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Abstract

Image Denoising and Interpolation based on Compression and Edge Models
by

Sai-Hsueh Grace Chang

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences
University of California at Berkeley

Professor Martin Vetterli and Professor Bin Yu, Co-Chair

This thesis investigates some innovative approaches to inverse problems in image restoration
and enhancement. The specific problems addressed include image denoising and image
interpolation. Before developing an algorithm, the first step is to find an appropriate image
model to use. To achieve this, we identify two successful domains of image processing,
namely, image compression and edge analysis, from which ideas can be applied to image
denoising and interpolation. The underlying framework for signal analysis and algorithm
development is based on wavelets, which conveniently provides a multiresolution, localized
space-frequency representation of the signal.

Wavelet thresholding is a simple and effective denoising method that has been
studied extensively in recently years. Most of the significant insights have stemmed from
the statistics community, and thus, not much have been researched on finding an appropriate
model for images and the corresponding wavelet thresholding strategy. We use a Bayesian
model for the distribution of the wavelet coefficients, namely, the Generalized Gaussian
distribution which has been widely used for image compression. From this distribution,
we propose a near-optimal threshold selection. This threshold value is used in the various
denoising algorithms in this thesis that incorporate wavelet thresholding with several image
models motivated by compression methods and edge analysis.

One of the first ideas we examine is using lossy compression for removing noise from
corrupted images. Previously proposed approaches were either unclear about the choice of
the coder or were less than a true lossy compression. We make a connection between lossy

compression and wavelet thresholding, and develop a systematic lossy compression method



to achieve simultaneous compression and denoising.

Next, we develop a spatially adaptive algorithm for image denoising. Images typ-
ically consist of edges, textures and smooth regions. In the wavelet transform domain, the
first two features are characterized by clusters of high energy transform coefficients and the
latter by low energy coefficients. Because edges are among the most important features
in an image, typical coders allocate the most resources for these high energy coefficients.
Distortion due to edge blurring is very noticeable; distortion due to additive random noise,
however, is not as discernible in the edge region. This edge preservation idea from cod-
ing can be applied to denoising, with the edge coefficients being only slightly modified to
preserve the edge sharpness, and the flat region coefficients being significantly smoothed to
guarantee the removal of most of the noise.

To conclude the denoising topic, we investigate the best strategy to combine mul-
tiple noisy copies of the same image. Typically, multiple sets of noisy observations of the
same data are averaged to obtain the best estimate of the noiseless version. Since wavelet
thresholding is effective for denoising one set of noisy observations, it is worthwhile to incor-
porate it with weighted averaging when multiple noisy copies are available. In particular,
we investigate which sequential ordering of the averaging and wavelet thresholding opera-
tion would yield a final result with the lowest mean squared error. The result shows that,
under the assumed Laplacian distribution for the coefficients (a special, simple case of the
Generalized Gaussian), the ordering is dependent on the distribution parameter, the noise
power, and the number of noisy copies.

Lastly, we develop an edge-preserving image interpolation algorithm. The available
image is modeled as a low resolution image of some higher resolution image which we wish
to estimate. The additional details needed to obtain the desired image is estimated by
extrapolating edge characteristics from the low resolution image. The problem model and

the edge analysis can be developed very naturally in the wavelet framework.
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Chapter 1

Introduction

Image restoration and enhancement is a useful but often difficult area, due to
the need to estimate and to reverse an unknown degradation process. An image is often
corrupted during an intermediate process such as transmission or acquisition, and depending
on the specific goals and applications, reversing this degradation may be only partially
achievable. To ameliorate the degradation, it is necessary to first devise a problem model,
including that of the degradation process and the image, and then to estimate the original
image from this model. This model of the problem and the image is application dependent,
and we investigate two applications in this thesis: image denoising and image interpolation.

The term “denoising” has been coined in recent years to refer to the classic problem
of removing noise from a corrupted signal, and it has gained a surge of interest partially due
to a simple yet effective technique called wavelet thresholding [22, 21, 23, 24, 16]. The Wiener
filter is a traditional approach which results in the optimal linear least squares estimator of
the original signal. The non-linear wavelet thresholding, when appropriate parameters are
chosen, often yield images visually better than those from Wiener filtering. Many results
on wavelet denoising stem from statistics and provide valuable theoretical insights into the
performance of wavelet thresholding under different signal and noise models. In this work,
we approach denoising from a more image processing point of view, and, in our algorithms,
combine wisdoms from both the theoretical works and the image processing insights to be
discussed shortly.

Image interpolation, often for purposes of magnification or zooming, is another
classic problem investigated in this thesis. The most simple-minded algorithms are zero-

order hold (or pixel replication) and linear interpolation, both known to produce blurry



and jagged images. Interpolation using higher order polynomials and splines often yield
visually more pleasant images. However, they all assume some smoothness constraints on
the underlying signal, which may not always be valid (such as in the case of interpolating
a step edge). Our approach is to devise constraints adaptive to the local image character-
istics (based on an appropriate image model) rather than to employ presumed smoothness
constraints.

The initial step in addressing these restoration and enhancement problems is to
devise an image model. Image modeling is a daunting task in itself, and there is really no
consensus on a general model which can well describe an arbitrary image. Most of the time,
the model used is application specific. For example, in analyzing and synthesizing texture
images, a combination of deterministic periodic components and random field is frequently
used [25, 26]. This approach, however, may not be suitable for an image which has no
periodic components but with many edges. A lack of general image models has prompted
us to ask what branches of image processing have been successful. fmage compression and
edge analysis are two such branches and they provide the basis for numerous motivations
in this work.

A coder which compresses an image well must provide a good model of the image
since it can represent the image concisely. Such a coder exploits the predictable structures in
a typical image to reduce the redundancy in the coded bits. White noise, on the other hand,
is not compressible because it does not have correlated structures. Thus, compression can
provide a suitable model which distinguishes between a structured data (a typical image)
and a sequence of random noise.

A framework that has enabled excellent performance for both compression and
edge analysis is the wavelet analysis. Its ability to provide localized information in the space
and frequency domain and a multiresolution structure has made it an attractive framework.
A notable predecessor of wavelet-based coders is the pyramid scheme [6]. Later, image com-
pression based on the pyramid scheme or wavelet analysis (collectively called subband coding)
became popular as its superiority over DCT-based compression became clear (see [67] for
a survey of subband coding). The breakthrough in wavelet-based image compression was
the embedded zerotree wavelet (EZW) coder [55], which was based on the observation that
insignificant transform coefficients tend to occur in a predictable tree structure. The SPIHT
coder by [53] uses the same intuition. Some later wavelet-based algorithms (for example

[37, 68]) used classification or on-the-fly prediction to adapt the coder to spatially changing



energies in the transform coefficients. Wavelets are also the backbone framework for several
top contenders in the JPEG2000 image compression standard. Thus, the wavelet analysis,
along with other ideas and motivations extracted from various compression methods, are
deemed to provide a suitable framework for the image denoising problem.

Edges are among the most important features in an image, for they are the com-
ponent most accountable for making an object recognizable. Edge analysis, thus, is an
important part in many image processing applications. The edge detection methods of
[7, 42] can also be formulated in the wavelet framework [40, 41], as the detection of signifi-
cant local extrema or of zero-crossings in the wavelet transform. In [40, 41), keeping these
significant local extrema was used for the purposes of compression or denoising. In the
interpolation problem, edge analysis is important if one wishes to preserve the regularity of
the edges and not create an overly smoothed image.

In this thesis, the goal is to investigate how ideas from image compression and edge
analysis combined with the wavelet framework can give a new way of thinking about image
restoration and enhancement. A large part is dedicated to developing different approaches of
image denoising, within the wavelet thresholding paradigm. We commence with background
materials in Chapter 2, including an introduction of the well-known wavelet transform, and
the idea of wavelet thresholding along with a brief survey of that literature. Subsequently,
in Chapter 3 we present our Bayesian approach to wavelet thresholding, tailored for denois-
ing images. It has been widely accepted in the image coding community that the subband
coefficients collectively form a histogram which is sharply peaked at zero and symmetric
about zero. This distribution has generally been described by the Laplacian distribution
for simplicity or the more encompassing Generalized Gaussian distribution. Using this dis-
tribution, we propose a threshold which is close to the optimal threshold that minimizes
the expected squared error for the soft-thresholding estimator. Building on this result, in
Chapter 4 we develop a lossy compression method which achieves simultaneous denoising
and compression when both features are desired. The idea of using lossy compression as a
means to denoise has been proposed in several work [54, 49, 12, 13, 35]. A typical image has
a predictable structure that can be highly exploited by a coder, while a sequence of random
noise does not and thus is not compressible. This disparity suggests that a compression
method can distinguish the noise from the image. The compression algorithm for denois-
ing developed in this thesis incorporates wavelet thresholding, coefficient quantization, and

entropy coding, of which the decision on certain parameters are based on the Minimum



Description Length principle [50]. In Chapter 5, we investigate the spatial adaptivity of
threshold selection, an area not explored in the literature. This is motivated by the intu-
ition that the knowledge of the spatially changing characteristics of the image can yield a
threshold selection adaptive on a pixel-by-pixel base, which in turn generates a significantly
better denoised image than that due to a uniform threshold (measured both visually and
in the mean squared error sense). The adaptivity of the threshold value is based on context
modeling, a commonly used technique in compression methods for adapting the coder on-
the-fly to local image characteristics. Lastly, in Chapter 6, we extend wavelet thresholding
denoising to situations when multiple corrupted copies are observed. The most straight-
forward recovery method is to simply compute a weighted average of the noisy copies. We
explore whether an additional thresholding step would improve the performance, and in-
vestigate the preferred ordering (averaging first or thresholding first) which yields a lower
mean squared error.

To conclude this thesis, in Chapter 7 we present an edge-preserving interpolation
algorithm, based on estimating higher resolution information from the available image. The
idea is to observe that extrema points in the wavelet transform propagate across scales, and
the higher resolution information can be obtained by extrapolating this trend into the finer
scale. In Chapter 8, we summarize the findings in this thesis and propose related future

directions.



Chapter 2

Introduction to Wavelet Transform

and Wavelet-based Denoising

The basic analysis tool used in this thesis is the wavelet transform. Its usefulness
and efficient implementation has made it ubiquitous in the signal processing community. It
offers an alternative to Fourier analysis and provides information which have been shown to
be suitable for applications such as image compression, denoising and edge characterization
(see, for example, [55, 53, 37, 68, 22, 24, 39, 38] and other work referenced therein). While
wavelets have deep roots in mathematics, in Section 2.1 we only briefly describe here their
notations, functionalities, and implementations, and refer the readers to standard literatures
for a detailed discussion [19, 20, 39, 58, 60].

A substantial part of this thesis is based on extensions of the wavelet thresholding
technique for signal denoising. Thus, Section 2.2 presents a survey of the different thresh-
olding methods proposed in the literature. We first describe the seminal work of Donoho
and Johnstone [22] on wavelet thresholding, and its asymptotic near-optimality. A Bayesian
approach allows one to incorporate some prior knowledge of both the signal and noise. Thus,
this will be our preferred framework since for a large class of natural images, the wavelet
transform coefficients are often well-described by the Generalized Gaussian distribution,
a piece of information which aids us in making an appropriate threshold selection. Non-
parametric methods such as cross-validation and its variant have been proposed as well. Of
particular interest is the work in [54] which combines thresholding with a non-parametric

model selection criterion based on the Minimum Description Length principle [50]. This



approach is related to our compression-based denoising work described in Chapter 4 and

will be revisited there.

2.1 Multiresolution Analysis and the Wavelet Transform

To introduce the wavelet transform, it is perhaps easiest to make analogies with
the Fourier transform. Just as Fourier analysis is an expansion of a signal into sinusoids
of different frequencies, the wavelet transform decomposes a signal into a wavelet basis of
different spatial and frequency support. For now we will focus on the discrete-time wavelet
series (sometimes also called the discrete-time wavelet transform in the literature) rather
than the continuous-time wavelet transform.

The discrete-time wavelet series expansion can be implemented by an analysis
filter bank shown in Figure 2.1 (a), which is a cascade of a two-channel filtering. Each stage
of the two-channel bank consists of a highpass filter H)(z) and a lowpass filter Hy(z), and
it is iterated on the lowpass channel. This tree structure, often called an octave-band filter
bank because each successive highpass output contains an octave of the input bandwidth,
achieves the tiling of the time-frequency plane given in Figure 2.2 (shown for a tree of depth
four). Each coefficient in the expansion corresponds to the result of projecting onto a basis
representing one of the tiles!. In the first stage of the decomposition, the basis functions
span a short time period, but a large frequency range (from 7/2 to ). In the second stage,
the basis functions span a time period twice as long as that in the first stage, but half the
size of the frequency range (from 7/4 to m/2). This recursive iteration thus results in a
logarithmic tiling of the time-frequency plane.

The synthesis part (or the inverse transform) is shown in Figure 2.1 (b), where the
analysis filters, Ho(z) and H)(z), and the synthesis filters, Ho(z) and H;(z), together must

satisfy the perfect reconstruction property:

Ho(2)Ho(z) + Hi(2)Hi(2) = 2
Ho(z)Ho(—2) + Hi(2)Hy(-2) = 0 . (2.1)

!The division of the time-frequency plane is ideal as shown in Figure 2.2 for the sake of illustration. In
reality, it is not possible to be both time-limited and band-limited.
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Figure 2.1: An octave-band filter bank of J stages, implementing the discrete-time wavelet
series expansion. The decomposition spaces V; and W; are labelled. (a) Analysis stages
(forward transform). (b) Synthesis stages (inverse transform).

2.1.1 Multiresolution Interpretation

The octave-band filter bank has a multiresolution interpretation that is often useful
for signal analysis. At each stage, the two-channel filter bank splits the input into a lowpass
component (or the coarser resolution part) and a highpass component (or the finer resolution
part). This recursive application of the two-channel split on the lowpass part results in a
hierarchical structure, called a multiresolution decomposition. The idea of viewing a signal
at various resolutions has been explored for quite some time in the computer vision and the
image processing community [66, 32]. Burt and Adelson [6] introduced the pyramid coding
scheme which builds a signal from a low resolution version plus a sequence of finer and finer
details. Daubechies [18] and Mallat [38] provided the first links between signal processing
and the wavelet theory by recognizing that the pyramid scheme is closely related to wavelet

theory and multiresolution analysis, and also that filter banks and subband coding can
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Figure 2.2: Tiling of the time-frequency plane achieved by the 1-D wavelet transform.

be used for efficient computation of wavelet decompositions. As aforementioned, here we
concentrate on the discrete case, and will introduce the continuous decomposition when it
is relevant to our image interpolation algorithm in Chapter 7.

The formalization of the multiresolution analysis is as follows. Let Vj be the space

of all square-summable sequences,

Vo = 6(Z).
A multiresolution analysis consists of a sequence of embedded closed spaces
Vic---CcWVhcWViCcVW,.
The orthogonal complement of V1, in Vj is denoted by Wj., and
Vi=Vit1® Wjn

with Vi1 L Wi, Suppose there exists a sequence go[n] € Vp such that {go[n — 2k]}rez
1s an orthogonal basis for Vi. Then it can be shown that for gi[n] = (=1)"go[—n + 1],
{g91[n—2Fk]}kez provides a basis for Wy. That is, {go[n—2k], g1 [n—2k]} kez is an orthonormal
basis for V5. This splitting of two orthogonal subspaces is iterated on V;, and after .J stages,
Vo can be written as

Wow=WaeWya --aW,adV;.

The space Vj’s are called the approzimation spaces and W;’s the detail spaces. The index j is

called the scale. At a large (or coarse) scale, one views the signal on a broad global level, and



at a small (or fine) scale, one looks at the signal on a local, detailed level. Another important
notion is the resolution of a signal, which, for a finite-length signal, is the minimum number
of a samples required to represent it [60]. This notion can be explained more clearly through
examples of multirate systems. When a signal is filtered by a halfband lowpass filter, the
scale remains unchanged, but the resolution is said to be halved, since there is a loss of
information in general. When a signal is upsampled by two, followed by a halfband lowpass
filter, the scale is halved (because the frequency has been effectively scaled by 1/2), and the
resolution remains the same (because there is no gain or loss of information). Lastly, when
a signal is filtered by a halfband lowpass filter followed by a downsampler of a factor of 2,
the scale is doubled and the resolution is halved.

The multiresolution decomposition can be readily computed by the filter bank in
Figure 2.1. Suppose the analysis filters are the time-reversed versions of go[n] and g¢;[n],
then the octave-band filter bank computes the inner product of the input with the basis
functions of W1, Ws,...,W; and V;. In the synthesis, we start from the component V; at
the coarsest scale, and sequentially add to it more and more details residing in the space
Wj,3 = J,...,1. From the previous discussion, it is clear that the output of the filter bank
is the expansion onto an orthogonal basis. With this orthogonal basis, this expansion will

be referred to as the orthogonal wavelet transform in this thesis.

2.1.2 Overcomplete Wavelet Expansion

At times, it may be desirable to have an overcomplete expansion, rather than a
basis expansion, of the input signal. That is, the number of functions used in the expan-
sion is more than needed for a basis, thus resulting in a redundant representation where
the functions are linearly dependent. For compression purposes, such a redundancy may
not be desirable since it increases the number of transform coefficients to code. In other
applications, an overcomplete expansion may be more suitable than a basis expansion. For
example, an overcomplete expansion places looser requirements on the filters, and may al-
low the design of filters with better frequency selections and/or symmetry properties. The
wavelet expansion implemented by the critically sampled filter bank in Figure 2.1 is a time-
varying system. With a non-subsampled filter bank, for example, this time-variance can be
completely avoided.

The overcomplete expansion that will be relevant for this work is the expansion
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Figure 2.3: 1-D Non-subsampled filter bank. (a) Analysis. (b) Synthesis.

implemented by the non-subsampled filter bank, whose analysis and synthesis parts are
shown in Figure 2.3. Schematically, the only difference between Figure 2.3 and 2.1 is the
removal of the downsamplers in the analysis stage and the upsamplers in the synthesis stage.

For the filters to be perfect reconstructing, they must satisfy
Ho(2z)Ho(2) + Hy(2)H;(2) = 1. (2.2)

Note that (2.2) is a less stringent requirement than (2.1). Thus, the filters satisfying the
perfect reconstruction properties of the critically sampled filter bank in (2.1) satisfy (2.2)

as well (up to a scaling factor), but the converse is not true in general.

2.1.3 Two-Dimensional Wavelet Expansion

The most commonly used 2-D wavelet expansion is accomplished by separable 1-D

filtering in both the horizontal and vertical directions. The separable 2-D filters are easier
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to design and suffice for most applications and thus are used here. Interested readers in
nonseparable filters are referred to [33, 60).

The separable 2-D octave-band wavelet transform is implemented by the filter
bank in Figure 2.4 (a), where each stage is composed of a cascade of horizontal and vertical
filtering. The frequency tiling of a one-stage decomposition is shown as well. Starting
with LLy = f, the original image, the first stage decomposition generates 4 subbands,
HH,,HL,,LH;, and LL;. The labelling, for example, HL;, means the output from a
highpass horizontal filtering and a lowpass vertical filtering, at stage 1. Subsequent stages
are iterated on LL;,j = 1,2,...,J. For the sake of visualization and storage, it is often
convenient to arrange the subband coefficients in Figure 2.5. The synthesis filter bank is
also an iterated filter bank, each stage composing of a cascade of vertical and horizontal
filtering (in that order). Figure 2.4 (b) shows one stage of synthesis filter bank.

As with the 1-D case, in some applications it is desirable to have an overcomplete
2-D expansion. The non-subsampled 2-D filter bank is similar to Figure 2.4, but with the
downsampler removed, and one stage of each of the analysis and synthesis filter banks are

shown in Figure 2.6.

2.2 Wavelet Thresholding: Overview of Existing Work

In many engineering problems, for reasons such as finite precision or compression,
it is necessary to consider coefficients below a certain threshold as negligible. This idea of
thresholding coefficients is often more of an art than science. In recent years, this simple
technique has been applied to removing noise from corrupted signals, or “denoising”, and
it it has been shown to have near-optimal theoretical properties. The theoretical formaliza-
tion of the threshold denoising technique, particularly in the context of removing noise via
thresholding wavelet coefficients, was pioneered by Donoho and Johnstone [22]. The sim-
plicity and effectiveness of wavelet thresholding has spawned much interest in both theory
and practice.

The problem at hand is that we observe a corrupted image
gij=fij +5ija i)j=1,'-'aN1 (23)

where {fi;} is the original image we wish to recover, {e;;} are independent and identically

distributed (iid) as normal N(0,0?) and independent of { fij}, and N is an integral power
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Figure 2.4: One stage of the 2-D separable filter bank shown in (a), with the partition of
the frequency spectrum. The octave-band division of the frequency is achieved by iterating
on the LL; channel. (b) One stage of the synthesis filter bank.
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Figure 2.5: The subband coefficients (shown for J = 3) for the filter banks in Figure 2.4
are often arranged in this fashion for ease of visualization and storage.

of 2. To simplify notations, the image is assumed to be a square of size N x N, though it
is not a necessary requirement. The goal is to remove the noise and to obtain an estimate
{fi;} of {fi}, or to denoise {9i}.

Let g = {gi}ij, £ = {fij}ij. e = {€i;}i,5, that is, the boldfaced letters will denote
the matrix representation of the signals under consideration. Let Y = Wg denote the
matrix of the wavelet coefficients of g, where W is the two-dimensional orthogonal wavelet
transform operator, and similarly X = Wf and V = We. Note that since the transform
is orthogonal, {V;;} are also iid N(0,02).

Define the soft-threshold function to be

nr(z) = sgn(z) - max(|z| - T,0),

which takes the argument and shrinks it towards zero by the value T, called the threshold.
A popular alternative is the hard-threshold function,

¥r(z) =z - 1{|z| > T},

where 1{-} is the indicator function. The hard-threshold function keeps the input if it is
larger than the threshold T'; otherwise, it is set to zero.
The wavelet thresholding procedure for denoising as proposed by Donoho and

Johnstone consists of three stages:

1. Take the wavelet transform of the observation: ¥ = Wg.
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2. Threshold the wavelet coefficients (except the lowest resolution subband LLj) by
either the hard- or soft-thresholding function for a chosen threshold T: X;; = nr(Yi;)

3. The denoised estimate f is the inverse wavelet transform of the thresholded coeffi-
cients: f = W-1X.

Threshold denoising is especially effective for signals with sparse representations
in the transform domain. Like the Fourier transform, the wavelet transform also has good
energy compaction properties, so in general, large coefficients correspond to dominant signal
features, while small coefficients correspond to fine details. When noise is added, the wavelet
coefficients are perturbed. If the noise energy is low, then the perturbation is small, and
only the very small coefficients should be killed. On the other hand, if the noise energy
is high, only the very large coefficients should be kept so at least the dominant features
are discernible in the recovered signal. The threshold thus acts as an oracle determining
whether a coefficient should be kept or modified (because it has more signal contribution
than noise) or be killed (because noise dominates).

The threshold choice is one of the most researched areas in the wavelet thresholding
literature. Depending on the signal and noise models, there are various proposed methods
for selecting a threshold. In the following, we provide a brief overview of several major
methods found in the literature. The following notations are for 1-D signals to make the
notations less cumbersome, but the idea can be extended in a straightforward manner to
2-D signals. That is, for the remainder of this chapter, the noisy observations of the 1-D
signal is

gi=fi+e i=1,...,N,
where N is an integral power of 2. The noise samples {¢;} is #d N(0,0?2), independent of

{fi}, unless mentioned otherwise. The wavelet coefficients of {g;}, {f:}, and {e;} will be
denoted by {Y;}, {X;}, and {V;}, respectively.

2.2.1 Deterministic Signal with Random Noise

Donoho and Johnstone [22] proposed an universal threshold Ty = o+/2Iog IV for
hard-thresholding when N samples have been corrupted by iid noise of N (0,0%). This
threshold is chosen because for a large NV, the maximum amplitude of the noise coefficients,
{Vi}, has a high probability of being smaller than, but close to, oy/2log N. More precisely,
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for Ty = 0+/2log N,

. ologlog N
i Pr (TU TlogN S o2 Vil < TU) =1

Thus, thresholding with Ty has a high probability of removing the noisy coefficients in
the asymptotic sense, and it is a conservative choice. To assess the performance of the
estimator, X U, based on hard-thresholding using the threshold Ty, let us first define the
ideal diagonal projection estimator?. Consider among all diagonal projection estimators of
the form XPP = ,Y; with ; = 0 or 1. The ideal estimator (minimizing E|| X PP _x I1?) is

obtained by setting v; = 1{|X;| > o} and the associated expected squared error, or risk, is
- DP o
EI X" -X|?= Zmin(X?,cﬂ).
i=1

Such an ideal estimator cannot be used since it requires the knowledge of the original signal
X, but it serves as an useful benchmark. The estimator X Y can be shown to yield a risk
which satisfies

N
E|X” - X|P < (210g N + 1)(0? + ¥ min(XZ, 02)).
i=1
That is, its risk comes to within a factor of log N of the risk due to the ideal diagonal
projection estimator. Furthermore, for all estimators of the form X; = 6(Y;) for any function
o()i

—1las N = oo.

inf sup L E"X — x|’
X Xern 2log N 02 + 3, min(X2, 02)
This means that the best estimator X yields a maximum risk over all X € RV that grows
as 2log N of the ideal risk. Thus, the hard-threshold estimate with Ty is asymptotically
optimal in the minimaz sense (minimizing the maximum error). A similar result can also
be obtained for using soft-thresholding with Ty. In [21], X Y was also shown to be near-
minimax for various smoothness classes (such as Besov, Holder, Sobolev and Triebel classes).
The aforementioned method yields a single threshold T for all coefficients, regard-
less of the scale and spatial location. Thresholds which are dependent on the scale of the
wavelet transform were also addressed by [24] and [30], with the latter considering corre-
lated noise. Another notable threshold, the SURE threshold [23], is derived by minimizing

%Since the transform is orthogonal, the performance of the estimator can be discussed in either the signal
domain or the transform domain.
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Stein’s unbiased risk estimator [57]. The hybrid threshold refers to switching between the
SURE and the universal threshold, depending on the energy level of the coefficients. The
method SureShrink refers to using the hybrid threshold in a scale dependent manner [23],
and it has been found to perform better than using the universal threshold, while retaining

asymptotically optimal properties.

2.2.2 Probabilistic Bayesian Modeling of the Signal

A large class of signals and natural images has been observed to have decaying
spectra. This means that most of the signal energy is concentrated in the low frequency
portion, or, visually, the slowly-varying smooth part of the signal. The high frequency
energy corresponds to additional details manifested in sharp transitions such as edges or
busy textures. In the wavelet domain, where the detail coefficients capture the local-varying
nature of the signal, this translates to many small value coefficients and a relatively few large
coefficients, resulting in a distribution with a peak at zero and often symmetric about zero.
It has been widely accepted in the image subband coding community that the coefficients in
each detail subband collectively form a histogram well described by a Generalized Gaussian
distribution (GGD) (see, for example, [64, 39, 56, 37, 68]). This distribution has a density
function

GGop(z) = Cla,B) e’ _o0 <z < o0, (2.4)

where C(a, 8) = ﬁ%—) and I'(¢) = 0°° e~*u'~1du is the gamma function. In applications of
compression, the estimates of the parameters « and 3 are used to adapt the coder and the
quantizer. For more tractable analysis, this assumption is often simplified to the Laplacian
distribution, which is GGq,1(z) (for example, see [59, 68)).

For denoising applications, Simoncelli and Adelson [56] used GGD to model the
distribution of the wavelet coefficients of the original image, and to find the Bayesian esti-
mate of the image. In the statistics community, there have also been many works on using
a Bayesian model on the wavelet coefficients, with distributions mimicking the property
of being symmetric about zero and having a sharp peak at zero. Vidakovic [61] used the
Laplacian distribution to determine the shrinkage factor, which is a number multiplied to
each wavelet coefficient and whose magnitude depends on the magnitude of the considered
coefficient. Clyde et al [15], Chipman et al [14] and Abramovich et al [1] used a scaled

mixture of normal priors to find scale-dependent shrinkage factors for Bayesian estimates.
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Ruggeri and Vidakovic [52] examined the hard-thresholding rule for various combinations of
different distributions for the signal and noise (such as a Laplacian-distributed signal with
Gaussian noise) and found the corresponding thresholds based on minimizing the expected

squared error.

2.2.3 Nonparametric Methods

Cross-validation Cross-validation is a classical statistics method used in various statistical
settings to automatically choose the parameters of the problem at hand. The general
paradigm is to minimize the prediction error generated by comparing a prediction, based
on a subset of the data, to the remainder of the data. Some general references on cross-
validation can be found in [5, 62]. In the setting of the threshold selection, it allows the
threshold to be selected using the data only, without the knowledge of the noise energy, o>.
In [48], Nason used cross-validation to find the threshold for the soft-thresholding rule in
the following manner.

From the noisy observations, {g1,g2,...,9n5}, a subsequence is formed from the
even-indexed samples:

g™ =gai, i=1,2,...,N/2.

Let { f.ﬁ"{EN,i = 1,2,...,N/2} be the wavelet threshold estimates of the even samples of
{fi} (using a particular threshold T') based on {gFE"}. An interpolated version of the

odd-indexed samples is computed as {gP"}:

gorp = %(92:'-1 +g2i41), 1=1,2,...,N/2 -1
, 3@ +gn-1),  i=N/2

A similar computation is performed to yield { f?"z?"}, the threshold estimate based on the
odd-indexed subsequence {g’°"}, and {gFVEN}, the interpolated version of the even-indexed
samples. A cross-validatory estimate of the mean squared error is

N/2

NI(T) = 3 [ (FRY™ = 39°)2 + (7820 — g8v=)?] .

i=1
In this way, the threshold estimate based on the even-index of the data ({ fﬁ‘z’EN}) is com-
pared to the interpolated estimate of the odd-index of the data ({§°°P}), and vice versa.

Let T* be the argument which minimizes M(T). Notice that M (T') relies on the

estimates { fﬁ‘{s"} and { fq‘?’?"}, each of which is based on N/2 data points rather than N
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points. To correct for this sample size3, a heuristic adjustment is made. Specifically, the
threshold T™* is multiplied by

log 2 -1/
log N

Cn = (1
to yield the final cross-validatory threshold of Nason, where Cy is the constant satisfying
Ty(N) = Cn - Ty(N/2), and Ty(N) = o0+/2log N is the universal threshold for N data
points. This cross-validatory threshold has been reported to be close to the optimal one (in
the sense of minimizing the mean squared error) but tend to overfit the noisy data [61]. It
also does not perform well in heavy-tailed noise distribution [48].

Weyrich and Warhola [65] proposed a generalized cross-validation criterion which
finds a threshold 7' minimizing the expression

w Y —nr(Y)|?
()2 ’

GCV(T) =

where Nj is the number of coefficients that have been set to zero by the thresholding
procedure. Jansen et al [29] showed that this threshold choice is asymptotically optimal in
the mean squared sense. That is, the minimizer of GCV (T') also minimizes the mean squared

error for a large N. Other variants of cross-validation and generalized cross-validation can
be found in [63, 28].

Combination with MDL Saito [54] approached the threshold selection problem by pos-
ing it as a model selection problem. The two most important issues encountered when
modeling a set of data are the choice of the model family and the order selection of the
model. One solution is to use the MDL principle [50] to make this decision. In [54], a
large library of orthogonal bases is available for the wavelet decomposition and the signal
is denoised by wavelet thresholding. The question becomes which basis to choose and how
many coefficients to be thresholded to zero. A criterion based on the MDL principle is used
to make these choices. Saito’s approach is related to our algorithm in Chapter 4, and will
be discussed in more details therein. Several subsequent works also addressed the threshold
selection problem from the MDL standpoint [34, 2, 45, 46].

3This correction is done to conform to the universal threshold of Donoho and Johnstone which is depen-
dent on N and is asymptotically o/2Tog NV.
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Chapter 3

Bayesian Threshold Selection for

Image Denoising

As surveyed in Section 2.2, there are many works especially in the statistics litera-
ture addressing different signal and noise models and the corresponding threshold selection
or shrinkage factor. Most of these works experimented on one-dimensional signals, and thus
the signal models may not be appropriate for images. Some Bayesian-based works played
with different combinations of probability distributions, more for the sake of trying differ-
ent models rather than examining real signals. Thus, due to a lack of models tailored for
images, we proceed to find a threshold more suitable for our framework of image denoising.
Our approach to finding the threshold is Bayesian, where a priori each detail subband of the
signal is modeled with the Generalized Gaussian distribution (GGD) with fixed unknown
parameters, also used widely in the image processing literature [64, 39, 56, 37, 68]. Within
each subband, the goal is to find the threshold which minimizes the mean squared error
among soft-threshold estimators. We propose an adaptive estimation of the threshold which
is nearly optimal and is easy to compute. This threshold adapts based on the GGD param-
eter estimation for each subband, thus resulting in a different threshold for each subband.
It will also be shown that with the chosen prior, the optimal soft-threshold estimator yields
a lower mean squared error than the optimal hard-threshold estimator, and hence we use
soft-thresholding in the image denoising algorithms in this thesis. The Bayesian framework
and threshold selection described in this chapter will be the basis for the various denoising

algorithms developed in Chapters 4, 5, and 6.
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3.1 Signal Modeling and Threshold Selection

Recall that the noisy observation in (2.3) is
gij = fij +€i5, 4,5=1,...,N,

where {e;;} are iid noise distributed as N(0,02), independent of the original signal {fi;}.
This is the setting which will be used throughout this thesis. The goal is to obtain an

estimate f of f which minimizes the mean squared error (MSE),
1 .
NZ > (fis = fid)*
4.7

Since the wavelet transform we choose is orthogonal, minimizing the MSE in the space
domain is equivalent to minimizing the MSE in the transform domain. Thus, in the sub-
sequent text we will work mostly in the wavelet domain. The wavelet coefficients for g, f,
and € are Y, X and V/, respectively.

Firstly, we choose the soft-threshold estimate over the hard-threshold estimate.
In practice, because the hard-thresholding rule tends to yield “blips” (or spikes) in the
recovered image especially when the noise energy is significant, soft-thresholding is pre-
ferred here since it yields visually more pleasant images even if it tends to smooth out the
image slightly more. These blips are typically in the forms of ringing around the edges
or shot-noise like appearances in the smooth regions. These artifacts are more apparent
under a hard-thresholding operation because it is a discontinuous function, whereas the
soft-thresholding function is continuous. Furthermore, for the Bayesian prior assumed in
this work, the optimal soft-thresholding estimator yields a smaller MSE than the optimal
hard-thresholding estimator, as will be shown later. While the mean squared error is not
necessarily a good measure for discriminating image qualities, it is nevertheless the most
widely used standard in the literature, and thus will be employed here as well.

With the estimates restricted to the class of soft-threshold estimates, X,-j =
nr(Y:;), the next step is to find the appropriate threshold 7. To do this, we use a Bayesian
setting, where, for a given subband, each coefficient X;j is viewed as a random variable
having the Generalized Gaussian distribution with unknown parameters (see Section 2.2.2
for a qualitative justification for the choice of GGD). For completeness, this probability

density function is repeated here:

GG p(z) = Cla,f) e~ @)’ | _o <z < o0, (3.1)
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where C(a, 8) = f"é—) and I'(t) = [y e~“u'~!du is the gamma function. The parameter 4
controls the shape of the density function, and the parameter « controls the spread. With
a probability distribution, the MSE can be approximated by the ezpected squared error,

1 - A
7z D (X — Xy ~ E(X - X)?,
i,j

where N2 is the number of terms in the particular subband under consideration. The
expectation E(-) is taken with respect to X ~ GGgp(z) and V ~ N(0,02), and the
estimator is X = nr(Y), with Y = X + V. The threshold selection then corresponds to
finding the value which minimizes the expected squared error. Note that for each detail
subband, the GGD has a different set of parameters o and 3, thus this procedure results in
a subband-adaptive threshold.

Consider now only coefficients from one particular detail subband. Let the param-
eters @ and f be known for now. The distortion criterion to be minimized is the expected

squared error, or risk, rewritten as
R(T) = ExEyx(X - X)?,

where Y|X ~ N(z,0?). The optimal threshold T* is the argument which minimizes R(T).
To our knowledge, there is no closed form solution for 7' which minimizes R(T") for this
chosen prior. Thus, we resort to numerical calculations to find the optimal answer.

Before examining the general case, it is insightful to consider two special cases of
the GGD: the Gaussian and the Laplacian distributions. The Laplacian case is particularly
interesting, because it is frequently used as the simplified distribution for wavelet coefficients
to make analysis more tractable.

Case 1: (Gaussian) For § = 2 and o parameterized as a = 1/(v/20;) (where
oy is the standard deviation), we have the Gaussian distribution, X ~ N(0,02). It is

straightforward to verify that

ExByx(X-%7 = [ : i :(m(w—x)?p(ytx)p(z)dydx

2
= azw(%, I) (3.2)

o
where

T

V1402

w(ol, T) =02 +2(T*+1-02)® ( ) - 2T(1 + 02)¢(T, 1 + ¢2),
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with ¢(z,02) = \/2;737(1)(—23:7) and ®(z) = [° ¢(t,1) dt.

A good approximation of the optimal threshold T* is found to be

N

T==—. (3.3)

819

Figure 3.1 (a) compares T* and T, parameterized by o, on the horizontal axis, and o = 1.
Their expected risks are shown in Figure 3.1 (b), where the maximum deviation from the
optimal risk is less than 1% when using the threshold 7. For a further comparison, the risk
for hard-thresholding is also calculated. After some algebra, it can be shown that the risk
for hard-thresholding is

T
——— 2) -1).
Voi+o
By setting to zero the derivative of (3.4) with respect to T, the optimal threshold is found
to be

h(T) = 0% + (02 — 02)(2T ¢(T,02 + o°) + 28( (3.4)

0 ifoz >0
anything ifo, =0

with the associated risk
2
(22

Ru(T3) = { )

o; ifoz <o

ifor >0

Figure 3.1(b) shows that both the optimal and near-optimal soft-threshold estimators, 77+ (-)
and 7;(-), achieve lower risks than the optimal hard-threshold estimator.

The threshold T = o2 [0z is not only nearly optimal but also has an intuitive
appeal. For such a choice, the normalized threshold f’/ o is inversely proportional to ¢, the
standard deviation of X, and proportional to o, the noise standard deviation. When ofoz
is small relative to 1, the signal is much stronger than the noise, thus 7'/c is chosen to be
small in order to preserve most of the signal and remove some of the noise; vice versa, when
o /o is much larger than 1, the noise dominates and the normalized threshold is chosen to
be large to remove the noise which has overwhelmed the signal. Thus, this threshold choice
adapts to both the signal and noise characteristics reflected in the parameters o and 0.

Case 2: (Laplacian) For # =1 and C(a, ) = /2, we have the Laplacian distri-
bution LAP(z) = $e~kl. Note that the variance of X is 2/a?.
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Compare Threshalds for Gaussian Prior Compare Risks for Gaussian Prior

Threshold Value
-~ 0N

3
[+
x

(b)

Figure 3.1: Thresholding for the Gaussian prior, with 0 = 1. (a) Compare the optimal
threshold T* (o) (solid —) and the threshold T(o,;) (dotted - - -) as a function of the standard
deviation o, on the horizontal axis. (b) Compare the risks of optimal soft-thresholding (—),
soft-thresholding with T (---), and optimal hard-thresholding (— — -).

Without loss of generality, let 0 = 1. The optimal threshold T* found by min-
imizing the risk! is plotted against the standard deviation o, = v2/a on the horizontal
axis in Figure 3.2 (a). The curve corresponding to T* (in solid line —) is compared with
the approximate threshold T = 1/0, = a/v/2 (in dotted line - - -) in Figure 3.2 (a). Their
corresponding expected risks are shown in Figure 3.2 (b), and the deviation is less than
0.8%. This suggests that the risk at the minimum is not too sensitive to the threshold
value.

For a general value of o, the parameters T and « are replaced by T/o and oa,

respectively, and the proposed threshold is

N
T=—=——, 3.5
o V3 (3.5)
which has the same form as the Gaussian case in Equation (3.3), but with different param-
eters.
The threshold choice
- 2V20% 202
Th = = —
Gz [0

'Note that for numerical calculation, it is more robust to obtain the value of T° from locating the
zero-crossing of the derivative, R'(T), than from directly minimizing R(T).
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Compare Thresholds for Laplacian Prior Compare Risks for Laplacian Prior
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Figure 3.2: Thresholding for the Laplacian prior, with o = 1. (a) Compare the optimal soft-
threshold T* (—), the approximation T (---), the optimal hard-threshold Ty (- —-), and
its approximation T} (—- —-) as a function of the standard deviation, Ogz, on the horizontal
axis. (b) Their corresponding risks.

was found independently in [52] for approximating the optimal hard-threshold T using
the same prior. Figure 3.2 compares the optimal soft- and hard-thresholds and their ap-
proximations, and it shows the soft-thresholding rule to yield a lower risk for this chosen
prior. In fact, for o, larger than approximately 1.3, the risk of hard-thresholding with the
approximate threshold, T}, is worse than if no thresholding were performed (which has a
risk of o2).

Case 3: (Generalized Gaussian) Similarly, our proposed near optimal threshold

is
T _02_ 2 2 (%)
‘l'(a,ﬁ) = _z =0 W

for the GGD case. Let ¢ = 1. In Figure 3.3 (a), each dotted line (---) is the optimal
threshold T™*(c, B) for a given fixed B3, plotted against o, on the horizontal axis, with «
varying. The proposed threshold 7' = 1/o is plotted with the solid line (—). The plot
of the optimal threshold that lies closest to 7" is the curve for 7** (o, B = 1), the Laplacian
case, while other curves deviate from T as 8 moves away from 1. Figure 3.3 (b) shows
the corresponding risks. The deviation between the optimal risk R(T*) and R(T) grows

as 3 moves away from 1, but the error is still within 5% for the curves shown in Figure
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. Compare Thresholds for Generalized Gaussian Prior Compare Risks for Generalized Gaussian Prior

Threshold Value

=
o«
T

Figure 3.3: Thresholding for the Generalized Gaussian prior, with o = 1. (a) Compare the
approximation T = ¢%/0; (—) with the optimal threshold for 8 = 0.6,1,2,3,4 (---). The
horizontal axis is the standard deviation, o;. (b) The optimal risks for each [ are plotted
in (---), and the approximation in (—).

3.3 (b). Because the threshold 7 depends only on the standard deviation and not on the
shape parameter 3, it may not yield a good approximation for other values of B than the
range tested here, and the threshold may need to be modified to incorporate 5. However,
since in practice the values of 8 = 1,2 are typically used in modeling wavelet coefficients
of real images, well within the range of 3 tested here, the simple form of the threshold T
is appropriate for our purpose. The curve of expected squared error is very flat near the
optimal threshold T*, implying that the error is not very sensitive to a slight perturbation

near T,

3.1.1 Parameter Estimation for Threshold

In the discussion thus far, we have assumed the parameters of the distribution
to be known. We now discuss the estimation of these parameters, which in turn yield
thresholds T adaptive to different subband characteristics.

The first step is to estimate the noise variance, 02. In some practical cases, it is
possible to measure o2 based on information other than the corrupted observation. If this

is not the case, we estimate it by using the robust median estimator in the highest subband
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of the wavelet transform,

Median(|Y;;|)
0.6745

=

, Y;; € subband HH;, (3.6)

also used in [22, 23].
Next, to obtain an estimate of o, recall that our model is Y = X + V, with X

and V being zero-mean and independent of each other, therefore,

Variance(Y) = Variance(X) + Variance(V)

= a§+a2.

Thus, 6; can be obtained by

62 = max(rng — 62,0) ,

where 7713 is the estimate of the second moment of Y,
iy = L > v
2T R L

iJ

and N2 is the number of coefficients in this subband. In the rare case that 62 > rhy, the
threshold is effectively set to oco; that is, all coefficients are set to 0.

For the proposed threshold T' = o2 /02, it suffices to have the estimates &, and 62.
However, to be complete, we describe the method to obtain estimates of & and B as well.

These parameters can be found from the second and the fourth moments of the distribution
[56):

e 2 * 4
mg = / y'ply)dy and my= / ¥ p(y)dy.
o0 00

Since Y = X + V, it can be derived that

I'(3)
a21"(713-)

60°T(3)  T()
oT(E) "~ oAT(R)

me = o? + and my =30+

(3.7
The moments are found empirically by
.o 1 2 .1 4
mz—ﬁZYij and m4—ﬁzyﬁ .
1,7 ]

The parameters a and 8 can be found by solving (3.7) with 7y and 1y in place of ms and

my.
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The Generalized Gaussian distribution offers more flexibility in the description
of the subband coeflicients. In practice, the Laplacian prior performs well, and it also
leads to simple closed-form equations, thus it is sometimes preferred in coding applications.
For example, Birney and Fischer [4] showed that in image coding, the quantizer based on
the Generalized Gaussian distribution gives marginal improvements over that based on the
Laplacian so they recommend the Laplacian distribution to be used for its simplicity and

analytical tractability. For the Laplacian case, 8 = 1, and mg = 02 + fg, the parameter o

s |2
g — 62

can be estimated as

3.2 Summary

In this chapter, we addressed the threshold selection in a Bayesian approach. In
each subband, the wavelet coefficients of the signal is modeled by the Generalized Gaussian
distribution with unknown parameters. We found that the simple threshold
2

~ g
T=—
Oz

is nearly optimal and is simple to compute. This simple and effective threshold will be
used in the denoising algorithms to be discussed in subsequent chapters, where we will
also show its performance on real images. For now, the threshold is developed with the
assumption that the wavelet transform coefficients in each subband collectively form a
histogram distributed as the GGD. In Chapter 5, the spatially adaptive algorithm will
discuss how to model the coefficients as random fields (with changing parameter), and thus
yield a threshold selection that is not only subband-adaptive, but also pixel-wise adaptive

as well.
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Chapter 4

Lossy Compression and Wavelet

Thresholding for Denoising

An obvious question which arises during denoising is how one distinguishes between
signal and noise. If appropriate models exist for both the signal and noise, then this can
be done effectively (for example, if the power spectrum of the signal and noise are known,
then Wiener filtering can be used.) However, it is not straightforward to devise a general
model for images, since they are rather complicated objects. Stochastic models are oftened
used to represent an image as samples of a random field. Such models are often used for
image restoration and data compression (see [27] for a survey of stochastic models and their
applications). While these random field representations can be applied to image restoration
and compression, by themselves they do not amount to a general image model. For example,
a random field representation can describe self-similar or texture-like images [25, 26], but it
may not predict a sharp transition (such as an edge) because it is an “unexpected” event.
Thus, without additional modeling, a stochastic representation can only model a rather
restrictive class of images.

For a more general model, we look into an area of image processing which has
been rather successful, namely, image compression. Notably, subband coding such as EZW
[55] and its variants have achieved high compression rate with good visual qualities. The
fact that these compression methods are able to capture important image features with a
concise representation implies that they achieve an efficient modeling of the image, where

efficiency is quantified in terms of the description complexity. On the other hand, an image
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of uncorrelated white noise is hard to compress for any coder, because there is no structural
correlation or redundancy to exploit. Hence, a good compression method can provide a
suitable model for distinguishing between signal and noise.

The idea of using a lossy compression algorithm for denoising has been proposed in
several works (54, 49, 12, 13, 35]. Saito [54] viewed wavelet (hard-) thresholding as a means
to achieve “simultaneous noise suppression and signal compression.” The noise suppression
nature of wavelet thresholding is already clear from the discussion in Section 2.2 and Chapter
3. It also achieves compression because after thresholding, there are less non-zero coefficients
left to be coded. Natarajan’s Occam filter [49] accomplishes denoising by coding the signal
at a distortion equal to the noise strength, o2. The coder is chosen arbitrarily, as long as it
is a “reasonable” one. Liu and Moulin [35] proposed a “complexity-regularized” denoising
method, which codes the signal at a particular slope on the rate-distortion curve. The value
of the slope is derived from an MDL-like criterion, while the coder is chosen also arbitrarily.
To avoid disrupting the flow of this introduction, we save the details of these algorithms
until Section 4.1 where previous works in the literature are surveyed, and also Section 4.2
where they are relevant to our work.

One main purpose of the work in this chapter is to explain and to further sub-
stantiate the theory that lossy compression can be appropriate for denoising. Most coders
operate in an orthogonal transform domain such as wavelet or DCT, and this is also what we
assume. Specifically, by posing quantization as an approximation to wavelet thresholding,
we show that quantization (a common step in compression) of wavelet transform coefficients
achieves denoising. We do not claim that lossy compression is the best way to denoise an
image, but rather we want to show how to achieve both compression and denoising when
both features are desired.

To make analogies between wavelet thresholding and lossy compression, we reit-
erate here the essence behind the idea of threshold denoising. The thresholding method
compares the transform coefficients to a given threshold and set it to zero if its magnitude
is less than the threshold; otherwise, it is kept or modified (depending on the thresholding
rule). The idea is that coefficients insignificant relative to the threshold are likely due to
noise, whereas significant coefficients are important signal structures. Thresholding essen-
tially creates a region around zero where the coefficients are considered negligible. Outside
of this region, the thresholded coefficients are kept to full precision.

Analogously, in a typical transform domain lossy compression method, negligible
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Figure 4.1: The thresholding function can be approximated by quantization with a zero-
zone.
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Figure 4.2: Problem formulation and proposed method for denoising. The noisy observation
is the signal with additive noise. Denoising is achieved in the wavelet transform domain
by a combination of soft-thresholding and quantizing the wavelet coefficients, with the
specifications based on estimated model parameters.

coefficients are set to zero, creating what is called a “zero-zone” or “dead-zone”, and coef-
ficients outside of this zone are quantized. Our thesis is that an appropriate quantization
scheme (and hence compression) achieves denoising because it is an approzimation to the
thresholding operation (see Figure 4.1). Furthermore, the effectiveness of denoising is mainly
due to the zero-zone, and the full precision of the thresholded coefficients is of secondary
importance. Thus, a comparable level of denoising performance can be achieved by quan-
tizing the coefficients with a zero-zone and a few number of quantization levels outside of
the zero-zone.

The problem formulation and our proposed denoising method are shown in Figure
4.2. The noise samples {¢;;} are iid normal N(0,0?) and independent of the signal {fi;}-

Our denoising operation is done in the wavelet transform domain of the observed corrupted
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signal. In essence, it is a two-stage quantization involving the zero-zone and the region
outside of the zero-zone. Furthermore, the quantization procedure is adaptive to each
subband, where we first estimate parameters to characterize the subband, and then use this
information to determine the quantization specifications. For each subband, the size of the
zero-zone is set by the chosen threshold value T, and then the region outside is quantized
with 2m symmetric bins of width A. The quantized coefficients are then transformed back
to yield the estimate. Thus, the two main issues in the quantization stage are “How to
choose the threshold (and hence the zero-zone) ?” and “How to quantize outside of the
zero-zone?”

We answer the first question with the Bayesian threshold we developed in Chapter
3. That is, the transform coefficients from each subband are modeled as random vari-
ables with Laplacian distribution (which is more tractable than the GGD). Based on this
characterization, a simple threshold is used in the first stage soft-thresholding.

After being thresholded, the non-zero coefficients are good estimates of the original
signal and thus close to being Laplacian-distributed. They are then quantized with uniform
bin sizes and centroid reconstruction, and the number of bins is determined by a criterion
derived from Rissanen’s MDL principle. This criterion achieves a compromise in the trade-
off between the compression rate (from coding the bins) and the distortion, and has a nice
interpretation of operating at a fixed slope on the rate-distortion curve of the coder.

This chapter is organized as follows. In Section 4.1, the other previous works
on lossy compression-based denoising will be discussed in more detail. Next, in Section
4.2 we develbp our lossy compression method for denoising, which incorporates wavelet
thresholding, coefficient quantization, and entropy coding. Experimental results on several
test images will be shown in Section 4.3. In Section 4.4, we make some concluding remarks

about our findings and possible future directions.

4.1 Related Previous Work

In Saito’s work, the idea is to hard-threshold the wavelet coefficients of the noisy
observation to achieve both denoising and compression. The decision on the number of
coefficients to keep is made by deriving a criterion based Rissanen’s MDL principle [50] (see
(4.3)) and evaluating this criterion. The formulation is related to ours and thus will be

expounded in Section 4.2. While this work proposes an interesting idea, we feel that it does
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not achieve true compression, since the coefficients are not quantized (which is necessary in
any practical coder).

In the denoising method of Liuiand Moulin [35], the MDL criterion is viewed
as a trade-off between rate and distortion during coding, operated at a particular slope
on the rate-distortion curve. Their contribution is finding this slope, but no guidelines is
provided for choosing the coder. Rather, they merely presented a comparison of several
popular coders such as JPEG and SPIHT operated at this slope, against the Occam filter
and Donoho’s hard-thresholding with the universal threshold 7y;. Their work is also related
to ours and it will be revisited in Section 4.2. In our algorithm, however, we will present a
systematic approach to choosing the coder.

Natarajan’s Occam filter [49] removes noise by coding the noisy observation (with
an arbitrary coder) at a distortion equal to 0. This particular choice of distortion is based
on the following intuition. When the distortion is small, the coder tracks the small details
in the signal (and thus the noise); when the distortion is large, it tracks the more global
structure of the signal. At the distortion point o2, there is a “knee” on the rate-distortion
curve, representing the change in the tracking behavior of the signal. This knee refers to
a rapid change in the slope of the rate-distortion curve (manifested as the maximum of its
second derivative). Thus, by examining the rate-distortion characteristics of the observation,
one first estimates o2 by locating the knee, then compresses it at this distortion. One can
also interpret this method as finding an estimate of the signal on the hyper-sphere of radius
o centered at the noisy observation g [31]. The original signal must reside on this hyper-
sphere because it was corrupted by noise of energy 2. However, since the dimensionality
is so large (about a quarter of a million for a typical 512 x 512 image), it may be very
difficult to find an estimate in the vicinity of the original signal. Our experience with the
Occam filter using standard coders such as JPEG and SPIHT (53] has not been satisfactory,
especially with large values of 02 (a range of o values between 10 and 20 were tested for #d
Gaussian noise of N (0, 02), with greyscale test images). The resulting images are extremely
distorted. Furthermore, we have found the knee to exist in the rate-distortion curve of a
noiseless image as well, making the knee argument dubious. Nevertheless, the intuition

posed by this work gives an invaluable insight for motivating compression-based denoising.
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4.2 Quantization and Compression using the MDL Principle

If there is no compression required, then the adaptive thresholding rule discussed
in Section 3.1 suffices to effectively denoise the image. To achieve the dual purpose of
denoising and compression, however, there is an additional step of quantization. Recall
that compression achieves denoising because the zero-zone in the quantization step (typical
in compression methods) effectively removes the noise. Hence, after the zero-zone has been
fixed, there is an additional step of quantizing the thresholded coefficients.

Consider again only one detail subband of the wavelet transform, with the coeffi-
cients modeled as Laplacian distributed. Suppose that the parameters o, a and the thresh-
old T* have been estimated (see Section 3.1 for the parameter estimation and the threshold
choice T = 02/0;). There remains the questions of how to quantize the coefficients outside
of the zero-zone and how to compress them.

When compressing a signal, two important objectives are to be kept in mind. On
the one hand, the distortion between the compressed signal and the original should be kept
low; on the other hand, the description of the compressed signal should use as few resources
as possible (e.g. use the least number of bits to code). Typically, these two criteria are
conflicting requirements. In order to reach a compromise, there needs to be a criterion
for selecting the most suitable outcome. Rissanen’s Minimum Description Length principle

serves exactly this purpose [50].

4.2.1 The MDL Principle

Let M be a library or class of models from which we choose the “best” one to
represent the data. According to the MDL principle, given a sequence of observations, the
best model is one which yields the shortest description length for describing the data using
the model, where the description length is the number of bits needed for encoding. This
description can be accomplished by a two-part code: one part to describe the model and
the other the description of the data using the model. To develop some intuition about
this principle, let us consider several scenarios. In order to minimize the distortion between
the signal and the model, we can choose the signal itself as the model, in which case the
signal is represented exactly, but at the cost of using many bits to encode the signal. In
our case where the input of the coder is the corrupted observation, this choice implies no

denoising, thus it is useless. At the other extreme, we can use the zero function, which



35

needs essentially zero bits to encode, at the expense of high distortion (unless the signal
is also identically zero). In the middle ground, a parametric model (such as polynomial
fitting) may be chosen, yielding a total description length to be the number of bits needed
to code the data given the model (e.g. the residual), plus the bits needed to specify the
number of parameters and the parameter values. The idea is that the chosen model should
establish a compromise between fitting the data well and having low complexity, that is,

having a simple representation or a reasonable number of parameters.

Example 1 For a sequence of discrete random wvariables, uy,us, ..., uy, with distribution
p(u),u €U, where U is a finite or a countable set, the shortest code-length on average is the
well-known Shannon code, L(u) = —logp(u), with base 2 in the logarithm (for the rest of
the chapter, the log function is of base 2). For the entire sequence, the shortest code-length
] N N
L(w) =) L(w) =~ logp(u:).

i=1 i=1
Example 2 Now let us consider when {u;} are continuous variables, with density p(u),
u €U, and U is a subset of R. The set U can be discretized into equal intervals of size
or precision 6. Let ul be the discretized random variable, then the Shannon code for the
vector u® is —log(p(u?®) - 6V) = —logp(u’) — Nlogd. This term can be viewed as the
ideal code-length for coding u at precision §. With the value § fized, — log p(w) is called the
idealized code-length. Rissanen [50] showed that the optimal & is on the order of 1/v/N for

parametric models.

Let us now state the MDL principle. Given the set of observations Y, we wish to
find a model X to describe it. The MDL principle chooses X which minimizes the two-part
code-length

L(Y,X) = L(Y|X) + L(X), (4.1)

where L(Y|X) is the code-length for Y based on X, and L(X) is the code-length for X.
The first term on the right-hand side of (4.1) is the idealized code-length,

L(Y|X) = —logp(Y|X). (4.2)

In the original MDL, further truncation of the model parameters is considered. Suppose

that there are K parameters and each parameter X; is truncated up to precision 4, yielding
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Xf , then Rissanen showed that the optimal precision §* is 1 / VN and
min L(¥, X,6) = L(¥|X) + L(X]) + % log N + O(K),

where L([X]) denotes the code-length of the integer part of X , and (1/2)log N bits are
used to represent the decimal part of each of the K parameter values. When K is much
less than N, the last term O(K) is negligible, and the MDL criterion is

MDL(Y,X) = L(Y|X) + L([X]) + glog N. (4.3)

In practice, the parameter values in MDL are rarely optimally truncated but kept to full
machine precision.

In Saito’s simultaneous compression and denoising method [54], the hard-threshold
function was used to generate the models X = ¥r(Y), where the number of K non-zero
coefficients to retain is determined by minimizing the MDL criterion. The first term L(Y| X))
is the idealized code-length with the normal distribution (see (4.4)), and the second term
L([X]) is taken to be K log N, which are the bits needed to indicate the location of each non-
zero coefficient (assuming a uniform indexing). Although compression has been achieved in
the sense that a fewer number of nonzero coefficients are kept, it still does not address the
issue that in a practical compression setting, the coefficients usually need to be quantized
more coarsely. Thus, our criterion will be developed from a coding point of view, and the
minimization of L(Y, X) is restricted to X belonging to the set of quantized signals, whose

construction will become clear in the following.

4.2.2 The MDL Principle for Compression-based Denoising: The MDLQ
Criterion

Consider only one particular subband, which is of size N x N. Since the noisy
wavelet transform coefficients are Y = X + V, where V;; are iid N(0,0?), then Y| Xij ~
N(zij,0?%). Thus,

i
L(Y|X) = - logp(Yij|Xi;)
ij=1
1 N 1 .
= 2%52In2 Z (Vi — Xi)* + 3 log(2na®N"). (4.4)
1,j=1
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The second term in (4.4) is a constant, and thus can be ignored in the minimization.
The expression in (4.4) was also derived in [54, 35], though in [54] the estimation of o2 is
integrated into the criterion as well. The main deviation between their works and ours is
the different ways of estimating X .

Let M be the set of quantized coefficients, X?, and X be constrained in M, then

(4.4) (with constant terms removed) becomes

N
- Q ~
LY|X™) = - logp(Yi|X3)
i,j=1
1 N -
i,j=1

There are many possibilities for the second term L(X Q) in (4.1), since there are
many ways for coding quantized coefficients. Here we propose a simple method suitable for
subband coding of images.

Since the observation Y;; has Gaussian noise embedded, it is not strictly Lapla-
cian distributed. However, after thresholding as discussed in Section 3.1, the (non-zero)
thresholded coefficients X = n7(Y’) can be seen to be close to Laplacian distributed (see
the text in Section 4.3 and the referenced plot in Figure 4.4), and thenceforth are quan-
tized with this distribution. The problem of quantizing Laplacian random variables has
been well-studied and the design of the entropy-constrained scalar quantizer (ECSQ) for
a Laplacian distribution is discussed by Sullivan [59]. Furthermore, it was shown that the
uniform threshold quantizer (UTQ) achieves nearly the performance of the ECSQ, and has
the additional benefit of being simple to design.

Hence the UTQ is used here on the non-zero thresholded coefficients, with m levels
of equal intervals of A on each side, and with the centroids being the reconstruction values
(see Figure 4.3). The quantized coefficients are denoted by X'g , and there are a total of
2m + 1 quantization levels (one zero-zone plus m symmetric levels on each positive and
negative side), which are indexed as £ = —m,-m + 1,...,—1,0,1,...,m — 1,m. Consider
the positive side and let by, by, ... ,by, denote the boundaries of the quantization bins, with

reconstruction values v1,72,...,vm. Note that by = 0 and b,, = 0o0. The value of ~ve with
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Figure 4.3: Illustrating the quantizer.
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The negative side is quantized in a symmetric way. Note that the zero coefficients resulting
from thresholding are kept as zeros, and that the quantization of the non-zero coefficients
does not set any additional coefficients to zero. On average, the smallest number of bits

needed to code X is the Shannon code, and the code-length for coding the bin indices is

L(X%m,A) = Z K, log

=-—m
where K, is the number of coefficients in bin £. The additional parameters m and A need
to be coded also, but we suppose that any positive values are equally likely, thus a fixed
number of bits are allocated for L(m, A).
Now we state our model selection criterion:

1

MDLQ(X®,m,A) = o

Z (Vi — X2)% + L(X°|m, &) (4.6)
i,j=1

To find the best model, we minimize (4.6) over values of m and A to find the corresponding
set of quantized coefficients, X <.
This thresholding-quantization scheme is applied to each subband independently.

First the noise variance 62 is estimated. Then the parameter & and the threshold 7(&) are



39

calculated, and (4.6) is minimized over m and A to find the desired quantized coefficients
X©9. The coarsest subband LL is quantized differently in that it is not thresholded, and the
quantization with (4.6) uses the uniform distribution. The LL; coefficients are essentially
local averages of the image, and are not characterized by distributions with a peak at zero.
Thus the uniform distribution is used for generality. The mean is subtracted from the LL;
coefficients to make the distribution centered at zero. The zero-zone is also of width A,
with reconstruction value 0, and the reconstruction values in other zones are the midpoints
of the intervals.

The MDLQ criterion in (4.6) has the additional interpretation of operating at a
specified point on the rate-distortion curve, as also pointed out by Liu and Moulin [35).
For a given coder, one can obtain a set of operational rate-distortion points (R, D). When
there is a rate or a distortion constraint, the constraint problem can be formulated into
a minimization problem with a Lagrange multiplier, AD + R. In this case, (4.6) can be

interpreted as operating at
1

A= 202In2

In the related works, Natarajan’s coder operates at a constrained distortion, D < o2 [49],
while Liu and Moulin’s coder operates at the slope A = 5—— on the R-D curve [35].
Both works merely recommend the use of any “reasonable” coder. In contrast, our work
pinpoints the effectiveness of using compression for denoising to come from the zero-zone

in the compression schemes.

4.3 Experimental Results

The 512 x 512 images “goldhill” and “lena”, with various levels of noise ¢ =
9,10,15,20, are used as test data. Daubechies’ least asymmetric compactly-supported
wavelet with 8 vanishing moments [19] is used in the wavelet transform, and four levels
of decomposition are computed. The coefficient values of this Symmlet8 wavelet are listed
in Appendix A.

Firstly, to show that the thresholded coefficients are nearly Laplacian, the Q-Q plot
of the HL; subband of goldhill is shown in Figure 4.4. The Q-Q plot is an effective statistical
tool to verify that a data set is close to the assumed distribution. Let z;,z,...,zy be
the sample values of z ~ LAP(a), and we order them by increasing magnitude, denoted

by y1,¥2,...,yn, called the order statistics of the absolute values. When a = l,y=|z|~
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Figure 4.4: Q-Q plot of subband HL; of goldhill. Compares the original uncorrupted
coefficients (—), the noisy coefficients (— - —-), and the non-zero thresholded coefficients

().

EXP(1) = e7¥. The cumulative distribution function (cdf) of EXP(1) is F(a) = [ e ¥dy =
g, and a = F~1(q) is called the g-th quantile. Then a = —In(1 — g). The Q-Q plot graphs
the pairs (y, —In(1 - %)),k = 1,2,..., N, where the number 0.5 is inserted to keep
the log function well defined at the boundaries. The straighter the line is, the closer the
samples are to the assumed distribution. For a general c, the line is of slope 1/a. Figure 4.4
compares the plot of the original uncorrupted coefficients, the corrupted coefficients, and
the non-zero thresholded coefficients. The thresholded coefficients follows a straighter line
than the noisy observation, suggesting a closer match to the Laplacian distribution. For
this subband, the threshold 7 is large, thus the lines deviate substantially from each other.
For other subbands where the thresholds are small (also implying that the noise power is
small relative to the signal), the three lines are close to each other, and show a good match
to the Laplacian distribution.

To assess the performance of soft-thresholding using the adaptive threshold T, we

compare it with soft-thresholding using the oracle threshold defined as
Torc = arg Ir,{rin%:(nr(Yij) - Xy)? (47)

where X;; are assumed to be known, and a different Tor¢ is found for each detail subband.
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In Table 4.1, the first column is the MSEs of the noisy observations, and the next two
columns compare the MSEs of soft-thresholding with Torc and T, respectively, averaged
over 20 runs. The MSEs resulting from T are very close to those from Torc, indicating that
the Laplacian pdf is a good model and that the threshold selection is appropriate. Visually,
the two sets of images are also very similar, as shown in Figure 4.5 (b) and (c) for goldhill
and o = 15. These images are also available on the Internet at
http://www-wavelet.eecs.berkeley.edu/ grchang/compressDenoise/.

The fourth column in Table 4.1 shows the MSEs of the quantized signal using T
as the zero-zone threshold. The quantized goldhill image with o = 15 is shown in Figure
4.5 (d), where the quantization noise is quite visible. The last column of Table 4.1 shows
that, as expected, the quantized signal uses much less bits than the 8 bits per pixel (bpp)
of the original greyscale image, but at the expense of some degradation. On average, the
quantized signal loses about 1-1.5 dB in SNR over the unquantized thresholded signal,
although it still has a much lower MSE than the noisy image. This suggests that mainly
the zero-zone is responsible for filtering the noise. Note that the first-order entropy coding,
L(X Q|m, A), for the bitrate of the quantized coefficients is a rather loose estimate. With
more sophisticated coding methods (e.g. predictive coding, pixel classification), the same
bitrate could yield a higher number of quantization level m, thus resulting in a lower MSE.

Table 4.2 gives the values of m chosen by M DLQ for each subband of the goldhill
image, o = 15, averaged over 20 runs. Recall that each subband has 2m + 1 quantization
levels. The MDLQ criterion allocates more levels in the coarser, more important levels, as

would be the case in a practical subband coding situation.

4.4 Summary

In this chapter, we demonstrated the connection between lossy compression and
wavelet thresholding to explain why compression is suitable for denoising. Specifically, it
is the zero-zone in coefficient quantization that is the main agent in removing the noise.
Although the setting in this chapter was the wavelet domain, the idea can be extended to
other transform domains such as DCT, which also relies on energy compaction and sparse
representation properties to achieve good compression. Thus, lossy compression has the dual
purpose of both removing the noise and compressing the input into fewer bits. Furthermore,

the denoising experiments using our proposed thresholds for wavelet thresholding images,
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Table 4.1: MSE of (1) the noisy observed image, (2) oracle soft-thresholding, (3) soft-
thresholding with thresholds 7', and (4) quantized signal with zero-zone thresholds 7'. The
last column shows the entropy bitrate (bits per pixel) of the quantized image. Averaged
over 20 runs.

MSE || observ. | Tore T | T, Quant. | bitrate (bpp)
goldhill =5 25 16.33 | 17.72 29.57 1.458
o=10 100 41.15 | 41.82 58.64 1.058
o=15 225 64.85 | 66.46 87.04 679
=20 400 86.51 | 88.98 112.22 .445
lena o=5 25 12.39 | 13.47 20.66 1.186
o=10 100 28.15 | 29.58 42.49 725
o=15 225 43.80 | 45.75 63.73 490
=20 400 59.13 | 61.44 83.79 358

Table 4.2: The value of m (averaged over 20 runs) for the different subbands of Goldhill,
with noise strength o = 15.

Orientation Scale

1 (fine) | 2 3 | 4 (coarse)
HH 0 2.10 | 3.65 6.10
HL 2.75 3.95(5.95 20.05
LH 2.70 3.50 | 6.35 12.05
LL 34.65
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Figure 4.5: Comparing the performance of the various methods. Clockwise from top left:
(a) Original. (b) Noisy image, o = 15. (c) Oracle soft-thresholding. (d) Thresholding with
T'(&). (e) Our method of thresholding followed by quantization.
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based on Laplacian distribution modeling of the subband coefficients, showed that these
thresholds perform very close to the oracle results.

There are several interesting directions worth pursuing. The current scheme selects
the threshold (i.e. zero-zone size) T' and the quantization bin size A in a two-stage process.
In typical image coders, however, the zero-zone is chosen to be the same size or twice
the size as other bins. Thus it would be interesting to jointly select these two values and
analyze their dependencies on each other. Furthermore, a more sophisticated coder is likely
to produce better compressed images than the current scheme, which uses the first order
entropy to code the bin indices. With an improved coder, an increase in the number of
quantization bins would not increase the bitrate penalty by much, and thus the coefficients
would be quantized at a finer resolution than the current method. The model family M
could also be expanded. For example, one could use a collection of wavelet bases for
the wavelet decomposition, rather than using just one chosen wavelet, to allow possibly
better representations of the signals. Lastly, the combination of the spatially adaptive
thresholding method developed in Chapter 5 with coefficient quantization could yield a
more sophisticated compression-based denoising algorithm. This is likely to both improve

the denoising performance and reduce the bitrate.
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Chapter 5

Spatially and Scale-Adaptive

Image Denoising

Most of the wavelet thresholding literature thus far has concentrated on developing
threshold selection methods, with the threshold being uniform or at best using a different
threshold for each subband. Very little has been done on developing thresholds that are
adaptive to different spatial characteristics. Other works investigate the choice of wavelet
basis or expansion for the thresholding framework. One particularly interesting result is
that (uniform) thresholding in a shift-invariant expansion (dubbed translation-invariant
(TI) denoising by Coifman and Donoho [16]) eliminates some of the unpleasant artifacts
introduced by the modification of the orthogonal wavelet expansion coefficients. In this
chapter, we use the wisdom that thresholding in a shift-invariant, overcomplete representa-
tion outperforms thresholding in an orthogonal basis, and investigate an issue that has not
been explored, namely, the spatial adaptivity of the threshold value.

To motivate spatially-adaptive thresholding, consider the example in Figure 5.1,
where a square function has been corrupted by additive noise, and the goal is to recover
the original function. The wavelet coefficients of the original and the noisy function are
displayed in Figure 5.1(a). The noisy coefficients are soft-thresholded by a single threshold in
Figure 5.1(b), and one can see that, especially in the finest scale, there are some coefficients
corresponding to noise which have not been set to zero, and that some of these noisy
coefficients are larger in magnitude than those coefficients corresponding to the signal.

Thus, with a uniform threshold, it may not be feasible to have both the benefits of keeping
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Figure 5.1: Motivation for adaptive thresholds. (a) shows a step function and its noisy
version, along with their wavelet decomposition of 4 scales. The wavelet coefficients are
thresholded by a uniform threshold in (b) and spatially adaptive thresholds in (c). The
original and the reconstructions from (b) and (c) are shown in (d).
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the important signal features and killing the noisy coefficients. On the other hand, one can
reap both benefits with adaptive thresholds by choosing the threshold value to be very small
in the regions of the peaks due to the step function, and large otherwise (see Figure 5.1(c))!.
The reconstructed signals are shown in Figure 5.1(d), where it is clear that the adaptively
thresholded reconstruction is much better than that due to uniform thresholding, especially
in the area of the sharp transitions. The question, then, is how can one distinguish between
the coefficients that are mainly due to the signal and those mainly due to the noise? Also,
how should the thresholds be adjusted pixel by pixel? These are the questions that we will
answer in this chapter with our proposed algorithm.

Most natural images have very different local properties, since they typically con-
sist of regions of smoothness and sharp transitions. These regions of varying characteristics
can be well differentiated in the wavelet domain, as can be seen in the wavelet decomposi-
tion of the lena image in Figure 5.2. One observes areas of high and low energy (or large
and small coefficient magnitude), represented by white and black pixels, respectively. Areas
of high energy correspond to signal features of sharp variation such as edges and textures;
areas of low energy correspond to smooth regions. When noise is added, it tends to increase
the magnitude of the wavelet coefficient on average. Specifically, in smooth regions, one
expects the coefficients to be dominated by noise, thus most of these coefficients should be
removed, especially since noise is highly visible there. In regions with sharp transitions,
the signal has the main contribution to the high energy coefficients, while noise has less.
These coefficients should be kept, or modified only a little, to ensure that most of the signal
details are retained, and also because noise is not so visible here. Thus, the idea is to
distinguish between the low and high energy regions, and modify the coefficients using a
spatially adaptive thresholding strategy.

To accomplish spatially adaptive thresholding, we model each wavelet coefficient
as GGD random variable whose parameter is to be estimated. This parameter in turn is
used to find the appropriate threshold. Instead of using one parameter for each subband
level, several wavelet-based image coders have achieved better performances by modeling
the wavelet coefficients as a mixture of GGD random variables with unknown slowly spa-
tially varying parameters [37, 68]. The estimation of the parameter for a given coefficient is

conditioned on a function of its neighboring coefficients, a method called contezt-modeling

'For the sake of illustrating the effectiveness of varying thresholds, the regions of the true peaks are
assumed to be known in this example.
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Figure 5.2: Four level wavelet decomposition of lena. White pixels indicate large magnitude
coefficients, and black signifies small magnitude.

frequently used in compression for differentiating pixels of varied characteristics and adapt-
ing the coder. Context modeling also allows one to group pixels of similar nature but not
necessarily spatially adjacent, and to gather statistical information from these pixels. Now,
given that one can estimate the parameter for each coefficient, the next step is to use them
to calculate the threshold. In Chapter 3, we found that when the signal coefficients are
modeled as Generalized Gaussian random variables and the noise as Gaussian, the thresh-
old T = o2 /o is a good approximation to the optimal threshold which minimizes the mean
squared error of the soft-thresholding estimator, where o is the noise power, and o, is the
standard deviation of the signal. The simplicity of this threshold makes it easy to achieve
spatial adaptivity: one uses context modeling to quantify the local characteristic in O,
which in turn yields a threshold 7' adaptive on a pixel-by-pixel manner.

Our proposed adaptive algorithm is based on using adaptive thresholding in the
overcomplete wavelet expansion. It outperforms both using only adaptive thresholding in
the orthogonal expansion or using only uniform thresholding in the overcomplete expansion
like the T1 denoising. That is, by combining spatially adaptive thresholding and overcomplete
expansion, we achieve results which are significantly superior than either method alone.
Firstly, the adaptive threshold selection does a good job at removing noise in smooth regions,
while not disturbing too much the edge and texture regions. Secondly, thresholding in
the overcomplete expansion acts as an additional averaging which further attenuates the

remaining noise.
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The organization of this chapter is as follows. In Section 5.1.1, we introduce mod-
eling each subband coefficient as a Generalized Gaussian distributed random variable with
a different parameter. Because this threshold selection is based on the iid noise assumption,
the discussion will first be set in the orthogonal wavelet transform. Then context modeling
is introduced in Section 5.1.2 to allow the parameters to be estimated on a pixel level, which
in turn yields a spatially adaptive threshold. The final adaptive algorithm will be complete
when we discuss how to extend the adaptive thresholding in the orthogonal expansion to
the overcomplete expansion in Section 5.1.3. There are several alternative approaches and
related work which we have explored and the findings are discussed in Section 5.1.4. In
Section 5.2, we will compare the spatially adaptive results with those from the best uniform
thresholding strategy (in the mean squared error sense, and based on knowing the original
image), in both the orthogonal and an overcomplete expansion. Results will show that
the combination of using spatially adaptive thresholding and overcomplete expansion yields

significantly better results in both visual quality and mean squared error.

5.1 Spatially Adaptive Algorithm

The adaptive algorithm will be developed in the following manner. To make this
thresholding approach spatially adaptive, each coefficient (rather than each subband) is
modeled as a GGD random variable with a different unknown parameter which is estimated
via context modeling. This spatial mixture of distributions allows the image characteristics
to be quantified locally in the distribution parameters, which are then used to adjust the
threshold for each coefficient. Lastly, since the aforementioned algorithm is developed in
the orthogonal expansion where the coefficients are uncorrelated, the algorithm will need
to be modified to extend to the overcomplete expansion where coefficients are correlated.

Several remarks will also be made about related alternative approaches.

5.1.1 Coefficient Modeling and Threshold Selection

The corrupted image modeled in (2.3) will be re-iterated here for completeness.

The observed degraded image is

9ij = fij +&i5,4,5=1,...,N,
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where {f;} is the original image, and {e;;} are iid N(0,02) and independent of {f;;}.
The observations {g;;} are transformed to the wavelet domain for threshold denoising. Let
{Yig-s’a),i, j =1,...,N/2%}, denote the wavelet coefficients of {y;;} at a particular scale s
and orientation o, where s =1,2,...,J and 0o € {HL,LH,HH, LL} (see Figure 2.5). Also
let {Xf; )} and {V}_(,-”o)} denote the wavelet coefficients of the original signal {f;;} and
the noise {e;;}, respectively. Notice that here we have introduced the extra notations to
denote the scale and orientation of the wavelet decomposition, since they will be needed
in the following. The estimate of each coefficient X,(; “) is the soft-threshold estimator,
X’f; ) = n1;;(Yi5). The threshold Tj; has been written explicitly as a function of the indices
7 and j to denote a different threshold for each location.

Let us rewrite the zero-mean Generalized Gaussian distribution (2.4) in a more

convenient form,

GG,, p(z) = C(0g, B) e~(@(o=Plal)’ (5.1)
where 12
1| L(3) B a(B,0s)
=g-1 |28 _
a(Uz’ﬂ) =0y [P(%):l ) C(O’I,ﬁ) = 21-,(%) .

The parameter o, is the standard deviation and the parameter 3 is the shape parameter.
As demonstrated in Section 3.1, the optimal threshold T* defined as

T* = argmin By x (nr(Y) - X)* (5:2)

where Y|X ~ ¢(y — z,0%) and X ~ GG, 4(z), can be well approximated by

. 2
T=

&9

This threshold, T', can easily be adjusted to the signal and noise energy as reflected in o
and o.

To achieve a spatially adaptive thresholding strategy, the wavelet coefficients are
modeled as components in a discrete random field, with a collection of independent zero-
mean GGD random variables whose parameters 8 and o, are spatially varying. As discussed
previously, mainly the parameter o is of interest since T depends on it, and 8 is assumed
to be in the range for which this threshold is appropriate. In the next section, the technique

of context modeling is used to estimate o, at every pixel, thus yielding adaptive thresholds.
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5.1.2 Context Modeling for Spatial Adaptivity

The parameter o, needs to be estimated for each coefficient to make the threshold
T spatially adaptive. This can be accomplished by contezt modeling, an idea used frequently
in image compression for adapting the coder to changing image characteristics. That is, the
statistical model for a given coefficient is conditioned on a function of its neighbors. Several
model-based coders have utilized information from causal quantized neighbors to determine
the context model for each coefficient [37, 68]. The coder in [37] estimates the shape and
standard variation parameters by the maximum likelihood (ML) estimator from the quan-
tized coefficients within a causal neighborhood, allowing essentially an infinite mixture of
distributions?. In the wavelet-based compression scheme in [68], context modeling was used
to classify coefficients into several classes of Laplacian distributions with different values of
0z. The conditioning was based on the weighted average of the coefficient magnitude in a
causal neighborhood, and each class was formed by clustering coefficients whose associated
weighted averages fall within a specified range. The distribution parameter is estimated
from the coefficients for each class, which is then used to adapt the coder. Since the pa-
rameter and the description of each class need to be sent as overhead, only four classes
were used in [68]. For the denoising problem, there is no need to conserve bits, thus it is
not necessary to explicitly classify the pixels, and parameters can be estimated for each
coefficient via a moving window, resulting in virtually an infinite mixture of distributions.

Consider one particular subband with N2 coefficients, {Yig-s’o)}. To simplify nota-
tion, we drop the superscript (s,0) now, and resume its usage when necessary for clarity.
Each coefficient Y;; is a random variable whose variance can be estimated as follows. Con-
sider a neighborhood of size p around Y;;, and place the absolute value of these p elements
in a p x 1 vector u;j. One possible choice is the eight nearest neighbors of ¥;; in the same
subband, plus its parent coefficient Y[(is/;]l"foj)/z] (see Figure 5.3 for the definition of parent-
child relationship). To characterize the activity level of the current pixel, we calculate a

weighted average of the absolute value of the neighbors as

t
Zij = w" ug.

>To be exact, the shape parameter are restricted to be a member of a discrete set. The quantizer is
pre-designed for a fixed discrete set of shape parameter 8 and slope A/o? where A is determined by the
target rate, so that the coding can be done quickly with the aid of a lookup table.
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LH, . HH,

Figure 5.3: The parent-child relationship in the orthogonal wavelet transform. Each arrow
points from the parent to its children, which are in the same orientation, but in the adjacent
finer scale (except the children of coefficients in LL3). For example, a coefficient in H Hjis
the parent of the four coefficients in HHj corresponding to the same spatial location, each
of which is the parent of four coefficients in HHj.

The weight w is found by using the least squares estimate, that is,

wrs = argn%‘i’nZ(lYijl — w' uyy)?
i,j

= (U'U) Uty (5.3)

where U is a N2 x p matrix with each row being uﬁj, for all 4,4, and Y is the N2 x 1 vector
containing all coefficients Y;;. Notice that the absolute values of the neighbors, rather
than their original values, are used in the averaging. This is because orthogonal wavelet
coefficients are uncorrelated, and thus an average of the neighbors does not yield much
information about the coefficient of interest. However, the absolute value or the squared
values of neighboring coefficients are correlated [55], and therefore their averages are useful
in collecting information about other coefficients in the vicinity.

The variance of the random variable Y;; is estimated from other coefficients whose
contexts lie in an interval around Z;;. To develop an intuition for this, it is helpful to examine
Figure 5.4, which plots the pairs {Z;;,Y;;},4,5 = 1,..., N. The points are clustered within a
cone shape whose peak is at the origin. Taking an interval of small valued Z;j, the associated
coefficients {Y;;} have a small spread; on the other hand, an interval of large valued Z;; has
corresponding {Y;;} with a larger spread (the intervals are of different widths to capture the
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Figure 5.4: A sample plot of {Z;;,Y;}, where Y;; is the noisy wavelet coefficient, and Z;j is
its context. A collection of Y;; with small values of Z;; have a smaller spread than those with

large values of Z;;, suggesting that context modeling provides a good variability estimate
of Y«,,J

same number of points). This suggests that the context provides a good indication of local
variability. Thus, for a given Yj, j, at location [4g, jo], we place an interval around Zig,jos
and the variance of Yj, j, is estimated from the points Y;; whose context falls within this
window. In particular, we take L closest points above Ziy,jo and L closest points below,
resulting in a total of 2L + 1 points, where we choose L = max(50, M2/10) to ensure that
enough points are used to estimate the variance. Note that this is a moving window rather
than the fixed classes in [68], and thus allows a continuous range of estimate values. Let
Bijo denote the set of points {Y;;} whose corresponding {Z;;} fall in the moving window.

The estimate of the variance o2[ip, jo] is then

T 1

[kre]eBioJ'o

The term o2 needs to be subtracted because {Yi;} are the noisy observations, and the noise
is independent of the signal, with variance o2. The threshold at location [0, jo] is then

o2

1.0 Oz [7'0’ .70]

Calculating the threshold ’j’,-j for every location [i, j] yields a spatially adaptive threshold.
In the implementation, {Z;;} are first sorted, and a moving window is placed over them, so
the set B;; and the variance estimate 62[4, j] can be updated efficiently. The noise variance

can be estimated by the median estimator in (3.6).
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5.1.3 Thresholding in Overcomplete Expansion

Thresholding in the orthogonal wavelet domain has been observed to produce
significantly noticeable artifacts such as Gibbs-like ringing and blips. To ameliorate this
unpleasant phenomenon, Coifman and Donoho [16] proposed the translation-invariant (TI)
denoising. Let Shift; ¢[g] denote the operation of circularly shifting the input image g by
k indices in the vertical direction and £ indices in the horizontal, and let Unshifty, ,[g] be a
similar operation but in the opposite direction. Also, let Denoise|g, T] denote the operation
of taking the DWT of the input image g, threshold it with a chosen uniform threshold T,
then transform it back to the space domain. Then TI denoising yields an output which is
the average of the thresholded copies over all possible shifts:

1 N-1

f= el > Unshifty [ Denoise[Shift,, [g], T]] -
k,£=0

The rationale is that since the orthogonal wavelet transform is a time-varying transform and
thresholding the coefficients produces ringing-like phenomena, thresholding a shifted input
would produce ringing at different locations, and averaging over all different shifts would
yield an output with more attenuated artifacts than a single copy alone. TI denoising can
be shown to be equivalent to thresholding in the overcomplete representation implemented
by the non-subsampled filter bank as discussed in Section 2.1.3, shown in Figure 2.6, up to
a scaling in the thresholds. It has been shown empirically to remove some of the ringing
artifacts, because denoising in the redundant expansion can be interpreted as an additional
averaging. Thus we proceed to extend our spatially adaptive algorithm to this redundant
expansion.

The adaptive algorithm in the orthogonal basis described above can easily be ex-
tended to the overcomplete expansion. Now consider the same orthogonal filters but used
in a filter bank without downsampler. The filters are renormalized by 1/v/2 so that co-
efficient energy stays the same. This decomposition is a redundant representation, and
there are correlations between the decomposition coefficients. For example, at the first
level of decomposition, the odd and even coefficients (in each direction) are correlated.
Thus, we can separate the coefficients into four sets of uncorrelated coefficients, namely,
{Y2i 25}, {Yai 2541}, {Yai+1,2} and {Y2i11,2j+1}. For the s-th level decomposition, the coeffi-
cients can be separated into 22 sets, each containing uncorrelated coefficients, and they are

{Yaeitky,2¢5+ko Yigs K1, k2 = 0,1,...,2° — 1. Since each set contains uncorrelated coefficients,
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the noise are also #id within each set as well, and thus the adaptive algorithm can be used
for each set of coefficients. This approach lets us still use the independent noise assumption
and circumvent the issue of denoising correlated signal coefficients with correlated noise,
which is not an easy task. That is, if the coefficients are correlated, then one can conceivably
do better than thresholding each coefficient independently; one could look at the numerous
correlated coefficients and do a joint thresholding. This is still an open problem and is worth
investigating. For correlated noise, near-optimal minimax properties were derived in [30]
for a modified universal threshold, a(s)\/m , where o(®) is the standard deviation of the
noise at the decomposition level s. The framework is for a deterministic signal, however,
and not the Bayesian framework used here. Thus, for simplicity, we separate the coefficients
into groups of uncorrelated coefficients before using the thresholding algorithm.

There are two other minor details in this implementation. Firstly, one needs to
alter the noise power o2 at each decomposition scale to o2 /4° due to the renormalization
of the filters. Secondly, the definition of the parent coefficient used in the neighborhood of
the context is slightly changed: the parent of a coefficient at [i, ] in scale s is simply the

coefficient at the same spatial location [z, j] in scale s + 1.

5.1.4 Alternative Methods

There are several other possible alternative approaches which will be discussed

below.

1. One may ask why the local variance is not estimated from, say, a local window around
Y;; (as in [37]), but rather from an indirect way of grouping the coefficients first via
its context. Estimating from a local neighborhood is simple, and, as demonstrated by
the good performance of the image coder in [37], it yields an estimate good enough
for adapting the coder. However, our experience with noisy images shows that such
an estimate yields considerably more unreliable variance estimates, o2[i, j], and also
a blotchily denoised image. This is because the estimate is highly sensitive to the
window size we choose: a small window contains few points and thus yields unreliable
estimates; a large window adapts slowly to changing characteristics. The context-
based grouping allows one to congregate those coefficients with similar context though
not necessarily spatially adjacent. It also allows a large number of coefficients to be

used in the variance estimation, thus yielding a more reliable estimate. Simulations
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show that the performance is not sensitive to the neighborhood choice B;; and the
weight w used in the context calculation, as a simple equally weighted average of the

eight nearest neighbors in the same subband yield approximately the same result.

. The method we have proposed is a two-pass process: the first pass calculates the
weighted average {Z;;} of the absolute values of the neighboring noisy coefficients,
and then {Z;;} are sorted; the second pass collects the noisy coefficients with similar
values of Z;;, estimates the signal variance, o2[i, 7], from the noisy coefficients and
then the thresholds for the thresholding function. It is worthwhile to investigate the
algorithm performance when the context modeling and the parameter estimation are
performed on the denoised coefficients instead, since, intuitively, if the coefficients are
really denoised, they should yield more reliable information. This simple intuition is,
however, not as straightforward to implement as it seems. To do this in a two-pass
algorithm is difficult, since Z;; is a weighted average of neighboring denoised coeffi-
cients, but the threshold used to denoise these coefficients are estimated from other
denoised coeflicients with similar context. A simple-minded alternative solution is to
use a one-pass modification of our algorithm, where the conditioning and estimation
are based on the causal, denoised coefficients, much along the same philosophy as one-
pass compression methods conditioning on causal quantized data [37, 68]. Assume a
scanning order of row by row, and initialize the first coefficient as already denoised,
that is, X;; = Y1,1. For every new coefficient at location [i, 5], the context is condi-
tioned on Z;; = w‘u,-j where u;; is now the vector containing the absolute value of
denoised coefficients f(,-j in a causal neighborhood, and the elements of w are simply
the equal weights. These choices are made for simplicity since the denoising perfor-
mance is not too sensitive to the neighborhood selection and weight vector w. The
GGD parameter o4[t, j] is estimated from past denoised coefficients whose contexts
are similar, and 2L + 1 coefficients are used (or all of the available coefficients so far
if less than 2L + 1 coefficients have been denoised.) Since the coefficients are already
denoised, the estimation of o,[t, j] is
Uidl= g 3 AR
[k.El€Bi;
instead of (5.4). Simulations show this approach to run into problems especially when

the noise power o2 is large, causing many coefficients to be denoised to zero. Having
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too many consecutive zero coefficients is likely to cause 6;[, j] to be zero, which then
translates to an infinite threshold (i.e. Y;; is thresholded to zero). This in turn may
cause all the subsequent coefficients to be thresholded to zero. This phenomenon
is frequently encountered in backward adaptive compression methods which adapts
based on causal quantized coefficients: a run of zero coefficients may cause all subse-
quent coefficients to be quantized to zero as well. Some work ameliorate this problem
by looking ahead to identify unpredictable sets, coefficients whose neighbors are zero,
but who should not be quantized to zero [37, 68]. This logic can be applied to the
denoising framework as well. When the algorithm computes Z;;, it identifies the lo-
cations [k, £] in the causal neighborhood B;; for which Xke = 0 but |Yke| > o, and
these Yj, are substituted for the zero X, to be used in the computation of Z;; and
6z[%,j]. Simulations show the resulting images to yield slightly worse MSEs than the

previously proposed method, and they are visually considerably more noisy.

Another variation is to use the denoised coefficient for context modeling, but the ob-
served noisy coefficients for estimating o2[i, j] as in (5.4). Again, without taking some
caution about the runs of zero coefficients, the variance estimate may be inadequate
for several rows (recall the scanning is row by row) before having enough non-zero
causal neighbors for collecting valid information. The denoised images are also similar
to the ones described above, having slightly worse MSEs than the proposed two-pass

algorithm, and are visually more noisy.

. A central part of our spatially adaptive algorithm is based on modeling the variance
02[i, 5] to be non-constant and varying throughout the image. This is reminiscent of
the heteroscedasticity, or non-constant variance, problem in statistics. Let {Y;;} be
the observed noisy wavelet coefficients, and each Y;; a random variable whose variance
'y,?j is non-constant. A common approach to the heteroscedasticity problem is to model
'yfj as a function of some design vector, u;;. Traditionally there are two approaches in
estimating this function: parametric and non-parametric. Since we have an assumed
distribution on the wavelet coefficients (i.e. GGD), the parametric approach will be
used here. The readers are referred to [8, 47] and related literatures for more details
on heteroscedasticity models. Using a parametric function to describe the variance
'y,?j has the advantage that it allows a compact representation of the non-constant

variance, useful for image analysis and understanding. In contrast, although the non-
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parametric approach described in Section 5.1.2 works well, it does not lend itself to

any tractable analysis.

In the previous section, we have described the noisy coefficient Y:; as a sum of two
random variables, X;; ~ GGD and V;; ~ Gaussian. Unless Xij is a Gaussian dis-
tributed random variable, there is no closed form expression for the distribution of
Y;;. However, often one observes the wavelet coefficients for images to be sharply
peaked at zero, better described by the Laplacian density function. Furthermore, the
noisy coefficients also form a histogram which is sharply peaked at zero. Thus, for
simplicity and for the sake of tractable analysis, we assume the noisy coefficient Y;; to
be Laplacian distributed, or, alternatively, |Y;;| be exponentially distributed. Similar
to the context modeling framework in Section 5.1.2, let the design vector u;; at loca-
tion [4, j] be the vector containing the absolute value of the eight closest neighboring
(noisy) coefficients, w be the unknown regression parameter (i.e. the weights for the
weighted average of the neighboring coefficients contained in u;;), and the variance
for Y;; be a function of ‘w“uij. Formally, our heteroscedasticity model is
[¥ig] ~ ——el=3/13) y > 0,
Yij

where the standard deviation is
%i; = Kg(whuyy),

Kg(-) is a smooth function such as a polynomial of order r, with unknown parameter
(r +1) x 1 vector 8. Modeling ;; as a function of w'u;; can again be justified
by observing that the plot of {(w'u;;,Yi;)}i; often resides within a cone shape (see

Figure 5.4), implying that the variability of Y;; depends highly on whu;j.

To estimate the parameters 6 and w, we use the likelihood approach. The negative

log-likelihood of |Yj;| is
+ Yl
Ko ('w‘u,-j)
For {|Yij|}ij=1,.,n, the negative log-likelihood, or the likelihood function, is

log Ke(thij)

N

B fog) 4 — 1Vl
L8, w) = ijzzl <logK0(w u;j) + g (w‘u,-,-)) .
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The likelihood function is minimized over both parameters 8 and w to find their
optimal values. One way to do this is to start with an initial w being the linear least

squares estimate, wrg, in (5.3). Then 0 is estimated as
6 = arg moinL(G, Wrs).
The regression parameter w is refined one step further as

W = arg min L(6,w).

After obtaining % and 8, the standard deviation of Y;; is estimated by 4;; = K é(ﬁJtUij),
and the variance estimate of the clean coefficient X;; is 62[i,j] = max(0,42 — 52).
The threshold is then calculated as before to be Tij = 62 /64[i, j].

Polynomials of order » = 1,2 for @ are experimented with, and a different set of
polynomial parameters is found for each subband. Simulations show this parametric
estimation of 'y% to differentiate well between regions of high energy (e.g. edges and
textures) and smooth areas. That is, the variance estimate is larger in the edge and
texture region, and smaller in the smooth regions. However, these values are not ap-
propriate since the subsequently calculated variance estimate of X;;, 62[i, j], results
in zero in many subbands, which in turn translates to killing all the coefficients in
the thresholding. This phenomenon may be due to the disparity between this para-
metric modeling of the non-constant variance and the noisy observation modeling:
in the parametric approach, the observed noisy coefficients are modeled as Lapla-
cian distributed, whereas in the original framework, the observations are sums of a
Laplacian and Gaussian random variable. Nevertheless, the likelihood approach to

the heteroscedasticity problem may be valuable to other applications.

5.2 Experimental Results

We use the images barbara and lena as test images. iid Gaussian noise at different
levels of o2 are generated using randn in MATLAB. For the orthogonal wavelet transform,
four levels of decomposition are used, and the wavelet employed is Daubechies’ symmlet with
8 vanishing moments [19]. There are four methods that we compare, and the MSE results are
shown in Table 5.1. The AdaptDWT method refers to the proposed adaptive thresholding
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using the orthogonal transform DWT, and AdaptNS refers to adaptive thresholding using
the non-subsampled wavelet transform. These two are compared against the best uniform
thresholding techniques (in the MSE sense) when the original uncorrupted image is assumed
to be known. For thresholding with DWT, in each subband, we find the oracle threshold Tore
as in (4.7). This method is labeled OrcUnifDWT in Table 5.1. Similarly, this is extended to
the non-subsampled wavelet transform, where a different threshold is found for each set of
uncorrelated coefficients within each subband (thus 22¢ thresholds for a subband at scale s).
This method is labeled OrcUnifNS. Figure 5.5 shows a magnified region in the barbara image
for 0 = 25 and the lena image for o = 22.5. The AdaptNS method outperforms all the other
methods in both visual quality and MSE performance. It yields significantly less ringing
artifacts and blotchiness than the methods using DWT. The OrcUnifNS method using
uniform thresholds in the non-subsampled framework still shows significant noise in the
smooth background. Thus, it is both the spatially adaptive thresholds and the overcomplete
representation that contribute to the superior quality of the AdaptNS method. The adaptive
methods denoise better especially in the flat regions, where the uniform methods yields
images with much noise and “blips”. Note that although the MSEs for the lena image is
similar between the adaptive and uniform oracle methods, the visual quality in the adaptive
method is far superior as it produces a denoised image that is smooth in the flat regions and
has less artifacts around the edges as well. Interested readers can find Figure 5.5 available on

the website http://www-vavelet.eecs.berkeley.edu/"grchang/SpatialDenoise.html.

5.3 Summary

We have proposed a simple and effective spatially and scale-wise adaptive method
for denoising via wavelet thresholding in an overcomplete expansion. The adaptivity is
based on context-modeling which enables a pixel-wise estimation of the signal variance and
thus of the best threshold. The issue of spatially adapting the threshold values has not been
addressed much in the literature. As we have shown in this chapter, adapting the threshold
values to local signal energy allows us to keep much of the edge and texture details, while
eliminating most of the noise in smooth regions, something that may be hard to achieve with
a uniform threshold. The results showed substantial improvement over the oracle uniform
thresholding assuming the original image known, both in visual quality and mean squared

€ITor.
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Table 5.1: Comparing the MSE of the spatially adaptive algorithm with optimal subband
uniform threshold in the DWT and the overcomplete expansion for various test images and
.

o |l 12.5 | 15 | 17.5 | 20 | 22.5 | 25
barbara
AdaptDWT || 61.4 | 78.3 | 94.0 | 111.6 | 127.5 | 144.8
OrcUnifDWT |l 62.2 | 80.7 | 99.2 | 117.3 | 136.8 | 155.0
AdaptNS || 43.5 | 56.0 | 68.7 | 83.1 | 97.5 | 112.2
OrcUnifNS || 51.2 | 66.3 | 81.0 | 96.7 | 112.0 | 128.2
lena
AdaptDWT || 36.1 | 42.7 | 50.2 | 58.1 | 66.5 | 72.9
OrcUnifDWT | 36.1 | 43.7 | 51.3 | 588 | 674 | 73.7
AdaptNS || 27.5 | 32.7 | 38.4 | 44.1 | 51.1 | 56.5
OrcUnifNS || 29.8 | 35.9 | 42.3 | 48.7 | 55.7 | 61.2
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Figure 5.5: Comparing results of various denoising methods, for lena corrupted by noise
o = 22.5 and barbara by noise o = 25. Clockwise from top left: original, noisy observation,
adaptive thresholding in DWT basis (AdaptDWT), uniform thresholding in DWT basis
(OrcUnifDWT), spatially adaptive thresholding in overcomplete expansion (AdaptNS), and
uniform thresholding in overcomplete expansion (OrcUnifNS).



63

Chapter 6

Multiple Copy Image Denoising
via Wavelet Thresholding

Most of the threshold denoising literatures are for applications in which there is
only one set of observations (i.e. one sequence of time series or one still image). However,
in numerous applications there are multiple copies of the same or similar images, thus it
is necessary to investigate denoising techniques for removing noise from multiple corrupted
copies of the same signal. For a corrupted video sequence, suppose that there are several
consecutive frames in which the motion is not significant and that the registration problem
has been corrected, one can view the frames as multiple noisy copies of the same image.
Another example is when one scans a picture, but with unsatisfactory result, thus one
does multiple scans, and then combines these copies to obtain the most noise-free copy
possible. Since wavelet thresholding has worked well for one copy, it is natural to consider
its extension to multiple copies.

The standard method for combining the multiple copies is to simply compute their
weighted sum. One can only do better by incorporating a thresholding step. The question
is, which ordering is better, thresholding first or averaging first, and what is the threshold
value for each method? These are the issues to be addressed in this chapter. With the
coefficients of each subband modeled as samples of a Laplacian random variable and the
noise as samples of a Gaussian variable, we will show that the optimal ordering (in the mean
squared error sense) depends on the number of available copies and the ratio between the

noise power and the signal power. Moreover, we propose near-optimal subband adaptive
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thresholds for both orderings. Results show that with the optimal or the proposed near-
optimal thresholds, the two methods yield very similar performance, and both outperforms

weighted averaging substantially.

6.1 Denoising Algorithm

The noisy observation model is the same as (2.3), but we add an additional index
to denote the various noisy copies. Let f denote the N x N matrix of the original image
to be recovered. The signal f has been transmitted over a Gaussian additive noise channel

M times, and at the receiver we have M copies of noisy observations,
g™ =f4e™ m=1,..,M.

For the m-th copy, the {egn) }ij pixels are iid Gaussian N(0,02,), where o2, is the variance
of the m-th copy of noise. The noise samples between different copies are also assumed
independent. The goal is to find an estimator f which minimizes the mean squared error
(MSE), 5z S0 (fis — fid)?*

As in previous chapters, the image recovery is done in the orthogonal wavelet trans-
form domain (at least the thresholding part of the algorithm). Let the wavelet transform of
the noisy observation g™ = f + &(™) be denoted by Y™ = X + V(™). Coefficients from
each detail subband of X are modeled as samples of a centered Laplacian random variable
with an unknown parameter. In this chapter, the subband coefficients are modeled using the
Laplacian distribution, rather than GGD, for tractability. That is, the coefficients X;;j and
Y;gm) at location index [4, j] are modeled as random variables X ~ p(z) = LAP(a) £ 2ol
and Y(™|X ~ N(z,02,), respectively. In the following, the most straightforward method
of weighted sum will be discussed first. Subsequently, we investigate the estimators which
minimizes the expected square error for the two thresholding strategies, and compare their

performance.

6.1.1 Recovery by Weighted Averaging

When there are multiple copies available, the standard method is to use the (pixel-
wise) weighted average as the estimate. To simplify the notation, the subscript ij denoting
the pixel indices will be dropped, since it should be clear that the denoising algorithm

combines pixels of the same indices from the multiple copies.
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Let V(™ ~ N(0,02),m =1,..., M, be the random variables representing the m-
th copy noise, define Z to be the weighted sum of the M random variables Y (™) = X 4y (m),

M M
Z = Z ﬁmY(m) = X -+ Z ﬂmV(m)i

m=1 m=1

where ) Bm = 1. The optimal values of 8, are found by minimizing
Eyw,.vonx(Z - X)?

subject to ), Bm = 1 (by using a Lagrange multiplier and setting to zero the derivatives
with respect to B, m =1,..., M), and they are

1
Bo=—Er— , m=1,...,.M, (6.1)
Ei=1 ?{
with the resulting MSE
M 1
O2otal = Var(Z — X) = Var ( > ﬁ;;,v(m)) s (6.2)
m=1 m=1 g%,

Now let us incorporate thresholding into averaging. The weighted sum Z is essen-
tially a new random variable and Z|X ~ N (m,afotal). Since this is exactly the setting for
one copy thresholding, the next straightforward step is to simply find the best threshold
and apply it on Z. However, can we do better than that? More specifically, since we have
two operations here — averaging and thresholding — it is natural to ask which ordering is

best in the mean squared sense.

6.1.2 Thresholding and Averaging

Consider the special case when 0y =03 = -+ = gy 2 o. Thus, By =--- =By =
ﬁ. To make references more convenient, let A(-) denote the weighted average operation
and T(-) the threshold operation, and we give the following notation to the two possible

orderings of these operations:

ATEYW, YD) s X r(T) = &£ M pp(vim)
TAFD,....Y®0) . Zru(T) = nr (4 £, vem).

m=1



66

The MSE or risk of the A(7(-)) method is

Rar(T) = ExEya,. yonx(Xar(T) - X)?

T ExBrix(m(¥) = X0 + 2L B By (or(v) - 001, (63)

where Y|X ~ N(z,02) and (6.3) follows from the fact that {y, .., Y} conditioned
on X are independent. The risk of T(A(-)) is

R7A(T) = ExEyq), yonix(X74(T) — X)? = ExEg x (n7(Z) — X)?,

where Z|X ~ N(z, j‘é). The optimal threshold is the argument which minimizes the risk,
that is,
Ty = arg nr}i‘nR AT(T) and Tj, =arg mTi‘n RrA(T) .

To compare the risks of these two methods, we look at the scaled MSE difference

Rar(Thy) — RTa(TH,4)
0»2

as a function of M (the number of copies available) and of the ratio o,/0, illustrated in
Figure 6.1. For each M < 5, there is a cutoff point, C};, below which Ra7(T%;) >
R7A(T% 4), and above which Ra7(T%7) < R7a(TF4). For M > 5, however, the T(A(-))
method is better for any value of 0;/0. The values of C}, is tabulated in Table 6.1. This
finding indicates that the best method depends on the relative power between the noise and
signal, and also on the value of M. With the optimal thresholds, the improvement of one
method over the other is small, on the order of 107302, The 7(A(-)) method requires
much less computation than the A(77(-)) method, since the former can be implemented by
computing the wavelet transform once, whereas the latter computes it M times. Thus if
computation is an issue, the 7(A(-)) method is preferred.

We do not have closed form solutions for T 4 and T, thus their values would
need to be numerically computed each time or be tabulated. However, we have found
that they can be well approximated by simple closed form expressions. For the 7T (A(-))
estimator, the threshold is simply a modification of T for one copy denoising, but with a

change in the noise variance,
- oM

Tra (6.4)
Oz
For the A(7(:)) method, we use the approximation
~ 02 M (3/4)
Tar = oM (6.5)

Og
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Figure 6.1: Scaled MSE difference (Ra7(T%7) — R7.4(T}4))/0? as a function of M and
oz/o.

The exponent 3/4 in (6.5) yields a good fit to T, though it is by no means an optimal
result. Notice that the threshold for A(77(-)) decreases as M increases, even though at the
thresholding stage, each copy is thresholded independently of the other copies. To explain

this, the inner expectation of R47(T) is written as

Byo,. yoox(X =X = 2-Byix [mr(Y) = Byxnr(2)]* + [Bypxnr(Y) - X]%(6.6)

The first term in (6.6) is the variance due to thresholding, while the second term is the square
of the bias. The optimal threshold is obtained from the tradeoff between the variance term
(which decreases with increasing T') and the bias term (which increases with increasing T').
As M becomes larger, the variance term decreases due to the 1/M factor while the bias
term stays the same. Thus, T needs to be decreased as well to obtain the minimum total.
Figure 6.2 compares the optimal and approximate thresholds for both methods
as a function of M, for 0 = 1 and 0, = 1. Using the approximate thresholds TT 4 and
T a7 results in less than .2% loss of MSE optimality for any M. Figure 6.3 compares the
optimal threshold T% and the approximation T4 as a function of o Jofor M =2,...,6.
It shows that the approximation is good for large o;/0 but not as well for very small o, /o,
especially for large M. The loss of MSE optimality is less than 3.5% for 0,/0 < 1 and
less than 0.1% for 0, /o > 1. However, since typically the signal power is much larger than

the noise power, inaccurate approximations for small o, /c are acceptable. The use of the
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Figure 6.3: Comparing T, (—) and Tar (-+-) foroy = ---, 004 Loasa function of o;/c
and M =2,...,6.
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Table 6.1: Cutoff values (in unit o;/0) for each N, where C}; is the cutoff value for when
using the optimal thresholds, and Cy (listed only for N < 5) is the cutoff value when using
the proposed thresholds, T 47 and T 4.

Cq | Cn
N=2] .6367 | .1379
N=3| 7154 | .7654
N =4 9601 | .9466
N =5 || 1.9768 | 1.0834
N>5| o |>123

thresholds T4 and T4 yield a different set of cutoff values Cjy (tabulated in Table 6.1),
but the scaled MSE difference (R7(Ta7) — RT4(Tr4))/0? is similar to the curves shown
in Figure 6.1 for optimal thresholds and is of the same order of magnitude. Thus, the use

of the approximations Tq- 4 and T4 does not perturb the previous results substantially.

Parameter Estimation We now discuss how to estimate the noise variance, o2, and the
standard deviation, oy, of the signal from the noisy observations. For both methods, these
two parameters are estimated the same way for a fair comparison. First the noise variance,
02, of the m-th copy is estimated by the robust median estimator in (3.6), then 62 is taken

to be the average of these M estimates. Since the noise is independent from the signal,

Var(Z) = Var(X) + 0%/M = o2 + o?/M .

M
Thus, for each subband of Z = % E Y (™), the sample variance estimate of Var(Z) is

m=1
calculated, and the estimate of the standard deviation of the signal is

6z = \/(Var(2) — 62/M) .

Note that as in previous chapters, the estimate of o, and the threshold selection is done for
each subband to yield subband-adaptive thresholds.

Heterogeneous Noise Variances Now consider the case when the noise variances o2
are different. This extension is straightforward in the 7(A(-)) case. The multiple copies
are averaged with the coefficients 8}, in (6.1), and the threshold is Tr 4 in (6.4) but with
o?/M replaced by o2 , | in (6.2).

For the A(7(-)) method, one needs to find the optimal threshold for each copy
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and the optimal weights in the summation. By minimizing the risk

M 2
ExEya,. yonx (Z Bt (Y™) — X )

m=1

with respect to £i,.. ., Bm subject to Y B, = 1, and also with respect to T,..., Ty, one
can find their optimal values. The optimal values of S, are found to be very close to those

in (6.1), and the optimal thresholds can be approximated by

(m) 0’1/2 1 e

lm m

AT = W1 ,ym=1,..., M,
Oz

I 1
110",

which yields T4r in (6.5) when 0; = 02 = -+ = o). For a given set of g,,’s, this
approximation is good for the threshold corresponding to the smallest o,,, and it worsens
for thresholds corresponding to larger o,,. This inaccuracy is mitigated by the fact that the
weights G,’s for copies with large oy,,’s are small, thus the overall MSE is still close to the
optimal MSE.

6.2 Experimental Results

To validate the theory, we take as the test image a 256 x 256 block from the image
barbara, with 0y = ... = oy = o = 30, using Daubechies’ least unsymmetric wavelet with
8 vanishing moments (tabulated in Appendix A) and 4 scales of wavelet transform. The
parameters o; and o are estimated as in the previous discussion. We compare the MSEs
of four methods for a range of M: averaging, A(7(-)), T(A(-)), and switching between
the two thresholding methods (only for M < 5) with cutoff values Cps (thus the switching
method becomes A(7(-)) for M > 5). The resulting MSEs are shown in Figure 6.5. The
three thresholding methods show significant improvement over merely averaging, ranging
from 70% to 30% reduction in MSE for M varying from 2 to 30. The removal of noise due
to thresholding is also visually significant, especially for small M (see Figure 6.4, also avail-
able at http://www-wavelet.eecs.berkeley.edu/~grchang/multThreshImages.pgm).
Among the thresholding methods, the 7(A(-)) method is the best in terms of MSE, even
better than switching, suggesting that perhaps the A(7(-)) method is more sensitive to
model errors and threshold estimation errors. For 1 < M < 5, the switching method yields
MSEs that are between those of A(7(-)) and 7(A(-)). Visually, one does not discern any
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difference between the results from these three thresholding methods. The 7(.A(-)) method
also requires the least amount of computation since it can be implemented with only one
wavelet transform. Thus, in practice, this method suffices to combine multiple noisy copies.

It is interesting to investigate if an additional stage of thresholding can have a
significant improvement. It cannot do worse, since we can always choose the second stage
threshold to be zero. To test this idea, we take the output of A(77(-)) and optimally threshold
it assuming that we have the original. The resulting MSE is only slightly better than the
T(A(")), suggesting that thresholding of the weighted sum yields a sufficiently denoised
image already. Furthermore, finding the optimal thresholds of a two-stage thresholding

operation is difficult.

6.3 Summary

In this chapter we addressed the issue of image recovery from multiple copies of
noisy images, and explored the idea of combining the wavelet thresholding technique with
the more traditional averaging operation. The investigation showed that the optimal order-
ing of these two operations is not so straightforward and is in fact a function of the number
of available copies and of the relative energy between noise and signal. We also proposed
near-optimal thresholds for each ordering. With these thresholds, the performances were
similar, and for computational reasons, averaging followed by thresholding is recommended.
Furthermore, all of these thresholding methods showed substantial improvement over mere

averaging, both visually and in the MSE sense.
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Figure 6.4: Denoised images, for M = 5. From top left, clockwise: original, noisy image
with o = 30, averaging, switching, A(77(-)), and 7 (A(-)).

MSE (Igg scale)
=%

lID 1‘5
M (number of copies)

Figure 6.5: Comparing for each M the MSE (on a log 10 scale) of averaging (— — —),
A(T(-)) (=- =), T(A(-)) (---), and switching (—), for ¢ = 30. Note that the latter two

curves are overlapped.
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Chapter 7

Wavelet-based Image Interpolation

The classic problem of image interpolation refers to extracting information from
the given image to fill in the extra pixels whose values we wish to know. It is useful for
magnification and zooming purposes, which are the applications we have in mind here. The
challenge is to process the image in such a way as to keep the magnified image looking
sharp. Traditional methods such as bilinear and spline interpolations inherently assume
smoothness constraints on the signal. As a result, they typically generate blurred images
since they do not try to preserve some important image features. For example, a sharp edge
in the smaller image would become a gradual ramp in the interpolated image when using
these methods without taking precautions to keep it a sharp edge. To deblur these images,
one could use the standard approach of unsharp masking [27] or other filtering techniques to
boost the high frequencies needed to make the image look sharper. These post-processing
approaches are somewhat ad hoc, however. In this chapter, we propose a wavelet-based
method which extracts information of edges or points of sharp variations and preserves this
information in the magnification process.

Points of sharp variations, or singularities, are among the most meaningful fea-
tures of a signal. For images, these points typically correspond to edges, or boundaries
between regions, and for many image enhancement applications, it is important to detect
these points. Information about these points can be obtained by multi-scale edge detection
methods developed in the computer vision community [51, 42, 66, 7]. The multiscale edge
detection can be formulated in the wavelet framework, as the Canny edge detector [7] is
equivalent to finding the local maxima in the wavelet transform. This multiscale edge char-

acterization framework will be used here, as it allows both a convenient analysis of edges



74

and a model for the interpolation problem which will be introduced shortly.

Information about sharp variation points can be obtained from examining the evo-
lution of the wavelet transform across scales. For a family of wavelets, the wavelet transform
modulus maxima capture the sharp variation points of a signal, and their evolution across
scales can be characterized by the local Lipschitz regularity of the signal [43, 40, 41]. For
example, Figure 7.1 shows a 1-D signal and its wavelet transform for several scales. This sig-
nal includes singularities such as a step and an impulse, and other sharply varying regions.
Each of these sharp variations induces peaks in the wavelet transform across scales, and
the values of these peaks can be characterized by a mathematical equation with unknown
parameters.

The interpolation problem can be viewed as estimating some “higher resolution”
information. That is, the given image resides in the approximation space Vo, and the
“desired” image is an element of the higher resolution space V_;. Thus the essence of
the problem is to estimate the detail signal in Wy (recall from Section 2.1 that V_; =
Vo & Wy). In the context of the previous discussion on propagating peaks in the wavelet
transform, the estimation of the detail signal entails the extrapolation of this propagation to
the finer resolution. With this in mind, we now describe a regularity-preserving interpolation
algorithm.

The proposed interpolation algorithm will first capture and characterize sharp
variation points based on the multiscale wavelet analysis. This characterization is then
used to estimate the higher resolution information necessary to preserve the regularity of
the edge points. From the model of the problem, one can identify constraints on the estimate
and thus refine the estimate iteratively.

The chapter is organized as follows. Section 7.1 will introduce the wavelet trans-
form framework, and relate the multiscale edge detection to the wavelet analysis. The
discussion will start in continuous time, followed by issues due to discretization. In Section
7.2.1, details of the interpolation problem model and algorithm will be discussed in the
one-dimensional case for clarity. This algorithm is extended to reconstructing 2-D images
in Section 7.2.3. Results and comparisons with traditional interpolation methods will be

shown in Section 7.3.
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Figure 7.1: A 1-D waveform and its wavelet transform for three scales, showing the propa-
gation of extrema points across the scales.

7.1 Multiscale Edges

In this section, we introduce the relationship between edge detection and the
wavelet transform, and the characterization of multiscale edges. The readers are referred
to [42, 51, 66, 7] for more details on edge detection, and [43, 40, 41] for multiscale edges in
wavelet analysis. This section contains the background review and notations of multiscale
edge and wavelet transform as presented in [41], and readers familiar with this material can

peruse it and skip forward to Section 7.2.

7.1.1 Edge Detector and its Relation to the Wavelet Transform

Most traditional edge detectors extract sharp variation points by examining the
first or second derivatives of the signal or its smoothed version. This is because an inflection

point indicates a neighborhood of signal variation, and an inflection point in the signal
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domain correspond to the local extremum of its first derivative and to the zero-crossing of
its second derivative. Furthermore, local extrema points (of the first derivative) with large
magnitude correspond to regions of sharp variation in the signal domain, while those with
small magnitude correspond to regions of slow transition. This edge detection strategy can
be formulated in the wavelet framework as follows.

Define a smoothing function 6(z) which satisfies
) =0

and

o0
/ O(z)dz =1 .
)
Assume that 6(z) is differentiable and define a function 1(z) as the first derivative of o(z) :

_ df(z)
'@b(x) - dx .
A wavelet is defined to be any function which integrates to 0. Hence, () can be considered

as a wavelet. Now let v;(z) denote the dilated version of the wavelet function
1l .z
¥s(z) = ;Y6

where s is the scale. The wavelet transform of f(z) at scale s and position z is denoted by
W, f(z), where
Wsf(z) = f(z) * ¥s(z) ,

and * is the convolution operator!. From the linearity of convolution and differentiation, it

is easy to verify that

dbs(z)

Wof(z) = 1(a) + (s5) = s (£ 4 0,)(a) (7.1)

where 6;(z), the dilation of 8(z), is defined similarly as 9,(z). In words, equation (7.1) says
that taking the wavelet transform of the signal at scale s is equivalent (up to a constant)
to taking the first derivative of f x ;, the signal smoothed at scale s.

As elucidated in [32], the notion of viewing an image at different scales is very
natural for its understanding and analysis. The role of the scale s determines how global

or local the signal features are that we want to capture. When s is small, the smoothing

This is the continuous wavelet transform, with continuous scale and space parameter. It is different
from the discrete-time wavelet series introduced in Section 2.1
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function 65(-) is localized in space and thus provides little smoothing, and W, f(z) yields
information about local fluctuations in f(z). On the other hand, when s is large, 65(-) has a
large spatial support and removes small local fluctuations, thus W f(z) conveys information
of signal variation on a more global scale. At a given scale, an extremum point in W, f(z)
of large magnitude has the physical meaning of locating a sharp transition region in f 8,
while an extremum of small magnitude indicates a region of relatively slow variation. One
can also define a wavelet which is the second derivative of 8(z), and use the zero-crossing to
detect edges. However, using the local extrema has added advantages since the magnitude
of the extrema points conveys how sharply the signal is changing, whereas the Zero-crossings
do not. In the case that §(z) is Gaussian, the detection of zero-crossings correspond to the
Marr-Hildreth edge detector [42], and extrema points correspond to the Canny edge detector
[7). Furthermore, a Gaussian 6(-) is the unique function with the property of not creating
additional spurious extrema points at larger scales [32]. Therefore, for edge characterization,
it is important to choose a filter which is Gaussian or approximately Gaussian.

The extension of the multiscale edge detection to two dimensions is straightfor-
ward. Let 6(z,y) be a smoothing function which integrates to 1 and converges to 0 at

infinity, and let 65(z,y) denote the dilation of 8(z,y),
1 zy
Os(z,y) = 295 3)

The image f(z,y) is smoothed by 8,(z,y), and its gradient V(f *0;)(z,y) is computed. The
direction of the gradient vector at (z,y) is the direction at which f(z,y) has the sharpest
variation. An edge point is defined to be a point (zo,yo) at which [V (f * 6,)(z, y)| is the
maximum along the direction of the gradient vector, and it is an inflection point of f * 6;.
To relate multiscale edges to the 2-D wavelet transform, first define
Wa) = et and (o) = LY.

The wavelet transform of f(z,y) consists of two components,
W5 f(z,y) = f x¥y(2,y) and W7 f(z,y) = f *92(z,y),
and it is related to the gradient vector by

[ Wif(z,9) ] _, [ £(f +6)(z9)

=sV *x05)(z,y) .
W2f(z,y) a%(f*es)(x,y)} V0@
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The edge points are where the modulus,

M f(z,y) = VIWI f(z,9) + W2 (z,0)?,

is maximum in the direction of the gradient vector. In the rest of the paper, these points
will be referred to as the modulus mazima. The time-domain regions represented by these
modulus maxima will be called loosely as edge points, singularities, or sharply-varying
points, interchangeably.

7.1.2 Characterizing Multiscale Edges

From the previous discussion, it is clear that the value of the wavelet transform at
scale s measures the smoothness of the signal smoothed at scale s. Furthermore, a sharp
variation induces a local maximum (in the absolute value of the wavelet transform) which
propagates across scales. To illustrate, we return to Figure 7.1 which shows a waveform and
its wavelet transform at the dyadic scales s = 27, for j = 1,2,3. This waveform consists of
a step edge, an impulse, their smoothed versions, and one row taken from the image Lena.
Each isolated singularity produces extrema points which propagate across scales, and this
evolution can be characterized in the wavelet transform by the local Lipschitz regularity,

which measures the smoothness and differentiability of a continuous function.

Definition 1 Let 0 < a < 1. A function f(z) is uniformly Lipschitz o over an interval

(a,b) if and only if there exists a constant K such that for any z¢,z; € (a,b)

|f (z0) = f(z1)| < K|zo — z1]|* .

The uniform Lipschitz regularity of f(z) is the supremum ag over all o for which f(z) is

uniform Lipschitz a.

The value of the uniform Lipschitz regularity measures the differentiability and
smoothness of the function in a local neighborhood. For example, if f(z) is differentiable
at zo, then it is Lipschitz regularity 1. The larger the «, the more regular or smooth
the function is. If f(x) is discontinuous but bounded in the neighborhood of zy, then
ag = 0. A step function is Lipschitz 0 at the discontinuity. The following result states that
the Lipschitz exponent can be measured from the evolution of the absolute values of the

wavelet transform across scales [43].
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Theorem 1 A function f(z) is uniformly Lipschitz a over an interval (a,b) if and only if

there exists a constant K > 0 such that for all z € (a,b), the wavelet transform satisfies
|Wsf(z)| < Ks* . (7.2)

Note that the values K and o depend on the particular singularity at .

The above result for functions with Lipschitz regularity o € [0, 1] can be extended
to tempered distributions such as a Dirac function, which has a negative Lipschitz exponent,
a = —1. That is, a distribution f(z) is said to have a uniform Lipschitz regularity equal to
a on (a,b) if and only if its primitive is @ + 1 on (a,b). The primitive of a Dirac function
at zg is a step function at z¢, which has @ = 0, and thus a Dirac has & = —1. The results
in Theorem 1 can be proven for negative Lipschitz regularity as well.

Often signals have points of sharp variations rather than discontinuities. An ex-
ample is the smoothed edge in Figure 7.1. The previous discussion can be extended to
smoothed singularities as well. Suppose a local smooth sharp variation at z; is modeled
as the result from convolving a singularity at zo with a Gaussian function with variance
o2. That is, a signal f(x) with a sharp variation at zo is modeled as f(z) = h*gs(z),
where h(z) has a local singularity at zo whose uniform Lipschitz regularity is og, and g, (z)
is a zero-mean Gaussian function with variance 2. Further suppose that the smoothing
function 6(z) is close to Gaussian in the sense that 0, * g, (z) = 5, (z) where 5o = /52 + 02,

then the wavelet transform of f(z) and h(z) can be related by
d s
Wsf(z) = sd_(¢ * 0)(z) = —Wsoh(z). (7.3)
T So

Thus, by combining (7.3) and (7.2), the results in Theorem 1 can be extended for the

smoothed sharp variation in f(z) for any scale s > 0:
|Wsf(z)| < Ks-s§!, where sp = /52 + o2.

7.1.3 Discretization Issues

In practice, any implementation must be discrete, and thus the previous discussion
in the continuous space and scale domain needs some discretization considerations. These
issues include the discretization of a continuous-time signal and its wavelet transform, and

the discrete implementation.
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For discrete processing, any continuous-time signal must also be sampled before
being processed. Thus, a signal is measured at a finite resolution. Its wavelet transform
can only be computed over a countable and finite range of scales. In many applications,
it suffices to compute the wavelet transform at the dyadic scale, s = 27 ywithj=1,2,...,
which also allows a fast discrete computation. The fast computation algorithm, the design
of the discrete filters and their relations with the continuous filters 6(z) and ¢(z) are well
explained in [41], to which the readers are referred for more details. Here only the necessary
results and notations will be introduced.

Thus, let the finest scale be s = 1, and the coarsest scale computed be s = 27,

Define a smoothing operator at scale s = 27 to be

SZJf(x)=f*¢2J($)a j=01,...,J .

The function ¢(z) satisfies certain properties such that the difference, or details, between
Soi f and Syi+1 f is Wy, f defined in (7.1). Now let D = {dp}nez be a discrete sequence such
that there exists a (non-unique) continuous function f(z) € L2(R) satisfying

Sif(n)=d,, VneZ.

Hence, we assume that the underlying signal is the continuous function f (z), but only the
discretized version, S; f(n), is available for processing. For a particular class of wavelets,
one can compute from the discrete sequence D = {S) f(n)}nez the uniform sampling (in z)
of the wavelet transform of f(z) at dyadic scales s > 1. Let the following notations denote

these discrete samples,

Weif = {Wai f(n+€)}nez and Sgif ={Spif(n+€)}nez

where ¢ is the shift due to convolution with ¢y; and 1),;. The set of signals

{W8 nssso, 551}

is the discrete dyadic wavelet transform of D = {S)f(n)}necz. Henceforth the discussion
will concern discrete sequences, thus to simplify notations, the discrete sequence f[n] will
denote the samples S, f[n}, and Wy, f[n] will denote the discrete dyadic transform of f[n)
(note the omittance of the superscript “d”).

The discrete dyadic wavelet transform allows a fast implementation to be described

below and whose 1-D filter bank interpretation is shown in Figure 2.3. We describe the
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algorithm here, not to be repetitive, but because there is the issue of the multiplicative
constants which was not a concern before, but is important for estimating the Lipschitz
regularity in discrete-time.

The forward transform is characterized by two filters: a lowpass filter ho[n] and a
highpass filter h[n]. Let h((,j )[n] and hgj) [n] be the filters obtained by upsampling ho[n] and
hi[n], respectively, by a factor of 2/ (i.e. inserting 2/ — 1 zeros between the coefficients).
The wavelet transform of a signal f € l3(Z) can be computed through the convolution with

h(()j ) [n] and hgj)[n] in a recursive manner:

Wayf = 2=Soi-1f* hgj_l)

Aj-1

Soif = Sy1f #h§™Y

i=1,2,...,J, (7.4)

where S, f = f, h((,o) = hy, and h§°) = h;. Let the wavelet transform operator W denote
the linear operator mapping f to {Sys f,Wa; f,j = 1,...,J}. The operator W can be im-
plemented by the octave-band non-subsampled filter bank shown in Figure 2.3(a), provided
the multiplication with A; are incorporated appropriately. The multiplicative constant Aj
appears here because discretization introduces deviation in the estimation of the Lipschitz
regularity, and scaling factors are needed to make the correction. More specifically, the
constants A; are multiplied to the detail levels of the wavelet transform, Wi f, and these
constants are found empirically so as to make the discrete time step function have Lipschitz
regularity @ = 0. Obviously, the values of Aj are dependent on the chosen wavelet. The
quadratic spline filters (see [41] for the derivation) are used for our work because they ap-
proximate coarsely the Gaussian function and its first derivative and they also can be used
in the fast implementation of the discrete dyadic wavelet transform. These filters are shown
in Figure 7.2. Their coefficients and the associated constants Aj are tabulated in Appendix
A.

For perfect reconstruction to be possible, it is necessary and sufficient that there

exists a synthesis pair hg[n] and hy[n] which satisfy the perfect reconstruction condition
Hy(2)Ho(z) + Hy(2)Hy(2) =1, (7.5)

where Ho(2), H1(2), Ho(z), and Hy(z) are the z-transform of the filters ho[n), h1[n], ho[n],
and ﬁl[n], respectively. The inverse wavelet transform reconstructs the original signal by

progressively adding finer and finer details onto the coarse residual signal Sasf. It can be
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Figure 7.2: The quadratic spline wavelet and smoothing function used in this work. The
continuous-time smoothing function ¢(z) in (a), and wavelet 1(z) in (b). The corresponding
FIR coefficients of the smoothing function (lowpass filter hg[n]) in (c), and of the wavelet
(highpass filter h;[n]) in (d).

calculated recursively as
Spir f = MWy f xR 4 S fxbI™D | j=00-1,...,1, (7.6)

where fz((,O) = ﬁo and ﬁgo) = 71.1. The inverse wavelet transform operator W~1 can be
implemented as a non-subsampled synthesis octave band filter bank in Figure 2.3 (b). Note
again that the ); constants are needed to offset the scaling in the wavelet transform equation
(7.4).

The discrete dyadic wavelet transform is an overcomplete, or redundant, repre-
sentation of a function. An arbitrary set of sequences {g;};=1,.../+1 is not necessarily the
wavelet transform of some function f in l3(Z). It is the wavelet transform of some function
f € 12(Z) if and only if

WW™ ({gj}i=1,..041)) = {9i}i=1,..041 - (7.7)

If the set of sequences {g;};=1,...J+1 satisfies (7.7), then we say that it belongs to the range
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of the wavelet transform operator W. The operator WW~™! is thus the projection operator
onto the range of the wavelet transform.

In practice, there are only a finite number N of available samples f[n], which
creates a problem at the boundary in the computation of the wavelet transform. To miti-
gate this problem, the signal is extended with mirror symmetry. This periodization avoids
creating a spurious discontinuity at the boundaries.

For the 2-D wavelet transform, a particular class of 2-D wavelets is used here.
Specifically, we choose separable filters for the 2-D wavelets, where the 1-D filters Hy, H,, H,,
and H; are the same as in the 1-D wavelet transform. An additional filter L is needed, whose

Fourier transform satisfies

The 2-D forward and inverse wavelet transform can be computed in a recursive
manner similar to the 1-D case, implemented with the non-subsampled filter banks shown in
Figure 7.3. Filtering with H,(z;), for example, means convolving with k; [n] in the horizontal
direction. Similarly, filtering with H;(z,), for example, denotes convolving with h;[n] in
the vertical direction. Note that this filter bank is different from the 2-D non-subsampled
filter bank discussed in Section 2.1.3. In Section 2.1.3, each stage has 4 channels of output.
Here each stage of the filter bank has 3 channels, and it emulates the horizontal and vertical

derivatives and the lowpass versions of the image at various scales.

7.1.4 Edge Points as Signal Representation

Several works have proposed to reconstruct a signal based on only the information
about its edge points, characterized as modulus maxima or zero-crossing representations
in the wavelet domain? [3, 41, 17). The zero-crossing representation includes the location
of the zero-crossings, and the integral values between each pair of zero-crossings. Marr
and Mallat conjectured that such the local extrema or zero-crossings representation defines
uniquely a signal, a belief which was later disproved by a counter-example from Meyer [44]
and Berman (3] (the latter in discrete analysis). The completeness of this representation
depends on the chosen wavelet, and is unstable at high frequencies.

With the quadratic spline wavelet used in this work, the wavelet transform modu-

lus maxima representation does not provide a complete representation. Nevertheless, recon-

20f course, different families of wavelets need to be used for these two representations, namely, functions
which are the first- and second-derivatives, respectively, of a smoothing function.
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Figure 7.3: The 2-D discrete dyadic wavelet transform. (a) The forward transform. (b) The
inverse transform.

struction from this representation has been shown to be satisfactory and has been applied
to image coding [41, 17]. In [41], the local maxima of the absolute value of the wavelet
transform (or local modulus maxima in 2-D) are kept in the representation, because local
minima correspond to slowly varying regions. This creates a difficulty in the reconstruction
since the representation is not a convex set. In [17], both the local maxima and minima
of the wavelet transform are kept to allow a convex representation, which then allows a
simpler reconstruction algorithm. Also, the 2-D case is treated as separable 1-D problems.
In this work we adopt the latter representation, so that a simple reconstruction algorithm

could be used.
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Figure 7.4: Interpolation problem model for 1-D. The available signal f is modeled as the
subsampled lowpass component of a higher resolution signal fo, which is the desired signal.

7.2 Enhancement Algorithm

The enhancement algorithm is first explained in one-dimension for clarity before
extending it to the two-dimensional case. The discussion concentrates on magnification by a
factor of 2, although larger magnifications (for factor which are powers of 2) can be achieved
through iteratively performing this algorithm. First the main concepts will be introduced
in Section 7.2.1, and the details will be given in Section 7.2.2. The 2-D algorithm will be
developed in Section 7.2.3.

7.2.1 Algorithm Overview

The model of the interpolation problem is shown in Figure 7.4. The available signal
{fIn],n =0,..., N—1} is modeled to be obtained from the high resolution signal { fo[n],n =
0,...,2N — 1} which we wish to recover, by lowpass filtering followed by downsampling by
a factor of 2. This is a reasonable model since a higher resolution signal is often lowpassed
before sampling to avoid aliasing. Naturally, one does not assume the exact knowledge
of the lowpass filter used in the sampling process. We conjecture that as long as it is
reasonable (i.e. a good lowpass/highpass pair of filters), the result of our algorithm will not
depend strongly on the choice of filters. Furthermore, we have at our disposal a pair of a
lowpass filter Hp(2) and a highpass filter H;(z) such that the two filters, together with a
synthesis pair Hy(z) and H,; (2), constitute a perfect reconstruction non-subsampled filter
bank (i.e. they satisfy the perfect reconstruction condition (7.5)). With this niodel, the goal
of the interpolation algorithm is to estimate the signals f, and g, at the output of Hy(z)
and Hi(z), and then reconstruct an estimate of fy via the synthesis filters. The algorithm

consists of two stages: initial estimation and refinement.
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Figure 7.5: Estimation of g, based on f.

Initial Estimation

An initial estimate f, of the low frequency component f, can be obtained by
simply interpolating f using, for instance, linear or spline interpolation. To find an initial
estimate of the high frequency component g,, first notice that it contains information that
would add “sharpness” to f. That is, if there were a sharp edge in the length 2N signal
Jfo, then the length N component f would contain a smoothed edge in this region. The
reconstruction based solely on f, would not be as sharp as the original edge in fy. The
information about the additional sharpness resides in g,, whose essence is well captured
by local extrema points (supposing that the filters used are appropriate for multiscale edge
characterization). Thus the central part of the initial estimation is to find the values and
positions of the local extrema in g,. The detailed procedures are illustrated in Figure 7.5.

The first step in estimating g, is to identify the edge regions via analysis of the
available signal f. This identification is based on extracting local extrema of the wavelet
transform of f which propagate across scales, and estimating the parameters in Equation
(7.2) which characterize this propagation. The knowledge of an edge location in f conveys
knowledge about the edge location in g, as well (up to a possible ambiguity of +1 in
location), since the wavelet transform of f is the decimated version (by a factor of 2) of the

wavelet transform of fy starting from the scale s = 22 (see Figure 7.6):
Wai fol2n) = Woi-1 f[n], j=2,3,... . (7.8)

An edge information at f[zo] extracted from the analysis of {Wy; f}j=1,2,.,s and charac-
terized in the parameters K and o of (7.2) translates to an edge at fo[2x9). That is, an

extremum in Wa fo can be estimated to be
W21f0[2$0] = Wgof[.’llo] =K.

Naturally, the downsampling operation in (7.8) introduces some ambiguity which needs

to be addressed in the estimation process. More specifically, the true extrema points of
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Figure 7.6: Illustrating the equivalence between the wavelet transform of f and the deci-
mated version of the wavelet transform of fy starting from scale s = 22.

{Wai fo}j=1,..,7+1 may not have been sampled in the downsampling process. Thus the edge
identified at f[zo] may actually be at one of {fo[2z¢ — 1], fo[2x0), fo[2zo + 1]}. In Section
7.2.2, we will discuss constraints which allow possible corrections to this ambiguity.

The edge characterization allows the estimation of significant extrema points of g,.
To obtain an initial estimate of g,, that may be closer to the real g,, the points in between

are then filled in by linearly interpolating between the extrema points.

Refinement by Alternating Projection

The initial estimates of f, and g, can be further refined by identifying constraints
which they should obey. These constraints define convex sets and one can utilize the
POCS (projection onto convex sets) method to find a solution existing in the intersection
of these sets, called the reconstruction set. The POCS method alternatingly projects the

signal onto the various convex sets until it converges to a solution in the reconstruction set
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Figure 7.7: The projection operator, Py, onto the subspace V), the range of the wavelet
transform.

(provided that it is nonempty). Any solution in the reconstruction set is called a consistent
reconstruction and it satisfies all the imposed constraints. There are three convex sets
identified, labelled by V, S and €, respectively:

1. V: The waveforms {f,, 4.} must belong to the subspace V of I(Z), where V denotes

the range of the wavelet transform.

2. S: f, must belong to a set S, which comprises of length 2N signals whose downsam-

pled version is consistent with f, the available signal.

3. &: The edge points of fo (estimated from the analysis of f) should be reflected in
local extrema of §,. £ comprises of signals whose structure is consistent with the edge

information, and §, should reside in £.

The first two items are hard constraints in that they follow from the consistency of the
problem model in Figure 7.4. The third constraint is based on the estimation of how
the signal should be at finer scales, and its purpose is to enhance the resolution of the
reconstructed signal beyond that achieved by the first two constraints.

To speak of projections, it is more convenient to define the projection operator onto
each convex set. The projection operator Py of the subspace V is the operator in (7.7) and
is pictorially illustrated in Figure 7.7: it puts the pair (f,,3,) through the synthesis filter
bank, followed by the analysis filter bank, where the filters obey the perfect reconstruction
property in (7.5).

The projection operator Ps for the convex set S needs to ensure that fu is con-
sistent with the available signal f. At the very least, f,[2n] = f[n] must hold. In practice,
better performance could be achieved by placing restrictions such as smoothness constraints
on the odd samples f,[2n + 1] as well, especially in regions of sharp variation. The details

of this operator will be discussed in the implementation section.
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The high frequency component §, must reside in the set £, which consists of signals
that are consistent with the estimated edge information. However, only the estimated edge
information is available and thus one must allow some error tolerances. In Section 7.2.2, we
discuss the structure of the set £ which allows varying degrees of leniency on the values and
locations of the wavelet transform extrema, and finding a corresponding projection operator
P¢ which projects §,, onto £.

The enhancement algorithm iteratively improves the estimates with the three pro-
jection operators, Py, Ps, and Pg. Let { f,(to), “,(40)} denote the initial estimates of f, and §y.
At the end of the k-th iteration, the estimates of f, and §, are

{£{, 509} = Pe(Ps(Ro({f81,6¢-1}))) -

7.2.2 Implementation Details

This section addresses the implementation details of the algorithm. The associ-
ation of extrema points across scales and the characterization of Lipschitz regularities are
not so simple and straightforward when we deal with real data. Wavelet transform extrema
points due to closely-spaced sharp variations may interfere with each other and make as-
sociation difficult. This interference also complicates the estimation of the parameters in
(7.2), and these complications will be discussed. The estimation of g, will be elaborated, as

well as the the exact structure of the set S and £ and their respective projection operators.

Associating Extrema Across Scales

To extrapolate the extrema points, we need to first select important singularities
and associate the corresponding extrema points across scales. Since W,1f contains an
abundance of extrema which are not necessarily due to global structures, extrema selection
is, instead, done at a coarser scale, s = 22. For each extremum at scale s = 22, the algorithm
searches in the other scales for extrema points to associate to those in scale s = 22.

Due to various reasons, only some extrema are observed to propagate from scale
27 to 27+!, Extrema points at fine scales induced by closely spaced singularities may merge
into one extremum point at coarse scales. Also, because the wavelet transform is discretized
in both scale and space, one may not always observe the extrema points evolve across scales.
For these reasons, it is sometimes difficult to associate the extrema points and thus some ad

hoc rules are used. Suppose we are analyzing the m-th singularity which induces extrema
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points at location m,(i;) in scale s = 2. The values of x,(,{) are unknown except for zg) ,
since the association starts from :c,(;‘:) in scale s = 22. We search in other scales in a
small neighborhood around :1:5,2.) to find extrema points which obey several rules. These
extrema must be of the same sign and must all be maxima (or minima). Furthermore, it
is reasonable to assume that the extrema values should not differ by too much from scale
to scale (i.e. they are approximately of the same order of magnitude), thus we restrict
the ratio between two extrema points of consecutive scales to be within a range: 1/21° <
|Woas Fla$)|/| Wi F[z8+V]| < 215, If the chain of extrema cannot be associated for at

least the first two scales, then the search is aborted.

Estimating high frequency component g,

Let us first rewrite (7.2) in discrete-time and explicitly show the dependence of

the local Lipschitz parameters on the different singularities. This results in

Wy flz®)] = Km(27)om , j=1,...,J, (7.9)
where z$) is the location of the local extremum at scale 2/ corresponding to the m-th
singularity, oy, is the Lipschitz regularity of f at the singular point, and K, is a nonzero
constant. The objective is to estimate Ky, and a,, and then extrapolate to an extremum
point at scale s = 20 through estimating its location £ and value Woo f [:1:53)]. Recall that

the relation between g,,, Wy; fo and Wy; f is
N
Woisifol2n] = Wy f[n]  and  gu[2n] = Wy fo[2n] = Weo f[n).

Thus this extrapolation provides the first step in obtaining an estimate of the high frequency
component Wa1 fo (or g,) by first estimating Woo f.
For those singularities whose sequence of extrema, W,; f [:c%’;)],j = 1,...,J, is

available, the parameters oy, and K, in (7.9) can be estimated via linear regression on
logy(Was f[z9)]) = logy Km + jom , j=1,...,J .

An initial estimate of the extremum point of the wavelet transform of f at scale 2° is then
given by
Wao f[xﬁg)] =K, = gu[2a:£2)] .

The extrema location in scales s = 2° and s = 2! are assumed to be the same, that is, we

let xS,‘P = :z:s,l.).
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The extrema extrapolation yields an estimate of the extrema positions and values
in g, [2a:$,2)]. An initial estimate of the remaining points are obtained by linearly interpolating

between consecutive extrema points.

Projection operator Ps for S

From the problem model in Figure 7.4, it follows that Ps must, at the very least,
assign fu[2n] = f[n]. In practice, this constraint alone does not prevent the spurious
oscillations which often occur in sharp variation regions. To ameliorate this artifact, each
odd sample f,[2n+ 1] is bounded within an interval determined by the smoothness of f,[2n]
in that vicinity.

Let fu[n] be a length 2N cubic spline interpolated version of f[n]. Also let the
discrete Laplacian gradient of f[n] be defined as V f[n] = f[n] — 3(fln—=1)+ fln+1]). The

upper bound on the odd samples of fu is made to be
Hlf, [2n + 1) = ful2n + 1] 4+ e+ (|Vf[n]] + |V £[n + 1])).

The value of € = .5 was used. Similarly, the lower bound LOy, [2n + 1] is calculated as
LOy[2n +1] = ful2n + 1] — e % (IVf[n]| + |V f[n + 1])).

To summarize, the operator Ps modifies fu by assigning the even samples to f[n)

and bound the odd samples to within the interval [LOy, [2n + 1], HIj, [2n + 1]].

Projection operator Py for £

Being the highpass component, the waveform g, should reflect sharp variations
in fo. From the analysis of the wavelet transform of f, we have some knowledge of the
extrema values and positions in g,. Hence, the set £ can be thought of as the set of
waveforms minimizing a specified cost function which penalizes when the extrema values do
not conform to this knowledge. The operator Py modifies g, in a way such that the result
has a lower cost.

This edge information, however, is estimated, and thus prone to inaccuracy espe-
cially when using data containing more than just isolated singularities. The downsampling
process introduces errors as well. Knowing that a certain set of points are edge points

imply that the other points are not. Thus, one needs to be careful to prevent additional
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spurious edges from being created during the reconstruction. With this in mind, there are
various degrees of leniency that can be employed when constructing the cost function. We
can either (a) constrain §, to retain the initial estimates throughout the reconstruction, (b)
allow the values to be within an allowable range, or (c) have no constraints at all on the
values. Approaches (a) and (c) are extreme cases, assigning either infinite cost for wrong
values or no cost at all. The allowed interval of approach (b) serves as a moderation, and
yields better results. In the following, we will not construct explicitly an analytical cost
function, but rather describe how P modifies the input to conform to the edge information.

Extrema Location Because the initial estimate of g, is obtained by interpolating
from the estimate of the subsampled waveform g, the sampling may be such that we miss
the true extrema and obtain instead the adjacent points. Thus for each extremum of Gu,
the points immediately next to it are also allowed to be extrema points to account for this
ambiguity. More specifically, if we initially determine xﬁ,‘P to be an extremum point in
the length-N signal § (which translates to location 2:1:9:) in §,), then after the projection
Pso Py, 2:1:53) may not be an extremum point of §, any longer. If the point of interest is a
maximum (minimum) point, then the abscissa corresponding to the greatest (smallest) of
{gu[za;S,‘P - 1], g,,[zxﬁg)], gu[2a;$2’ + 1]} is assigned as the new local maximum (minimum).

Between Extrema Points The points between adjacent extrema points need also
to be constrained to prevent spurious oscillations during the reconstruction. For example, by
definition, the points between a pair of adjacent maximum and minimum points should have
values bounded by these extrema values, and, furthermore, the slopes of these in-between
points should be monotonic so that there is no other extrema among them. Such a consistent
reconstruction can be achieved by a simple algorithm proposed in [17] which reconstructs
a signal from only its wavelet extrema points. For the interpolation problem, it has been
found experimentally that these constraints are too restrictive for reconstructing g,,, since
the extrema information is estimated and more leniency should be allowed. Therefore,
“softer” constraints will be described.

In predicting the extrema points of g,, only a subset of them could be extrapolated
from the coarser scales, due to the fact that coarser scales typically have less extrema than
finer scales. Thus, for each extremum predicted in §,, we only assume that it is valid
locally. For each maximum (minimum) examined, the points in small neighborhood around
it (a centered window of 7 is used here) are clipped to be less (greater) than or equal to

this maximum (minimum) point. Since we are working with greyscale images, another
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and the upsampled version of |V f[ni,ns)| (upsampled by a factor of 2 in each direc-
tion). The lower bound LOy,[n,n,] is defined similarly, but with a subtraction sub-
stituting the addition in (7.11). The operator Ps then bounds f,[ni,ng] to be within
[LO, [n1, ma], HIy, s, nall

Each of the 2N available rows of the row component §; , and the 2N available
columns of the column component g, ,, is treated as a separate 1-D problem, and is project

onto £ using the 1-D operator Ps described in Section 7.2.1.

7.3 Experimental Results

The performance of the algorithm will be compared against several standard meth-
ods such as bilinear interpolation, bicubic spline interpolation, and bicubic spline followed
by unsharp masking [27]. Unsharp masking is a commonly used method for boosting the
high frequency portion of a signal. The general operation is to take the input f[n1,n3] and
yield

v[nl,ng] = f[n, nz] + Aufn;, ng)

where A > 0 and u[ni,ny) is a defined gradient at location [n1,m2). A commonly used
gradient is the discrete Laplacian defined in (7.10), and a commonly used value for ) is 1.
The filters used in the wavelet decomposition are tabulated in Appendix A, and three levels
of decomposition are computed.

In order to obtain MSE or PSNR measurements in addition to the visual judge-
ment, we take a 2N x 2N image, fo[r1,n2), filter it with some lowpass filter, [n;,ng),
and downsample it to obtain the available N x N image, f[n;, ng). The choice of the filter
¢[n1,n9] is a parameter which we wish to test to see how sensitive the algorithm is to this
choice.

The reconstructed image generally does not change much after 7-8 iterations, both
in visual quality and in PSNR measurements. But to see its best performance, the mea-

surements listed and images displayed are after 15 iterations.
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Portions from the images Barbara, Lena, and Baboon are extracted as the original
high resolution image fo, shown in Figure 7.9. Each 2-D lowpass filter ¢[n1,n2] is a separable
filter, ¢[n1, n2] = p[ni]plnz). The three choices of p[n) are

¢1[n] :  12-tap symmetric lowpass filter generated by MATLAB fir1(11, 0.5)
p2[n] :  1l-tap symmetric lowpass filter generated by MATLAB fir1(10, 0.5)

w3[n] the same filter ho[n] used in the wavelet analysis.

The even-length filter has a delay of 1/2, while the odd-length filter has delay 0. The reason
for choosing (3[n] is to obtain a benchmark, to see how well the algorithm can perform when
we “cheat” by pretending to know the nature of degradation from fj to f.

Each set of experiments consist of taking one of the four test image and one of the
three p;[n] lowpass filters, and interpolate the images using four different interpolation meth-
ods. Here only one set of experiment for each test image will be shown and interested read-
ers can view the rest at the website http://www-vavelet.eecs.berkeley.edu/~grchang/
Interpolation.html . The Barbare experiment with filter ;[n] is shown in Figure 7.10,
Lena with o,[n] in Figure 7.11, Baboon-A with ¢2[n] in Figure 7.12, and Baboon-B with
¢3[n] in Figure 7.13. In all the experiments, the wavelet interpolation approach yields
images considerably sharper than those from linear and cubic spline interpolation. The un-
sharp masking method comes very close to producing images almost as sharp as those from
the wavelet method, though in high frequency images such as Baboon-A, one can see that
the unsharp masking method is slightly more blurry than the wavelet method. Visually,
experiments from the three different filters ¢;[n] yield very similar results and conclusions,
though the PSNR tells quite a different story. Though the PSNR is not a good indication
of image quality, it is nevertheless frequently used, and the results are tabulated in Tables
7.1, 7.2, and 7.3. The best numbers are highlighted in bold. Note that in the Barbara
experiments, the interpolated images show aliasing on the scarfs. This is through no fault
of the interpolation algorithms, but rather that the downsampling operation used to obtain
the test image f already introduced aliasing.

The PSNR results are very sensitive to the choice of lowpass filter ;[n]. For
the even-length filter, ¢;[n], the methods with the highest PSNR are either the wavelet
or the linear method. When the odd-length filter, ws[n], is used, unsharp masking yields
the highest PSNR. With 3[n] = ho[n], not surprisingly, the wavelet approach yields the
highest PSNR.
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Figure 7.8: Interpolation problem model for 2-D.

optimization is to clip all the pixel values to be within [0,255]. These constraints are very
lenient, and we prefer them over the more restrictive ones when analyzing real data, where
it is difficult to ensure the robustness of capturing all the extrema points. In our previous
work in [10], we used strict constraints such as bounding extrema values to be within an
estimated range, and enforcing monotonicity between consecutive extrema points. This
sometimes resulted in images with some unpleasant artifacts such as overly pronounced
edges or small streaks. Here we find that the softer constraints yield much more pleasant

looking results.

7.2.3 Enhancement Algorithm for 2-D Images

In general, analyzing a 2-D problem by treating the two coordinates independently
is not an optimal approach. However, for computational reasons, we propose here to treat
the two coordinates separately. The problem model for the 2-D case is analogous to the
1-D case, and is illustrated in Figure 7.8 for clarity. To iterate, the goal is to extrapolate
from f information about f,, g1, £ Wi21fo and goy £ W21 fo, which are the necessary

components of fq.

Initial estimates

In the wavelet transform, the data is filtered by the separable 2-D filter bank as
discussed earlier. The wavelet transform generates the row components {Wi2i f}i=1,..0s
the column components {W2,2,- f}j=1,..,J, and the low resolution component S; f, all of
which are N x N. Bicubic spline interpolation is used to obtain the initial estimate of size

2N x 2N signal f,. The i-th rows of {W12i f}j=1,..,s are used to estimate the i-th row of
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the scale s = 2° row component as in the 1-D case. The columns are processed likewise.
After interpolating this row to length 2N, we have an initial estimate of the 2i-th row of
W11 fo.

Having only extrema constraints on the even lines may result in jagged edges
during the reconstruction process. To ameliorate this artifact, we estimate the extrema of
an odd row based on its two neighboring even rows. Typical images have smooth contours
which traverse through numerous rows or columns. Thus, for a given extremum on the 2i-th
row, if there is an extremum on the (2¢ + 2)-th row which is of the same type (i.e. both
maxima or both minima) and same sign, and is in a close proximity (within +4 pixels),
then we assume there is an extremum of the same type and sign on the (2 + 1)-th row.
The location and value are taken to be the average of the corresponding extrema on the
neighboring rows. For simplicity, averaging is used rather than fitting a smoothed curve
across these lines, since the considered neighborhood is small, and the difference in location
is not significant.

A similar analysis is also done on the columns of {W, i f};=1,.,s to obtain an

estimate of Wy o fo.

Alternating projections

The estimates f,, 01,. and go, are iteratively refined using constraints analogous
to those proposed in the 1-D case. The 2-D version of Py, Ps and Pg will be described.

The projection operator Py is simply a one-level 2-D inverse wavelet transform
followed by a one-level 2-D forward wavelet transform. The operator Ps first makes the
assignment fu[2n1, 2ng] = f[n1,neg] for the even samples. To constrain the odd samples, we
define f,[n1,n9] to be a 2N x 2N bicubic spline interpolated version of f[ni,ns]. Also let

the discrete Laplacian gradient of f[n;,ng] be
ﬁf[nl, ng) = f[n1,n2] - %(f[nl —1,no]+ f[n1+1,n2] + f[n1,n2 — 1]+ f[n1,n2+1]). (7.10)
The upper bound on the samples of fy[n,n2)] is taken to be
HI, [n1,n2] = fuln1,n2) + wlng, na) # Upsample(|V f[n1, n2]]), (7.11)

where the second term is the convolution between a weighting function w(n;,ng] depicted
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Figure 7.9: Four test images for the interpolation algorithm. Clockwise from top left:
Barbara, Lena, Baboon-A, and Baboon-B.
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Figure 7.10: Interpolation of the Barbara image, with the even-length lowpass filter ¢ [n].
From left to right, top to bottom: (a) Original 256 x 256 image. (b) Lowpass, available
image, 128 x 128. (c) Wavelet-based interpolation. (d) Cubic spline interpolation with
unsharp masking. (e) Linear interpolation. (f) Cubic spline interpolation.
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e

Figure 7.11: Interpolation of the Lena image, with the odd-length lowpass filter @g[n]. From
left to right, top to bottom: (a) Original 256 x 256 image. (b) Lowpass, available image,
128 x 128. (c) Wavelet-based interpolation. (d) Cubic spline interpolation with unsharp
masking. (e) Linear interpolation. (f) Cubic spline interpolation.
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Figure 7.12: Interpolation of the Baboon-A image, with the odd-length lowpass filter @o[n).
From left to right, top to bottom: (a) Original 256 x 256 image. (b) Lowpass, available
image, 128 x 128. (c) Wavelet-based interpolation. (d) Cubic spline interpolation with
unsharp masking. (e) Linear interpolation. (f) Cubic spline interpolation.
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Table 7.1: Comparing PSNR of different methods when the given image is downsampled
after lowpass filtering by the even-length filter ¢; [n].

Image || Wavelet | Cubic | Linear | Cubic + UnsharpMask
Barbara 21.36 21.20 | 21.36 20.50
Lena [ 22.71 | 21.44 | 21.69 20.86
Baboon-A || 21.86 | 21.66 | 21.90 20.91
Baboon-B || 19.80 | 19.56 | 19.71 18.96

Table 7.2: Comparing PSNR of different methods when the given image is downsampled
after lowpass filtering by the odd-length filter ¢2[n].

Image || Wavelet | Cubic | Linear | Cubic + UnsharpMask
Barbara || 24.64 | 26.79 | 26.55 27.34
Lena || 27.48 | 32.16 | 31.07 32.69
Baboon-A || 25.32 | 27.37 | 26.98 27.79
Baboon-B || 22.41 | 23.59 | 23.31 23.92

Figures 7.14 shows the PSNR as a function of the iteration number for the images
Barbara, Lena, Baboon-A, and Baboon-B. Each plot shows three curves, for the three choices
of lowpass filter ;[n]. As mentioned previously, the reconstructed image remains visually
indistinguishable after 7-8 iterations. The PSNR also shows quick convergence, though
it is not always monotonically increasing. For filters ¢;[n] and @2[n], the PSNR actually
decreases after the 3rd or 4th iteration, but for ¢3[n], it is monotonically increasing. Again,
we want to stress that these PSNR numbers are not necessarily a good measure, and the

visual quality of the wavelet approach is the best in all cases.

7.4 Summary

We have proposed a wavelet based method for image interpolation which preserves
the regularity of edge points. By characterizing edge points via the wavelet transform, we
extrapolate the extrema needed at a finer scale for reconstruction of a higher resolution
image. The result shows that the enhanced image is significantly sharper than simple
schemes such as linear and cubic spline interpolation, and still noticeably sharper than
unsharp masking.

The better performance comes at an expense of higher complexity and more com-
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Table 7.3: Comparing PSNR of different methods when the given image is downsampled
after lowpass filtering by the filter @3[n] = ho[n].

Image | Wavelet | Cubic | Linear | Cubic + UnsharpMask
Barbara || 26.94 | 24.99 | 24.86 25.14
Lena | 32.46 | 27.86 | 27.49 28.13
Baboon-A || 27.57 | 25.53 | 25.35 25.72
Baboon-B || 26.06 | 24.62 | 24.45 24.76

putation than the linear methods, and the nonlinearity of our method makes it difficult to
characterize the behavior of the algorithm analytically. Because the theoretical framework
is geared towards isolated singularities, this method is not necessarily appropriate for, say,
texture images.

For future research, we could explore the potential of processing the image with
2-D neighborhoods instead of a separable 1-D approach. Since the method proposed here is
for isolated singularities, a more comprehensive interpolation algorithm would be to segment

the images into regions of isolated singularities and textures and process them differently.
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Figure 7.14: PSNR as a function of iterations. The curves are for images with ¢; (+—+),
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Chapter 8

Conclusion

This thesis explored various aspects of image denoising and interpolation. We

summarize here the findings and possible future research directions.

8.1 Models for Image Restoration

Many ideas and techniques which have worked well in image compression and
edge analysis were adapted to image restoration problems in this thesis. Results showed
considerable success over conventional methods and some recent works in literature. These
successes led to the conclusion that good image coders and edge analysis do provide good
image models applicable to other areas of image processing. Our algorithms present a
break-away from the more traditional filtering or stochastic modeling approaches in image
restoration. While filtering and stochastic modeling are still important components of our
algorithms, the combination with adaptive and non-linear techniques in image modeling
and analysis make these algorithms outperform conventional methods. The basic analysis
framework used the wavelet decomposition, which allowed viewing images in a natural
multiresolution fashion and provided a convenient basis for the problem models. In the

following text, the details of the various results are described.

8.1.1 Bayesian Approach to Threshold Selection

There have been many works in the literature addressing the issue of threshold
selection for wavelet threshold denoising. We felt that none of them are ideal for real image

denoising, thus we proposed our own approach to this problem. Our framework was to model



106

the signal coefficients as random variables with Generalized Gaussian distribution and to
find the threshold which minimizes the mean squared error using the soft-threshold estimate.
We proposed a near-optimal threshold which is effective, intuitive, and easy to compute.

This threshold selection provided the basis for the subsequent denoising algorithms.

8.1.2 Lossy Compression for Denoising

Based on the intuition that typical images have predictable structures more easily
compressible than random noise, several works have proposed using lossy compression to
distinguish between signal and noise for noise removal. Such an approach also achieves the
“kill two birds with one stone” benefit of simultaneous compression and denoising. Prior
works were fuzzy on choosing a coder or did not achieve compression in a practical sense.
In our work, we made the connection between compression and the wavelet thresholding
denoising operation, and developed a systematic approach to achieve both denoising and
compression. Results showed that, though some quantization noise was introduced, lossy
compression did remove a considerable amount of the observation noise, especially when

the noise was significant.

8.1.3 Spatially Adaptive Denoising Algorithm

Most successful image processing applications employ spatially adaptive algo-
rithms, since images typically have changing spatial characteristics. Thus, we investigated a
spatially adaptive version of the wavelet thresholding technique. The manner of adaptation
is based on context modeling, a frequently used method for adapting coders to changing
signal characteristics. The other part of the algorithm is based on smoothing the corrupted
signal in its overcomplete expansion, which essentially provides an additional averaging for
reducing the noise. The spatial adaptivity and overcomplete expansion together yielded
results significantly better than either one alone, both in visual quality and mean square

€ITOor measurements.

8.1.4 Multiple Noisy Copies Denoising

For applications where a receiver has available multiple noisy copies of the same
image, we investigated the optimal ordering of averaging and wavelet thresholding for com-

bining them into one denoised image. The finding showed that the ordering is less than
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obvious, and it depends on the noise power, the signal model, and the number of copies

available.

8.1.5 Edge-Preserving Interpolation

Conventional interpolation or magnification algorithms assume some smoothness
constraints on the underlying image. This assumption may yield overly blurred images. We
proposed a regularity-preserving interpolation algorithm which adapts to the local regular-
ity. The available image was modeled as a low resolution image, from which we wished to
obtain a higher resolution image. Edge analysis and extrapolation was performed on the
available image to estimate the needed details. The experiments produced images much
sharper than those from the conventional spline and linear interpolation. Furthermore, the
problem model provided a justified framework for estimating the high frequency component,

rather than an ad hoc post-process sharpening such as unsharp masking.

8.2 Research Directions

During the course of the thesis, there emerged many relevant issues which would

be natural extensions of our work thus far. Below are some of these issues.

8.2.1 Other Noise Models

In order to obtain some theoretical results, we have assumed the iid Gaussian
noise model. While many practical problems are modeled this way, there are other practial
problems with very different noise behaviors. Examples include shot noise and “snow” noise
(as on the television). Sometimes the noise samples may be correlated among each other,
and may also be correlated with the image. Such is the case for a lossy-compressed image,
where the error residuals shows a strong correlation with the image along the edge regions.
Another example is the block-based compression (such as JPEG), which, at low bitrates,
yields considerable artifacts along the boundaries of the blocks. It would be interesting to

see if our methods are suitable or can be adapted to these different noise characteristics.
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8.2.2 Texture Modeling

Many of the intuitions used in our algorithms (especially the edge-preserving in-
terpolation) is based on isolated edge analysis. For textures, another paradigm of modeling
would be required. Typically, a piece of texture is decomposed into a deterministic compo-
nent and a random field component, which is a useful representation for characterizing and
synthesizing. It merits an investigation to extend this representation to, say, the interpo-
lation and denoising framework. For the interpolation problem, since the high resolution
image and the available image is related by a lowpass filter followed by a downsampler,
knowledge of the deterministic and stochastic behavior of the available image can be ex-
tended to the high resolution image as well. We did some preliminary studies towards this
direction in [9], but did not probe it deep enough. For the denoising problem, one can
extract the texture regions and denoise it with a texture model. We used a primitive image
segmentation method in [11] to separate the image into different regions and denoise them
differently. It showed promising results, and this idea can potentially be greatly improved

with a more sophisticated image segmentation method and texture model.

8.2.3 Restoration from a Blurred and Noisy Image

Another domain of image restoration deals with recovering an image which has
been degraded by both a blurring function and additive noise. Practical applications in-
clude removing the blur due to camera out-of-focus, motion blur, scatter blur (from X-ray,
for example), to name a few. A simple-minded inversion of the blurring operator, even
when it is known, is a bad idea since the inversion of a lowpass filter (which is essentially
what a blur is) amplifies the high frequency noise. Thus, restoration typically comes in
the form of regularization, where the blur and the noise are decreased little by little in
a regularized fashion. We have done some preliminary experiments on using compression
methods as regularization and the results were promising. That is, from the compressibility
of the degraded image, we estimate how compressible the original image is. During the
recovery process, this estimated information is kept consistent with the estimated image.
This framework presents a very interesting approach to the image restoration and warrants
further investigations. A similar idea has also been proposed independently by Liu and
Moulin {36].
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Wavelet Filter Coefficients

Daubechies’ symmlet with 8 vanishing moments [19] has 16 coefficients as displayed

below:

Symmlet 8 = {

0.002672793393,
0.005386388754,
—0.073462508761,
0.680745347190,
0.010758611751,
—0.004783458512}

—0.000428394300, -—0.021145686528,
0.069490465911, —0.038493521263,
0.515398670374,  1.099106630537,

—0.086653615406, —0.202648655286,
0.044823623042, —0.000766690896,

The filter coefficients of Hy, Hy, Hy, H; and L corresponding to Mallat’s quadratic

spline wavelets [41], used in the interpolation algorithm in Chapter 7, are tabulated in Table

Al
Table A.1: Filter coefficients of the quadratic spline wavelets.
n H 0 H 1 H 0 H 1 L
-3 -0.001953125 | 0.0078125
-2 0.125 | -0.01367125 | 0.046875
-1 0.125 0.375 | -0.04296875 | 0.1171875
0] 0375 0.5 |0.375 | 0.04296875 0.65625
1| 0.375(-0.5]0.125 | 0.01367125 0.1171875
2] 0.125 0.001953125 | 0.046875
3 0.0078125
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Note that the filters H; and H 1 are different from those listed in [41] because we
have normalized them such that H;(z = —1) = 1.

The multiplicative constants, A;’s, used in the non-subsampled filter bank in Chap-
ter 7 are listed in Table A.

Table A.2: Multiplicative constants used in the non-subsampled filter bank using the
quadratic spline wavelet.

Aj

1.0
0.75
0.6875
0.6719
0.6680
0.6670
0.6668

SO W N = Ol
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