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Abstract

We consider the problem of optimal power allocation over a family of parallel
Gaussian broadcast channels, each with a different set of noise powers for the users,
and obtain a characterization of the optimal solution as well as the resulting capacity
region. The solution has a simple greedy structure, just like the corresponding
solution to the parallel Gaussian multi-access channel. It is a generalization of
the classic waterfilling solution for parallel single-user channels. Application of the
results to the problem of power control for the downlink wireless fading channel is
discussed.

1 Introduction

Many communication channels, such eis channels with inter-symbol interference (ISI), fad

ing channels and multi-antenna systems, can be analyzed as a family of parallel Gaussian

channels. For example, in the case of ISI channels, each of the parallel channels corre

sponds to a frequency; in the case of fading channels, each corresponds to a fading state.

For single-user parallel Gaussian channels when the transmitter can measure and track

the channel, it is well known that capacity can be achieved by an optimal power allocation

over the parallel channels. Moreover, the optimal power allocation can be computed via

a simple water-filling construction [3].

The concept of decomposition into a family of parallel channels extend to multi-user

scenarios as well. These channels can be used to model multi-access or broadcast situations
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when each transmitter-receiver pair experiences possibly different ISI or channel fading.
For example, in a Gaussian ISI multi-access channel where Hi{f) is the frequency response
from the ith transmitter to the receiver, one can view it as a family of parallel multi

access fiat Gaussian channel, one for each frequency /, with the path gain from the ith

transmitter to the receiver to be Hi{f). It is of interest to obtain the capacity region of
such multi-user channels, in analogy to the capacity characterization of single-user parallel
Gaussian channels.

Cheng and Verdu have shown that all points in the capacity region of the multi-access
ISI channel can be obtained by power allocation over the component parallel channels,
and moreover derived the optimal power allocation in the special case of the two-user
multi-access channel. A general solution for Gaussian multi-access channels with arbitrary
number of users was obtained recently [9,10], in the context of powercontrol problemsfor
multi-access fading channels. By exploiting the polymatroid structure of the multi-access
Gaussian capacity region, explicit greedy power allocations were obtained to achieve all
points on the boundary of the capacity region, yielding an explicit characterization of the
region.

In this paper, we will provide an analogous solution for parallel Gaussian broadcast
channels. We will obtain, just as for the multi-access channel, explicit greedy power
allocations to achieve all point on the boundary of the capacity region, together with
an explicit characterization of the region for a given power constraint. Moreover, we
will present a simple iterative algorithm to solve the dual problem, that of finding the
minimum power required to achieve a given set of target rates. At the end of the paper,
we will briefly mention the application of some of these results in the context of power
control for the downlink of a wireless fading channel. A more comprehensive study, using

some of the results developed here, can be found in [8].

After the conference presentation of this work [11], we were informed that a similar
optimal power allocation solution was obtained in earlier unpublished work [6]. Our
solution and proofs are presented in a simpler form, emphasizing the greedy structure of
the optimal solution as well as the similarity to the corresponding solution to the multi
access channel. Moreover, the greedy solution is readily extended to power allocation
problems where there are additional power constraints.



2 Parallel Gaussian Broadcast Channels

Consider the M-user Gaussian broadcast channel:

Yi = X-i-Zi 2 =

where the Z,'s are independent zero-mean Gaussian noise and the variance of Z,- is n,-. The

transmitter is subjected to a total average power constraint of P, and we want to send

independent information to each of the receivers. This is a degraded broadcast channel

and the capacity region is well known [1, 4]. Assuming without loss of generality that

^1 ^ "^2 < ... < riM-, the boundary of the capacity region Ci,(n, P) is given by

{R:-Ri =^log(l + b) i= where XliOi =1} (1)
Each point on the boundary corresponds to a choice of a: ai is the fraction of the

total transmit power used for user Vs signal. The point is achieved by superposition

coding^ where users' signals are superimposed on each other, together with interference

cancellation, with the zth user decoding and cancelling the signals intended for the users

with noisier channels before decoding its own.

Consider now a family of K parallel broadcast channels, such that in the kth. compo

nent channel, user i hcis noise variance n\^\ The transmitter has a total power constraint
of P. Note that in general, this channel is not degraded, since the orderings of the noise

powers of the users are not necessarily the same in each of the component channels.

Nevertheless, the capacity region for the case when there are two users and two parallel
channels was characterized by El Gamal [5], and the following result is a straightforward
generalization to the case when there are M users and K parallel channels.

Theorem 2.1. The capacity region of the family of parallel broadcast Gaussian channels

is given by
K

C(P)= U 5^Ci.(nW,P'")

(where for two sets A and B, A B = {u A 'v : u E A,v € B})

Here, can be interpreted as the total amount of power allocated to the kth. com

ponent channel. The above theorem says that any achievable rate vector in the overall

region is the sum of rate vectors achievable in each of the component broadcast channels,

under some power allocation. While the achievability part of the above theorem is obvi

ous, the converse part demonstrates that indeed all optimal capacity-achieving strategies

can be viewed as that of power allocation over the component channels.



3 Explicit Chciracterization of Capacity Region

The above characterization of the capacity region C(P) is only implicit, in the sense that
it does not give the optimal power and rate allocation (among channels and among users)
to achieve eachpoint on the boundary. In this section, we will compute the optimal power
and rate allocations, which in turn leads to an explicit characterization of the capacity

region C(P).

3.1 A Lagrangian Characterization

Before we present the solution, it is instructive to review the corresponding solution for
the single-user case. Here, the problem is

max > - log 1 H jrr

where is the noise variance in the kth component channel. The Lagrangian formula

tion of this convex optimization problem yields:

T /
max

{P(fc)}
max

, pii')
k

with the "power price" A chosen such that the total power constraint is satisfied. Thus,

the overall optimization problem is decomposed into a family of optimization problems,

one for each of the component channels. The optimal solution is given by:

pW* =(^-
V2A

where we use the notation = max(a:,0). This is the classic waterfilling solution.

The following lemma shows that the optimal power allocation problem for the broad

cast channel can also be decomposed to solving a family of optimization problems, one

for each of the parallel channels.

Lemma 3.1. A rate vector R* lies on the boundary surface ofC(P) if and only if there
exists a nonnegative jl G such that R* is a solution to the optimization problem:

max jl •R subject R GC(P). (2)

For a given jl, a rate vector R* solves the above problem if and only if there exist AG
rate allocation G and power allocation P^''\ k = such that for every



channel k, is a solution to the optimization problem:

—AP subject to RGC(n^^\P) (3)

and ^

^R '̂=^=R", ^P('') = P
fc=l k=l

For a given fi vector, the rate vector R* given in the above proposition is the one on
the boundary which maximizes jl • R. The vector jl can be interpreted as a set of rate
rewards, used in prioritizing the users in the resource allocation. As p. is varied, weget all
points on the boundary of the convex capacity region; thus, p can be used to parameterize
the boundary of the capacity region. The scalar Ais the Lagrangian multiplier ("power
price") chosen such that the total power constraint is satisfied.The vector R^^^ and power
P '̂̂ l are the optimal rate and power allocated to channel k to achieve R*.

Proof. The capacity region C(P) is convex because we can always perform time-sharing.
Hence the first statement follows immediately.

To show the second statement, we first express the capacity region (1) Cfr(n, P) of an
individual broadcast channel in terms of a single inequality, where n is the vector of noise
variances and P is the power constraint.

Without loss ofgenerality, cissume that the noise variances n,'s are in increasing order.
The rate vector R on the boundary of the capacity region corresponding to a power
allocation aiP,... ,qmP is given in (1). Solving the a.'s in terms of the rate vector R
yields an equivalent system of equations:

^ QiP = - n,-i)exp (2^ Pj J-n,
i<m i<m \ j<i /

m = 1, . . . , M (4)

where no = 0. Weobserve that the right-handsideof the above equation is monotonically
increasing in m. Hence, given any rate vector R, provided that eqn. (4) is satisfied for
m = M, i.e.

P= - Wi-i) exp I2^ Pj J-riM
i<M \ j<i /

then there must exist a power allocation {a,} such that eqn. (4) is satisfied for all m, i.e.
R lies on the boundary of the capacity region. Hence, an equivalent characterization of
Cb(n, P) is C6(n, P) = {R : /(R) < P}, where

/(R) =5^(n,r(,) - n,r(i-i)) exp I2̂ Rn{j) j - n,r(M)
t=l \ j<i /



and TT is a permutation such that 11-^(1) < •••< J^7r(Af)- observe that the function / is
convex.

Let us now define the set

5 = {(R,P):R€C(P)}

We claim that the set S is convex. Indeed let r € C(P) and s 6 C(Q) , and a € [0,1].
Let r = and s = with G Cb(n^^\ G C6(n^^\ and

p{k) _ Q{k) _ Q Pqj. channel fc, the capacity region is given by:

={R: /t(R) =E("t(o -"i(U))exp < P}
t=l \ j<i J

and TT is a permutation such that < •• • < define rate vectors =

+ (1 — and power allocation = qP^*^ + (1 —a)(3^^^ then by the convexity

of h,

fk(t '̂̂ ) < + (1 - < aP(^^ + (1 - a)Q<^) =

and so G This implies that ar + (1 —a)s = is in the capacity

region C (aP + (1 —a)(3). Hence the set S is convex.

The second statement in the lemma now follows from this fact. By the convexity of 5,

a rate vector R" solves the optimization problem (2) if and only if there exists Lagrange

multiplier A G 3?+ such that (R*, P) is a solution to the optimization problem

max u • R —AP (5)
(R,P)es ^ '

By definition of C(P), R GC[P) if and only there exists R^^ '̂s and Pl^l's such that
R = R^^\ P = P^^^ and R^*^^ GC6(n^*\ Pl*^l) for allcomponent channels k. Hence,
the optimization problem (5) now decomposes into a family of independent optimization

problems:

max ft' r(*) _ xpW Vfc.
R(*)€C6(n(*=),P(*))

This completes the proof of the lemma. •

3.2 Optimal Power and Rate Allocation

The above lemma implies that to characterize the optimal power and rate allocation, we

have to solve the optimization problem (3) for each of the parallel channels. It turns out

that there is a simple and explicit greedy solution to the optimization problem (3).



Theorem 3.2. For given Lagrange multipliers p and A and noise variance vector n,

consider the optimization problem:

maxiz-R—AP s.t. RGC6(n, P) (6)

Assume that there are no two users i and j such that ni = nj and /z, = pj.

Define for z = 1,... , M </ie marginal utility functions:

u''(z) = maxu,(2)j
and the sets

Ai = {z ^ [0, oo) : Ui(z) = u*(2)}

Then the optimal value for the optimization problem (6) is:

TOO

/ u*(z)dz
Jo

and attained at an unique point:

= f >>1^^ z=l,...,M
Ja. 2(ni 4- z)

P'(p, A) = [mp

Let us first give an interpretation for the optimal solution. Since the optimal solution
must lieon the boundary of the capacity regionC6(n, P*) for some P", it can be achieved by
superposition coding and interference cancellation. The value Ui(z)-SP can be interpreted
as the marginal increase piSRi —XSP in the value of the total objectivefunction /z •R—AP
due to an amount SP of power allocated to user i at noise level ni -j- z. The value z can
be interpreted as the amount of interference caused by users with the better channels
together with the power already allocated to user i. The optimal solution is obtained in
a greedy fashion by choosing at each power level z, to transmit the user which will leads
to the largest positive marginal increase in the objective function. If no such user can be
found, the procedure terminates. An example is shown in Fig. 1.

We note the assumption that there are no two users with identical rate rewards /z,'s
and noise variances n, 's is made without loss of generality. For if there are two such users,

we can combine them into a "super-user" with rate and power allocated being the sum of
the two individual users. Any optimal solution for the new system would translate into



marginal

utility

\ 1/1(2)

^t(^) —2(ni+«) ^

V2(\)

Figure 1: A 3-user example illustrating the greedy power allocation. The x-axis represents
the interference level z and y-axis the marginal utility of each user at the interference
levels. At each interference level, the user who is selected to transmit is the one with
the highest marginal utility. Here, user 2 decodes treating user 1 as noise, while user 1
decodes user 2 signal, strips off its signal, and decodes its own signal in the presence of
only the background noise. The proof of the theorem shows that it must be the case that
in this example, user 1 has the better channel. The optimal powers for user 1 and user 2
are a\P* and (1 —qJ)P" respectively. Note that user 3 gets no power and hence no rate.



an optimal solution for the original system by any arbitrary split in the power allocated.

Naturally, the solution is no longer unique in that case.

We now prove that the claimed solution is indeed optimal.

Proof. Let the optimal solution to (3) be achieved at

Kii) =Log 11 +2 \ 1^(1) + 0*0)
2 = 1, . . . , M

with power P", where tt is a permutation of {1,... , M} in increasing order of the noise
variances and a- = 1. The optimal value J* of the problem then satisfies:

M

r =

t=i

I^ M*(.) log (n*(i) + )- log (n*(0 +
.=1 L V j<t / \ i<i-i

hi a.wP- "'(••) +^
= / 12,(2)^2

< j u*{z)dz
Jo

We also see that if this upper bound is actually attained by some power allocation, then
the optimal solution must be unique. Thusour remaining task is to show the achievability
of this upper bound. First, note that by the monotonicity of the marginal utility functions
u,'s, the function u* is monotonically decreasing. Also, since limz-).©© max,- it,-(2) = —A< 0,
there exists a finite zq such that it'(20) = 0. Define now the sets

Ai = {2 G [0,2o] : Ui{z) = it'(2)},

which form a partition of [0,2o]. Consider the rate and power allocation:

~ /»,2(ni +2)
a^P- = \Ai\

It can be seen that

P" = 20

dz - XP*

dz 2 = 1,. . . ,M

u • R" - XP'

fOO

= / lt*(2)d;
Jo

(7)

(8)



So to verify that (R", P*) is indeed optimal, it suffices to show that R" is achievable using
total power of P*, i.e. R* € C6(n, P"). We will in fact show that the power allocation
a'P' among the users will do it.

Consider any two maxginal utility functions Ui(z) and Uj[z) and suppose they intersect
at 2 = 2. Then

Mi Mi

nj + 2 nj + 2

Also,

(9)

u'i(z) _ fii fnj-\-zy _ Uj + 2
^j(^) Mi \"i + n,- + 2

by eqn. (9). We observe that whether this ratio is greater or less than 1 is independent of
the intersecting point z. Since the derivatives of the utility functions are always negative,
this implies that the derivative of one function is always greater than the other at all the

intersections. Clearly this implies that any two utility functions u, and Uj can intersect

at most once. Since Ai is the set of all 2's where u, dominates over all other Uj's, this

implies that the sets w4,'s must all be contiguous, i.e. single intervals.

Next we investigate how the sets ,A,'s are ordered on the real line. Suppose Ai and

Aj are both non-empty and adjacent to each other, then the point 2 where u, and uj
intersect is also the point where Ai and Aj touch. Suppose also that Ai is to the left of

Aj. This implies that for 2 < 2, Ui(z) > Uj{z) and for 2 > 2, Ui{z) < Uj{z), i.e.

<(£)>!

From eqn. (10), this implies that nj > rii. Thus the sets A's are ordered on the real

line in increasing values of the noise variances n,'s, although some of the sets A 's can be

empty. Let tt be the permutation such that n,r(i) < ... < Using eqn. (8), we can
write

♦^7r(t)

and using eqn. (7), we can write

.3<i j<i

2(n, + z) ^

= llogfl +
2 V +

10



Thus, the rate vector R* is achievable by superposition coding and interference cancella

tion, by allocating power a*P* to the ith. user and decoding it by first canceling off the
signals intended for users with noisier channels. The total power used is P* which is the
zero'of u"(2:), i.e. the largest of the zeros of the functions u,(z)'s:

P- =

This concludes the proof. •

As remarked earlier, in the case when there are two users with identical noise powers

and rate rewards, the optimal solution may not be unique as the utility functions of two
users may be equal over a range. In this case, ties can be broken arbitrarily.

It is interesting to observethis optimal power allocation solution has a similarstructure
to the corresponding solution for parallel Gaussian multi-access channels [10]. In that
setting, a component multi-access channel is;

M

y =^/i,A:i +z
i=l

where h = (/ii,... ,/im) are channel attenuations, and Z A^(0,o-^). Each of the parallel
channels has a different value of h. User i has a total power constraint of P,-. Using

Lagrangian techniques, it can be shown that for given rate rewards //, the optimal power
and rate allocation which maximizes the rate revenue in the overall capacity region solves

the following optimization problem for each of the parallel channels:

where

max/?-R —A-P s.t. R€CTn(h,,P)
R,P

C„(h,P) =|r:gil. <ilog ^1 +̂ gftiP. j, V5 C{1,... ,M}
is the capacity region of a multi-access channel with transmit power P's. Here, A,- is the
Lagrangian multiplier reflecting the total power constraint for user i. If we define the
received power of user i to be Qi = hiPi and consider for each user the marginal utility
function:

. /.A l^i ,
^i\^) —o/" 2 I \ '2(cr2 _j_ 2) hi

then applying exactly the same greedy procedure as for the broadcast channel gives as
the optimal rates R* and the optimal received powers Q" allocated for this component
channel.

11



3.3 Boundeiry of the Capacity Region

Let us now use the optimal rate and power allocation derived above for parallelbroadccist
channels to compute explicitly the capacity region. For any non-negative p, the uniqueness
of the optimal rate and power allocation implies that we can define a parameterization
R*(/i) of the boundary, which is the unique rate vector on the boundary which maximizes
p •R. Combining the Lagrangian formulation given in Lemma 3.1 and the optimal power
and rate allocation solution in Theorem 3.2, we get:

Theorem 3.3. Assume that the noise variances of the users are distinct in each of the

broadcast channels. Then the boundary is given by:

i

where

R:(p,p)=r\ Y.
Jo I .. ii.\. . .

and X satisfies:

53 [m_ax(^-n!")]^ =P (11)
Jt=l

To compute the optimizing rates R*(/z,P) for given rate rewards it is necessary to
solve eqn. (11) for the appropriate power price X. Since the left-hand side of eqn. (11) is

monotonically decreasing in A, this can be done by a simple binary search.

Again, if the noise variances in some of the channels are the same, then there may not

be a unique rate vector R* maximizing • R for some values of p. These correspond to
linear surfaces formed by convex hull of points obtained by giving strict priority to one

of the users with identical rate rewards and noise variances.

It is interesting to look at the point on the boundary corresponding to all the rate
rewards /u '̂s equal, say to 1. The associated rate vector is the one which maximizes the
total throughput Ri. In this case, the marginal utility function of the zth user in the
A;th component channel is:

u\''\z) = 7TT A.
' ^ ^ 2(n^^ -H z)

Observe that in a given component channel, the marginal utility functions of all users
axe parallel: for userswith different noise variances, their utility functions do not intersect.

12



We conclude that the optimal power allocation is always allocating all power, if any, to

the user with the best reception in each of the component channels. (If more than one

user has the best channel, any arbitrary split in the power allocation among these users

would be optimal.) Furthermore, if even the noise variance of the best user does not meet
a certain threshold, no power is allocated at all. More precisely, the optimal rate and

power allocation for the case when the noise variances are distinct in all of the parallel

channels is given by:

fli*' = I log 1 +

—min n5^^

if for all j ^ i

otherwise

Thus the optimal solution has the interesting feature that the information for no more
than one user is broadcasted in each of the parallel channels (the user with the best
reception), and the power allocation across the channels is a water-filling solution. The
optimal power allocation is the same as that of a family of single-user parallel channels
with noise variance in each of the channels the same as that of the user with the best

reception in the broadcast channel. We note that the corresponding solution for parallel
multi-access channels has the same structure [2].

3.4 An Iterative Algorithm for Resource Allocation

We have formulated the problem of optimal power allocation and computation of the
resulting capacity region as that of optimizing the total rate revenue jl •R subject to a
total power constraint P, for arbitrary choice of jl. A problem which is of more interest
in some applications is in some sense "dual" to this one:

What is the minimum total power required to support a given target rate vector R?

That is:

minP subject to R GC(P). (12)

By convexity of the set S = {(R, P)R GC(P)}, this problem is equivalent to:

min P —u •R subject to R GC[P) (13)
(R,P)

13



where p. are the Lagrange multipliers chosen such that the target rate vector R is met.
But we have already solved the optimization problem (13): setting A= 1 in Theorem 3.2,

we get the optimal solution

where

rc

R\P) = /
Jo

E
,{/i:u!'''(s)=lmaxj u5"(2)l+)

k=l

= ti 1
• *^ 2(n!" +.)

2(n!" + z)

pip) = E [p' ~"'*')]

. dz (14)

Thus, to solve the minimum power problem (12), we have to find a solution p = p to

the system of equations R(pt) = R, and then the minimum power to achieve the rates

R is P(p). Another view of this is that we are searching for a set of rate rewards p and

power P such that R maximizes p •R subject to R € C(P). Note that we do not require

that the solution for p is unique; any one solution will do.

We now present a simple iterative algorithm to solve for p.

Algorithm 3.4. Start the iteration at p{0) = 0. Given the nth iterate p{n), the n Ith

iterate p(n + 1) is given by the following: for each i, /i, (n+ 1) is a rate reward for the ith

user such that Ri(p) = Ri, when the rate rewards of the other users remain fixed at p(n)

while the reward for the ith user is adjusted.

Proposition 3.5. Each iteration in the above algorithm is well defined, and p{n) con

verges to a solution p of the system R(/?) = R.

The key to the proof of this result is the following monotonicity lemma:

Lemma 3.6. For all i, if the ith component of p is increased and the other components

are held fixed, the rate Ri{X) remains the same or increases while Rjifi) decreases for

ji'i'

This lemma can be easily seen to be true by direct inspection of the expression for

H(P) in eqn. (14).

Proof (Proposition 3.5) If we fix all components of p except pi and increase pi from 0
to oo, then we see that the marginal utility function increases without bound for

14



every component channel k. This implies that Ri(p) monotonically increases from 0 to
00. Hence, at each step of the iteration in the algorithm, one can always find for each
user a valid /i,(n + 1) such that its rate equals the target Ri^ when the rate rewards of
other users remain fixed. Moreover, this can be done by a binary search.

To show convergence of the algorithm, it helps to define the mapping representing
each iteration:

A(7i) \{tI + 1)

We observe that any fixed point of T is a solution of the system R(/T) = R that we
seek.

It follows from the monotonicity lemma 3.6 that the mapping T is order preserving,
1.e.

pS') < /7(2) =>

(where the inequality refers to component-wise.) Starting with p(0) = 0, p(l) is non-
negative. Hence p{l) = T{p{0)) > p{0). Applying the monotonic mapping T, we see
that p(n + 1) = T(p(n)) > p(n). If p* is a fixed point of T, then since p{0) < p", it
follows that for all n, p{n) = T"(/?(0)) < = p*. Hence, {p(n)} is a monotonically
increa^sing sequence bounded from above, and must converge to a limit. The limit must
be a fixed point of T by continuity of T, and hence a solution to the system R(/?) = R.
This completes the proof.

•

3.5 Auxiliary Power Constraints

In some problems, there may also be constraints on the amount of power allocated to
each of the component broadcast channels in addition to the total power constraint P.
The greedy solution described in Section 3.2 can be extended naturally to handle these
types of problem. More concretely, suppose there is a power constraint P on the power
allocated to each of the channels. Then the associated optimization problem for each of

the channels is:

maxi7-R-AP s.t. ReCb{n,P) and P<P (16)
R,P

with A chosen such that the total power constraint is satisfied. By a simple extension
of a proof similar to that of Theorem 6, it can be shown that the optimal power and

15
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1

Figure 2: Greedy power allocation under individual power constraint P on each of the
parallel channel. User 1 gets power a^P and user 2 gets power (1 — such that the
total power allocated to this parallel channel mets the auxiliary power constraint P on
each of the parallel channels. As before, user 3 gets no power.

rate allocations can be obtained just as the greedy procedure described, but this time

allocating power at most up to the maximum limit of P. (See Fig. 2.)

4 Application to a Fading Channel

Consider a discrete-time broadcast fading channel for modeling the downlink of a cell:

Yi(n) = y/H^X(n) + Zi(n) i = l,...,M

where (Hi{n)^... ^HmM) is the joint fading process, assumed to be stationary and er-
godic with users fading independently. The noise Zi{n) are i.i.d. Gaussian with zero mean
and unit variance. It can be shown that the capacity region when the transmitter can

track the fading state of the channel perfectly is given by :

(J Efl[C(H,P(H))]
{V:E^[P{H)]<P}

16



where P is the average total power constraint, 'P is a power allocation as a function of
the fading state, and C(h, P) is the capacity of a broadccist channel with fixed path gains
h and total average power constraint P. The expectation is taken with respect to the
stationary distribution of the fading processes. Thus, the fading channel can be viewed
as a family of parallel broadcast Gaussian channels, one for each fading state. Using
similar arguments as in the last section, we can characterize the optimal power and rate
allocation as a function of the fading state h; it is given by Lemma (3), with n,- replaced
by Also, we can compute the boundary of the region, as in Theorem 3.3, with the
sums over the parallel channels replaced by expectations over the stationary distribution
of the fading state. The strategy that maximizes the total throughput is one which at
any time only broadcasts the information of the user with the strongest reception. This
can be thought of as the broadcast "dual" of the optimal strategy proposed by Knopp
and Humblet for the multi-access fading channel [7].

If some users have statistically poorer channels than others, the above strategy, al

though maximizing the total throughput, can lead to unfairness among users. By assign
ing different rate reward fii to users, this unfairness can be compensated for. In fact,
for applications in which each user has a target rate Hi to meet, and the goal is to min
imize the total power consumption. Algorithm 3.4 can be used to iteratively compute
the appropriate rate rewards /ii's. When applied in real time, this can thought of as a
iwo-time-scale adaptive resource allocation procedure. At a slower time-scale, the rate
rewards are continuously updated by Algorithm 3.4 to adapt to change in the fading
statistics of the users. At a faster time-scale when the rate rewards can be cissumed to be

fixed, the greedy procedure computes the optimal rate and power allocation for a given
fading state.

Under the optimal strategy, the total transmit power will fluctuate depending on the
fading state. In some situations, it may be more desirable to have a constraint P on
the transmit power at all fading states, in addition to or in lieu of a long term average
power constraint. This is especially relevant on the downlink since, unlike the mobiles in
the uplink, the broadcast base-station is usually not battery power limited. Rather, the
constraint aims to limit the interference caused in the adjacent cells. A power constraint

at all fading states may better reflect that objective. The greedy solution described in
Section 3.5 can readily applied to this problem. In the case when there is no average power
constraint at all, the power price Ais simply set to be zero. In this case, the strategy that

A

maximizes the total throughput is simply to allocate power P to the user with the best
channel.

In [8], some ofthe results described here areused to study the fading channel in greater
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depth, comparingthe performance of the optimal strategy with sub-optimal schemes such
as TDMA and FDMA.
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