composing
C(m,u) and n copies of P{m,v). Given n > 0, m > 0, and u > 0, the memory
system M{n,m,v) is an I/O-process that heis processors numbered from 1.. .n,
memory locations numbered from 0.. .m —1, and data values numbered from
0.. .u — 1.

We now formally define a parameterized memory system. Let N be the set
of all non-negative integers. For any k > 0, let Njt denote the set of all non-
negative integers less than k. A parameterized memory system is a pair (C, P)
such that both C and P are functions that map N \{0} X N \ {0} to I/O-
processes such that for all m > 0 and v > 0, we have that Priv{C{m,v)) =
PrivNamesc x x (Nt, U {-L}), Obs{C{m,v)) = ObsNamesc x Nm x (N„ U
{-L}), Priv{P{m,v)) = PrivNamesp x x (N^U{-L}), and Obs{P[m,v)) =
ObsNamesp xN^ x (NvU{±}), where PrivNamesc, ObsNamesc, PrivNamesp,
and ObsNamesp are finite sets that satisfy the following properties:

1. PrivNamesc O ObsNamesc = 0, and PrivNamesp n ObsNamesp = 0.



2. PrivNamesc ^ [ObsNamesp U PrivNamesp x N) = 0, and ObsNamesc H
{PrivNamesp x N) = 0.

Z. RS PrivNamesp and W E PrivNamesp.

The functions name, loc, and val are defined on Act{C{m,v)) \J Act[P{rn,v)),
and extract respectively the first, second, and third components of the actions.
Given some m and v, let RdWr{m, r) be the union of the set of read actions
{{R, j, /:)|j < m and k < v} and the set of writeactions {(1^, j, A:)|j < m and k <
v].

For all m and v and for all /: > 0, let Pk{m,v) denote the I/O-process
that is obtained from P{m,v) by renaming every private action a to action a',
such that (1) name(a') is the pair {name{a),k), (2) loc{a') = loc{a), and (3)
val[a') = val(a). A parameterized memory system defines a function that maps
N XN \ {0} XN \ {0} to I/O-processes as follows:

M{0,m,v) =C{m,v)

M{n + 1, m, v) = M{n, m, v)||Pn+i(m, u)

For particular n,m,v, we say that M{n,m,v) is a memory system. Note that
M{n,m,v) is compatible with Pn+i{m,v), due to the renaming of private ac
tions in Pn+i{m,v), and the conditions on the names of private and observ
able actions of C and P described above. The observable actions of M{n,m,v)
are the same for all n > 0. We define a function proc on the set of actions

Uit.m.v if a is a private action of Pk{m,v), then we
have proc{a) = k.

2.3 Sequential consistency

Let Memop{n,m,v) be the union of the sets {((P, O'i'^')|0 < i < n and j <
m and k < v} and {((W,i),j,/;)|0 < i < n and j < m and k < u). Thus
Memop{n, m, u) denotes the set of read and write operations of M(n, m, v). The
functions name, loc, and val, which were originally defined on actions of P{m, v)
and C(m, v), can be defined analogously on actions of M[n, m, v). Thus, the four
functions name, loc, val, and proc are defined on all members of Memop{n,m, v).
We use Memop to denote the set Un mwMemop{n, m, u).

Let = TTi, TTo,..., TT/;. be a sequence in Memop', the set of finite sequences
with elements from Memop. The abstraction of (t, denoted by A{a), is a labeled
directed graph {V, E, L), where V is a finite set of vertices, E C V x V, and L is
a function from V to Memop(n,m,v), such that (1) V = {1,2,...,/;}, (2) for all
i € V, we have that L{i) = nj, and (3) for all x,y £ V, we have that {x,y) £ E
iff proc{L{x)) = proc{L{y)) and x < y. We observe that for every sequence
(T £ Memop', the abstraction A((r) is an acyclic graph. Thus, we can obtain
total orderings of the vertices in A((t) that respect the dependencies specified
by its edges. Since the edges form a partial order, several such total orders,
which are called linearizations of cr, may exist. Formally, a one-to-one mapping
f : V V is a. total order of A{<t) = {V,E,L) if for all x,y £ V, whenever



{x,y) ^ E we have that f~^{x) < If / is a total order of A{(t), then
the sequence L{f{l)),L{f{2)),...,L{f{\V\)) of actions in Memop{n,in,v) is a
linearization of a.

We are interested in defining which sequences from Memop' are serial. Intu
itively, a sequence from Memop* is serial if it can be produced by serial memory
where each read from a location returns the value written by the last write
to that location. We state this formally below. Let cr = tti, 7r2,..., TTfc be a se
quence in Memop*. We define lastwritea £is a function that eissociates with each
position i in cr, the position j in <r where the most recent write to the loca
tion /oc(7r,) was done. Formally, lastwritea is a mapping from the from the set
{1,2,to {1,2,U {X} such that lastwriteo {i) = j if there exists a j
such that j < i, loc(iTi) = loc{7rj), name{irj) = {W,ni) for some rii, and there
does not exist any j' with j < j' < i, name{7rj') = (W,no) for some n2, and
loc{7rji) = /oc(7r,); otherwise lastwrite„{i) = X. The sequence a is serial if for
all i < k, if lastwrite(,{i) ^ X, then i;a/(7r,) = val{-Kiastwrite„(i))-

For the following definitions, we extend the abstraction function A to operate
on arbitrary sequences <t by first restricting it to actions in Memop. Formally, for
any cr, wehave that A(cr) = A{[a]Memop)- Weextend A to operate on sequences of
extended actions by operating it on the first component of each extended action.
Formally, if <7 is a sequence of extended actions, then A{o-) = A{First{(r)). Let

= Un.m.t; Then Ais defined for all sequences in Em-

Definition 1 (Observer). Let M be a parameterized memory system. A func
tion Q from Em to Memop* is an observer for the memory system M{n, m, v) if
for every run a G E{M{n, m, r)), the sequence f2(<r) is a linearization of a. The
observer Q is a serializer for M(n, m, v) if for every run a G E{M[n, m, v)), the
sequence /2(cr) is serial.

Definition 2 (Sequential consistency [Lani79]). Let M be a parameterized
memory system. The memory system M{n, m, r) is sequentially consistent if it
has a serializer. The parameterized memory system M is sequentially consistent
if M{n, m, v) is sequentially consistent for all n > 0, m > 0, and v > 0.

2.4 Assumptions on parameterized memory systems

In order to reduce the proof of sequential consistency of the parameterized
memory system to finite state model checking obligations, we make some as
sumptions about memory systems. We first state a few additional definitions.
Let <7 be a run of the memory system M(n,m, u). We denote by cr|j the run
a restricted to the jth memory location. Formally, we have a-\j = [<r]^, where
/? = {a Ia GAct{M{n, m,v)) and loc{a) = j}. For j > 0, we denote by (7<j the
run <7 restricted to memory locations numbered less than j; that is, = [crj^g,
where /?= {a | a G Act{M{n,m,v)) and loc{a) < j).

Assumption 1 (Location symmetry) Let A : ^ be a permutation
function on the set of memory locations. Extend A to actions, extended actions
and extended action sequences in the natural way. Then,
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1. for all (T G i7(C(m, v)), we have that A(<7') £ E{C{rn, u)), and
2. for all a 6 E{P{m, v)), we have that A(cr) 6 L{P{m, u)).

Assumption 2 (Location monotonicity)

1. If o £ i7(C(m, v)), then for all j < m, we have £ II{C{j,v)).
2. If <T £ E{P{m, v)), then for all j < m, we have <r|<j £ E{P{j, v)).

Assumption 3 (Data symmetry) Let A : NvU{±} Ni,U{_L} be any func
tion on the set of data values, such that A(x) = ± iff x = A.. Extend A to actions,
extended actions and extended action sequences in the natural way. Then,

1. for all a £ E{C{m, v)), we have that A(o') £ E{C{m, w)), and
2. for all a £ E{P{m, v)), we have that A((r) £ E{P{m, v)).

Assumption 4 (Data monotonicity) For all m, n, vi, V2, if ui < V2, then

1. for all a G Act{C{m,vi))'', we have a £ E{C{m,vi)) iff cr £ E[C{m,V2)),
and

2. for all a £ Aci{P{rn, vi))", we have a G E{P{m, ui)) iff <t £ E{P[m, V2))-

Note that the function A in assumption 1 above is a permutation on the set
of locations, whereas the function A in assumption 3 could be any arbitrary
function on the set of data values. Let Aq be the function from Act[M{n, m, u)) to
Act{M{m,n,v)), which changes the location attribute to 0. Formally, Ao(a) = a'
such that name{a') = name{a), loc{a') = 0, and val{a') = val{a). We extend
Ao to extended action sequences in the natural way. The observer i? is location
independent if for all j, we have that f2(Ao(cr|j)) = Ao(f?(cr)|j). The observer Q
is data independent if for every function A : Nt, U {±} Nu U {±} such that
A(a:) = X iff X= _L, we have that f2(A((r)) = A(f2((r)).

Proposition 1. Suppose the parameterized memory system M satisfies assump
tions 1-4- For all n > 0, the following two statements are equivalent:

1. There is a location and data independent serializer for M{n,n,2).
2. There is a location and data independent serializer for M{n,m,v) for all

m > 0 and i; > 0.

Suppose we fix the number of processors to n. Due to the above proposition it
suffices to consider only n locations and 2 data values, if the serializer we de
sign is location and data independent. Since our objective is to prove sequential
consistency for an arbitrary number of processors, we give a method based on in
duction over the number of processors for this. The inductive step in the method
considers two processors and designs a serializer-like function for them. Then an
argument similar to the one used in proving Proposition 1 will let us show that
it is enough to perform the inductive step for fixed numbers of memory locations
and data values.



3 Reducing Sequential Consistency to Finite-state Proof
Obligations

3.1 Induction on the set of processors

We show how to check sequential consistency of M(n,rn,v) for all n > 0 by
induction over the number of processors. We do not need any of the assumptions
1-4 for the results in this section.

We note that every trace of r{M{n,m,v)) can be obtained by a run in
M(n 4- l,m,v) in which the (n + l)-st processor does not perform any out
put action. Hence r{M{n,Tn,v)) is contained in r{M[n + l,m,v)) for all n.
We would like to analyze a processor in an environment consisting of an ar
bitrary number of processors. Hence, we would like an upper bound on the
trace set r{M{n,m,v)) for all n. A sufficient condition for this upper bound
is captured by process invariants [KM89]. A function /j with two arguments m
and V is a possible process invariant for the parameterized memory system M
if for all m and v, we have that Ii{m,v) is a I/O-process such that that (1)
Obs{fi{m,v)) = Obs(M{n,m,v)) for all n > 0 (recall that the set of observable
actions of M{n,m,v) is the same for all n > 0), and (2) /i(m, v) is compatible
with P{m,v).

Definition 3 (Process invariant). Let Ii be a possible process invariant for
the parameterized memory system M. The function Ii is a process invariant of
M if the following condition is true for all m and v:

[A/,(m,u)] 1. C{m,v) •< I\{m,v)
2. h{m,v)\\P{m,v) :< Ii{m,v)

Proposition 2. Suppose I\ is a process invariant of the parameterizedmemory
system M. Then, for all n > 0, m > 0, and v > 0, we have that M{n,m,v) •<
h{m,v).

If the parameterized memory system M is sequentially consistent, then by our
definition, there exists an observer Q for M such that for every sequence c
of memory operations of M{n,m,v), the function 1? produces a rearranged se
quence cr' such that (1) a' is serial, and (2) a and a' agree on the ordering of the
memory operations of each individual processor. We wish to provide an inductive
construction that produces such an observer for arbitrary n. The construction
uses the notion of a generalized processor called a merge invariant, and a witness
function that works likean observer for a two-processor system consisting of the
merge invariant and P{m,v).

Recall that RdWr{m,v) is the set of private actions of P(m, v) that represent
read and write operations. For technical reasons, we want the memory opera
tions of the merge invariant to be named differently than those of P{m,v). Let
Rd'{m,v) = {{R',j,k)\j < m and k < u}, and let Wr'{m,v) = {{W,j,k)\j <
m and k < v}. Let RdWr'{m,v) denote the union of Rd'{m,v) and Wr'(m,v).
Wedefine the function prime on RdWr[m, u) by prime{{R,j, k)) = {R',j, k) and
prime{{W,j,k)) = {W',j,k). We define the function unprime on RdWr'{m,v)
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by unpriTne{{R',j,k)) = {R,j,k) and unpriTne{{W',j, k)) = {W,j,k). We ex
tend prime and unprime to sequences of actions in the natural way. We say that
the sequence a' € RdWr'[m^v)' rearranges the sequence a G {RdWr{m,v) U
RdWr'{m,v))' ifa' isan interleaving ofprime{[a]fidwr{m,v)) and

A function I2 with two integer arguments m and v is a possible merge in
variant for the parameterized memory system M if for all m and v, we have
that l2{m,v) is an I/O-process such that (1) Obs{l2{m,v)) = Obs{P{m,v)),
(2) RdWr'{m,v) C Priv{l2{m,v)) and RdWr{m,v) HPriv{l2{m,v)) = 0, and
(3) hi'^yv) is compatible with both P{m,v) and C{m,v). Let /i be a pro
cess invariant of M and I2 be a possible merge invariant of M. A function
0 from Lih (m,t;)||P(m, v)) to X!{l2{m,v)) is a merging function if
<7 G i7(/2(m, t;)||P(m, u)) implies 0(0") G i7(/2(m, v)).

Definition 4 (Merge invariant). Let I\ be a process invariant and let I2 be a
possible merge invariant for the parameterized memory system M. The function
I2 is a merge invariant of M with respect to I\ if there exists a merging function
0 such that the following two conditions are true for all m and v:

[51/2(m,i;)] For every closed run cr of /2(m, i;)||C(rn, v), the sequence
unprime{[<T]fidWr'{m,v)) is serial.

[52/3,/,_0(m, v)] every run a of /2(m, r)||P(m, t;) that can be closed by
Ii{m,v), we have that0{o-) rearranges a, and [<T]obs(h{m,v)) = [0(<'')]o6i(/2(m,t;))-

Note that the I/O-process him, t;)||C(m, v) is a single-processor memory system.
We say that the merging function 0 is a witness for B2j^j^ &{m,v) if 0 makes
condition B2/^j, 0(m,v) true.

Let h be a process invariant of M. Suppose h is a possible merge invariant
of M, and 0 is a merging function such that 51/2(m, v) and B2i^j^ Q{m, v) are
true for some m and v. For some n > 0, consider the process /2(m, v)||M(n, m, v),
which can be written as /2(m,i;)(|P„(m, t;)||M(n —l,m,v). Consider any closed
run <T of l2im,v)\\M{n,m,v). Clearly there is a run a' of l2{m,v)\\Pn{m,v)
that is closed by a run of M(n —l,m, u) to produce a. Since h is a process
invariant of M, we have that o' is closed by a run of Ii{m,v). Therefore, us
ing 0 we can rearrange tr' to obtain a run 0(<t') of him^v) which is closed by
a run of M{n —l,m,tj). Thus we have managed to rearrange a closed run of
him, i;)||M(n, m, v) into a closed run of him, v)||M(n —1, m, v). By repeating
this procedure we eventually obtain a run of /2(m, i;)||C(m, v), which is sequen
tially consistent by condition 51/3(771, v). Since every run of Min,m,v) is also
run of /2(m, i;)||M(n, m, v), it follows that n applications of 0 effectively pro
duce an observer Q which is a serializer for Min,m,v). The existence of such
an observer implies the sequential consistency of Min,m,v).

Theorem 1. Let M be a parameterized memory system. If h is a process in
variant of M and h a merge invariant of M with respect to h, then M is
sequentially consistent.

Suppose that we manage to come up with possible invariants I\ and h, and a
merging function 0. Howdo we verify for all m and v that A/, (m, u), BXj^im, v).
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and B2i^j^^@{m,v) hold? In the following two sections, we describe sufficient
conditions whereby proving these obligations for fixed values of m and v will let
us conclude that they hold for all m and v.

3.2 Reduction to a fixed number of memory locations

In this section, we use assumptions 1 and 2 on the parameterized memory sys
tem. Further, we impose requirements on the process and merge invariants and
the merging function that will reduce the verification problem to one on a fixed
number of memory locations. The first two requirements are identical to assump
tions 1 and 2 on the parameterized memory system.

Requirement 1 (Location symmetry) Let A : ->• be a permutation
function on the set of memory locations. Extend A to actions, extended actions
and extended action sequences in the natural way. We require for the possible
process invariant I\ and the possible merge invariant lo that

1. for all <T G E{I\ (m, u)), we have that A((r) G i?(/i (m, v)), and
2. for all a G E{l2{rn,v)), we have that A((r) G i7(/2(m, v)).

Requirement 2 (Location monotonicity) We require for the possible pro
cess invariant I\ and the possible merge invariant In that

1. ifa-e {m, u)) then for all j < m, we have <T\<j GE{I\ {j,v)), and
2. if a- £ E{In{m, u)) then for all j < m, we have G

Forany run a-of In{m, u), wedefine tr'{a) as the restriction of<r to 06s(/2(m, t;))U
RdWr'{m,v). Let r'{In{m,v)) be the set {tr'{<T)\<T Gi7(/2(r7i, v))}. Recall that
Ao is a function that changes the location attribute of an action to 0.

Requirement 3 (Location independence) We requirefor the possible pro
cess invariant I\ and the possible merge invariant In that

1. <r € r{Ii{m,v)) if o- E Act{Ii{m,v)y, and for all 0 < j < m, we have
Ao(<r|j) G r(/i(l,u)), and

2. o- E r'(In(m,v)) if a E Act{In{Tn,v))', and for all 0 < j < m, we have
Xo{cr\j)erVn{i,v)).

Consider a merging function &. Wesay that 0 is location independent if whenever
<T E S{In{m, i;)||P(m, w)), then 0(Ao(o'|j)) = Ao(0(<r)|j) for all j < m.

Theorem 2. Let M be a parameterized memory system satisfying assumptions
1 and 2. Let I\ be a possible process invariant and let In be a possible merge
invariant for M satisfying requirements 1-3. Then the following conditions hold
for all V > 0:

1. i4/, (1, v) is true iff Aj^ (m, v) is true for all m > 0.
2. 51/3(1,1;) is true iff Blj^{m,v) is true for all m > 0.
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3. There is a location-independent witness & satisfying v) for I < 3
iff there is a location-independent witness 0' satisfying for
all m > 0.

The condition / < 3 in the last item of the above theorem comes from the
fact that a witness 0 needs to preserve three orderings while rearranging a run
of l2{rn,v)\\P[m,v) —(1) the order of memory operations in l2{m,v), (2) the
order of memory operations in P(m, v), and (3) the order of observable actions
in l2{m,v)\\P{m,v). If 0 does not preserve these orderings, and if 0 is location
independent, wecan prove that there exists a run a of 72(3, v)117^(3, v) such that
either 0(<r) does not rearrange a, or [o-]o65(/2(3,i;)) 7^ [0(o-)]o65(/3(3,t/))-

3.3 Reduction to a fixed number of data values

In this section, we assume that the memory system satisfies assumptions 3 and 4.
Recall the definition of a data-independent observer.

Theorem 3. Let M be a parameterized memory system satisfying assumptions
3 and 4- For all n > 0, m > 0, and v > 0, if Q is a data-independent observer
for the memory system M(n,m,i;), then Q is a serializer for M{n,m,2) iff Q
is a serializer for M{n,m,v).

Consider a merging function 0. We say that 0 is data independent if for all v,
and for every function A: U{1} -)• Nt, U {1} such that A(ar) = ± iff a; = ±,
we have that 0(A(d7)) = A(0(or)). Suppose that the witness for B2i^j^^@{m,v)
is data independent. Then the implicit observer function that is produced for
M{n, m, u) as a result of n applications of the witness is also data independent.

Corollary 1. Let M be a parameterized memory system satisfying assumptions
1-4- Let I\ be a possible process invariant and let I2 be a possible merge invariant
for M satisfying requirements 1-3. Let © be a location and data independent
merging function. Suppose ^4/, (1,2) and Bli^{l,2) are time, and 0 is a witness
for R2/2,/,,0(3,2). Then M(n,m,v) is sequentially consistent for all n > 0,
m > 0, and v > 0; that is, M is sequentially consistent.

4 Two Applications: Lazy Caching and Snoopy Coherence

We show how the theory developed in the previous section can be used to verify
sequential consistency of memory systems with an arbitrary number of proces
sors, locations and data values using a model checker. We consider two specific
memory protocols, namely the lazy caching protocol from [ABM93] and a snoopy
cache-coherence protocol from [HP96].

For each of these protocols, we first argue that assumptions 1-4 are satisfied
by the memory system, and that requirements 1-3 are satisfied by the process
and merge invariants. Then, we design a witness 0 and argue that it is location
and data independent. The following observations provide justification for our
informal arguments:
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- The invariants and the witness have the property that they never base their
decisions on data values. Thus, they are data independent by design.

- The memory system inherently enforces a total order on the writes to ev
ery location. In fact, every memory system we know of has this property.
Our merge witness respects this total order for every location. Let M be a
parameterized memory system and let 0 be a merging function. Let a be
a run of M and let j be any location. The order of writes in 0{(T)\j is the
same as the total order of writes to location j in a. Every read to a location
reads the value written to that location by some earlier write. The witness
also respects this causal relationship between the writes and the reads. If
two reads of location j access the value written by the same write, then the
witness places them in their temporal order of occurrence in 0(<7-)|j. Thus,
the ordering of events to a location j is independent of the events to other
memory locations and determined solely by the temporal sequence of events
to location j. Hence, our witness is naturally location independent.

We finally discharge the three proof obligations of Corollary 1 using our model
checker MOCHA.

Lazy Caching. The lazycaching protocol allows a processor to complete a write
in its local cache and proceed even while other processors continue to access the
"old" value of the data in their local caches. Each cache has an output queue in
which writes are buffered and an input queue in which reads are buffered. In order
to satisfy sequential consistency, some restrictions are placed on read accesses
to a cache when either writes or updates are buffered. A complete description of
the protocol can be found in [ABM93].

The I/O-process C{m, v) for this protocol is the trivial process with a single
state that accepts all input actions. The I/O-process P{m,v) is a description of
one processor and cache in the system. The set Priv{P{m,v)) hzis actions with
three different names: read, write, and update. An update action occurs when a
write gets updated to a local cache from the head of its input queue. There is
one action for each combination of these names with locations, processors and
data values —a total of Sxnxmxu private actions. The set Ohs{P{m,v))
has actions with one name: serialize. A serializeaction occurs when a processor
takes the result of a local write from the head of its output queue and transmits
it on the bus. The serialize action does not identify the processor which did the
action. Thus, a processor has m x v different observable actions.

The process invariant Ii is such that forall m and v, the I/O-process /i(m, v)
simply generates all possible sequences of serialize actions. It is trivial to see
that 11 is a process invariant. The merge invariant /o is exactly the same as P.
The merging function 0 is non-trivial. It queues write actions and delays them
until the corresponding update action is seen by all processors. It also delays
read actions until the corresponding write has been made visible. The witness
preserves processor order, never bases decisions on data values, and respects the
total order of writes that is inherent to the lazy-caching protocol. By design, the
witness is location and data independent.

14



We used MOCHA [AHM''"98] to verify that the merging function 0 is a
witness for the merge invariant for three locations and two data values. This
obligation had about 60 latches and required MOCHA about 4 hours to check
on a 625 MHz DEC Alpha 21164.

Snoopy Cache Coherence. The snoopy coherence protocol heis a bus on which
all caches send messages, as well as "snoop" and react to messages. Each loca
tion has a state machine which is in one of three states: read-shared, write-
exclusive, or invalid. If a location is in read-shared state, then a cache has
permission to read the value. If a location is in write-exclusive state, then a
cache has permission to both read and write the value. In order to transition
to read-shared or write-exclusive states, the cache sends messages over the
bus, and other caches respond to these messages. There is also a central memory
attached to the bus. When a location is not held in write-exclusive by any
cache, the memory owns that location and responds to read requests for that
location.

The I/O-process C{m,v) for this protocol models the central memory, and
P(m, v) models one processor with a local cache. The process C*(m, v) has no
private actions. It has observable actions with four different names: read-request,
write-requesi, read-response, and write-response. The process P{m, v) heis private
actions with two different names: read and write, and the same set of observable
actions as C{ni,v). None of the observable actions identify the processor that
did the action.

The process invariant is such that for all m and v, we have that /i(m, u) is
a generalization of the processor P{m,v). The processor is generalized so that
it can send a read-request for a location even if it already has the location in
read-shared, and a write-request even if it already has the location in write-
exclusive. The merge invariant /o is identical to Ii with the additional capability
to execute private read and write actions. The merging function 0 preserves
temporal order of occurrence of reads and writes. This simple witness works
because the snoopy protocol implements coherence. Again, by design the witness
is data and location independent. We used MOCHA to verify that /i(l,v) is a
process invariant and /i(3,t;) is a merge invariant. MOCHA required less than
15 minutes to check these.
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