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Abstract

Landing an Unmanned Air Vehicle:

Vision Based Motion Estimation and Nonlinear Control

by

Omid Shakernia

Master of Science in Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Shankar Sastry, Chair

Unmanned air vehicles (UAVs) are being used more and more in a number of civilian and

military applications, for example remote monitoring oftraffic, search and rescue operations,
and surveillance. This has generated considerable interest in the control community, mainly
due to the fact that the design ofUAVs brings to light research questions falling in some of the
most exciting new directions for control. One ofthese directions is the use ofcomputer vision
as a sensor in the feedback control loop. In this report, we use computer vision cis a feedback

sensor to control the landing a UAV onto a landing pad. The vision problem we address here

is a special case of the classic ego-motion estimation problem since all feature points lie on a
planar surface (the landing pad). We study together the discrete and differential versions of
theego-motion estimation problem in order toobtain both position and velocity of the UAV
relative to the landing pad. After briefly reviewing existing the algorithms for the discrete
case, we present, in a unified geometric framework, a new estimation scheme for solving the
differential case. We further show how the obtained algorithms enable the vision sensor to
be placed in the feedback loop as a state observer for landing control. These algorithms
are linear, numerically robust, computationally inexpensive and hence suitable for real-time

implementation. We present a thorough performance evaluation of the motion estimation



algorithms under varying levels of image measurement noise, altitudes of the camera above

the landing pad, and different camera motions relative to the landing pad. We also design a
landing controller for a full dynamic model of the UAV. Using geometric nonlinear control
theory, the dynamics ofthe UAV are decoupled into an inner system and outer system. The
proposed control scheme is based on the differential flatness of the outer system. For the

overall closed-loop system, conditions are provided under which exponential stability can be
guaranteed. In the closed-loop system, the controller is tightly coupled with the vision based

state estimation and the only auxiliary sensor are accelerometers for measuring acceleration

ofthe UAV. Finally, we show through simulation results that the designed vision-in-the-loop
controller generates stable landing maneuvers even for large levels of image measurement

noise.
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Chapter 1

Introduction

Unmanned air vehicles (UAVs) are being used more and more in a number of civilian and

military applications, for example remote monitoring oftraffic, search and rescue operations,

and surveillance. This has generated considerable interest in the control community, mainly
due to the fact that the design of UAVs brings to light research questions falling in some of

the most exciting new directions for control. One of these directions is the use of computer

vision as a sensor in the feedback control loop. The task ofautonomous aircraft landing is
particularly well suited to vision based control, especially in cases where the landing pad is
in an unknown location and is moving, such as the deck of a ship. Figure 1.1 shows a US

Navy helicopter landing onto the deck of a ship.

Typically, a vision system on board a UAV augments a sensor suite including a Global
Positioning System (GPS) which provides position information relative to the inertial frame,

and Inertial Navigation Sensors (INS) which provide acceleration information [27]. As a
cheap, passive and information-abundant sensor, computer vision is gaining more and more

importance in the sensor suite ofmobile robots. There has been a growing interest in control

design around a vision sensor. In [19], stereo vision systems areproposed to augment a multi-

sensor suite including laser range-finders in the landing maneuver ofa UAV. In [28], the use
of projections of parallel lines is proposed for the purpose of estimating the location and
orientation of the helicopter landing pad. Using this approach, the vision sensor provides
position and orientation estimates of the camera relative to the landing pad, but can not



Figure 1.1: A US Na.vy photo showing a helicopter landing on a ship deck.

estimate the camera velocity, which is important for controlling a UAV.

In this report, we present computer vision algorithm based on [20, 21] to estimate UAV

motion (position and orientation, linear and angular velocity) relative to a landing pad
using a calibrated monocular camera. The given algorithms are linear, computationally

inexpensive, numerically robust, and amenable to real-time implementation. We also present

a thorough performance evaluation ofthe vision based motion estimation under varying levels
ofimage measurement noise, altitudes, and camera motions relative to the landing pad.

The use of computer vision in the control of UAVs is more challenging than in the clas

sical "visual servoing" approach [2] because UAVs are under-actuated nonlinear dynamical

systems. In order for a guaranteed performance such as stability for the overall closed-loop

system, a thorough characterization of the UAV dynamics are absolutely necessary. We

present a full dynamic model of the UAV. Based on geometric control theory, we decom

pose the dynamics into two subsystems: inner and outer systems. A nonlinear controller is

proposed based on dilferential flatness of the outer system. In addition to the work in [24],
we also give a detailed stability analysis of the closed-loop system, and clear conditions are

derived for systemstability. The proposed controller is tightly coupled with the vision based

state estimation and the only auxiliary sensor needed to implement the controller is an INS



for measurement of acceleration. The INS is used since second order derivatives of image

features are highly sensitiveto noise. Finally, we show through simulation that the designed

vision-in-the-loop controller is stable even for large levels of image measurement noise.

Report Outline

In chapter 2, we introduce the notation for the camera motion and imaging models. In

chapter 3 we formulate the problem of motion estimation from image mecisurements of a

planar scene. We present a new geometrical scheme for recovering of the camera linear and

angular velocities from the velocities of feature image points. In chapter 4 we provide simu

lation results of the planar ego-motion estimation algorithms and evaluate their performance

under the presence of noise, and different types of motion relative to the plane. In chapter5

we give the dynamic model of the UAV and the design of a controller based on differential

flatness. Conditions for closed-loop stability are also studied in detail. In chapter 6 we

describe how the obtained vision algorithms can be placed in the feedback loop as a state

estimator for the controller, and provide simulation results of the vision based landing ma

neuver. We end the report in chapter 7 with concluding remarks and directions for future

research.



Chapter 2

Camera Motion and Projection Model

We begin by introducing the notation for the motion of the UAV and the imaging model

of the on-board camera. The notation is consistent with that given in [14, 16]. We identify a

point with its coordinates in the inertia! frame, and use the terms "point" and "coordinates"

interchangeably when referring to points in the inertia! frame. We willadhere to the following

convention: We denote the coordinates of a point in the inertia! frame with a tilde, for

example q € and denote the coordinates of the point in the camera frame using the same

letter, but without a tilde, for example q G We assume a monocular camera is fixed to

the UAV and the optical axis of the camera coincides with the vertical axis of the UAV body

frame.

Given a vector lj = (4*^1,^2,we define Q E 5o(3), the space of skew-symmetric

matrices in by:

^ 0 UJ2 \
Cj = UJS 0 -LJl

V -^2 LOl 0 /

(2.1)

It follows from the definition of cross-product of vectors that for any two vectors p,q E E^,

we have p x q = pq.

We assume that the motion of the UAV is described by a smooth curve on the special

Euclidean group 5-E(3) = {(p, /?) | p E E^ R E 50(3)}, where 50(3) is the special orthog-



onal group of rotation matrices in Let {p(t)^ R{t)) 6 SE{3) denote the position and

orientation of the camera with respect to the inertial frame at time t. Then the coordinates

of a fixed point in the inertial frame, and its coordinates in the camera frame at time t are

related by:

q = R{t)q{t)-^p(i). (2.2)

Since qis fixed, differentiating equation (2.2) leads to q = -R^Rq—R^p. Since R^R =

we have IfR= -IfR, and hence RfR G5o(3). We define a; G and uG by:

Q= R^R, V= R^p. (2.3)

With this notation we have:

q=—Ljq~v. (2.4)

The meaning of these variables is that lj and v are the angular and linear velocities of the

camera relative to the inertial frame, given in the instantaneous camera frame.

The imaging of the camera is given by the perspective projection of points in the 3D world

onto the image plane. We assumea calibratedcamera, and without loss ofgeneralitywetake

the image plane to be at a unit distance from optical centerof the camera. The perspective

projection of the camera is then given by:

TT : IR^ \ {0}

(<lx,qy,qzY • (2.5)

If X is the image of a point g, i.e. x = 7r(5), then we can write:

Ax = 9 (2.6)

where A= G IR encodes the depth of q from the optical center of the camera. Denoting

the optical axis by 63 = (0,0,1)^, we have A= ejq. Rewriting equation (2.6), we get the
following identity:

(/ - xej)9 = 0 (2.7)

which will be useful in the later development.



Chapter 3

Vision Based Motion Estimation

In this chapter, we give a formulation ofthe so-called ego-motion estimation problem [12,
15, 23, 26]. The goal is to recover the motion of the camera using image measurements of
fixed points in the scene. The ego-motion estimation problem can be subdivided into the

discrete and differential cases. In the discrete ca.se, one uses the correspondences between

image points in a pair of images to compute the rigid camera motion between the frames. A

solution to the discrete case can be obtained by the well-known 8-point algorithm [12]. In the
8-point algorithm, one uses image correspondences of at least eight fixed points in general

configuration in the scene and minimizes the epipolar constraint to recover the so-called

essential matrix that contains ail the motion parameters. Then singular value decomposition
is used to uniquely decompose the essential matrix and find the translation and rotation

between the camera frames. The differential ego-motion estimation problem is to recover the

translational and rotational velocity of the camera given the velocities of image points in a
sequence ofimages. Recently. .Via ct al [14] derived a counterpart for the 8-point algorithm
for the differential case. In a similar spirit to the discrete case, using at least eight image
point velocities, one minimizes a differential epipolar constraint and recovers a differential
essential matrix^ that contains all the motion parameters. Then eigenvalue-decomposition
is used to uniquely decompose the differential essential matrix to find the translational and

rotational velocity of the camera.

The ego-motion estimation problem for the purpose of landing a UAV is a special case
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Figure 3.1: Geometry ofcamera frame relative to landing pad.

of the general one: All the image points correspond to coplanar points on the landing
pad. It is well known that the case where all features points in the scene are coplanar is
a degenerate case that makes the 8-point algorithm ill-conditioned, giving poor estimation
results [4]. Hence one needs algorithms specific to the planar case. The discrete version

of the planar ego-motion problem has been studied extensively [3, 13, 26]. Here we only
formulate the problem and briefly revisit well-known results that can be found in [26]. Our
contribution is to thedifferential version oftheproblem. The diflferential version isimportant
when the task is to control a dynamic mobile robot such as a UAV, since velocity estimates
are necessary for the computation of control inputs. The differential planar ego-motion

estimation problem has been studied by many researchers [8,13, 22, 25], each using a different
approach. We here propose a new and unified geometric framework which provides motion

estimation algorithms for the planar case in the same spirit of the general purpose 8-point

algorithm: First minimize a planar discrete (differential) epipolar constraint based on image
correspondences (velocities) to obtain a planar discrete (differential) essential matrix, then

use SVD (eigenvalue-decomposition) of the essential matrix to recover the unknown motion

parameters.



3.1 Discrete Case

Suppose we have a set of m fixed coplanar points C V, where V denotes the

landing plane. Without loss of generality, we take the origin of the inertial frame to be in

V. Figure 3.1 depicts the geometry of the camera frame relative to the landing pad. We will

assume throughout the report that the optical center of the camera never passes through
the plane. We have the following proposition, which gives a constraint on the coordinates of

the coplanar points.

Proposition 3.1. Suppose the camera undergoes a rigid motion (p,R) € SE{S). Then the
coordinates of the fixed coplanar points C V in the two camera frames

are related by:

9? = 9?, i = (3.1)

where d is the perpendicular distance of camera frame 1 to the plane V and n ^ is the

surface normal ofP relative to camera frame 1.

Proof Let (po, Ro)^ {Pi^Ri) € SE(S) be the configurations of camera frames 0 and 1, respec
tively. Without loss of generality, we take Rq = f and hence the rigid motion between the
camera frames is (p, R) = (p, -po^R). For each z = 1,... ,m we have:

qf = Rqi-i-p (3.2)

where qf, q} are the coordinates of qi in camera frames 0 and 1 respectively. Let np €
be the unit normal vector of the plane P in terms of the inertial frame. Then the surface

normal in the coordinate frame of camera 1 is given by n = Rfnp. If d > 0 denotes the

distance from the plane P to the optical center ofcamera frame 1, then we have:

in'"9? =l, i= (3,3)
Substitution equation (3.3) into equation (3.2) gives the result. •

We call the matrix:

A= ^R-\- e (3,4)



the planar essential matrix, since it contains all the the motion parameters {p, /?} and the
structure parameters {n,d} that we need to recover. Notice that due to the inherent scale

ambiguity in the term in equation (3.4), the vision sensor can in general only recover the

ratio of the camera translation scaled by the inverse distance to the plane. In section 6.1 we

show how to resolve this ambiguity when the vision sensor is used for landing.

Lemma 3.2. The matrix A= R-\- \pn'̂ satisfies the constraint:

=0, i = (3.5)

where are the images of respectively.

Proof. Simply apply equation (2.7) to equation (3.1) •

Equation (3.5) is the planar discrete epipolar constraint. Since the constraint given by
Lemma 3.2 is/mear in by stacking the entries of Aas a = (aii,ai2,ai3,a2i, ••• ,033)^ € E®,
we may re-write equation (3.5) as f,a = 0, where f,- € is a function ofxf,xj. Since the

third row in equation (3.5) is all zeroes, the third row off,- contains all zeroes, so we simply
drop it and take f, € With this notation, given m image points correspondences, by
defining F = (ff,... ,fZf 6 we can combine the equations (3.5) and rewrite them
as:

Fa = 0. (3.6)

In order to solve uniquely (up toscale) for a, we must have rank(F) = 8. Each pair ofimage
point correspondences gives two constraints, hence we would expect that at least four point

correspondences would be necessary for the estimation of A. We say a set ofcoplanar points

are in general configuration if there is a set of four points such that no three are collinear.

Proposition 3.3 (Weng [26]). rank(F) = 82/ and only if the points are in general

configuration in the plane.

Proposition 3.3 says that if there are at least four point correspondences of which no

three are collinear, then we may apply standard linear least squares estimation to recover A

up its scale. That is, we can recover Al = ^A for some unknown ^ 6 E. Due to the nature
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of least squares estimation, as the number of feature points increases, the estimation of the

A matrix, and hence the motion estimates, improves.

It turns out that the middle singular value of the matrix A = R is identically

equal to 1 [3, 26]. Then, if(<Ti, a-2, <73) are the singular values of Al, we set A= -^Al, which
determines ^ up to a sign. To get the correct sign, we use = AjAxJ and the fact that

A°, AJ > 0 to impose the constraint (x?)^^xj > 0 for i = 1,... ,m. Thus, we have that if

the points are arranged in general configuration then the matrix A can be uniquely

estimated from the image measurements. Once we have recovered A, we need some more

SVD analysis in order to decompose it into its motion and structure parameters. For the

details on the decomposition please refer to [26]. In general, for a matrix A —{R-\-

there are two physically possible solutions for its decomposition into parameters {p,R,n,d}.

In section 6.1 we give a method of disambiguating the solutions when the task is landing a

UAV on a landing pad whose geometry is known a priori.

3.2 Differential Case

Here, in addition to measuring image points, we measure image point velocities.

Proposition 3.4. Suppose the cameraundergoes a rigid motion with body linear and angular

velocities v{t)^ ^[t)- Then the coordinates of coplanar points in the camera frame

satisfy:

qi{t) = - + 2= 1,... ,m. (3.7)

Proof. Each of the points qi satisfies:

Qi = -Qqi - V. (3.8)

Let n(t) = R{tYnF-> be the surface normal to Vin the camera frame at time i, where R(t)
is the orientation of the camera frame. Then, if d(t) > 0 is the distance from the optical

center of the camera to the plane P at time i, then:

1

d{t)
n{t) qi[t) = \, 2=:l,...,m. (3.9)
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Substituting equation (3.9) into equation (3.8) gives the result. •

We call the matrix:

^ (3.10)

theplanar differential essential matrix, since it contains all the diflferential motion parameters
{u,a;} and structure parameters {n, d} that we need to recover. As in the discrete case, there
is an inherent scale ambiguity in the term in equation (3.10). Thus the vision sensor can

in general only recover the ratio of the camera translational velocity scaled by the inverse

distance to the plane. In section 6.1 we show how to resolve this ambiguity when the vision

sensor is used for landing.

3.2.1 Estimating Matrix B

We first give a proposition which will be used to prove the main result of this section:

Given image velocities of at least four points in general configuration in the plane, we can

uniquely estimate the planar differential essential matrix.

Proposition 3.5. The matrix B = (tD -f ^un^) satisfies the constraint:

X, = -(/-X:eJ)Bx,-, 2= 1,... ,m (3.11)

where {xi(i),Xi(^)}2:i are image points and velocities offixed points {qi}^i in the plane.

Proof. We will drop the subscript i for ease of notation. Differentiating Xx = q and substi

tuting q= -Bq gives Ax + Ax = -XBx. Differentiating A= ejq gives A= -XejBx. Using
these relations and eliminating Agives the result. •

Equation (3.11) is the planar differential epipolar constraint Since the constraint is

linear in B, by stacking the entries of B as 6 = (6ii,612,613,621,... , 633)^ € R®, we may re

write (3.11) as Xi = gf6, where g,- € R^^^ is a function ofx,. However, since the third row of

equation (3.11) contains only zeros, each image point velocity only imposes two constraints
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on the matrix B. Given a set of m image point and velocity pairs {x,-, x,}£,i of fixed points

in the plane, we may stack each equation Xj = gf6 into a single equation:

X = G6 (3.12)

where X = (xf,... , e and G = (gi,... , 6

Proposition 3.6. rank(G) = S if and only if the points are in general configuration
in the plane.

Proof. Please see to Appendix A. •

If the points are in general configuration in the plane then using linear least squares tech
niques equation (3.12) can be used to recover b up to one dimension, since G has a one
dimensional null space. That is, we can recover B = Bi, -f- ^Bf{ where Bl corresponds to
the minimum norm linear least squares estimate of B, Bk corresponds to avector in ker(G)
and ^ 6 E is an unknown scale. By inspection of equation (3.11) one can see that Bk = I.
Then we have:

B = Bl-\-^I. (3.13)

Thus, in order uniquely estimate B, we only need to recover the unknown f. So far, we have
not considered the special structure of the B matrix. Next we give constraints imposed by
the structure ofB which can be used to recover f, and thus uniquely estimate B.

Lemma 3.7. Suppose 6 and ||u|p = |Jv||̂ = a. If u v, the matrix D = -f-
vv^ e E^^^ has eigenvalues {Ai, 0, A3}, where Aj > 0, and A3 < 0. //u = ±v, the matrix
D has eigenvalues {±2a, 0,0}.

Proof. Let (3 = u^v. If u ^ dru, we have —a<(3<a. We can solve the eigenvalues and
eigenvectors of D by inspection:

D(u + v) = (/?-}- q)(u -j- v)

D(u X u) = 0

D{u —v) = ((3 —a){u —v).

Clearly Ai = (^ -|- a) > 0 and A3 = ^ —a < 0. It is direct to check the conditions on D
when u —±v. q
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Theorem 3.8. The matrix B can be uniquely estimated from the image measurements if
and only if there are four points of{qi}f^^ in the plane such that no three are collinear.

Proof In this proof, we will work with sorted eigenvalues, that is if {Ai, A2, A3} are eigen
values of some matrix, then Aj > A2 > A3. If the points are not in general configuration,
then by Proposition 3.6, rank(G) < 8, and the problem is under-constrained. Now suppose
the points are in general configuration. Then by least squares estimation we may recover
B = for some unknown f GIR. By Lemma 3.7, we have that BB^ = hvn'̂ -f -nv'^

a d

has eigenvalues {Aj, A2,A3} where Aj > 0, A2 = 0, and A3 < 0. Compute the eigenvalues of

Bl H- Bl and denote them as {71,72,73}. Since we have B= Bi-h f/, then A, = 7, -|- 2f, for
i = 1,2,3. Since we must have A2 = 0, we have ^ = —^72, and set B = Bl —-72/. •

3.2.2^ Decomposing Matrix B

We now address the task ofdecomposing B into its motion and structure parameters. The

following constructive proof gives a new technique for the recovery of motion and structure

parameters.

Theorem 3.9. Given a matrix B G in the form B = uj one can recover

the motion and structure parameters {a;, 5,n} up to at most 2 physically possible solutions.

There is a unique solution z/u = 0, u x n = 0 or eju = 0, where 63 = (0,0,1)^ is the optical
axis.

Proof. Compute the eigenvalue/eigenvector pairs oi B B'̂ and denote them as {A,-, u,},
i = 1,2,3. If \i = 0 for 2 = 1,2,3, then we have t; = 0 and u; = B. In this case we can not

recover the normal of the plane n. Otherwise, if Ai > 0, and A3 < 0, then we have u x n ^ 0.

Let Q= \\v/d\\ > 0, let v = v/y/a and h = y/an, and let /? = v^n. According to Lemma 3.7,

the eigenvalue/eigenvector pairs of B + B^ are given by:

Ai=^ + a>0, «i = p^{i' + n)
(3.14)

A3=/?-a<0, «3 = iijZ5ii(j'- «)•
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Then a = |(Ai —A3). It is direct to check that ||ii + n|p = 2Ai, ||v —n|p = —2A3. Then

together with (3.14), we have a solution:

|(\/2Ai ui + V—2A3 Us)

1 ° ^* Hi — ~ \/~2A3W3) (3.15)

The estimate ofuji is computed as above because, in the presence ofnoise, in general B—VihJ
is not necessarily an element in so(3). We here take the projection of - VihJ onto so(3).

However, the eigenvalue-decomposition {A,-,^,} is not unique - there is a sign ambiguity
in the eigenvectors ui and U3. This sign ambiguity leads to a total of 4 possible solutions

for u and n computed according to (3.15). It is direct to check that that if{0, g,n} are the
true motion and structure parameters, then the 4 possible solutions obtained by (3.15) are:

Solution 1

(true)

Vi = v/d
rii = n

cDi = cD
Solution 3

I'S =

nz = —ni

— (^1

Solution 2

V2 = \\vld\\n

= jk/iii"/''
0)2 = oj —nv^!d vriF!d

Solution 4

V4 = —V2

V4 = —722

W3 = 072

In order to reduce the number of physically possible solutions, we impose the so-called

"positive depth constraint" - since the camera can only see points that are in front of it, we
must have n^e3 > 0. This constraint eliminates solution 3 as being physically impossible.
If 63 ^ 0, one of solutions 2 or 4 will be eliminated, whereas if = 0 both solutions 2

and 4 are eliminated. For the case that u x n = 0, it is ecisy to see that solutions 1 and 2 are

equivalent, and that imposing the positive depth constraint leads to a unique solution. •

The results for the ambiguities ofsolutions were also reported in [8, 22, 25]. In section 6.1 we
give a method of disambiguating the solutions when the tcisk is landing a UAV on a landing
pad whose geometry is known a priori.
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3.3 Implementation Issues

For both the discrete and differential algorithms, the most computationally intensive task
is the linear least squares estimation of the Aand B matrices, which involves the singular
value decomposition (SVD) of the matrices F, G € where m is the number of tracked

feature points. The cost of the SVD of a matrix M 6 for n < m is 0(n^7n) flops.
Then, as the number of tracked feature points mincreases, the cost of the vision algorithms
grows as 0(m).

We have implemented the above algorithms using the Mathlib C++ library in Matlab,
and have found that on a 450 MHz Pentium II running Linux, the vision algorithms can
perform motion estimation based on 25 tracked feature points at a rate of over 150 Hz. This

rate is far beyond that of most current real-time feature tracking hardware.
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Since our goal is to use the estimated motion and structure from the vision as a sensor in a

control loop, ofutmost consideration is theperformance ofthis sensor in thepresence ofnoise
in themeasurements ofpoint correspondences and image velocity. Another important criteria
to analyze is how the estimation errors depend on different camera motions with respect to
the observed plane. To this end, we have implemented both the discrete and differential

algorithms and performed various simulations in order to evaluate their performance. In
order to assess the performance of the planar algorithms, for all simulations we compare the
results with the traditional 8-point algorithm as described in [14].

For all simulations, we generated 50 random points uniformly distributed within the field

of view of the camera, FOV = 60°. The image correspondences and the image velocity
measurements were corrupted by additive white Gaussian noise. For evaluating the 8-point
algorithm, we randomly scattered the depths of these points uniformly between distance
of zmin and zmax focal lengths, where for all simulations, we set zmax = 400 and zmin =
100 unless otherwise noted. For evaluating the planar algorithm, we placed the points on
the fronto-parallel plane at a distance of (zmax+zmin)/2. Each data point on each plot
is the mean result of 50 trials for a given motion, noise level, and distance. We studied
the performance of the algorithms as a function of depth variation, noise in the image
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measurements, and motion about different translation/rotation axes.

4.1 Depth Sensitivity

In planar case, our depth variation analysis attempts to seehow the errors in the estimates

depend on the depth of the plane being viewed. Notice that in the matrices A = R-\-

and B = u-\r the translation term is scaled by the inverse distance of the plane. Thus,
for a fixed translation and a fixed noise level, as the distance of the plane increases, the
"signal" from the translation term decreases while the noise level stays constant. Thus, one
would expect that as the signal to noise ratio decreases, the performance of the algorithms
also decrease. Also, from the structure of the A and B matrices, we see that the errors in

the rotational components should not depend on the depths of the points. This expectation

wa^ validated as shown in Figure 4.1.

Discrete case; 2 pixels std noise

depth variation: zmax/zmin
Discrete case: 2 pixels std noise

depth variation: zmax/zmin

Differentialcase: 2 pixels std noise

depth variation: zmax/zmin
Differential case: 2 pixels std noise

depth variation: zmax/zmin

Figure 4.1: Depth sensitivity.

Notice that for very low depth variation, the 8-point algorithm for both discrete and

differential case performs poorly. This is a result of singularities that occur in the algorithm

when the feature points are coplanar. Also, notice that for the planar Ccise, as expected, the

errors increase as the distance of the plane increases. One interesting observation is that

for the discrete case, the rotation estimate is always better in the planar CEise than in the

general case.
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4.2 Noise Sensitivity

In the simulations presented in Figure 4.2, for a given motion we corrupted the corre

spondences and image velocities with increasing levels additive white Gaussian noise. Notice

from the simulation results that for both discrete and diflferential cases, the planar algorithm

performs better that the 8-point algorithm.

Discrete Case: noise dependency
Pltfttr

noise level (pixels std)
Discrete Case: noise dependency

— Ptenar

noise level (pixels std)

2>12
DifferentialCase: noise dependency

noise level (pixels std)

Differential Case: noise dependency

noise level (pixels std)

Figure 4.2: Noise Sensitivity.

4.3 Motion Sensitivity

Next we study the sensitivity of the algorithm with respect to different motions rela

tive to the plane. We ran the algorithms for a motion about each translation-rotation axis

pair for two different noise Icvt'l.s (low and high). In general, the planar algorithms perform

better than the 8-point algorithms except when the translation axis is parallel optical axis

(and hence the surface normal of the plane). The higher sensitivity in that case can seen

as an overall numerical sensiti\ ity to perturbations in the algebraic eigenvalue/eigenvector

problem when there are repeated eigenvalues. For example, ifa matrix has a pair ofrepeated
eigenvalues then any vector in certain two dimensional subspace can be considered an eigen
vector corresponding to the repeated eigenvalue. Because the eigenvectors corresponding to
repeated eigenvalues are defined up to subspace, it is intuitive to see that for two different



perturbations of the matrix, the corresponding eigenvectors could be quite different. Asim
ilar phenomenon occurs in the case of repeated singular vectors. Thus, an algorithm that
uses the computation ofeigenvectors (singular vectors) is inherently sensitive to noise in the

case of repeated eigenvalues (singular values).

The situation of having repeated eigenvalues (singular values) occurs in the planar dif
ferential (discrete) algorithm in the case that the translatlonal motion is parallel to the
surface normal of the plane. In the S-point algorithm, the situation of repeated eigenvalues
occurs in the case that the translation and rotation axes are parallel [14]. The simulation
results for both the discrete (in Figure 4.3) and the differential case (in Figure 4.4) vali
date our expectation of higher noise sensitivity in the case of repeated singular values and
eigenvalues.
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Figure 4.3: Discrete Case: sensitivity to translation-rotation axes.



Differential: motiondependency: 1 pixelnoise std
II Q.Potnl

•• Plftnar

X-X X-Y X-2 Y-X Y-Y T-Z Z-X 2-Y Z-2

translation-rotation axes

Differential: motion dependency; 1 pixel noise std
6«Poml

BSl Planar

X-Z Y-X V-Y V-2 2-X

translation-rotation axes

Differential: motion dependency: 3 pixels noise std
a-Po«ni

m Planar

X-X X-Y X-2 Y-X Y-Y Y-Z Z-X Z-Y Z-Z

translation-rotation axes

Differential: motiondependency: 3 pixelsnoise std

x-2 Y-X Y-Y Y-Z Z-X

translation-rotation axes

Figure 4.4: Differential Case: sensitivity to translation-rotation axes.
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In this chapter, we present the dynamical model of the UAV, a control design based
on differential flatness, and a stability analysis of the closed-loop system. The proposed
controller is general in the sense that it can be applied towards trajectory tracking. For
the purpose of landing, the UAV is asked to track a fixed point at the desired configuration
above the landing pad.

We parameterize the orientation R 6 50(3) of the UAV relative to the inertial frame

by the ZY\ (or roll, pitch, yaw") Euler angles denoted by 0 = . Thus we have

R = exp(e3^)exp(e20)exp(ei<?!>) with ei = (1,0,0)^, 62 = (0,1,0)^, 63 = (0,0,1)^. Under
this parameterization, there is a mapping ^(0) € given by:

/i sin (j> tan 6 cos 0 tan^ ^
^(e) = 0 coscj) —sin^ (5.1)

sin 4>l cos 6 cos cos 9 j

which maps the body rotational velocity to Euler angle velocity, that is: 0 =



c > r

h P
Rotary Force & ^ m Rigid V

B ^ Wing ais ^ Moment Body KA ^ Dynamics bis^ Generation
J

Dynamics 0)

Figure 5.1: Block diagram of UAV dynamics.

5.1 System Dynamics

9?

Acomplete model ofa helicopter can be divided into four diflferent subsystems: actuator
dynamics, rotary wing dynamics, force and moment generation processes, and rigid body
dynamics. The dynamics of the engine and actuators (which depend on the flexibility of the
rotors and fuselage) are quite complex and intractable for analysis. In this report, we consider
a helicopter model including only the rigid body dynamics, the force and moment generation
process and a simplified rotary wing dynamics. This model is illustrated in Figure 5.1.

We now articulate each of the three subsystems. First, the equations describing the rigid
body dynamics are given by:

p =

e = (5.2)

CO = T~^(r^ —a; XXu;)

where m> 0 is the body mass, I G is the inertial matrix and f, are the body
force and torque given by:

( Xm \ / 0
f = Ym- 0

\ '^9

^ yicfhM + Z^yM + YrhT ^
—XMhM + ZmIm

\ —yM^M —yrh )

The body forces and torques generated by the main rotor are controlled by Tm, flis and bu,
in which au and are the longitudinal and lateral tilt of the tip path plane of the main

(5.3)

= Mm + Mr I 4-
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rotor with respect to the shaft, respectively. The tail rotor is considered as a source of pure

lateral force Yj and anti-torque (Jr, which are controlled by Ij. The forces and torques can

be expressed as:

Ym

Zm

. Yt

- OMsinctis

+QMsin6i5

Nm — —Qm cos ai5 cos bu

Mj = —Qt-

(5.4)

The moments generated by the main and tail rotor can be calculated from the constants

yM, hM, hx, h}-, where hi, k and y,- denote the vertical, longitudinal, and lateral distance
between the center of gravity and the center of the rotor specified by z = M or T. These

system parameters are given in Appendix B. In the simulation, we will approximate the

rotor torque equations by Qi CfTl^ -f- for i = M,T, with details described in [11].
The values of Cf, Df are also given in Appendix B.

Finally, the rotary wing dynamics are in general harder to express explicitly. In an oper
ating region near hovering, the rotary wing dynamics can be approximated by the following
equations (for details see [17]):

Tm —cmiOm + —ct\6t + cxzOxi = —B, his = A

where 6m->0t are the main and tail rotor collective pitch, and B,A are the longitudinal and
lateral cyclic pitch.

5.2 Inner and Outer System Partitioning

A system x = f{x,t,u) is called differentially flat if there exist output functions, called
flat outputs, such that all states and inputs can be expressed in terms of the flat outputs
and their derivatives [6]. Differential flatness has been applied to approximate models of
aircraft [5] and helicopter [10] for trajectory generation. The full helicopter dynamics are not
flat in general, however it can be shown that thedynamics can be partitioned into an "inner
system" (e.g. the attitude dynamics) and an "outer system" (e.g. the position dynamics)
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where the outer system is flat. This scheme has been successfully used for generating a
two stage control synthesis for many systems which are not completely flat [24]. Such a
scheme which utilizes the flatness of the outer system is roughly illustrated in Figure 5.2.
In the flgure, Pq is the outer system which is flat, and Pj is the inner system which is not

necessarily flat. Given a desired output trajectory, say (•), the mapping F in Figure 5.2
utilizes the flatness property of the outer system to generate an desired output trajectory

Vdi') for the inner system. The control synthesis for the overall system then reduces to the
design of an inner system controller, C, which drives the inner system output y\i) -)•
(exponentially) as i —>• oo. As the inner system output converges, one can show that the

outer system output converges to the desired one, y^(t) y^{t) as t oo. That is, the
overall system asymptotically tracks the desired trajectory.

It has been shown in [10] that the helicopter dynamics are approximately differentially
flat with the position and heading {p, |̂)} as the flat outputs. The approximation is based

on the assumption that the coupling terms ciisiI^isi'Pt are small and can be neglected in the

model. So if ai^, bu, TV 0, the outer system dynamics (5.2) can be rewritten as:

with

p = -R(Q)
m

h = -R{Q)
m

-7m(cos ai5 cos 6is - 1) )

where the inputs are = y^ = (€),7m), and the outputs are y^ = (p,p,p,^). One must
notice that this approximation introduces a small non-vanishing modeling error h which

depends on 0, Tm, ois, TV- We will soon show its effect on the stability ofthe closed-loop

system.

^ 0 ^ 0 ^
0 0 + h

^ -^A/ ) UJ

—TMSinais \

Tm sin bu-TT

(5.5)
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Figure 5.2: Partitioned inner and outer systems.

5.3 Control Design

The control design for the overall system is be based on an assumption that there exists
a controller C such that = 0 is an exponentially stable equilibrium point for the inner
error system:

e =/(e^e^,/)|eO=o, /(0,0,0 = 0

where and = y^ —y^ . There have been various design methodologies
proposed for the controller of the inner system, e.g. [11]. Here, we are only interested in
the performance of the overall system assuming such a controller C is already available. As
shown in [10], for the approximated outer system (5.5), there exists a smooth mapping from
the outer system output to the inner system output:

(p, (0,7m)

which is defined by the equations:

Tm = my/(p^y^ + {Pyf + (p, - g)2
4> = sin-'

0 = atan2

if) = if)

1 "l
i(f>/m JTjv/cos^/m Ta/cos

where (f>,e ^ ±Tr/2. Suppose that the desired output trajectory of the outer system is

Vd = (Pd,Pd,Pd-,'̂ d)' To obtain the desired trajectory of the inner system, we define a
pseudo-input vector:

—Pd + i^v(p —Pd) 4- Ap(p —Pd) (5.6)
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Figure 5.3: Block diagram of control scheme.

where A'p, A'v € are control parameters. With the above pseudo-input, the desired

output of the inner system is given by:

{QdjTMd) = ^{vp^tf^d). (5.7)

A more detailed schematic of the controller for this system is illustrated in Figure 5.3.
Clearly, if the inner system exactly tracks the desired trajectory (0d,rMd), that is, yj^ = y^
in Figure 5.2, then the behavior of the overall closed-loop system is specified by the outer

system only, which, due to chosen the control law (5.6), is approximately a linear system

with poles assigned by the parameters A'̂ , Ap.

Now if we summarize all conditions so far and rewrite the dynamicsof the overall closed-

loop system in terms of the tracking errors and of the inner and outer systems respec

tively, they have the form:

where

= /(e^e'^,^)

= Ae^-\-g(e^,t)-\-h{e^,e^,t)

g(e',t) = —E(Q)
m

f 0

0

-Tm )
- ~R{Qd)

m

\ —TMd )

(5.8)

In the above equations, f(e^,e^,t) is in general a function ofboth e' and e^ since the input
of the inner system is a function ofe^. The function h{e^,e^,t) from (5.5) is a small non-
vanishing approximation error, and g{e^, t) vanishes when the inner system exactly tracks
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the desired trajectory, i.e., 5^(0, ^) = 0. Since thehelicopter model issmooth and many ofthe

parameters are physically bounded, g{e^, t) is in fact (globally) bounded as \\g{e^, Oil < ^l|e |̂|
for some constant L > 0.^

5.4 Stability Analysis

We now analyze the performance of the overall closed-loop system. As we have argued
before, the function / in (5.8) is in general a function of both and e^. However, in practice,
the inner system is usually designed to have a much faster convergence rate than the outer

system. To simplify the analysis, for now we assume that the inputs TMd[') and 0d(-) of
the inner system are approximately constant, and thus / is only a function of (the more
general case will be presented afterwards).

Recall that given an general system x = by the Lyapunov theorem and its con

verse [18], the system is exponentially stable ifand only if there exists a Lyapunov function
V(x,t) satisfying:

aill^ll^ < V(x,t) < a2\\xf (5.9)
dV dV

+ < -"3||xf (5.10)
„ „

^ ""Ikll (5.11)

for some positive Lyapunov constants ai,oc2,03,04 > 0. We can apply this theorem to both
the nominal outer system e" = Ae" and the inner system e' = f{e', t) and denote the corre
sponding Lyapunov functions as V" and V' and the Lyapunov constants as oi,Oj, 03,04 > 0
and A? A, A, A > 0 respectively.

Theorem 5»1. Consider thefollowing system:

j e' = f(e',t)
\e° = AeO+g{e',t)

where g(e^,t) is a perturbation term that satisfies ||5'(e^;i)|| < I||e |̂|. If both the nominal
outer system = Ae^ and inner system e' = f(e^,t) are exponentially stable, then the
overall system is exponentially stable for any L > 0.

^Such a Lcan be estimated from the system equation (5.2).
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Proof. Apply the converse Lyapunov theorem to both the outer and inner systems, and
denote the corresponding Lyapunov functions as and the constants as {A}?=i
respectively. We consider the candidate Lyapunov function V = for the overall

system. Then we have:

V=V' +^V° < -^3||e'|p-A.a3||e°|p +^a4i||e°||||e |̂|

= -(lk'||,||e°||)(?(||e'||.||e°||)^

where the matrix Q € is:

Q =
/?3 -^fia4L

-\fia4L pas

The matrix Q can be positive definite if and only if there exists a small enough p > 0 such
that det(^) > 0. It is easy to check that it suffices to have 0 <C p <C ^^^^2 • Such a p always
exists. Therefore, the overall system is always exponentially stable regardless ofL. •

This theorem states a very interesting fact for the system (5.12): as long as the inner
system and outer system are exponentially stable, the system is extremely robust (in terms
of exponential stability) to any (vanishing) perturbation of the outer system which only
depends on the tracking error of the inner system.

In the above theorem we assumed that the inner system does not depend on the tracking
error of the outer system. For the moregeneral case, we may write:

/(e^, e^,t) = f{e\ 0, t) + d(e\ e^, t)

where d(e',e^,i) = —f{efO,t). The nominal system = /(e^, 0,<) is expo
nentially stable as designed and we still denote its Lyapunov function as and Lyapunov
constants as {A}{=i- Then for the overall system, following the spirit of Theorem 5.1, we
have the result:

Theorem 5.2. Consider the following perturbed system:

e' = f(e',e°,t) = f{e',0,t) + d(e',e°,t)
e° = Ae° + g{e',t)
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where g[e\t) is a perturbation term that satisfies ||5r(e^,i)|| < for some L\ > 0. If,
ford(e^,e^,t), there exists L2 > 0 such that \\d{e^,e^,t)\\ < L2\\e^\\, then the overall system
is exponentially stable if the product of the two Lipschitz constants satisfies the inequality:

i, •£.2 < — • (5.14)

Proof. Theproof is very similar to that ofTheorem 5.1. We consider the candidate Lyapunov

function V = V^ -{• for the overall system. Then we have:

V= v' +^v° < -Alle'ir+A£2||e'||||e°|| -^a3||e°f+ ^a,£,||e°||||e |̂|

= -(l|e'lMk°ll)0(l|e'|M|e°||)''

where the matrix Q G is:

Q—f ""2(^4^2 +A^CV4-£'i) \
\ ~2i '̂i '̂2-\-goc4Li) gas J

Q is positive definite ifand only ifdet(Q) > 0. That is, there exists p>0 such that:

—a\L\p^ + (4/?3Q3 —2fi4L20c4Li)fj, —lflL\ > 0.

This is true if and only if the discriminant of the quadratic function of p on the left hand
side is positive which yields: ix - L2 < ^ •

This theorem states a very interesting fact about the system (5.13): heuristically, 03 and

fiz are proportional to the coiuergence rates of the outer and inner systems respectively,^
hence the stability of the perturbed systems requires only that the product of the Lipschitz
constants of the perturbation terms is less than the product of the two convergence rates,
regardless of the rate of each individual system.

Comments 5.3. The stability ofa similar model ofthe overall closed-loop system has been
studied before in [24]) however, no explicit conditions are provided under which a fi exists
such that the overall system is stable. Here, Theorems 5.1 and 5.2 give more detailed and
useful results in characterizing the properties of the closed-loop system.

^ A • •"A more precise estimates of the convergences rates are given by and
2£*2 2/?2 *
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Although we have established the conditions for the system (5.13) to be exponentially
stable, estimates of its Lyapunov constants indeed depend on Li,L2 and all the Lyapunov
constants of the inner and outer systems. These constants can be optimized by maximiz
ing the smaller eigenvalue of Q with respect to fx. We here omit the detail and carry on
the analysis by assuming that the system (5.13) is exponentially stable and its Lyapunov
constants are denoted by 71,72,73,74 > 0. We now want to estimate the effect of the non-

vanishing error term h on the performance of the closed-loop system (5.8). In general, we
can no longer expect asymptotic stability when a non-vanishing perturbation is introduced.

However, according to [9], we can still have good estimates of a bound on the tracking error
and the rate of convergence outside this bound.

Proposition 5.4. Assume that the system (5.13) has the Lyapunov constants {7,}i=i. For
the closed-loop system (5.8), if \\h(e^,t)\\ < 5 < then the tracking error of the

overall system is bounded by b = and, outside this bound, the error exponentially

decreases with a rate larger than A= ^.

The control parameters Ky and A'p can be adjusted so as to minimize the error bound 6.

For the helicopter model, the error term h[e\e^,t) is usually extremely small, as is 8. We
can also choose the control parameters such that the innerand outer systems have very fast

rates of convergence, hence a large 73. Consequently, the error bound 6 is very small, and

usually barely noticeable in simulations and experiments, as we will soon see.
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Chapter 6

Vision in the Control Loop

In this chapter, we discuss how the discrete and differential motion estimation algorithms
described in section 3 are used in the control loop for landing a UAV onto a landing pad
with a known geometry.

6.1 Disambiguation of Motion Estimates

We assume that the image of the landing pad taken from the desired landing configuration
are given. The feature points on the landing pad are assumed to be in general configuration
(they could for example be corners on the typical "H" pattern). Without loss of generality,
suppose (poj I) € SE{S) is the configuration of the desired camera frame, and do = —UpPo >
0 is the desired distance of the camera to the landing plane with known surface normal

Up G

Proposition 6.1. Suppose A = [R-\- ^pn^) G is the planar essential matrix associated
with two camera frames relative to a plane. Ifdo > 0 is the distance from the first camera
to the plane, then the distance of the second camera to the plane is given by d= do/det{A).

Proof Suppose the configuration of the second camera frame is (pi,Ri) GSE{S). Then
^0 ~ ^fPOi ^ ~^fPi s-rc the distances from the first and second cameras to the plane.



Desired

Features Vision

Algorithm

V J

(p, p. Q.Q)
f ^

Flatness

Controller

Current Features Control Signals

Feature

Tracker

Current image UAV &

On-Board

Camera

32

Figure 6.1: Block diagram of vision in control loop.

Since riF = Rn, we have AR'̂ = (/ + hence the eigenvalues of AR'̂ are {A, 1, 1}
where A= 1+ ^n'̂ p. But p'̂ np =pjup - p^np = -d +do. Using det(yl) = det(AR'̂ ) = A,
it is direct to check that det(^) = do/d. •

The knowledge of np allows us to disambiguate the pair of solutions discussed in Theo

rem 3.9 by taking the one that minimizes ||nest - where nest is the vision estimated

surface normal, and R^t is the estimated rotation matrix according to the discrete algorithm.
Also, theknowledge ofdo allows to find d according to Proposition 6.1, which solves thescale

ambiguity in p/d in the discrete case and v/d'm the differential case.

The vision algorithms described above generate estimates of {p,R,v,uj}. However, to
compute the control signals we need estimates of {p,p, 0,0}. Note that given R € 50(3),
the ZYX Euler angles (away from thesingularity) can be recovered by:

0 = atan2(-r3j, y'rjj + rjj)

p = atan2(r32/cos^,r33/cos^) (6.1)

V = atan2(r2i/cos^,rii/cos^)

where rij is the entry of the i-th row and j-th column of R. Thus, we can recover {0,0}
from {i?,u;} by applying equations (6.1), (5.1) and 0 = ^a;. We can recover p using the
estimates {u,/?} through p = Rv. The closed-loop system configuration is depicted in
Figure 6.1. For the estimate of Tm one needs p as in equation (5.6), which can be measured
by accelerometers that give a = R^p
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6.2 Simulation Results for the Closed-Loop System

We present the simulation results of the proposed vision based landing scheme. In these

simulations, we apply the proposed controller for the full dynamic model of the UAV. We

add Gaussian noise ofdifferent levels ofstandard deviation (in pixel units) to the correspon

dences and image velocities, and perform the discrete and differential motion estimation

algorithms based on the noisy data. In Figures 6.2 and 6.3 we present the simulation results

for image measurement noise levels of 0,1,2,4 pixels standard deviation in both the image
correspondences and the image velocities.

In these simulations, the initial position is p = (2,1,5)^ meters away from the desired

landing configuration above the landing pad (the origin), the initial orientation is {6, <f), ^)^ =
(0,0,0.4)^ radians. The dominant poles of the outer loop controller are placed at -2,-.45.
The inner loop attitude controller is designed based on feedback linearization [10], and it
has the form = V©, where V© is designed as three decoupled pole-placement controllers

with poles located at —10 and —7 ± 7.1414z for each controller. The main rotor thrust is

controlled based on dynamic inversion and the pole is placed at —5.

Since the origin ofthe closed-loop system is exponentially stable, it is robust to relatively
large levels of noise. As we see, the controller performs very well at a noise level of 1

pixel standard deviation, which is the accuracy of most state-of-the-art feature-tracking
techniques [1], and remains stable at a large noise level of4 pixel standard deviation. Due to

the gain margin in the controller, the closed loop system is also robust to possible modeling
errors which are omitted, such as the camera calibration.
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Figure 6.5: Closed-loop system landing simulation with 4 pixels noise
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Chapter 7

Conclusions

In this report we studied the problem of using computer vision as a feedback sensor to

control the landing ofan Unmanned Aerial Vehicle. We derived a novel geometric algorithm
for estimating thecamera angular and linear velocity relative toaplanar scene, and presented
a thorough performance evaluation of the algorithm. The algorithm was shown to be robust

to noise in the image measurements and amenable to real-time implementation. We also

proposed a nonlinear controller based on differential flatness for a full UAV dynamic model,
and gave detailed conditions for stability oftheoverall closed loop system. Through extensive
simulation, the vision bcised controller was shown to result in stable landing maneuvers for

large noise levels.

We are currently developing a 3D visualization and simulation platform in order to eval

uate image processing techniques, computer vision algorithms, and nonlinear control designs
for the landing maneuver. Figure 7.1 shows screen shots ofan early version of the program.
We areincorporating a full dynamic model ofa UAV, a model ofa ship and various seastates,

and photo-realistic 3D rendering in a unified simulation platform to capture all aspects of

the vision based landing maneuver.

We are also implementing our vision algorithms and control design on a model helicopter

as part of the BErkeley AerialRobot (BEAR) project [7]. One of our UAVs is a Yamaha R-

50 model helicopter, on which we have mounted computers, INS, GPS, and a vision system.
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Figure 7.1: Showing screen shots of a 3D visualization of a UAV landing on a ship. Figure
courtesy of Cory Sharp.

consisting of a camera, a real-time feature tracker board, and a Pentium II running Linux.
Figure 7.2 shows one of the UC Berkeley UAVs on which we will implement the proposed
landing scheme. A goal of the project is to perform an autonomous vision based landing
of a BEAR UAV onto a pitching landing pad that simulates the motion of a ship in high
seas. To this end we have developed a Stuart platform that simulates the motion of a ship.
The landing deck system is controlled by a host computer which has a database of models

of naval vessels and sea states. The landing deck moves according to the parameters of the
sea state, such as amplitude, frequency, and a randomized phase, of the waves, the model of

the ship, and the orientation ofthe ship relative to the direction ofwaves. Figure 7.3 shows
the pitching deck that is under development for our landing experiments.
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Figure 7.2: Showing a member of UC Berkeley UAV fleet. Figure courtesy of Hyunchul

Figure 7.3: Showing the pitching landing deck. Figure courtesy ofTuIIio Celano III
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Appendix A

Proof of Proposition 3.6

Proof. We will use the fact that a set of points in the plane are collinear if and only if the
images of the points are collinear in the image plane [26], This allows us to work with the

images of features points on the plane.

For sufficiency, suppose there exists a set of four points in the plane such that no three

are collinear. By contradiction, we will prove that the corresponding eight rows of G are

linearly independent. Suppose the matrix:

G^ =

/' Xi 0 Xi 0 X3 0 X4 0 \
0 Xi 0 X2 0 X3 0 X4

\ -XiXi -J/iXi -2/2X2 -0:3X3 -2/3X3 -0:4X4 -2/4X4

has rank(G) < 8. Then there exists f = (ai,Ci,a2,C2,a3,C3,a4,C4)^ € such than f ^ 0
and G^f = 0. Define d, = «,.r, + ciyi. Now let a = (01,02,03,04)^, c = (01,02,03,04)^,
d = (^1,^2,^3,4/4)^ and define A = (xi,X2,X3,X4) E With this notation, the condition

f 7^ 0 implies a ^ 0 or c / 0 and Xsl = Xc = Xd = 0.

Without loss of generality, take a 7^ 0. Since by the hypothesis, no three of x, are
collinear, each set of3 columns of X are linearly independent. Since Xa. = 0, then if one
component ofa is zero, then we must have a = 0. Hence a 7^ 0implies a,- 7^ 0for f = 1,... ,4.
Since each set of 3 columns of A' are linearly independent dim(ker(A)) < 1 and 37, d 6 K

)9x8 (A.l)



such that c = 7a and d = ^a. This Implies:

di —cLiXi = QjX," -{- 'yttiUi = 5ci{.
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(A.2)

But since a,- ^ 0for each i, we have Xi + jyi = Swhich implies that all four image points x,-
are collinear in the image plane, resulting in a contradiction.

For necessity, we first show that if all points are collinear, then rank(G) < 5. Let

^ ~ ^ be the unit normal to the line in the image plane containing the image
points X,-, 2= 1,..., m. That is xju =0for 2= 1,... ,m. Define four vectors in ]R^ by:

^ 0 ^
ft, = 0 7 ^2 = U 7 hz = 0 , h4 = 62 € R® (A.3)

lo J \u ) V63 y
where (61,63,63) = hxs- Using u'̂ u = 1 and eju = 0, it is direct to check that for H =
(/2i,/22,/23,/i4) € det{H'̂ H) = 2and hence rank(.fr) = 4. From the structure of G in
equation (A.l) is is clear that Ghi = 0for 2= 1,... ,4. Then dim(ker(G)) > 4and hence
rank(G) <9 —4 = 5.

Now suppose condition of the proposition is not satisfied. The claim is trivially proved
if the number of image points is less than 3. Suppose there are more than 4 image points,
not all collinear, and for each set of four points at least 3 are collinear. Without loss of
generality, suppose X2,X3,X4 lie on a line (call this the common line), and Xi does not lie
on the common line. By induction, we prove that all x.'s for i > 4 lie on the common line.
Suppose Xi lies on the common line for some 2> 4and Xi+i does not. Choose two points
out ofX2, X3, Xi such that they do not lie at the intersection of the common line and the line
connecting Xi,Xi4.i. Call these points Xj,x/.. Then the four points Xi,Xj,XA:,Xi4.i are in a
general configuration. This is a contradiction, and hence Xi+i lies on the common line. Since
all image points lie on a single line expect for Xi, then rank(G) <5 + 2= 7. •
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Appendix B

UAV System Parameters

All variables exceptfor the state variables and inputs are numericconstants, which can be

obtained by mecisurements and experiments. The followings are the values of the constants:

/x = 0.142413 ly = 0.271256 h = 0.271492

Im = -0.015

II

o

km = 0.2943

hr = 0.1154 h = 0.8715 m = 4.9

= 0.004452 D% = 0.6304 ORm
dbig = 25.23

= 0.005066 = 0.008488
dais

= 25.23

CMi — 6.4578 cm3 = 100.3752 CTi = 0.1837

ct3 — 0.1545

The operation regions in radian for ais^bu and newton for Tm.Tj are: |aia| < 0.4363,

\bis\ < 0.3491, -20.86 <Tm< 69.48, -5.26 < TV < 5.26.
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