

Copyright © 1999, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ALGEBRAIC METHODS FOR

MULTI-VALUED LOGIC

by

Robert K. Brayton

Memorandum No. UCB/ERL M99/62

7 December 1999

ALGEBRAIC METHODS FOR

MULTI-VALUED LOGIC

by

Robert K. Brayton

Memorandum No. UCB/ERL M99/62

7 December 1999

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University of California, Berkeley

94720

Algebraic Methods for Multi-Valued Logic

Robert K. Brayton
Electrical Engineering and Computer Sciences Dept.

University of California, Berkeley

December 7, 1999

Abstract

We give several algebraic (more correctly semi-
algebraic) methods for manipulating multi-valued logic
functions. The methods treat binary and multi-valued
variables uniformly. They include methods for finding
common sub-expressions, semi-algebraic division, decom
posing a multi-valued network using kernel extraction,
factoring an expression, and simplifying a factored form
using "redundant values". The algorithms have been im
plemented in a prototype system (in APL) and tested for
quality (not speed) on a small set of made-up examples.
The methods seem to worksatisfactorily but more exper
imentation needs to be done.

1 Introduction

Multi-valued (MV) logic can be useful for the initial
m^ipulation of a hardware description before it is en
coded into binary and processed by standzud logic syn
thesis programs. It is a natural way to describe logic
at a higher level. Additionally, it may be useful as a
front end to a software compiler, since software lends it
self naturally to the evaluation of multi-valued variables
in a single cycle. Although there has been a lot of work
on multi-valued logicmanipulation and optimization, one
set of techniques that have not been developed is the al
gebraic methods which are at the foundation of efficient

binary logic synthesis.

Algebraic methods are usedafter first castingthe logic
expression into a minimized sum-of-products. Then the
result is manipulated as an algebraic expression, ignoring
the Boolean identities xx = 0,xx = x,x + x = 1. The
intuition is that if two functions have a common subex

pression or divisor, then often this will be seen in their

minimized sum-of-products expressions. This results in
faster methods for manipulating the logic, such as fac
toring and finding common divisors. Although some op-
tiniality is lost, this can be recovered by using Boolean
methods later.

In this paper, we develop, more fully, algebraic type
methods for MV-logic. The basis for these ideas originate
in the paper of Lavagno et. al. [3].

2 Notation

In general, a MV-logic function can have MV input
variables and an MV output. A function with a single
binary output is called an MV logic fimction, or simply
an MV-function. A function with k output values can be

represented by k MV-functions or as a single function
with k output values. In this paper, we use the first
method, although ultimately we hope to treat the output
as a single MV variable.

An MV-network is a network of nodes; each node

represents a multi-valued output function. There is one

MV variable associated with the output of each node. An
edge connects node i to node j if the function at j depends
explicitlyon the variable associated with node i, typically
denoted, yi. The network has a set of primary inputs and
a set of nodes which are designated as the outputs of the
network. An intermediate format for representing such a
network is BLIF-MV used in the system VIS [1].

A literal of an MV-variable x is associated with a set

of values for that variable. For example, suppose x can
take on 5 values {0,1,2,3,4}. Then and
are literals of x. The interpretation of is that it is
a binary logic function which is 1 if x has either the value

of 0 or 2, and 0 otherwise. Note that = 1 since

all five values appear in the literal. A product term or

cube is a product of literals which evaluates to 1 if and

onlj' if each of the literals evaluates to 1. Additionally, a
cube can be thought of as simply a set of values. We use
the notation c to denote the cube consisting of all values
not in the cube c. A sum-of-products is the OR of a
set of product terms, which evaluates to 1 if any of the
products evaluates to 1. In general, the set of values for
variable Xi is denoted P, = {0,1,..., |Pj| - 1}.

The supercube of a set of cubes (an expression) is the
cube formed by taking the union of all the values in all
the cubes.

The cofactor of a set of cubes d with respect to a cube
c, denoted dc, is the set of cubesobtained by eliminating
cubes of d that do not intersect c and then adding to each
remaining cube those values not in the cube c, i.e. the
values in c. For example, if x and y each have 5 values,
d = -|-y{ii2,4} ^^{o}j^{o,3} ^
then dc = + y{o,i,2,4}

We say that an expression is cube-free if for each \'£iri-
able there is no literal (except 1) that contains all other

literals of that variable in the expression. For example,
o{i'3}5{i!2,3} ^{o,i,3}^{i,3} jg cube-free because the

literal contains and contains

The containing set of literals (in this case,
is called the common cube of the expression. We can make
an expression cube-free in several ways.

1. cofactor the expression by the
common cube (e.g. -I- =
a{0,1.3}^{l,2,3}(^{l,2,3.4} ^ ^{0,1.3,4}))^

2. remove all literals appearing in the common

cube (e.g. a{i.3}5{i.2,3} ^ q{o,i.3}^{i,3} ^
a{0,l,3}j{1.2,3}(^{l,3} ^5{1,3}))

In the first case, values (not in the common cube) are
added to the expression. In the second case extra val

ues are added but only to make the common cube liter

als equal 1. In this paper we use the second method of

making an expression cube free in order to keep the num
ber of values in an expression minimal. In fact, the two
cases represent upper and lower bounds for the cube-free

results. The vsdues not in the common cube are called

redundant values and we can use them like don't cares

to obtain many cube-firee expressions. Thus, unlike the

binary case, the cube-free expression is not unique. This
makesthe problemoffinding common divisors amongtwo
or more expressions more difficult than in the binary case.

As an example, consider the following two expressions.

/ = x{0'i-3}(y0.2}+a,{oyo})
g = a;<°'2''»(y{i'2}+a;t0'2.3}y{0})

At first glance, / and-g seem to have no common divisor.
However, inside the parentheses of /, 2 and 4 are redun
dant values for x, and inside the parentheses of g, 1 and
3 are redundant values for x. If we choose to include 2 in

the first, and remove 3 in the second, we get

g = X<0'2.4}(y{1.2}^.3.{0.2}^{0})^

and hence a common divisor of In

summary, the cube-free divisor is not unique, and com
mon divisors must be identified by selectively choosing
which redundant values to include.

3 Satisfiable Matrices

In [3], a set of literalsof a vziriable arranged in a twodi
mensional eirray M is satisfiable if it satisfies the follow

ing "value condition" for each value v of the MV-variable.

Definition 1 Let I be the set of rows in M in which v
appears and J the set of columns in M in which v ap
pears. Then v satisfies then value condition if it appears
in each literal in M in all positions {Mij\i 6 I.j G J}.
If all values of the multi-valued variable satisfy the value
condition, the M is satisfiable.

The idea in [3] for finding common divisors of a set of
binary output functions with only one MV-variable and
many binary variables, is to

1. find kernels and co-kernels by factoring out binary
literals using the standard binary kerneling algo
rithm,

2. form the co-kernel/cube matrix with each co-kernel
forming a row and each column associated with each

unique cube appearing in any of the kernels,

3. label the columns with the binary literals in the ker
nel cube.

4. set the (i, j) entry of the matrix equal to the remain

ing literal of the MV-variable of the kernel cube,

5. find a large rectangular sub-array {/, J) that is sat-
isfiablc.

At this point, a product of two expressions can be formed
out of the (/, J) sub-array and the row and column labels.

We extend this definition and procedure slightly where
in general all variables can be and the rows and columns

£irenot associated with binary co-kernel and kernel cubes.

Consider any rectangular arrangement of a set of MV-
cubes. It is satisfiable if for all values of all variables,
each value satisfies the value condition.

Note that this definition applies equally to binary as
well as MV-variables. In this paper, we give new methods

for factoring MV expressions. Some of the methods arc
new even for purely binary logic functions.

Similar to the procedure in [3], one can derive a prod
uct of two expressions from a satisfiable matrix by the

following:

1. For each row i, form the supercube er,i of all cubes
in that row.

2. OR these together to form the tow expression, Cr =

Si

3. For each column j, form the supercube Ccj of all
cubes in that column.

4. OR these together to form the column expression,

Theorem 1 Let M be a satisfiable matrix, and z =

Y!,ij Mij. Then z = (er)(ec).

Proof. We claim that

hdij —fir.i Fl Cc,j

Clearly Mij C er,i 0 Ccj. Now suppose that Mij 2 '̂ r.i O
Ccj. Then there exists a variable with a value v such that
V € er,i n Bcj but V ^ Mij. However, v must be in Mik
for some k, and also v € Mmj for some m. Therefore, by
the value condition for a satisfiable matrix, v € Mij (as
well as Mmk), a contradiction. Hence, Mij D er,i HCcj.
•

We want to address the following problem.
Problem: Given a set of cubes, find a subset that can be

rearranged into a (largest) satisfiable rectangle.
We give a method for finding a solution, based on pre

selecting the number of rows in the matrix. Then the
array is found by a brauich and bound technique. Entries

are selected in the matrix in column order, i.e. a cube is

selected for Mii,M2j,...,Mi2,.... At each point the en
tries selected are guaranteed thus far to satisfy the value

condition. The bounding process is that the selected cube

c for the next entry should satisfy a lower bound cube I

£ind two upper bound cubes, ui and u^, i.e.

/ C c C ui nit2

Let (i,j) be the matrix position for the next entry to be

selected.

Lower Boimd Cube: The cube I is made up of the

following set of values:

I - {u|(3(A: < j),v 6 Mi,it) and (3(m < i),v 6

Note that for i = 1 or j = 1, this is 0.

Upper Bound Cube 1: The cube ui is made up of the

following set of values:

?zi = {w|(3(fc < j),v e Mi,k)

or (V(n ^i,m< j),v ^ Mn,m)]

Alternately, u\ consists of all values except the following,

ui = {v\{>/{k < j),v ^ Mi,k)

and (3(n 7^ 2,m < j),v € Mn,m)}

Note that for j = 1, this is 1.

Upper Bound Cube 2: The cube U2 is made up of the

following set of values:

U2 = {t;|(3(n < i),v 6 M„,j) or (V(m < j),v ^ Mn,m)}

Alternately, W2 consists of all values except the following,

U2 = {v|(V(n <i),vf^ Mnj) and (3(m < j),v € M„,m)}

Note that for j = 1, this is 1.

Theorem 2 A matrix M is satisfiable if and only if for
each Mij satisfies I C Mij C itj nu2-

Proof. Let v be an arbitrary value, and x, a, b,bi,c stsuid
for the following propositions.

• re -H- V € M,

• a <-)• 3(/: < j),v € Mi^k,

• b^3{n^ 2)3(A: < j),v € Mn,k,

• 6i 3(71 < i)3(fc < j),v € Mn,k,

c ^ 3(m < i),u € M,fn j •

The value condition can be characterized by the following
expressions,

1. ac=> X

2. xb a

3. xbi c

The value condition can be seen as exactly the conditions
that relate diagonal entries Mik and M^j to Mij, or Mnk
and Mnj to Mij. Solving for rr for each of the above
expressions, we get

1. ac^ X

2. X ^b + a

3. X bi + c

These conditions translate into the lower bound condition

I and the two upper bound conditions, ui eind U2 respec
tively. •

Other Efficiencies: Since the rows and columns can

be permuted arbitrarily, we can assume that the least

numbered cube, in the matrix to be found, is in the (1,1)
position and that the first row and first column are or

dered. Having preselected the number of rows, we search
for the satisfiable matrix with the most columns. When

ever a new rectangular satisfiable matrix is found , it is

recorded if it is the largest seen so far. The search can
be bounded if we can reason that the remaining part of
the search cannot produce a Isirger matrix. One way to
achieve this is to use the upper and lower bounds. For

example, suppose that the (2,3) entry is to be chosen
next, and we have seen already a satisfiable matrix with

four columns. Of the remaining cubes that have not been
tried for the (2,3) entry, suppose only two satisfy the up
per bound ui. Then we back-track the search to the next

choice for the (1,3) entry. The reason is that u\ is inde
pendent of column j, so only the two remaining cubes can
be used for row 2, leaving no choice for a fifth column.
A similar bounding can be obtained by using U2 and the
observation that U2 is independent of row i.

4 Semi-Algebraic Division

One of the applications of the above search process is
given an expression (sum-of-products), d, which will serve
as the divisor, and another expression /, find the divi
dend, e, i.e. a largest expression e such that f = de + r.
In this equation, each side is a set of cubes and equality
means that the two sets are equal, de produces a set of

cubes of size jd| x |e|, i.e. the cross product of the two
sets. The product of two cubes is the intersection of the

two sets of values for each variable. A cube may be one

of the null cubes, i.e. a cube where at least one of the

literals has no vadues in its set. If null cubes are retained,
no cubes arc lost in the multiplication process, and the
product is like the algebraic product defined for binary
valued variables. However, there is a difference. In the
binary case, the algebraic product was defined only if the
two expressions in question have no variables in common.

Thus the product could not produce null cubes and the
property xx = x is not needed.

We relax the definition of algebraic product and apply
it to the multi-valued case. We do not require that the
two expressions have disjoint sets of variables. As an

example, consider the product

(cW +oWc<°'̂ '2>)(a^0'i'2>c< '̂3> -h6{ '̂2.3}c{o.3})

When this is multiplied out, we get

a{0,l,2}^{3} ^ 5{1.2.3}^{3} ^ ^ ^{0} J{1,2,3}^{0}

In general, null cubes could be produced. We use non-
algebraic properties in performing this product by using
that the set of values obtained for a variable is the inter

section of the two sets from each cube, e.g.

which is analogous to using xx = x for the binary case.
In our division algorithms, westart with a given divisor

d and search for a satisfiable matrix M formed from the

cubes of /. The row expression Cr associated with M will

be related to d.

In exact division, we require that the given divisor,

d= Cr. The column expression, ec, is the dividend, and
the cubes of / not included in M = (er)(ec) form the
remainder r. Each cube of d is associated with a row.

Since each cube placed in a row must be contained in the
associated cube of d, we can restrict the search for cubes

in that row to only such cubes. In this way, the cubes of
d serve limit the search and hence make it more efficient.

In inexact division we just require that d D e,.. For

example, if d = a + 6 and we "divide" this into

/ = abx + + dbx + ahy

we get er = a6 + db and Cc = x + y. The initial divisor,

d, just seeds the search; d is not necessarily a divisor of
/. Another case is

/ = abxz + abyz + dbxz + dbyz

where the initial divisor is 06 + db. We get Cr = z{ab +
db). In general, we can use any expression to start the
process, even, for example, d=l + H-l, in which case d
has no information and we are just looking for a largest

satisfiable matrix with 3 rows.

There me several applications where we want the row

expression to be exactly the divisor. For example, sup
pose a common divisor is to be extracted from a set of

functions. Then the candidate divisor d should be used

to rewrite each function in terms of d, fi = de,- + ri. It

would not do to have a result where each row expression
is unique, i.e. fi = d,e, + rf, where each dj C d.^

However, in an application like factoring, we use the
divisor in only one function. As an example, consider the
function,

^{0.1.2}^{3} ^ ^ ^ „{0}^{1.2.3}^{0,1.2}

Suppose we determine from looking at the cubes 1 and 3

'Since di C d, there exists a function gi such that di = gid, hence
/• = dgiCi+ri, so d is a Boolean divisor of However, the combination
giCi may be more complex than the original function

that we want to divide by

afO.1.2}^ ^{1,2,3}

If we require that the row expression equal this, then
we get as the dividend. However, if we only use
afo.1,2} ^ If{1,2,3} gg ggg gg^ laxgcr satisfiable

matrix and achieve the factorization

{^{0,l,2}g{1.3}^ j{l,2.3})(g{3} oWcfO.1.2})

Again the row expression is contained in the original di
visor, but is not equal to it.

Hence, in factorization, the divisor is used to focus and

limit the search process and the row expression obtained
from the satisfiable rectangle need not equal d. In this

case we obtain / = de+r which can be an acceptable start

of a factoring process. Additionally, it is not necessary to
get the best result at first; as a second step e can be used

as the divisor leading possibly to a better factorization.

This is the basis of quick factor (QF), used in SIS [4],
where the first divisor is chosen to be any level-zero kernel.

Such a factoring process has been implemented where the

first seed divisor is chosen to be any two-cube divisor in
analogy to the method of [5]. In our case, we look at
pairs of cubes in decreasing order of size and choose the
first pair wliich has a nontrivial common cube. These

literals are extracted from the pair (by making it cube-
free, according to method 2 in Section 2) and the result

is used as the candidate divisor.

As examples of the resulting QF algorithm applied to
several functions, we get the following results, where be

low we just show the final factorizations; the initisil set

of cubes given to the adgorithm is the set obtained by
multiplying out the expressions.

((/{i.2}+y{0.2yi})g{iyi.2}^

/{a} + ^{0,2,4,5}^{1,2,3} ^
^{0,1,2,4,5}^{0,1}^{3} ^{2,3,4,5}g{0}^{2}j

GP =

GQ = (6^^^ +

Note that even though the first divisor used in the QF
algorithm consists of only two cubes, by using the cube-

free column expression as the second divisor, we obtain
a much stronger factorization. Note also that the sec

ond and third expressions have only binary inputs and
the factorization is not algebraic since the second uses
the Boolean identity oo = 0 and the third uses aa = o.
GP is an example where the initial sum-of-products for
it includes appropriate null cubes.

GP = a<>60 + +

+ c<>d<> + cto>dWe<^>/<^> +
/{o> + /{«> + e<>/i>

Without the null cubes, we would obtain

GP = (c<»>dii>+eti>/ti>)aW6to> +

(e{i}/{i}+ai^>6<»>)cWdW +

We will discuss next how appropriate null cubes can be
inserted into an expression to yield a better factorization.

5 Supplementing with Null Cubes

A goodfactorization can be lost because multiplying it
out results in null cubes which are usually thrown away.
Then the factorization process which must reverse this
has difficulty finding the original factorization. However,
one can assume that all null cubes are implicitly part of
any set of cubes. Oneprocedure for using these is to insert
an unspecified null cube into the matrix, when there are
no regular cubes that will fit. As an example, suppose in
the division process we arrive at a rectangle with 3 rows
and in the third column, we have succeeded in finding
a satisfiable arrangement of cubes, except for the (3,3)
element. Then if none of the cubes are a candidate for

this position, we can insert a null cube whose values are

determined later. Consider the following example.

-I- -h

afUfifilgfo}f{o} ^ f{o}

Assume that the cubes are numbered 1-6 in the order

shown above, with a null cube labelled 7. Suppose we
divide by Then in forming

a satisfiable matrix we would like to get the following
matrix.

or

1 2 7

6 7 5

7 4 3

03

02 eW/WafUftfi}

The strategy would be to try a null cube for the current
position when all other options are exhausted. Note that

a null cube is labelled 7 to force it to be the last cube

tried for a given position. The matrix we obtain in the

search process has its first row and column in order. We

can also limit our choices to only one null cube per row
and column to make the process more efficient.

The only question is whenis a null cube appropriate for
a given position? It is important to give the inserted null
cube a set of values because its values must satisfy the
upper and lower bounds for that position. Also its values

are used later to derive upper emd lower bounds for sub

sequent positions. We use the following strategy ii i ^ 1
and j 7^ 1. For these positions, we havealreadycomputed
lower and upper bounds for the current position. If the
lower bound is not a null cube, then there is no null cube

appropriate for that position and we have to backtrack.

Otherwise, we create a null cube with no values in the
null variables of the lower bound cube and equal to the
upper bound in the other variables. For j = 1, we cre
ate a null cube for the position and when the column is

finished we recompute the null cube so it is compatible
with that column. For i = 1,j ^ 1 the null cube can only
appear if this is the last column. In this case, we try to
create one more column but in reverse row order. Thus

the null cube appears only when the column is done and
we have enough information to create a correct one. For

i = 1 it is not possible to have a null cube in this
position.

This strategy seems to work pretty well, except it is
possible to create a matrix containing the created null
cubes but which is not satisfiable. Hence when inserting
null cubes we must check the satisfiability with a special
subroutine before proceeding in the search.

Thus in the above example, we get 0i = ^2 =
and 03 = We still get the same row and

column expressions as expected,

e,. =

Cc =

Multiplying this out leads to same null cubes that were

created.

The use of null cubes is not adways beneficial as the
following example shows. Without using null cubes our
factoring algorithm gives,

(6{0.2} ^{0.2,3}J(J{0,1.2}) (^{1,3} ^ i,{1.3})(„{0.1,3}j
+(a{0.2}6{0.3}^{0.2.3} ^ ^{0,3})(5{0,2.3}) ^
(a{0.1.2}^{l,3} ^{1,2,3})(^{3} ^ ^{0}^{0,1.2}) ^
„{1,2.3}j{1,2,3}^{1,2.3}(^{2}^{1,3}^{1.3} ^ ^{2,3})

and using null cubes, we get

(6{0.2} ^ ^{0.2,3})(^{0,1.2}) + (^{1.3} ^ ft{l,3})(^{0.1,3}

+a{2}c{1.3}) + (o{0.1,2}j{0,1,3}^{0.2,3} ^ ^{0,3})
(^{0,2,3}^{0,2,3} ^ ^{0,1,2}^{1}) ^ ^^{0,1,2} ^ ^{3})

(c{3} + ^ j{1.2,3}((^{3} ^ ^{1,2,3})
(c{2.3}) + ^{0}^{0.1.2})

In the first case there are 24 literals in the factored ex

pression and in the second, 27 literals.

6 Using Redundant Values in Factored Forms

A factored form is a parse tree where the leaves are

cubes, and internal nodes are either the AND operator or

the OR operator. Redundant values are like observability
don't cares, and although less powerful, they are simpler
to compute and use. We describe a technique for deriving
redimdant values for subtrees of a factored form. Once

redundant values are derived they can be used like don't

cares where in the subexpression they can be included in
each cube or excluded. We derive sufiicient conditions for

values to be redundant.

1. Consider AND(ei,e2). Let si = supercube(ei) and
S2 = supercube(e2). Then si are redundant values
for 62 and s~2 are redundant values for ci.

2. Consider 0R(ei,e2). Let ti = supercube(er) and

<2 = supercube(e2). Then ti are redundant values
for 62 and t2 are redundant values for 6i.

With these two propositions, we can construct an algo
rithm which operates on a factored form, computes re

dundant values down to the leaves, and simplifies the

leaves. The algorithm operates in two passes. On the

first pass, we compute recursively for each node, the su-

percube of the associated expression and the supercube

of the complement. On the second pass, the redundant

values eire propagated down to the leaves in depth-first

order. At a leaf, the redundant \'alues are used to sim

plify the leaf. This may change the supercube and the

supercube of the complement for that leaf. Hence these

supercubes are updated before we proceed to the next

branch. As we move up the tree, the supercubes and the

supercubes of the complements are updated. This gives

us an order-dependent but compatible way of using the

redundant values.

An example of this in operation is the following,

(e{U(/{I.2}g{1.2} ^ /{0.2y1}) ^ y{2})

which, using redundant values, reduces to

(eCV.2}(j<i)+/(i>)+/W)

where the number of values for a,b,c,e,f,g =

3,4,5,2,3,4 respectively. Another example is

(610.2} ^ ^{0.2,3})(^{0.1.2}) + (^{1,3} ^ j{l,3})(^{0.1,3}
+a{2}c{l.3}) + (a{0,l,2}^{0.1,3}^{0,2,3} + ^{0.3})
(o{0,2,3}j{0,2,3} ^ + (o^"'̂ '2}^{3} ^
^{1,2.3})(^{3} ^ ^{0}^{0.1.2}) ^ ^{1.2,3}^{1,2.3}^{2.3}

where a, b, c each have 4 values. Using the above opera

tion, this reduces to 1.

Redundant values are easy to compute. The only com
ment on their computation is how to compute the su

percube of the complement without complementing the

expression. This is done by observing that the supercube

of the complement of an expression is upper bounded by
the following procedure:

1. Removeall cubes of the expression except single lit
eral cubes.

2. Complement the resulting expression, which is the
cube consisting of the product of the complement
literals.

The result is only an upper bound, since an expression
may not be minimized. For example, there may be a
single literal implicant, but it is not apparent from the
initial expression.

7 A Kerneling Process

We seek a kerneling process similar to that used for
binary functions [2, 5]. We follow a process analogous to
the two-cube divisor method of [5].

The two-cube divisors of an expression is the set

r(/) = {cubefree(ci,cj)|cfc G/}

Note that there are at most two-cube divisors

of an expression. It was demonstrated in [5] that the
use of such divisors in a decomposition process leads to
little loss of optimality over the use of kernels but is much
faster. A method was given forprocessing divisors as well
as commoncubes at the saume time, also identifyingwhen
divisors werecomplements of each other, to obtain a more
accurate figure of merit.

A divisor is given a figure of its merit by keeping track
of the number of times it or its complement appears in
all the expressions being considered. The divisor with
the greatest merit is chosen, implemented as a separate
function and substituted into all the expressions in which
it appears. The substitution is performed using the alge
braic division process described previously. Once a net
work has been decomposed by this process, functions can
be selectively eliminated if their figure of merit in imple
menting the network is below a given theshhold.

As an example of this process consider the following
derived network, where the numbers in the parentheses
of the input variables give the number of values for the
variable.

•in a(2), 6(2),c(2),d(2), e(2), /(2), g{2), h{2)

.out GP, GO, GR, GQ, GS, gg

8

GP =

GO =

GR =

GQ =

GS =

99 =

y\ =

92 =

2/3 =

(c(») + d(''>)(ef'') + + 6'°>) +

a<°>((e<?)+c<°>)d(»)+d(°>e<') +
c(»)/<»)ft{i) + /(oyO))

+ d^*^ +

(a(o)i,(o>+c(">d(»>)e(')/('> +

cf>d{i)e{ot^(0} ^

The yi subexpressions were not in the original descrip
tion, and are the result of the kerneling process followed
by selective elimination of expressions. Note that even
though only two-cube divisors were initially extracted,
the elimination process resulted in larger subexpressions.

The abovenetworkwasa binary one. The next example
is a MV-network.

.in a(3),6(4),c(5),d(6),e(2),/(3),p(4)

.out 53,56

S3 = + +

yo = -l-

2/1 =

J/2 = d{0245}^{123} ^ yr{2}

94 = (/<^>+p<^>)e{^>+d<2345}g{0y2}

Again the are sub-expressions created by the kerneling
and elimination process. The process works essentially
the same. We extract common subexpressions by finding
cube-freepairs ofcubeszind choosing the ones that appear
most often. These are extracted by performing algebraic
division as described above. Binary and MV variables are
treated uniformly. However, for the MV variables we have

the additional problem that the cube-free divisor is not

unique and to identify common subexpressions optimally,
we would need a method which uses the redundant values

optimally. At this point we do not know how to do this,

so we have used the minimal cube-free expressions (the
one with the least values).

8 Conclusions

We have given several algebraic (more correctly semi-

algebraic) methods for multi-valued logic functions. The
methods treat binary and multi-valued variables uni

formly. They include methods for

• finding common sub-expressions,

• semi-algebraic division,

• decomposing a multi-valued network,

• factoring sin expression, and

• simplifying a factored form using the concept of re
dundant values.

The algorithms have been implemented in a prototype
system (in APL) smd tested for quality (not speed) on a
small set of made-up examples. In particular, our sys
tem has only rudimenteury methods for simplifying an ex
pression and lacks a powerful multi-valued optimizer like

ESPRESSO-MV. Nevertheless, the methods seem to work

satisfactorily but more experimentation needs to be done.

The methods need to be improved along the following
directions.

1. We do not know how to treat common divisors that

are equivalent modulo redundant values. Although
one can imagine such approaches, it remains to de

velop one and make it efficient.

2. All common subexpressions extracted by the meth

ods of this paper are binary. Indeed all variables, ex
cept possibly variables in the initial description are

binary. All examples that we have done so far had

only binary output functions. It would be more ap
pealing to have a method for finding common divisors

which are themselves multi-valued output functions,

so that multi-valued output functions csin be treated
directly without breaking them up into binary func
tions, one for each value. The hope would be to treat

a multi-valued output function in a manner analo

gous to how multiple output functions are treated in

PLA minimization.

3. Adding null cubes does not uniformly improve the

factorization. We need a better filter for when to

add null cubes.

4. The mezisure of progress currently is the number

of literals in the factored form. However, it is not

clear whether the literals and x{o,i,3,5} should

be treated equally. Additioneilly, when a literal is

factored out to make an expression cube-free, the

number of literals is not always decreased, e.g.

(6{0.2} + c{0.2.3}j^{0,l.2}p{0,2,3.4}
^ ^{0,2}^{0,2,3,4} ^{0,1,2}^{0,2,3}

Even the number of values and the number and type

of operations in this example do not change. Wliich

expression is simpler to evaluate?

Finally, the use of initial multi-valued optimization fol

lowed by binary encoding and subsequent optimization
needs to be evaluated for hardware implementation. We

intend to experiment in two domains, hardwgire imple

mentation, and software compilation where possibly bi

nary encoding is not required. As a first step we will de

velop an efficient MV package using the algebraic methods

developed in this paper along with other MV methods in

the literature.

Acknowledgements

This work was supported by the SRC under contract

683.004.

References

[1] R. K. Brayton, M. Chiodo, R. Hojati, T. Kam,
K. Kodandapani, R. P. Kurshan, S. Malik, A. L.

Sangiovanni-Vincentelli, E. M. Sentovich, T. Shiple,
K. J. Singh, and H.-Y. Wang. BLIF-MV: An Inter

change Format for Design Verification and Synthesis.
Technical Report UCB/ERL M91/97, Electronics Re
search Lab, Univ. of California, Berkeley, CA 94720,
November 1991.

[2] R. K. Brayton and C. McMullen. The Decomposition
and Factorization of Boolean Expressions. In Proc. of
the Intl. Symposium on Circuits and Systems, pages
49-54, May 1982.

[3] L Lavagno, S Malik, R Brayton, and A Sangiovanni-
Vincentelli. MIS-MV; Optimization of multi-level
logic with multiple-valued inputs. In Proceedings of
the International Conference on Computer-Aided De
sign, 1990.

[4] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon,
R. Murgai, A. Saldanha, H. Savoj, P. R. Stephen,
R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
SIS: A System for Sequential Circuit Synthesis. Tech
nical Report UCB/ERL M92/41, Electronics Re
search Laboratory, Univ. of California, Berkeley, CA
94720, May 1992.

[5] J. Vasudevamurthyand J. Rajski. A Method for Con
current Decomposition and Factorization of Boolean

Expressions. In Proc. of the Intl. Conf. on Computer-
Aided Design, pages 510-513, November 1990.

10

	Copyright notice 1999
	ERL-99-62

