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Abstract

In this paper, we present an algorithm for routing in wireless ad hoc networks using information about
geographical location of the nodes. We assume each node knows its geographical position and the posi-
tion of the node to which it wants to send a packet. Initially, the nodes only know their neighbors but over
time they discover other nodes in the network. The routing table at a node S is a list {(p;, S;)) where p;
is a geographical position and S; is a neighbor of node S. When node S receives a packet for a node D
at position pos(D), it finds the p; in its routing table which is closest to pos(D) and forwards the packet
to the neighbor S;. We prove the correctness of the algorithm and show that our algorithm naturally ag-
gregates the nodes so that the routing table sizes are of size O(Ly, log(n)), where L, is the mean route
discovery path length, and n is the number of nodes. We also present methods for taking positional errors,
node failures and mobility into account. We justify the results through simulation.

1 Introduction

A wireless ad hoc network consists of a collection of mobile nodes sharing a wireless channel without any
centralized control or established communication backbone. Each node communicates with other nodes within
its transmission range. To send a packet to a destination, a node forwards the packet to its neighbor which
in turn forwards it to its neighbor and so on, until the packet reaches the destination. The topology of the ad
hoc network depends on the location of the mobile nodes and maybe changing with time.

Some of the typical applications of ad hoc networks are in scenarios where setting up a communica-
tion infrastructure is difficult (because of mobility) or very expensive (because of terrain). Wireless ad hoc
networks can be used in battlefield situations where a communication infrastructure is difficult to build and
maintain. Ad hoc networks are also of interest for traffic control in automated vehicle navigation systems
[15]. Other commercial applications include building a wireless access infrastructure such as the ones be-
ing built by Metricom and Rooftop. Researchers are also exploring the use of ad hoc networks in building
networks out of a large number of tiny sensors spread over a geographic area.

In this paper, we will be interested in the routing problem in ad hoc networks. Basic routing algorithms
such as link or distance-vector routing require every node to learn about every other node in the network. We
refer to this as routing based on full information. This is in contrast to routing under partial information. In
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this kind of routing, a node routes based on information about a subset of the nodes in the network. Routing
in the Internet provides one example. Routing in the Internet relies on the address hierarchy that mimics the
network topology to work correctly. Thus, routing table sizes are manageable and changes in every link of
the network do not have to be propagated throughout the network. In flat distance-vector or link-state routing,
these savings are not obtained.

Since ad-hoc networks change topology frequently, routing under partial information is of interest for
ad-hoc networks. The Zone Routing Protocol is one well known example of an algorithm based on partial
information. A node is expected to know the topology in its own zone accurately, and that in other zones only
approximately. It is hoped that this will reduce the inter-node communication required to track a changing
network topology. Of course, the reduction in the information used for routing may impose other costs. For
example, the routes may not be shortest paths.

This paper presents a new type of distributed, adaptive and asynchronous routing algorithm for ad-hoc
networks. It routes based on partial information. It does not rely on any address hierarchy but instead relies
on information about node positions, and hence, is called the geographical routing algorithm (GRA). We
assume each node knows its own position, and can acquire the position of the packet destination by some
means.

Initially, each node only knows about its neighbors. The routing table at a node S is a list {(p;, s;)) where
pi is a position and s; is a neighbor of S. When node S receives a packet for destination D, it finds the p;
which is closest to pos(D), the position of D, and forwards the packet to neighbor s;. The neighbor then
repeats the same procedure. In this way, the packet makes its way to destination D. But sometimes when
routing a packet, node S may discover that it is closer to the destination than any other position p;. In this case
we say the packet is “stuck” at S. This causes a route discovery protocol to be started. The route discovery
protocol finds a path from S to D and updates the routing table of the node k; on the path by placing the
entry (pos(D), ki41) in its routing table where k;4, is the node which follows k; on the path. In this way
new routing entries get added to the routing tables. After the route discovery protocol is completed, the stuck
packet can be routed from S to D.

We show that the routing table sizes of our nodes remain fairly small - essentially logrithmic in the num-
ber of nodes in the network. Most network routing algorithms do not use position information. However,
the results in this paper show that the use of such information in ad-hoc network routing could yield large
reductions in routing table size and protocol overhead. We show that the GRA has the same basic properties
as most other routing algorithms even though it works with partial information. Given an unknown network,
nodes will exchange information and converge to a set of routing tables. We also show that once the routing
tables have converged, like other routing algorithms, all routes are acyclic. On the negative side, it should
be noted that the GRA does not attempt at shortest path routing. It just uses some acyclic route.

We have confined our discussion to static networks so far. In a dynamic network, links will break and
form, nodes will join and leave. The number of protocol packets triggered by each such change should be of
the same order of magnitude as characterized in Section 6.4. As we develop mobility models for application
environments of interest to us we hope to find out whether these overheads are indeed small enough.

In Section 2, we discuss the GRA in relation to other routing algorithms in the literature. Section 3
presents the system model and problem statement. Section 4 describes the geographical routing algorithm.
Sections 5 and 6 discuss issues related to position information inaccuracy and inconsistency, and mobility.
Section 7 presents simulation results. Section 8 concludes the paper.

2 Literature Review

In the literature, a number of proposals have been made to solve the problem of routing in wireless ad hoc
networks [8, 9, 10, 12, 13, 6, 14]. Most of the approaches are based on the source routing and distance-vector
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avoided by tagging each routing table entry with a sequence number. Dynamic source routing (DSR) [4] on
the other hand is based on source routing, where the source specifies the complete path to the destination
in the packet header and each node forwards the packet to the node specified as the next hop in the packet
header. Each source maintains a route cache, where it looks for a path to the destination. If such a path is not
found then the source initiates a route discovery protocol to discover the route. Most of the approaches in the
literature are variants of the two above approaches with some attempting to combine the best of both. For
example, in zone routing protocol (ZRP) [3], each node has a “routing zone” which includes the nodes within
some specified distance. Each node knows the topology within its routing zone by using DSDV protocol.
For out-of-zone destinations, DSR is used. Other existing proposals are based on finding a backbone for the
network (MCDS) [1] or attempt to minimize delay (STARA) [2].

3 System Model and Problem Statement

Suppose there are » nodes in a region that want to communicate with each other. Each node using a wireless
link can communicate with only a small subset of the nodes that are its neighbors. When a node S wants to
transmit a packet to a destination D, it transmits to a neighbor, which in turn transmits to its neighbor, and
so on, until the packet reaches destination D.

In a wireless network, each node has a trans-receiver that it uses to communicate. The set of nodes with
which a node can directly communicate is not fixed but depends on the power used by its radio transmitter.
When the power of the radio transmitter is increased, a node can directly communicate with a larger set of
nodes (i.e., it has a larger number of neighbors). In this paper, we will assume that the nodes have fixed the
optimal power for their trans-receivers and the neighbors with which a node communicates is hence fixed.
Then, we can think of the wireless network as a graph G = (N, E) where thenodesare N = {1,...,n} and
there is an edge (¢, j) € F if ¢ is a neighbor of j in the wireless network. We assume that ¢ is a neighbor of ;
if and only if 7 is a neighbor of ¢ in the wireless network. Then, we can think of the links as being symmetric
and the resulting graph as undirected. Furthermore, we assume that the power levels of the trans-receivers
are chosen so that the resulting graph is connected. We will also assume that there exists a medium access
schedule such that each node can transmit at a certain bit rate without interference. ’

In this paper, we solve the problem of routing using position information. When a node receives a packet
for destination D, it must make a routing decision: which neighbor should the packet be forwarded to?
We assume the nodes {1, ...,n} haves names or IP addresses {S),...,S,} and are located at positions
{pos(S1),...,pos(S,)}. Each node knows its neighbors and its own position. When a node S; wants to
send a packet to node D, it finds out the position using some position look-up service and addresses the
packet to position pos(D). The geographical routing algorithm uses only the position information in making
its routing decisions. How the lookup service works, and how a node finds its own position and the position
of the destination is not the subject of this paper though we discuss it briefly below.

To decide to which neighbor a packet should be forwarded to, a node consults its routing table. A routing
table of node S is a list {(p;, S;)} (containing in general, fewer entries than the total number of nodes in the
network) where p; is a geographical position and .S; is a neighbor of S. When node S receives a packet for
destination position D, it finds the position p; which is closest to D and forwards the packet to neighbor S;.
We assume initially the nodes only know their neighbors and have no knowledge of the topology. The subject
of this paper is how the nodes construct their routing tables in an online manner, why the routing algorithm
works correctly and what its performance is.



3.1 Finding position information

We assume that each node can find its own position and the position of the destination node. Although how
this is done is not the subject of this paper, we sketch out some technologies which make it feasible. Using
the global positioning system (GPS), it is now possible for any node to find its geographical position with
a small error. GPS receivers are cheaply available and more precise devices using differential GPS are also
available. In applications where the IP address is known but the geographical address is not, a separate trans-
lation protocol must be used to find the geographical position from the IP address. This could for example
be done using a two way paging network where the IP address is broadcast to all nodes and the node with
that specific IP address replies back with its geographical position. Again the details of how this is done are
beyond the scope of this paper.

4 The Geographical Routing Algorithm

In this section, we describe the geographical routing algorithm which we refer to as the GRA in short. The
basic idea behind the algorithm is to use the geographical position of the destination in making routing deci-
sions. Each node only knows about a small number of nodes in the network. It knows more about nodes that
are nearer to it than it does about nodes which are further away. When a node has a packet for a destination,
it chooses from the nodes it knows about the one which is closest to the destination, and sends the packet
on its way to that node. Along the path, a node may know of an even closer node to the destination. The
packet then gets redirected to that node. On its way to that node, it may get redirected again, and so on until
it reaches the destination.

For example, suppose a packet is to be sent from from New York city to UC Berkeley, CA. Suppose the
New York city node “knows” the route to a node in San Francisco, CA. It then routes the packet according
to that node. On the way suppose, there is a node that “knows” a better route to Berkeley, CA. It then routes
the packet onto the better route. Now, suppose the packet reaches near Bay Area, and a node “knows” an
even better route to UC Berkeley. It, then, routes the packet onto this route, and the packet thus reaches the
node in UC Berkeley. Thus, the algorithm has an in-built capability of finding better and better routes to the
destination as the packet nears the destination, even though the source node “knows” the network topology
around the destination very “coarsely”.

We now describe the routing algorithm in detail, and prove its correctness by showing that routing tables
are cycle-free and that packets reach their destination. We also quantify the performance of the algorithm in
terms of the average routing table lengths.

4.1 The Algorithm

Suppose G = (N, L) is the graph corresponding to our wireless network. The algorithm begins with each
node initially knowing only about its neighbors. The routing table at a node S is a list {(p;, S;)} where p; is
a geographical position of some node and S; is a neighbor of S. When destination D is closest to position p;
in the routing table, node S forwards the packet to neighbor S;. Each node thus forwards the packet in the
same way till the packet reaches the destination.

But sometimes when routing a packet, node S may discover that it is closer to the destination than any
other position p;. In this case we say the packet is “stuck” at S. This causes the “route discovery protocol”
to be started. The route discovery protocol finds a path from S to D (say Path(S, D) = kok; ...k;) and
updates the routing table of the node k; on the path by placing the entry (pos(D), k;4,) in its routing table.
So now each node on the path knows how to get to D. It is in this way that new routing entries get added to



the routing tables. After the route discovery protocol is completed, the stuck packet can be routed from S to
D.

We next present our routing algorithm in more detail. We introduce the notion of Voronoi views. This is
a geometric way of viewing the routing operation. Each entry (p;, S;) in the routing table is associated with
a region in JR? so that if the destination of a packet falls in the region, the packet gets routing according to

the entry (p;, ;).

4.1.1 Voronoi Cells

Let C = {S1, 52, .., Sk} be the set of nodes whose geographic locations are known to node S at time ¢
(we assume S € C%). We refer to these nodes as centers at node S. We use the positions of the centers to
partition IR? into cells so that all packets for positions which fall within a cell are routed similarly. A cell
around the center S; consists of all points that are closer to S; then any other S;. We call this the Voronoi cell
with center S;. We then define the Voronoi view of node S as consisting of the Voronoi cells with centers
C:. Formally,

Definition 1 (Voronoi cell) Ler {S;, S5, .., Sk} be any set of points in IR%. A Voronoi cell with center S; is
defined as

Vs(Si) = {z € R?: |2 — pos(S)| = min,_ |z - pos(S;)l, S € Cs}

Definition 2 (Voronoi view) The Voronoi view at node S at time t is
Vé = {V5(S:) : Si € C§}

Example 1 (Voronoi view) The example below explains the concept of the Voronoi view. In figure 1, node S
hasnodes A, B, C, D inits routing table as centers but not E. Thus, the Voronoiview of S is the tessellation of
the network region based on these nodes. Node E does not affect the Voronoiview of S. But if E is destination
Jor some packet at S, then S forwards the packet to the neighbor node D, which happens to be the closest

center to E in S'’s Voronoi view.

Figure 1: Example of a Voronoi view

Thus, in making a routing decision for a packet going to destination D, node S looks at its routing entries
{(p:, Si)} and finds the position p; which is closest to D. It then routes the packet to the neighbor of node
S forming a Voronoi view based on the centers whose positions are {pi, . . . , px}. It then finds the cell in its
Voronoi view in which the destination D lies (say p;), and it then routes the packet to neighbor S;, as if the
packet were meant for the node at position p;.



4.1.2 Routing Table Structure

The routing table at a node S is structured as shown in figure 2. The first column is the names of nodes that
S knows about. We refer to the set of nodes in the first column as the centers at node S. The second column
is the positions of the nodes in the first column. We denote this by pos(.S). The third column is a column of
neighboring node names. Thus if S’ is a node in the first column (see 4-th row of figure 2) and N’ the node
in the neighbor column for S’, then packets directed to Vs(S’) should be forwarded to N’. Sometimes, we
will use the notation Nezts(S’) for N’, where Nexts(S’) is the neighbor of S to which packets for a node
in V5(S’) should be forwarded by S. The time-stamp is the time at which the destination node replied to the
route discovery message. If the network is mobile, the time-stamp could be used to decide when to obsolete
the routing table entry as well.

Some special features of the routing tables are as follows: Since each node is assumed to know its own
position, each node has an entry for itself in its own routing table. The first row of figure 2 reflects this. The
corresponding neighbor is trivially set to itself. Also, the first column of the routing table should contain all
the neighbors of S. The corresponding entry in the neighbor column would be the neighbor itself.

node | node position | neighbor node | time stamp
S pos(S) S Ts
N pos(N) N Tn
S’ pos(S’) N’ Ts:

Figure 2: Routing table structure

Each routing table entry at S is a 4-tuple (S;, pos(S;), Nezts(S;), Ts,). When some of the fields of
a routing entry are not of interest, we indicate them with a *-”, for example (—, pos(S;), Nezts(S;), —).
Sometimes, when there is no confusion, we also write this as (pos(S;), Nezts(S;)).

4.1.3 Packet Format

The packet header has the information shown in figure 3 to aid routing. The source and destination unique
names are specified in the packet. The destination position is also specified in the packet. The destination
name and position are used for packet forwarding and route discovery. The source time-stamp, source name
and source position are included in figure 3 because these may be required in an implememtation of the GRA.

| destination-name | destination-position | source-time-stamp | source-name | source-position | DATA |

Figure 3: Packet format

4.2 Packet Forwarding

Figure 4 describes the packet forwarding algorithm at each node. Suppose a node S receives a packet for
destination D. Let C® denote the set of names of all the nodes that S knows about, i.e., CS is the set of
names in the first column of figure 2. We use dist(S, D) to denote the distance between the nodes S and D,
i.e., dist(S, D) = ||pos(S) — pos(D)||, and =<4 to denote the complete order on node names.

The packet forwarding decision is quite simple: At any time, a node knows about only a small subset
of the nodes in the network. Initially, this set consists of only the node itself and its immediate neighbors.



Node S receives packet for destination D at time ¢: Let pos(D) € V(S;) for some S; € C}

if (S == D)
/1 packet reached its destination
else if (S; # 5)
next_node = Nezts(S;);
else
/lpacket is stuck
Initiate route_discovery(S,D);
next.node = Nezts(D);

Figure 4: Packet forwarding algorithm

Later, the nodes that are discovered through the route discovery process are added to its routing table. When
anode S receives a packet for destination position D, it finds the entry (S;, pos(S;), Nexts(S;)) such that
S; is closer to D then any other S;. It then routes the packet to Nezxts(S;).

It may turn out that node S is itself closest to D then any other S; € CS. In that case, we say that packet
is stuck and it cannot be forwarded to any of the neighbors according to its current routing table. If the packet
is stuck, then node S initiates a route discovery to the destination node D. The route discovery procedure
route_discovery(S,D) finds an acyclic path Path(S, D) = (ko, k1, ..., ki) from S to D, and it updates the
routing table of node k; with an entry (D, pp, ki+1).

It is however possible that a packet destination D is equally close to two nodes S; and S; (i.e., ||pos(D) -
pos(S;)|| = ||pos(D) — pos(S;)|]), and the node lies on the cell boundary. In that case, we assume there is a
total order among names, and use that to resolve the tie (i.e., if S; <;q S;, the packet is routed to Nezts(S;),
otherwise it is routed to Nezts(S;)).

Example 2 illustrates the GRA routing. Example 3 shows that the use of an order on node-names is im-
portant for acyclic routing.

3.1

c
(2.5.0) 4,0)
D E

Figure 5: An example network

Example 2 We illustrate our algorithmon an example network. Consider the network of Figure 5. It consists
of nodes {A, B,C, D, E} which are located at positions (1.5,1.5), (2,2), (3,1), (2.5,0) and (4, 0) respec-
tively. The links between the nodes are symmetric and given by {(A, B), (B, C), (C, D), (C, E)}.

Initially, each node only “knows” about itself and its neighbors. The initial routing tables at the nodes
are shown in Figure 6.



Node Routing Table

Routing table of A | {(A4, (1.5,1.5),-), (B, (2,2), B)}

Routing table of B: | {(B, (2,2),-), (4, (15 1.5), A), (C, (3,1),C)}

Routing table of C: | {(C, (3,1),-), (B, (2,2), B) (D,(2.5,0),D), (E, (4,0),E)}
Routing table of D: | {(D, (2.5,0),-),(C, (3,1),C)}

Routing table of E: | {(E, (4,0),-),(C, (3,1),C)}

Figure 6: Initial Routing Tables

Suppose node A gets a packet for destination C located at pos(C) = (3,1). Node A then looks into its
routing table and finds that pos(B) is closer to pos(C) then pos(A). So it forwards the packet to node B.
Similarly, node B looks at its routing table and finds that pos(C) is closer to pos(C) than either pos(A) or
pos(B). So it forwards the packet to node C which is the destination.

Next, suppose A gets a packet for destination D located at pos(D) = (2.5,0). Node A looks into its
routing table and finds that pos(A) is closer to pos(D) then pos(B). So the packet becomes stuck at node
A. Thistriggers a route discovery. The route discovery process finds the path (A, B, C, D) to the destination
D. In the process it also updates the routing tables of nodes A, B and C. The new updated routing tables
are shown in Figure 7. A forwards the packet for D to B which forwards it to C and C forwards it to D.

Node Routing Table

Routing table of A: | {(4, (1.5,1.5),-), (B, (2,2), B), (D, (2.5,0), B)}

Routing table of B: | {(B, (2,2),-), (4, (1.5,1.5), 4), (C, (3,1),C), (D, (2.5,0),C)}
Routing table of C: | {(C, (3,1), -), (B, (2,2), B), (D, (2.5,0), D), (E, (4,0), E)}
Routing table of D: | {(D, (2.5,0), -), (C,(3,1),C)}

Routing table of E: | {(E, (4,0),-), (C, (3,1),C)}

Figure 7: Updated Routing Tables

Next suppose A gets a packet for destination E located at pos(E) = (4,0). A looking into its routing
table finds that pos(D) is closer to pos(E) then either pos(A) or pos(B). So it forwards the packet to node B
based on the entry (D, (2.5,0), B, —) in its routing table. Similarly B finds that pos(E) is closer to pos(D)
then either pos(B), pos(A) or pos(C). So it forwards the packet to C based on the entry (D, (2.5,0),C, -)
in its routing table. Node C finds that pos(E) is closer to pos(E) than pos(D) or pos(C), so it forwards the
packet to E based on the entry (E, (4,0), E, -).

Thus, A was able to route a packet to E even though it did not have E in its routing table. Our simulations
indicate that in large networks this is frequently the case.

Example 3 Consider the network shown in figure 8. The routing tables at each node are as shown in the
figure. For convenience we have left out the node positions from the figure. Thus T2 : (b,1)(a, a) is the
routing table at node d. (b, 1) means that if the surrogate destination is b then the packet will be forwarded
to 1. Nevertheless, the understanding is that a node knows the position of each node in its routing table.

Both nodes 1 and 2 have a and b in their routing tables. Node 1 sends packets to a through 2. Node 2
sends packets to node b through 1. Now suppose 1 originates a packet for d. Since it knows both a and b
which are equidistant from d, suppose it randomly selects a and forwards the packet to 2. Likewise 2 is faced
with the same choice. If 2 randomly chooses b then the packet cycles. To prevent such cycles we disallow
random choices between equidistant nodes. Instead we require that be resolved by the lexicographic order
on node names. Thus if @ <;q b both 1 and 2 would choose a.



T2: (b,1) (a,a)

@ Ta: (2,2)(d,d)
| e 0 Td: (a,a)(b,b)

o O,
Tb: (1,1)(d,d)

T1: (a,2) (b,b)

Figure 8: Forwarding without the Name Order

4.3 Route Discovery

Suppose node S gets a packet for destination D. The packet gets stuck at node S if the destination lies closer
to S than any other cell center at S. This triggers the route discovery mechanism. which finds an acyclic path
Path(S, D) from Sto D.

The only requirement for the route discovery mechanism is that it return an acyclic path to the destina-
tion, and that it update the routing tables on that path in an appropriate manner. Suppose the acyclic path
found is Path(S, D) = (ko, k1, - - . , ki). We then require that an entry (D, pos(D), ki4+1) be added to the
routing table of node &;. This is the only requirement to ensure the correctness of the routing algorithm. The
mechanism by which this path is found has no consequence on the correctness of the routing algorithm. We
next state this required property more formally.

Property 1 (Route Discovery Protocol) Ifa packet is stuck at node S, then S starts a route discovery pro-
tocol. The route discovery protocol finds an acyclic path Path(S, D) = (kok; ...k:) and adds an entry
(D, pos(D), kit1) to Table(k;) for 0 < i < l. We also require that the route discovery protocol update
Table(kiy1) before Table(k;).

Several different algorithms can be used to find a path to the destination. Examples of such algorithms
are breadth-first search (e.g. flooding) or a depth-first search, the A* algorithm or even the Bellman-Ford
algorithm. We next briefly describe the distributed implementation of the breadth-first-search and depth-
first-search algorithms that satisfy Property 1.

43.1 Path-Finding Phase

We next describe the distributed implementation of the breadth first and depth first algorithms that find an
acyclic path to the destination D.

Breadth first search

In the breadth-first-search algorithm, node S starts the route discovery protocol broadcasting a route dis-
covery packet (RD packet). Each node that receives the RD packet also broadcasts the packet if it has not
forwarded the packet before. This ensures that the paths being found by the route-discovery are cycle-free.
Each node that broadcasts the packet, puts its name and address in the packet so that the path being traversed
by a route discovery packet is retained. If a packet comes back to a node, it is discarded. Eventually, the route
discovery process completes. Each packet that reaches D contains an acyclic path from S to D. Multiple
such packets may reach D, and hence, D would know of multiple acyclic paths from S to D.



Depth first search

The depth-first-search algorithm on the other hand yields only a single acyclic path from node S to destina-
tion node D. Each node puts its name and address on the RD packet. It then forwards it to a neighbor who
has not seen it before. The neighbor to which a node forwards the packet is one which minimizes a chosen
distance metric. One possible choice for the distance metric is the Euclidean distance (as an estimate of the
path length). In that case, node X forwards the packet to neighbor node Y for destination node D if

Y = arg min d(X,y) + d(y, D)
yENx

where Ny is the set of neighbors of node X to which it can forward the packet, and d(X, Z ) is the Euclidean
distance between node X and node Z.

In case a node has no neighbors left to forward the packet to, it removes its name and address from the
packet and returns the packet to the node from which it originally received it. Each node also for some time
keeps track of RD packets it has seen before. If a RD packet is forwarded to a node which it has seen before,
it refuses it.

| source S [ destination D [ position of D, pp | visited nodes v(S, D) | current path P(S, D) [ time T; |

Figure 9: Route discovery packet structure

Note that the initial Voronoi view of a node includes the node itself and its neighbors only. It is the route
discovery mechanism that puts more cell centers in the routing table and makes the Voronoi view more de-
tailed. With sufficient detail, the route discovery process may not be initiated any more at a node. We call
such a Voronoi view, a complete Voronoi view.

4.3.2 Updating Routing Tables

When the RD packet reaches destination D, it contains an acyclic path Path(S, D) = (ko k1,..., ki)
from S to D. Node D then initiates a route update process by sending an ACK packet back along the path
Path(D,S) = (ki,ki1,...,ko). On the way back, an entry (D, pos(D), ki) is added to Table(k;).
Notice that the routing tables are updated in the order required by Property 1.

4.4. Proof of Correctness

In this section, we will prove the correctness of our algorithm. More specifically; we will show that the rout-
ing tables do not contain any cycles (i.e., it is not possible for a packet to get into a loop by following the
routing algorithm).

Definition 3 (A cycle in routing tables) We say the routing tables {Table(s;)} contain a cycle provided
there is a destination position D and initial node Sy such that starting from Sy, the packet follows the path
(S0, S1y ..., Sk) without getting stuck and Sy, = Sp.

Definition 4 (Centers property) Supposeforevery entry (S, pos(S), B) in Table(A), there is also an entry
(S, p0s(S), ) in Table(B). We then say that Table(A) satisfies the centers property.

When the routing tables at all nodes satisfy the centers property, we say the network satisfies the centers
property. Intuitively, the centers property is saying that each entry (S, pos(S), B) in Table(A) corresponds
to a path. The path goes throughnodes A, B, . .. on its way to node S. We next show that the routing tables
in GRA always satisfy the centers property.
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Lemma 1 (Centers property) Consider a wireless network G = (N, L) in which the route discovery pro-
cess satisfies Property 1. Then the centers property is satisfied by the routing tables.

Proof Initially each node has itself and its neighbors in its routing table. So for each neighbor n of node A,
there is an entry (n, pos(n), n) in Table( A). Because there is also an entry (n, pos(n), —) in Table(n), the
centers property is satisfied.

Now assume that the centers property holds at time ¢, and an entry (D, pos(D), B) is added to T'able(A).
New routing entries can only be added by the route discovery process. So assume that the route discovery was
initiated by node S for destination D, and a path Path(S, D) = (po, p1, - . . , k) Was found where p; = A
and p;+; = B. Then because of Property 1, there is an entry (D, pos(D), —) in Table(B). Therefore the
centers property is satisfied even after a new entry is added to T'able( A). [

Theorem 1 (Cycle-free property) Consider a static wireless network G = (N, L) in which the route dis-
covery process satisfies Property 1. Then there are no cycles in the routing tables.

Proof Because the route discovery process satisfies Property 1, the centers property holds in the routing ta-
bles. Now suppose a packet for node D at position d is placed at node So. And suppose the packet follows
the path (So, 51, S2, . . .) where at node S;, it is routed according to the entry (D;, pos(D;), Si+1). From the
centers property, (D;, —, —) is in Table(S;41).

Now either D;y; = D;, or Dy # D;. If Diyq # D;, then either ||pos(D;11) — d|| < ||pos(D;) — d|,
or ||pos(D;1) — d|| = ||pos(D;) — d|| and D;4, <ia D;. Now suppose there is a cycle (S;, Si1, -« - Sitk)
where S; = Sii. It cannot be that D; = D;;; = ... = D;,; because that would imply that the route
discovery process found a cyclic path violating Property 1. Therefore, either ||pos(D; ) —d|| < ||pos(D;)—
d||, or [|pos(D;4x) —d|| = ||lpos(D;)—d|| and D;4x <ig D;. Butthen S;x # S;, a contradiction. Therefore
a packet cannot get into a cycle by following the routing tables. |

From the above result it follows that a packet never gets into a loop. Therefore, either the packet reaches
its destination or it gets stuck at a node. If the packet gets stuck, then through the route discovery process,
a route is found to the destination, and the packet then gets routed to its destination. Hence, the algorithm
ensures that the packet reaches the destination.

4.5 Performance of the Algorithm
4.5.1 Convergence of Routing Tables

One of the advantages of our geographical routing algorithm is that a node does not need to have a routing
entry for every other node in the network. In fact, as we will show, after some time, no new route discoveries
are initiated, and routing is done with each node having only a small number of entries in its routing table.
When the routing tables contain enough detail so that packets can not become stuck, we say that the routing
tables have converged or the Voronoi views have become complete.

Example 4 Consider the network of Example 2 The reader should check that the updated routing table in
Figure 7 is complete. Note that nodes do not contain routing entries for every other node. For example, node
E doesn’t know about nodes D,A, or B but can still route packets to them.

It is best to see this idea geometrically. Corresponding to the routing table at a node is its Voronoi view.
Consider the Voronoi view of a node S. Suppose that Voronoi cell Vg(S) contains only node S. Then it is
not possible for a packet to get stuck at S because a packet for any other node D falls in a cell other than
Vs(S). When this is the case for the Voronoi view at every node, packets can not get stuck in the network.
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Definition 5 (Complete Voronoi View) We say the Voronoi view of node S is complete if Vs(S) contains
only node S.

Now suppose Vs(S) contains anode other than S, say node D. Then when a packet arrives for destination
D atnode S, it will get stuck. This starts a route discovery and node D is added as a center at node S. The
new Voronoi cell with center S is smaller and does not contain D. It is by this process that the Voronoi cell
with center S becomes smaller and smaller until it eventually contains only node S. At that point the Voronoi
view for node S becomes complete.

VS(S) vs'(s)
T e e S T @ ® S
oD e D
(a) Voronoi view with centers S and T (b) Voronoi view with centers S, D and T

Figure 10: Change in Voronoi view on addition of an entry in routing table

Example 5 Figure 10 (a) shows the Voronoi view at node S with centers {S, T}, and Figure 10 (b) shows
the Voronoi view at S after D is added as a cell center.

The next lemma states that eventually the Voronoi views at all nodes will become complete.

Lemma 2 (Completion property) Consider a wireless network G = (N, LYwithVt = {V{: S € N}
being the set of Voronoi views at all nodes of G. Let there be a positive probability of a packet being generated
at any source node S for any destination node D in a time interval T. Then, givenany 0 < € < 1, there exists
a T such that forVt > T, V{ is complete for all S € N with probability 1 — .

Proof For any 0 < § < 1, there is a T such that node S will generate packets for every other node with
probability 1 — & by time T. If a packet for a destination D gets stuck, it is added as a cell center at node S. It
follows that by time T, node S will have a complete Voronoi view. Because traffic is generated independently
at different nodes, with probability (1 — &)™, all the Voronoi views at all the nodes will be complete by time
T. Now choose § s.t. (1—8)" =1~ e. Thenforany 0 < € < 1, there exists a T such that for ¢ > T, Viis
complete for all S € NV with probability 1 — e. (]

4.5.2 Size of Routing Tables

Claim 1 (Routing table size) The average routing table size in a n-node network G when all the nodes have
complete Voronoi views is O(L log(n)) where L is the mean route discovery path length.

Let us provide an intuitive justification for this result. Say at node S, the Voronoi cell with center S,
contains other nodes, for example, a node D. When a packet arrives for node D, the packet gets stuck, and
route discovery process is initiated which causes D to be added as a center at S. This causes the old Voronoi
cell Vs(S) to be split (as shown in Figures 10(a) and 10(b)). The new Voronoi cell with center S, Vs(S), is
of smaller size than Vs(S). We are interested in how much smaller is V5(S) compared to Vg(S).
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Suppose S and D are randomly placed in V5(S). Then on the average, half of the points in Vs(S)
will be closer to S than to D. These points will form V§(S). Therefore, on the average Area(Vg(S)) =
aArea(Vs(S)) where a = 1.

So every time a packet for destination D gets stuck at node S, the node D which was in Vg (S) gets added
to S as a cell center, and the area of V5(S) gets reduced by a factor of . But this can only be done a certain
number of times before S is the only node left in V5(.S), and the Voronoi view of S becomes complete. We
are interested in finding the number of times a new cell center can be added at S before the Voronoi view at
S becomes complete.

Suppose the nodes are distributed in a region with a unit area. If we form the Voronoi partition based on
the nodes in the region, the average area of each cell i 1s . So if the number of times Vg(S) gets split is ,
then on the average we expect k to satisfy o = 1 before Vs(S ) contains only node .S and the Voronoi view
at S becomes complete. This implies that

__ logn

So on the average, packets get stuck ;22T I"g T times at a node S before the Voronoi view at S becomes complete.

Now each time a packet for destmatlon D gets stuck at node S, a route discovery process is started. The
route discovery returns a path Path(S, D). Let us say the average length of this path is L (note that L is in
fact a function of 7, and hence should be more appropriately written as L,,). From Property 1, D gets added
as a center at every node along the path. So each time a packet gets stuck, L new routing entries get added.
At each node, packets get stuck ﬁf—’_{—) times, and each of these times, L new routing entries are added to the

routing tables. Therefore the average route table size is O(Llogn).
We have provided an intuitive justification for this result. A more formal argument will be provided in
the full paper.

5 Related Issues

5.1 Positional Inaccuracy

Consider a node ¢ which thinks it is located at position p; but which is actually located at p}. This could for
example happen if node 7 gets its position from GPS and there is an error in the position measurement that
it receives from the GPS. Node ¢ then advertises its position as p; and all packets to node 7 are addressed to
position p; even though it is actually located at p;. We refer to p; as the network position of the node since
this is what the routing algorithm uses, and to p} as the actual position of node . Each packet for node ¢
addressed to position p; either gets to node ¢ or gets stuck. If it gets stuck, then route discovery finds a path
to node . Although the algorithm works correctly, it can lead to somewhat non-sensical routing tables as the
following example shows.

©C O O O O
D B A o] E
Figure 11: Network Position

Example 6 Consider the network consisting of nodes A, B, C, D and E. Figure 11 shows their network
position, and Figure 12 shows their actual position. The network positions of A, B and C match their actual
position. But nodes D and E are actually located at positions D' and E'. The links between the nodes are
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E' B' A c'

Figure 12: Actual Position

obtained from Figure 12 and are { (E, B), (B, A), (4,C), (C, D) }. Now suppose A receives a packet for
D. So A forwards the packet to B. But D is actually located at D' and B does not have a link to D. So the
packet gets stuck at B and a route discovery is initiated. The route discovery finds the path (B, A, C, D) to
the actual position D'. A complete routing table for A is { (E, B), (B, B), (A, A), (C,C), (D,C) }.

Suppose the error between actual position and network position is § (i.e., [lpi — pi)| < 8). Then if node
¢ is at network position p; and node j is at network position Dj, then the actual distance between 7 and j is
lP; = 25|l < l|p: —p;ll+28. When anode j receives a packet for position p;, it can use the bound on llpi =25l
to decide on its course of action. If the packet gets stuck at 7, then j may initiate a route discovery, or it may
increase its transmitter power to reach node 1.

5.2 Full vs. Partial Route Discovery

When a packet gets stuck at a node X, it initiates a route discovery. Now, the route can be discovered right
upto destination node D, or it can be discovered upto anode Y which has node D as a cell center. The first
method is called the full route discovery and the second method is called the partial route discovery. The
full route discovery finds a highly reliable and recently updated route to node D. The partial route discovery
finds a path to node Y which has D as a cell center. The path from Y to D may have been discovered some
time ago and hence may not be as reliable.

5.3 Multiple Route Discoveries

It is possible that at any given time, there are multiple route discoveries going on for the same destination
node D, initiated by different nodes. This can result in cycles as the following example shows.

S'X s2

X1 x2

Y1 Y2

Figure 13: Aynchronous Route Discovery

Example 7 Consider the network of Figure 13. Suppose that a route discovery for destinationnode D, RD,,
is started by node S, at time t,. Also, suppose that a route discovery for destinationnode D, RD, is started
by node S; at time to. Suppose RD, reaches node X,, which forwards it to node X 2. which then fowards it
to node D. Similarly, RD, reaches node X, which directs it to node Xy, which then directs it to node D.
Now, suppose that the AC K, for RD; reaches node X2, and the routing tables are updated including D as
a cell center, and corresponding forwarding neighbor Y,. Similarly, AC K, reaches node X, and routing
tables are updated at X, including D as the cell center, with corresponding neighborY;. Now, suppose that
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Figure 14: Routing Tables with Cycles in case of inconsistent information

while ACK is travelling from X to X, ACK is travelling from X, to X5. The two AC K s then overwrite
the entiries for D. At node X, we then have Nx, (D) = X, and at node X5, we have Nx, (D) = X;. Thus,
there is a cycle.

This problem can be overcome however, if the destination node time-stamps each route discovery request
that it gets. Then, each node that is participating in multiple route discoveries for another node, then updates
its routing tables using the RD ACK (update) packet with the most recent time-stamp. This does not result
in cycles. The proof of this follows exactly the same lines as for Theorem 1.

6 Dynamicity and Mobility in Ad Hoc Networks

In the previous sections, we have assumed that our network is static, and that links and nodes do not fail. We
first show with an example that when these assumptions do not hold, the routing tables can become inconsis-
tent and cycles can arise. We then present a simple extension to our algorithm that tries to keep the routing
tables consistent in presence of node and link failures.

6.1 Importance of Consistency of Positional Information

So far we have assumed that the nodes in the network do not move. A consequence of this has been that every
node that knows about a specific node has the same consistent view of it. That is, if node A and B know about
node S, then they both believe that .S is located at the same network position pg. As the following example
shows, this is an important property.

Example 8 Consider the example in Figure 14. Nodes A and B are reachable directly from each other.
Node C can be reached by A or B, but only via node H. At time 0, B is located at position (4,0) and A's
routing table has an entry (B, (4,0)). Node B then moves so that at time 1 it is at position (6,0). Node A
does not know that B has moved so it still has the old position for B in its routing table.

Now a packet arrives at node A for node C. Node A forwards this packet to node B because it thinks B
is closer to C. B of course is located at position (6, 0) so it forwards the packet back to A because it thinks
A is closer to C. Hence the packet gets into a cycle.

6.2 Tear Down Protocol

We present a simple extension to our protocol which tries to maintain the centers property and keep the rout-
ing tables at nodes consistent. As part of our protocol, nodes need to exchange “hello” messages to discover
their neighboring topology. We require that each node also transmit its routing table as part of the “hello”
message.

Each node then uses its neighbors’ routing tables to check the validity of its own routing table. A node
S updates its routing table in one of the following ways:

15



1. If S receives a “hello” message from node n;, it puts an entry (ni, pos(m;), n;) in its routing table if it
was not already there.

2. If S does not hear from a neighbor n; for some amount of time, it removes all entries of the form
(di, pi, n;) from its routing table.

3. If T'able(S) contains the entry (d;, p;, n;) and S receives Table(n;) which contains theentry (d;, p;, -),
then S updates its entry to (d;, p;, n;, —).

4. If Table(S) contains the entry (d;, p;, n;) and S receives Table(n;) which does not contain an entry
(di, —, —), then S removes the entry (d;, p;, n;) from its table.

5. After any change to its routing table, S broadcasts the new Table(S).

We refer to the above protocol as the tear down protocol. The reason for this is as follows: suppose
there is an entry (s;, pi, ;) in the routing table of .S, but node n; has gone down. Then S deletes the entry
(si, pi, —) from its routing table and broadcasts its new routing table to its neighbors. The neighbors in turn
do the same. The protocol removes all entries (s, i, —) in all nodes following which would have taken the
packet through the failed node n;. Alternatively, since the routing entries correspond to paths, all paths which
were passing through node n; get torn down.

6.3 Correctness of the Tear Down Protocol

When nodes or links are going down, it may very well be the case that the “centers” property is violated.
Nodes may also have inconsistent views of the network if they are mobile. But once the topology of the
network becomes fixed again, the tear down protocol ensures that the “centers” property holds and there are
no cycles in the routing tables.

Lemma 3 Suppose G is a network in which route discoveries are done using full route discovery, and whose
topology was changing but has now become fixed. Then after the above protocol runs to completion:

1. “Centers” property will hold.
2. There will be no inconsistent views in the network.

3. There will be no cycles in the routing tables.

Proof: It can not be the case that there are a sequence of nodes ny, ... , ny where ny = n; and (8,pymit1) €
Table(n;) fori = 1,...,k — 1 because this would violate Property 1. So when the tear down protocol
runs, all entries (s, p, 7;) which do not correspond to a path leading to node s get deleted. Similarly, the
correct position of each node gets propagated through the network so that there are no inconsistent views in
the network. Because the “centers” property holds after the tear down protocol runs to completion and there
are no inconsistent views and no cycles in the routing tables. ]

Hence, tear down protocol tries to maintain the “centers” property and keep the positional information
at nodes consistent.

64 Overhead due to mobility

In this section, we try to quantify the amount of overhead due to mobility. When a node A has a link to node B
and node B moves, the link between A and B may be broken. When this happens, the protocol of Section 6.2
communicates this to all nodes which were using this link. This causes all routing entries which were using
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the link from A to B to get deleted. Therefore, the amount of overhead is proportional to the number of links
that are being broken per unit time. The number of links going down per unit time is directly related to the
speed of the nodes. We next try to obtain a formula which quantifies the amount of overhead in terms of the
various parameters of the wireless network.

We assume the network has n nodes in a unit area and each node has a transmission radius r.

6.4.1 Overhead from a single link going down

On the average, each node has nwr? neighbors and cLlog(n) entries in its routing table. So on the average
= %ﬂ entries in the routing table of A are using a link from node A to a neighbor B. So when the link

between A and B goes down, « entries in A and « entries in B become obsolete. This cause (%ﬂ)%

messages to be broadcast to delete all entries in all nodes which were using the link between A to B.

Since %‘?}ﬂ paths get deleted by each link going down. In steady state, the same number of route
discoveries must also be made for each link going down. Each route discovery generates (for example, using
breadth first search) n packets. So a total of Ld’%,’-@ packets get generated from route discoveries for each
link going down.

So each link going down causes

cL?log(n) = 2cLlog(n)
2 T 2
nmr wr

overhead packets to be generated. That is O(i‘:’}ﬂ) packets get generated for each link going down.

6.4.2 Number of links going down due to mobility

Figure 15: Computing overhead due to mobility

Let us now compute the number of links that go down per unit time. We assume that each node is moving
in a random direction at speed v. We will look at a shell of width vA at radius r from a node V. We will be
interested in how many of the nodes in the shell move out of node N’s range in time A. This is the number
of links that will be broken between node N and its neighbor in time A.

Figure 15 shows the shell. There are 2rrvAn nodes in the shell. We are interested in computing the
probability that a node in the shell moves out of the circle. This probability is given by

vA -1(z_
1 2cos™ (%)

P=oa)y —m &
O R 1
Y -

So foranode N, 2wprun links get broken per unit time. Or O(rvn) links get broken per unit time from
a single node. Since there are n nodes, a total of O(rvn?) links get broken per unit time in the network.
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6.4.3 Total Overhead

Since O( l"rg}ﬂ) packets get generated for each link going down, and O (rvn?) links get broken per unit time
in the network. A total of O(Lin"i(ﬂ) overhead packets get generated in the network per unit time.

7 Simulation Results

In this Section, we describe the simulation framework and results on the performance of the GRA routing
algorithm. The performance of a routing algorithm can be measured in terms of the memory requirement
at the nodes, and the bandwidth used due to the communication overhead. We quantify the performance of
the algorithm be simulating the GRA running over random graphs of varying size. In each case, we sample
enough random graphs to put our results in a 95% confidence interval.

Our performance measures are the mean routing table size, and the average number of GRA protocol
packets generated per node before the routing tables complete. We assume that each protocol packet gener-
ated is delivered. Thus the number does not account for retransmissions due to channel variations, medium
access control, etc. Note that both measures are independent of underlying link layer or physical layer char-
acteristics. The first measure is related to the memory requirement of the nodes and the second the network
bandwidth consumed by the protocol overhead. We have focussed on them to emphasize that the GRA is not
tied to a particular link layer protocol or channel type. Its benefits could potentially be realized over many
kinds of underlying networks.

7.1 Simulator Description

We generate the random network in two steps. First, the simulator has a graphical user interface that accepts
the number of nodes = and the shape of a two dimensional region as input. It then locates n points randomly,
with a uniform distribution, in the region. Thus the first step provides a set of node locations. The second
step determines the neighbors of each node. We assume that all nodes have the same transmission range and
that if the distance between two nodes is less than the transmission range then the two nodes are neigbors,
i.e., connected by an edge in the network graph. We find the minimum transmission range such that the nodes
form a connected graph. This minimum is found by successive approximation. This process of generating
the network graph results in an increase in the average number of neighbors of a node as the node density is
increased. This is shown in figure 16.

85% confidonce interval

10' 10 10
Numbor of Nodos

Figure 16: Average number of Neighbors

Ateach node, there is a routing table to route packets generated or relayed, and a buffer to queue packets.
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The queue leaks at some constant rate C' packets per time unit. The buffer size B at the nodes is large enough

so that packets are not dropped.
Packets are generated uniformly randomly U[A(n)/2, 3A(n)/2], where

A(n) = knC

is the mean rate at which packets are generated, k is a constant (0.01 in our simulation to prevent buffer
overflow). The source-destination pair are chosen randomly. On being generated, a packet gets queued at the
node. In each time instant, C' (which is 20 in our simulation) packets are forwarded according to the routing
table. If a packet is “stuck”, it initiates a depth-first-search route discovery, which updates the routing tables
upto the destination so that the stuck packet can be routed. The route discovery process is assumed to be
instantaneous. We do this to simplify the implementation but nevertheless account for the exact number of
path finding and update packets. We assume that all the packets are of same size, and there exists a schedule
such that each node can exactly transmit C packets per unit time. Note, however, the performance measures
we present are independent of these assumptions, as long as each node is equally likely to originiate its next
packet for any other ncde in the network. Nodes may represent agent teams that are located close to each
other. For such applications, we think the performance of GRA would be better than under the assumption
we make here.

7.2 Results
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Figure 17: Mean routing table size

Figure 17 shows that the mean routing table size is small. In fact, for a 1024 node network, the mean
routing table length is only 12.1. The plots show the 95% confidence interval for the mean with 50 simulation
experiments. As expected, it grows with the size of the network. Some of this growth is simply the growth in
the number of neighbors. Figure 17 plots the two together. We see that most of the growth is accounted for
by the increase in neighbors. The increase in the number of non-neighbor remote nodes in the routing table
is quite small. This is also as expected because as the number of neighbors of a node increase, it becomes
less likely that packets will get stuck at the node. The logarithmic growth in routing table size is in sharp
contrast to the linear growth of most ad-hoc network routing algorithms. Figure 17 (b) compares the mean
routing table length of the GRA routing algorithm with the destination sequenced distance vector (DSDV)
routing algorithm. Other algorithms based on distance vector, link-state and source routing also have similar
routing table lengths.
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Figure 18: Communication overhead and convergence time are also performance measures

Figure 18 (a) shows that the small routing table sizes are, in fact, achieved at very little communication
overhead. The overhead in communication is because of the bandwidth used due to the route discovery pack-
ets and the updates. However, the update packets are very small in size as compared to the route discovery
packets and can also be piggy-backed on other packets, and hence are ignored in our results. We count the
number of packets a route discovery transmitted as the communication overhead due to a single route dis-
covery. Figure 18 (a) shows that geographical routing algorithm in a non-mobile network, achieves complete
routing tables with communication overhead of less than two route discovery packets per node. The aver-
age number of protocol packets per node is approximately constant. Therefore the growth in the number of
protocol packets is linear in the size of the network.

Moreover, as Figure 18 (b) shows, with the traffic load as specified above and traffic spread uniformly,
the routing tables converge in less than 1000 seconds. This means that it takes less than 10C packets per
node on average for the routing tables of a node to converge. In our simulation C' was 20. So, for a 1024
node network, each node generated only 80 packets on average, before it’s routing table became complete.

8 Conclusions

In this paper, we have proposed a novel algorithm for routing in wireless ad-hoc networks using geographical
information of the nodes. The algorithm is asynchronous, real-time, distributed and scalable. It does not
require an architecture or hierarchy to be imposed on the network but provides each node with a distance-
dependent aggregated view of the network topology. The basic intuition behind the algorithm is that to route
a packet far away from the destination, only a “coarse” knowledge of the network topology is required. As
the packet reaches near the destination, nodes in that area are expected to know the topology around the
destination in greater detail and will be able to route the packet to the destination.

We showed that if the route discovery process updates routing tables in a particular way, then the routing
tables are cycle-free. We also showed that even in mobile networks where the topology changes, the packets
may get “stuck” but do not get caught in loops. Further, we quantified the performance of the algorithm in
terms of the size of the routing table and communication overhead due to the route discovery process. We
presented proposed protocols for handling discovering new nodes, and coping with node failures. These
protocols enable the algorithm to handle mobility and dynamicity in network topology.

We showed theoretically and verified through simulation that the algorithm obtaines very small routing
table sizes and very low communication overhead. Thus, one of the major features of the algorithm is that
it is scalable without imposition of any hierarchy (hence ad hoc in true sense). Thus, the algorithm has im-
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plications for Internet routing as well. One of the weaknesses of the algorithm is that it assumes an overlaid
paging network to provide information about geographical location of the nodes. But with proliferation of
GPS receivers, this may not remain an impractical assumption.

We have presented protocols to handle node mobility. Detailed analysis of the algorithm under high mo-
bility and its load balancing properties are subjects of current research. We intend to present those results in
future work.
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A Appendix

In this section we present two results of relevance to the algorithm of the paper. First, we show that when
the number of nodes is very large and the transmission range is chosen appropriately, then it suffices to know
the neighbors to do the routing. In the second result, we show that the expected number of route discoveries
initiated by a node is O(logn).

A.1 Asymptotic results for routing table size of random networks in convex regions

In this section we show that under reasonable assumptions, the expected value of the number of hops to any
node approaches 1, as the number of nodes in the network increases to infinity. We also prove that this fact
implies that the expected number of nodes in a GRA routing table converges to the number of neighbors as
the total number of network nodes increases.

We assume that the network deployment area does not change with the number of network nodes but do
permit the transmission range to be reduced as the number of network nodes is increased. This reduction is
permitted to maximize the capacity of the wireless network in the sense of [3].

Let S be a countably infinite set of nodes whose locations are uniformly distributed in a disc of unit area
contained in the plane. Let S, be the first » nodes. Let r(n) be the transmission range for every random
network consisting of nodes in the set S,,. We assume that

r(n) = [6(1 +7:1)2 logn'

As per [3] this is the order of the transmission range when it is chosen to maximize the capacity of an n-node
network located in a fixed finite area. If the range is chosen to be less than this, the network is likely to be
disconnected. If two nodes lie within transmission range of each other we assume they are neighbors. Let
N be the set of neighbors of s.

Let G™ be a random n-node network and D" a data demand pattern. Then, we know that the routing
tables will complete. Let {T7 : s € S,.} be the set of complete routing tables for G, D... Pick a node S at
random from G™ and another node S’ at random from the routing table Tg. We define L, to be the number
of hops from S to S’. Note that L,, is a random variable representing the number of hops from a node to
another node in its routing table when the network lies in the set of n-node networks.

GRA routing tables contain neighbor nodes and remote nodes. For a remote node to be in the routing
table, it is necessary that there be no neighbor in the direction of the remote node. In other words, the shaded
circle sector in figure 19 must be devoid of any nodes. We use the following geometrical fact: The area of
the hatched sector is no less than r2/3.

Figure 19: Condition for a remote node to be in the routing table
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The argument is as follows.

E[L,|S=5,8"=¢,s €T
2
< 1+n(l- ”T("))“

(14+¢€)logn
n

1+n(l- )i

It may be argued that the lim,, o 7(1 — £1—+5nl°L—g—")" = 0 for the following reasons. Let

1+¢)logn,,
fln) = n(l - (#)
Then 1 |
log f(n) = logn + nlog(l - %og_n)
But for large n,
log(1 - {L¥logn) (14 9logn

which implies that log(f(n)) ~ —elogn. Thus as n increases log f(n) goes to —co, which implies that
lim,— oo f(n) = 0. This then implies that

lim E[L,|S=s,58"=¢,s e TP =1,
n—o0

that is, as the network becomes denser, each node needs to know only about its neighbors to route.
We now show that for large networks the number of nodes in the routing table converges in mean to the
number of nodes in the routing table. We start with

E[L,|S=55=5,8€T" = E[Lu|s'€N,...]P(s € Ny|...)+ E[Lu|s' ¢ N,...]P(s' & N,|

> 1P(s' € Ny(n)]...) +2P(s' ¢ Ns(n)|...)
= M IN(n)] ~ |Ts(n)]
") |Ts(n)|

_ olNs(n)|

= mm
Thus, |

E[L,|S=5s,8" =45 GT"]>3E[|T( )I] 2.
This implies that
Jim E[L,|S =55 =+, €T7] 2 3 lim E[II];I (("))Ilj 2,

which together with the fact |NV,(n)| < |T,(n)| implies that

IN (n)l
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A2 Average Number of Route Discoveries Initiated by a Node

We assume that all network nodes are located in a polygon (Vp) in R2. The result is essentially obtained from
certain geometrical properties of polygons. The concept of a Voronoi cell and tessellation as introduced in
Section 4 is used.

Theorem 2 The expected number of route discoveries initiated by a node is bounded above by a constant
times log n

Proof We assume that the location of a node s is a random variable taking uniformly distributed values

in Vp, ie., for V C 1, W]
P(pos(s) € V) Vol
where | V| denotes the area of V.

Consider a node s. Initially the node s knows only about itself. Thus its Voronoi cell (Vo) is the entire
network deployment region. Thus Ay is the area of the initial Voronoi cell of s. We assume that the next
node (s;) that s learns of can be any other node in Vj. Let V; be the area of the new Voronoi cell of s. In
this manner we let sy, . . ., si be a sequence of points and V;, ...V the corresponding sequence of Voronoi
cells of s, such that the node s; is chosen to lie in the Voronoi cell V;_;. We choose the next node to lie in
the previous Voronoi cell because s would only initiate route discoveries to another node in its own Voronoi
cell. Let Ay be the area of Vj. Since the locations of nodes are random, Vj, and A, are random variables.

Let N be the number of nodes in cell V;(s, {s1, ..., s;}) = Vi. After initiating k route discoveries, the
expected number of nodes left in a node’s Voronoi cell is given by

E(Nkle = ao) = E(Akn/Aole = ao) (l)

= (n/ao)E(Akle = ao) (2)

< ofn (3

The last step follows from lemma 4, proved below.
The expected number of nodes per cell when the Voronoi views become complete is unity. Thus,

a"nzl

which implies that the mean number of route discoveries initiated by a node, & is given by
k=clogn 4

where c is a constant equal to 1/ log(1/a).
n

We next prove lemma 4. Some notation is as follows. Ry is a closed polygonin R?, z € Ry, Y isa
random variable taking uniformly distributed values in Ry, i.e., for V C Ry,

1%
P(Y€eV)= le—JI.

Let By = V(z,Y) denote the Voronoi cell of  when R is tessellated with the points z, Y. Then R; is a
random variable.

Lemma 4 3¢ € (0, 1) such that forall z € Ry
E[|Ri]IX = 2] < (1 = ¢*)|Rq|.
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Figure 20: Geometrical construction for the proof

Proof
Figure 20 shows the geometrical construction used in the proof. Let D = maxz yer, || — y||. D is the
diameter of the polygon Rq. Let z be any point in Rp. Let z; be the farthest point from z in Ro. Then z is
a vertex and ||z — z4|| > D/2. The quadrilateral (z ¢, E, z, F) contains Ry. Ro contains the quadrilateral
(zg, A, C, B). The areas of the two quadrilaterals are as follows.
Area of quadrilateral (2, A, C’, B)=1L 2(sm a+sin f)
Area of quadrilateral (24, E, 2/, F) = 2D 2D(sina + sm B)
Thus the area of quadrilateral (z4, A, C, B) is greater than sz 256 | Ro|. Choose c= 5z
For any u, v in (z j, A, C, B) the distance between u and v is less than . The distance from z to any
such u is greater than 32 D ThusifY € (zf, A,C, B), the Voronoi cell of Y wnll contain at least the region
(z5,A,C,B). Moreover |(zys, A,C, B)| > c|Rol|.LetR denote the quadrilateral (z, A, C, B).

E[|Ri||IX =2) = E[Ri||X==z,Y € RJP(Y € R)+ E[|Ry||X ==z,Y ¢ R]P(Y ¢ R)
< (|Rol = ¢|Rol)B + | Rol(1 - B)
= (1 - cB)|Rdl,
= (1- c2)|R0|.

where 8 = P(Y € R.) The last step follows from the fact that 3 > c.
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