
Building VTrace, a Tracer for Windows NT and Windows 2000

Jacob R. Lorch
Alan Jay Smith

Report No. UCB/CSD-00-1093

February 2000

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Building VTrace, a Tracer for Windows NT and Windows 2000�

Jacob R. Lorchy Alan Jay Smithy

February 2000

Abstract

In order to conduct accurate simulations of new ap-
proaches to energy management, we needed to collect de-
tailed, time-stamped traces of several diverse types of ac-
tivity on Windows NT and Windows 2000. For this pur-
pose, we wrote VTrace, which collects data about processes,
threads, messages, disk operations, network operations, the
keyboard, the mouse, and the cursor. Building this tool
required a large number of special techniques, which we
describe in this paper. These techniques included using a
DLL loaded into the address space of every process to in-
tercept Win32 system calls; establishing hook functions for
Windows NT kernel system calls; modifying the context
switch code in memory to log context switches despite in-
adequate operating system support; and using device filters
to log accesses to devices such as file systems, disk parti-
tions, network transport layers, and the keyboard. We also
describe related issues, such as where we found the neces-
sary information, and how to debug a tracing tool that is in-
timately connected to the operating system kernel. Finally,
since VTrace was originally written for Windows NT but
later modified and extended to run with Windows 2000, we
briefly discuss some of the changes required for Windows
2000.

1 Introduction

Writing a tracer for an operating system is difficult for
many reasons. An operating system is a large, complex piece
of software to analyze. Debugging code that runs before the
system has fully started up is tricky. Many runs require a
reboot of the computer, and failed runs can necessitate rein-
stalling the entire operating system or even reformatting the
hard drive. However, writing a tracer for Windows NT/2000
is especiallydifficult, because source code is unavailable,
descriptions of its internal operations are largely unavailable,
and documentation of its interface is incomplete.

We found ourselves facing this difficulty when we de-
�Funding for this research has been provided by the State of California

under the MICRO program, and also by Cirrus Corporation, Cisco Corpo-
ration, Fujitsu Microelectronics, IBM, Intel Corporation, Microsoft Corpo-
ration, Quantum Corporation, Sun Microsystems, and Toshiba Corporation.

yComputer Science Division, EECS Department, University of Califor-
nia, Berkeley, CA 94720-1776,florch, smithg@cs.berkeley.edu

cided we needed detailed, time-stamped traces of certain
Windows NT/2000 activities for a study of new energy man-
agement techniques for laptop computers. This required that
we deal with all of these problems. Our studies include
the effect of varying the CPU voltage and clock speed, and
powering down various system components. We needed to
know when various power-consuming components (such as
the CPU, the disk, and the network interface card) are ac-
tive and what they’re doing at each instant. Thus, we needed
traces of several different types of system objects: processes,
threads, messages, waitable objects, key presses, file sys-
tems, disks, and the network. Furthermore, we wanted the
tracer to be non-intrusive and to respect the confidentiality of
users’ data so that users would agree to let us trace their sys-
tems. Ultimately, we succeeded in developing such a tracer:
VTrace, containing over 30,000 lines of code in C, C++, and
some assembler. In this paper, we describe what we did to
accomplish this so that the reader can repeat and extend these
techniques.

The paper is organized as follows. In Section 2, we de-
scribe the information resources we found helpful. We re-
port the difficulties we had in setting up a debugging en-
vironment and how we overcame them in Section 3. Sec-
tion 4 describes how we adapted standard techniques to cre-
ate drivers that perform logging and that filter accesses to
the keyboard, file systems, network, and hard disks. In Sec-
tion 5, we describe our unique approach to logging context
switches in Windows NT. Sections 6 and 7 describe how we
logged Win32 system calls and NT kernel system calls. In
Section 8, we discuss how we parse the master file table of
NTFS partitions to deduce file system metadata information.
In Section 9, we briefly consider some of the more interest-
ing miscellaneous interesting features of the tracer. In Sec-
tion 10, we discuss how we modified the tracer to work on
Windows 2000. We present results from benchmarks that
show how much overhead VTrace places on the system in
Section 11. In Section 12, we describe software that uses
techniques similar to those used in VTrace. Finally, we sum-
marize in Section 13.

2 Information Resources

Writing software that traces system activity requires a
great deal of information, both about how the operating sys-

1

tem works and about how to write tracing tools. Microsoft
provides a lot of this information through their developer
tools, magazine, and web sites. Unfortunately, this infor-
mation is not sufficient, since (1) Microsoft does not docu-
ment many aspects of the internal operations and interfaces
of Windows NT/2000, and (2) when Microsoftdoesdescribe
something, this description may be difficult to understand
or to generalize, e.g. when the documentation is simply one
source code example. To be successful, therefore, we needed
information from many sources: developer tools, USENET,
magazines, books, and web sites.

Useful information came with a few of our development
tools. Microsoft Developer Studio, naturally, has help that
describes the interfaces to many well-documented Win32
system calls. It also has sufficient help on Microsoft Foun-
dation Classes (MFC) that we were able to learn MFC pro-
gramming without a book. The Windows NT and Windows
2000 Driver Development Kits (DDK’s) have extensive help
systems that describe basic and advanced driver develop-
ment; they also include some useful sample source code.
Finally, Microsoft’s kernel-mode debugger, WinDbg, comes
with some information about how to use it.

USENET was a good source for discussions of real-
world problems and solutions in Windows NT/2000 pro-
gramming. The useful articles are in the comp.os.
ms-windows.programmer.* hierarchy. For our purposes,
the most useful newsgroup was comp.os.ms-windows.
programmer.nt.kernel-mode,which covers kernel-mode pro-
gramming. To get the most out of USENET, we recommend
using a site that can search USENET archives, such as Deja
News (http://www.dejanews.com).

Magazines were another source of useful informa-
tion. Open Systems Resources, Inc. (http://www.osr.com,
ntinsider@osr.com) provides free subscriptions toNT In-
sider, which discusses many useful aspects of driver devel-
opment. Microsoft Systems Journal(http://www.microsoft.
com/msj) also contains many helpful articles, especially the
Under the Hood columns by Matt Pietrek. Windows Devel-
oper’s Journal is another good source. Finally, we recom-
mendDr. Dobb’s Journal(http://www.ddj.com), especially
for its articles by Mark Russinovich and Bryce Cogswell.

We also used books. “Inside Windows NT” and “Inside
the Windows NT File System,” both by Helen Custer, are
useful for a general overview of the operating system and
file system, although they do not offer aid in actual pro-
gramming [2, 3]. In contrast, “Windows NT File System
Internals,” by Rajeev Nagar, both describes how the file sys-
tem works and provides practical advice for interfacing with
it [8]. For basic Windows NT programming strategies, we
used “Windows NT 4 Programming from the Ground Up,”
by Herbert Schildt [13].

However, by far the most useful source of information,
without which the tool might never have been developed,
was the World Wide Web. Often, we found the solution
to a problem simply by using a web search engine on key

words or phrases. The web also has sites containing large,
structured bodies of information on Windows NT/2000.
For example, the Systems Internals web site (http://www.
sysinternals.com) has a great deal of useful information, util-
ities, and even source code for Windows NT systems pro-
gramming. Also, the Microsoft Developer Network Library
(http://premium.microsoft.com/msdn/library)has helpful ar-
ticles and documentation.

We thus observe that although Microsoft does not com-
pletely document Windows NT/2000, so many developers
have used it and are willing to share information that it has
become extensively, if unofficially, documented.

3 Creating a Debugging Environment

A tracer contains and interacts with a lot of code that
runs in kernel mode, so we needed a kernel-mode debug-
ger. Furthermore, since much of the code in a tracer gets
run before the system has completely started up and thus be-
fore a debugger program can be launched, we did well to
use a two-system debugging environment. In such a config-
uration, the debugger runs on thehostmachine (also the de-
velopment machine), and the software under test runs on the
targetmachine. The debugger monitors and controls the tar-
get machine via a serial cable connecting the two machines.
Another advantage to this approach is that a reboot or rein-
stallation of the operating system on the test machine does
not affect the development environment.

Unfortunately, setting up kernel debugging with our de-
bugger, WinDbg, is notoriously difficult. Some of the hard-
est things are configuring the debugger program settings cor-
rectly and making the target machine communicate with a
remote debugger. For this, documentation included with the
debugger is helpful, as are stories on the web about user
experiences. However, even with all this, we still had dif-
ficulty. We finally succeeded once we discovered we had
an old, buggy version of WinDbg, and downloaded a fixed
version from an obscure location at Microsoft described in
an equally obscure USENET article posted by Paul Sanders
(paulsan@microsoft.com) to the kernel-mode programming
newsgroup on October 17, 1997. (The latest version of
WinDbg is now easier to find and lacks these bugs.) We
had other problems until we realized we needed to upgrade
the debug symbol files to match the service pack installed
on the target machine. We searched the web, and found we
could download these files from Microsoft’s FTP site.

Once we had the debugger set up, it worked very well,
enabling us to easily set breakpoints in source code, step
through source code, examine and change runtime variable
values, and even view operating system code (albeit in un-
commented assembler).

When the target machine being debugged is running
Windows 2000, sometimes it will inexplicably hang while
starting up. To get past this, use the Break command in the
Debug menu of WinDbg.

2

4 Drivers

4.1 Background

Driver programming for Windows NT/2000 is a subject
of tremendous breadth, so our treatment here will necessar-
ily be incomplete. [2], [8], back issues of NT Insider, and
the Windows NT and Windows 2000 DDK’s discuss it more
thoroughly.

In Windows NT/2000, adeviceis an object that can re-
ceive I/O requests, such as one that represents a disk drive,
a file system, or a keyboard. Devices can belayeredabove
each other, in that the top-level device processes its I/O re-
quests by sending I/O requests to the lower-level device. For
example, a device for a file system will typically be layered
over a physical disk device so that file requests can be trans-
lated into disk requests. Some devices createfile objects,
which are pieces of state carried over between I/O requests.
Despite the name, file objects can represent more than just
open files; they can also represent things like network con-
nection endpoints and open directories.

Device layering is accomplished naturally by the way I/O
requests are handled. A device receives a structure called an
I/O request packet(IRP), which represents an I/O request
and contains a stack ofI/O stack locations. This stack’s
top location contains a description of the request in a form
the device understands. Before that device passes the I/O
request to a lower-level device, it pushes onto the stack a
new stack location describing the I/O request in a form the
lower-level device understands. When that device finishes
processing the IRP, the extra stack location is popped from
the stack. Thus, when the top-level device gets the IRP back
in order to complete its own processing, the top location of
the stack is still the one relevant to that device. The most im-
portant fields of an I/O stack location are the major function
code, describing the general request type; the minor func-
tion code, describing the request type more specifically; and
the 16-byte parameters field, whose meaning depends on the
function codes. See Figure 1 for an illustration of this.

A driver is the code implementing a class of devices. For
instance, all NTFS file system devices use the NTFS driver
code for handling requests. This code includes a driver en-
try routine and several dispatch routines. The driver entry
routine does per-driver initialization, including entering the
dispatch routines into the dispatch routine table. The operat-
ing system uses the dispatch routine table, indexed by major
function code, to determine which routine handles a given
IRP.

A filter driver implements a filter device, a special kind
of device extremely helpful in tracing system events in Win-
dows NT/2000. A filter device canattachto an existing de-
vice, causing it to intercept any requests destined for that ex-
isting device. Typically, it modifies the request in some way,
then passes it on to the existing device. This allows it to add
functionality to that device, e.g., to turn a traditional file sys-
tem into an encrypted file system. However, a filter can be

Stack of
locations

Stack of
locations

Stack of
locations

Filter device pushes a copy of the top stack location onto the
stack and passes the IRP on to the real file system device

Physical disk device reads the requested bytes from the disk

offset (4224) and passes the IRP on to the physical disk device

Operating system allocates IRP to represent a file read request
and passes it to the filter device layered on the file system device

File system device converts file offset (128) into raw disk

IRP

IRP

IRP

File object: 0x80640100

(Other fields)

Function IRP_MJ_READ, length 512, offset 128

File object: 0x80640100

(Other fields)

Function IRP_MJ_READ, length 512, offset 128

Function IRP_MJ_READ, length 512, offset 128

File object: 0x80640100

(Other fields)

Function IRP_MJ_READ, length 512, offset 128

Function IRP_MJ_READ, length 512, offset 128

Function IRP_MJ_READ, length 512, offset 4224

TOP

TOP

TOP

Figure 1: Example of how layered devices use an IRP stack

used simply to record information about requests, pass those
requests on unchanged to the device they were meant for,
then record information about the results of those requests.

Figure 3 gives an example of an initialization routine
for a filter driver. This routine, DriverEntry(), sets the Ma-
jorFunction entries in the driver object so the appropriate
dispatch routine gets called for each request type. Those
dispatch routines, such as the one shown in Figure 2, log
the request initiation, set a completion routine to be called
when the request completes, then call the lower-level driver
to complete the request. Figure 4 shows an example of a
completion routine that logs the request completion.

4.2 Logger

Kernel-mode code can also use device control requests
like this to communicate with the logger driver. But, it’s
more efficient for kernel-mode code to just call the logger
driver’s functions directly. To get pointers to these func-
tions, a driver makes a single device control request to the
logger driver requesting a structure containing all such func-
tion pointers.

A major component of VTrace is thelogger, which ac-
cepts and serializes requests to add events to the in-memory
log, and periodically writes the log to disk. We implemented
the logger as a device, so that its code could run in kernel
mode. This enables other kernel-mode code, such as that

3

NTSTATUS VTrcFSDispatchReadWrite (PDEVICE_OBJECT HookDevice, IN PIRP Irp)
{

PIO_STACK_LOCATION currentIrpStack = IoGetCurrentIrpStackLocation(Irp);
PIO_STACK_LOCATION nextIrpStack = IoGetNextIrpStackLocation(Irp);
PFILE_OBJECT fileObject = currentIrpStack->FileObject;
PSTD_HOOK_EXTENSION hookExt;
PDEVICE_OBJECT deviceObject;
ULONG seq;
KIRQL oldirql;
PCHAR eventBuffer;

// If the file has no name, just pass this IRP down to the next driver normally.

if (fileObject->FileName.Buffer == NULL)
return VTrcFSPassOnNormally(HookDevice, Irp);

// Log the read or write request.

seq = InterlockedIncrement(&sequenceNumber);
KeAcquireSpinLock(&sharedState->mainMutex, &oldirql);
eventBuffer = (*sharedState->logEventFunc)

((char) (currentIrpStack->MajorFunction == IRP_MJ_READ ?
ENTRY_TYPE_FILE_READ : ENTRY_TYPE_FILE_WRITE), 24);

if (eventBuffer) {
RtlCopyMemory(&eventBuffer[1], &seq, 4);
RtlCopyMemory(&eventBuffer[5], &fileObject, 4);
RtlCopyMemory(&eventBuffer[9],

¤tIrpStack->Parameters.Read.ByteOffset, 5);
RtlCopyMemory(&eventBuffer[14],

¤tIrpStack->Parameters.Read.Length, 4);
RtlCopyMemory(&eventBuffer[18], &Irp->Flags, 4);
eventBuffer[22] = currentIrpStack->MinorFunction;
eventBuffer[23] = currentIrpStack->Flags;

}
KeReleaseSpinLock(&sharedState->mainMutex, oldirql);

// Get a pointer to the lower-level device object from the extension, then
// copy parameters down to next level in the stack for the driver below us.

hookExt = HookDevice->DeviceExtension;
deviceObject = hookExt->attachedDevice;
*nextIrpStack = *currentIrpStack;
nextIrpStack->DeviceObject = deviceObject;

// Set the completion routine, passing the sequence number as the
// "context" parameter so that it is used in the completion log entry.
// Then, call the lower-level driver.

IoSetCompletionRoutine(Irp, VTrcFSCompletionRoutine, (PVOID) seq,
TRUE, TRUE, TRUE);

return IoCallDriver(deviceObject, Irp);
}

Figure 2: VTrace uses a dispatch routine like this one to handle read and write calls that its file system filter intercepts.

4

NTSTATUS DriverEntry
(IN PDRIVER_OBJECT DriverObject,

IN PUNICODE_STRING RegistryPath)
{

NTSTATUS status;
int i;

// Read shared state from main driver.
// [Code for GetSharedState() not shown.]

status = GetSharedState(&sharedState);
if (status != STATUS_SUCCESS)

return status;

// Create dispatch points for all routines
// that must be handled. All entry points
// are registered since we might filter a
// file system that processes all of them.

for (i = 0; i <= IRP_MJ_MAXIMUM_FUNCTION; i++)
DriverObject->MajorFunction[i] =

VTrcFSPassOnNormally;

DriverObject->MajorFunction[IRP_MJ_CREATE] =
VTrcFSDispatchCreate;

DriverObject->MajorFunction[IRP_MJ_READ] =
DriverObject->MajorFunction[IRP_MJ_WRITE] =

VTrcFSDispatchReadWrite;

// Set up the fast I/O dispatch table.
// (See the section on fast I/O for details.)

DriverObject->FastIoDispatch =
&VTrcFSFastIoDispatchTable;

// Note: It would be unwise to unload this
// driver, so we don’t put an unload routine
// address in DriverObject->DriverUnload.

// Normally there would be code here to
// attach to some other device or devices,
// but in VTrace we do this elsewhere.

return STATUS_SUCCESS;
}

Figure 3: VTrace uses a DriverEntry() routine like this one
to initialize the file system filter driver.

NTSTATUS VTrcFSCompletionRoutine
(PDEVICE_OBJECT DeviceObject, PIRP Irp,

PVOID Context)
{

ULONG seq = (ULONG) Context;
KIRQL oldirql;
PCHAR eventBuffer;

// Log the return values.

KeAcquireSpinLock(&sharedState->mainMutex,
&oldirql);

eventBuffer = (*sharedState->logEventFunc)
((char) ENTRY_TYPE_FILE_COMPLETE_OPERATION, 13);

if (eventBuffer) {
RtlCopyMemory(&eventBuffer[1], &seq, 4);
RtlCopyMemory(&eventBuffer[5],

&Irp->IoStatus.Status, 4);
RtlCopyMemory(&eventBuffer[9],

&Irp->IoStatus.Information, 4);
}
KeReleaseSpinLock(&sharedState->mainMutex,

oldirql);

// Always do the following in a completion
// routine.

if (Irp->PendingReturned) {
IoMarkIrpPending(Irp);

}

return Irp->IoStatus.Status;
}

Figure 4: VTrace uses a completion routine like this one to
log the results of a file system request that just completed.

void LogEvent (char *eventDescription,
int descriptionLength)

{
ULONG returnSize;

// Get a handle to the device.

HANDLE hDevice =
CreateFile("\\\\.\\VTrcLog",

GENERIC_READ | GENERIC_WRITE,
0, NULL, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);

if (hDevice != INVALID_HANDLE_VALUE) {
DeviceIoControl(

hDevice, VTRACE_LOG_EVENT,
eventDescription, descriptionLength,
NULL, 0, // No inbound buffer
&returnSize, NULL);

CloseHandle(hDevice);
}

}

Figure 5: This function, which logs an event, illustrates how
user-mode code communicates with a kernel-mode driver.

5

comprising most of the tracer, to call it efficiently. It also
allows user-mode code to call it without incurring a context
switch, although with the overhead of a kernel trap. The log-
ger driver implements several specialized device control I/O
request types, including ones to start logging, stop logging,
add an event to the log, flush the log to disk, and change the
event mask (the set of event types the logger leaves out of
the log). User-mode code makes such requests using code
like that in Figure 5.

The logger periodically changes the event mask (the set
of event types the logger leaves out of the log) according to a
fixed schedule. This lets us collect the full set of event types
only part of the time, to reduce the space taken up by trace
files on the user’s disk. For example, we collect file-open
events (which take up little space) all the time, but thread
switches (which are very frequent) only part of the time.

4.3 Keyboard filter

To log key presses, we made straightforward modifica-
tions to the keyboard filter driver Ctrl2cap, whose code is
freely available from the Systems Internals web site. Its orig-
inal purpose was to exchange the functions of the control and
caps lock keys. We simply made it encrypt and log the key
presses instead of modifying them.

4.4 File system filter

To log file system activity, we made a few modifications
to Filemon, another filter driver whose source code is avail-
able from the Systems Internals web site. This filter driver,
described in [12], logs and displays file system activity. The
most important modification we made was in how to choose
the file system devices to filter. Filemon requires the user to
specify the file systems desired, but we wanted to filter all
file systems. Furthermore, we could not simply find all the
file systems at system start-up and filter those, since some
file systems, such as floppy disks and CD’s, may be added
dynamically. So, instead, we arranged to hook the NT sys-
tem call that opens files, check in that hook whether we have
yet filtered the file system containing that file, and start filter-
ing any unfiltered file system we find. Section 7 will discuss
how we hooked the file-open and other NT system calls.

One complication in filtering file system devices is an
optimization called thefast I/O path. If a file system device
can handle a request without involving a lower-level device,
e.g., during a cache hit, the overhead of creating an IRP is
unnecessary. A file system driver can specify a table offast
dispatch routines, one for each I/O request type, that can
handle requests not packaged in IRP’s. If the fast dispatch
routine cannot handle the request, e.g. if it needs to use a
lower-level device, it returns an error value, making the op-
erating system send an IRP to the regular dispatch routine.
To filter accesses that use fast I/O, we must specify a set of
fast dispatch routines in our filter driver. These fast dispatch

routines will log getting called and pass on calls to the fast
dispatch routines of the lower-level driver. Figure 6 shows
a sample logging fast I/O routine. Also, the sample driver
initialization code in Figure 3 has a line to set up the fast I/O
dispatch table.

4.5 Raw disk partition filter

To log activity at the physical disk level, we modified a
physical disk filter driver, DiskPerf, whose source code is in-
cluded in the DDK. This driver collects and reports statistics
about raw disk accesses, so it was straightforward to retool
it so it instead logged information about each disk access.

4.6 Network filter

In contrast to the other filter drivers we needed, we found
no source code for a network transport layer filter driver. We
thus had to write one from scratch. More precisely, we had
to write one mostly from scratch, since many things are the
same from one filter driver to another, such as how to initial-
ize the dispatch table, how to attach to lower-level drivers,
etc.

Windows NT/2000 provides a single programming inter-
face, called the transport driver interface (TDI), to the trans-
port layers of all network protocols. (See Table 1.) I/O re-
quests passed to the transport layer all conform to the same
format, described in the Windows NT DDK help and in the
DDK files TDI.H and TDIKRNL.H. There were still chal-
lenges, however, in building a filter for these requests.

One problem we encountered is that some IRP’s have the
major function code “device control,” and we found no de-
scription of the parameter format used by these IRP’s. How-
ever, we learned from the DDK help that the first thing a
device does upon receiving such a request is call the func-
tion TdiMapUserRequest() to convert it to one with a major
function code of “internal device control,” which we know
how to interpret. In our filter driver dispatch routine for de-
vice control requests, we therefore first call TdiMapUser-
Request().

Another problem is caused by an apparent bug in how
Windows NT handles network filter devices. When it con-
structs an IRP, it must allocate enough stack space in it to
account for the maximum depth of the device stack the IRP
will pass through. To ensure this, each device object has a
stack count field indicating how large the stack must be in
IRP’s it receives. Unfortunately, Windows NT sometimes
ignores the stack count field in our filter device objects and
sends it an IRP with insufficient stack space. If we push a
new location onto this stack and pass it on, eventually the
stack overflows and the system crashes.

We solve the stack space problem in different ways, de-
pending on whether we need to post-process the request.
When we need to post-process, we create a new IRP with
the appropriate stack space to pass on to the lower-level

6

BOOLEAN MyFastIoRead (PFILE_OBJECT FileObject, PLARGE_INTEGER FileOffset,
ULONG Length, BOOLEAN Wait, ULONG LockKey, PVOID Buffer,
PIO_STATUS_BLOCK IoStatus, PDEVICE_OBJECT DeviceObject)

{
PSTD_HOOK_EXTENSION hookExt = DeviceObject->DeviceExtension;
PDEVICE_OBJECT origDevice = hookExt->attachedDevice;
PFAST_IO_DISPATCH origFastIoTable = origDevice->DriverObject->FastIoDispatch;
BOOLEAN retval;
ULONG seq;
KIRQL oldirql;
PCHAR eventBuffer;

// If there is no fast I/O routine in the original driver, return FALSE.
if ((ULONG) &origFastIoTable->FastIoRead - (ULONG) &origFastIoTable >=

origFastIoTable->SizeOfFastIoDispatch || !origFastIoTable->FastIoRead)
return FALSE;

// If there is a file name, record this call.
if (FileObject->FileName.Buffer != NULL) {

// Get a new sequence number to keep track of this request.
seq = InterlockedIncrement(&sequenceNumber);

// Log this call, describing the input parameters.
KeAcquireSpinLock(&sharedState->mainMutex, &oldirql);
eventBuffer = (*sharedState->logEventFunc)((char) ENTRY_TYPE_FILE_READ, 24);
if (eventBuffer) {

RtlCopyMemory(&eventBuffer[1], &seq, 4);
RtlCopyMemory(&eventBuffer[5], &FileObject, 4);
RtlCopyMemory(&eventBuffer[9], FileOffset, 5);
RtlCopyMemory(&eventBuffer[14], &Length, 4);
RtlZeroMemory(&eventBuffer[18], 4); // no IRP flags
eventBuffer[22] = IRP_MN_NORMAL;
eventBuffer[23] = ’\0’; // no stack flags

}
KeReleaseSpinLock(&sharedState->mainMutex, oldirql);

}

// Call the real fast I/O routine, recording the return value.
retval = origFastIoTable->FastIoRead(FileObject, FileOffset, Length, Wait,

LockKey, Buffer, IoStatus, origDevice);

if (retval && FileObject->FileName.Buffer != NULL) {
// Log the return, including return values.
KeAcquireSpinLock(&sharedState->mainMutex, &oldirql);
eventBuffer = (*sharedState->logEventFunc)

((char) ENTRY_TYPE_FILE_COMPLETE_OPERATION, 13);
if (eventBuffer) {

RtlCopyMemory(&eventBuffer[1], &seq, 4);
RtlCopyMemory(&eventBuffer[5], &IoStatus->Status, 4);
RtlCopyMemory(&eventBuffer[9], &IoStatus->Information, 4);

}
KeReleaseSpinLock(&sharedState->mainMutex, oldirql);

}

// Return the original routine’s return value.
return retval;

}

Figure 6: VTrace uses a fast I/O routine like this one to handle fast-path read requests.

7

Minor function code Meaning
TDI ASSOCIATEADDRESS associate a connection endpoint with a network address
TDI DISASSOCIATEADDRESS disassociate a connection endpoint with the network address it was previously associated with
TDI CONNECT establish a connection between a local connection endpoint and a specified remote address
TDI LISTEN listen for requests from any of a set of remote addresses to a local connection endpoint
TDI ACCEPT accept a connection request made by a remote address to a local connection endpoint
TDI DISCONNECT terminate the connection in which a connection endpoint is participating
TDI SEND send an ordered packet over a connection
TDI RECEIVE receive an ordered packet over a connection
TDI SEND DATAGRAM send a datagram over a connection
TDI RECEIVE DATAGRAM receive a datagram over a connection
TDI SET EVENT HANDLER establish a routine for handling a certain type of event, such as the arrival of a datagram
TDI QUERY INFORMATION get information about some network object, such as its network address
TDI SET INFORMATION set information about some network object
TDI ACTION perform some transport-specific action

Table 1: Minor function codes of some useful TDI internal device control requests, taken from the Windows NT DDK help

driver. When we do not need to post-process, we use a trick
borrowed from Filemon: we do not push anything onto the
stack, allowing the next device down to use the same stack
location it used. We can only do this when we do not need
to post-process, since if the request were passed back after
doing this the stack would be empty.

Yet another difficulty stems from a unique aspect of net-
work devices, namely that not all network I/O uses IRP’s.
Specifically, I/O that happens in response to some event,
such as a datagram arrival, is performed entirely by func-
tions calledevent handlersand does not involve the dispatch
routines. This is unfortunate, since while Windows NT pro-
vides filter devices as an elegant, well-supported approach
to intercepting IRP’s sent to dispatch routines, it provides no
special support for intercepting calls to event handlers.

We overcame this by developing our own technique for
intercepting calls to event handlers. The key to this tech-
nique is our ability, thanks to filter devices, to intercept and
change any request that specifies a new event handler for a
file object. (These are the requests with minor function code
TDI SET HANDLER.) Each of these requests contains the
location of the event-handling function, the type of event it
handles, and a four-byte context value to be passed to that
function. All the driver must do, then, is allocate a structure
to store this information, then modify the request so that in-
stead of containing the location of the real event-handling
function and the real four-byte context value, it contains the
location of a special logging event-handling function and the
four-byte address of the structure we allocated. In this way,
whenever an event of the given type happens, our special
logging event-handling function gets called and passed the
address of the structure we allocated. This function logs
the event, then inspects the structure in order to call the ap-
propriate event-handling function with the appropriate con-
text value. When that function returns, our special logging
function can trace its return value. In actuality, we used a
slightly different approach to memory allocation than de-

scribed above: the driver allocates a single structure per file
object, not per event handler; this permits it to quickly free
all the memory allocated for a file object when it is closed.

5 Logging Context Switches

Logging context switches should be easy, since kernel-
mode software can use the function KeSetSwapContext-
NotifyRoutine() to set a function that gets called whenever
context switches occur. Unfortunately, this call only works
on thechecked buildof Windows NT/2000, a special version
that contains extra hooks and symbols for use in driver de-
velopment. Few people use this version, and we wanted our
tracer to run on anyone’s machine, so we designed a method
that will work on the standard version.

We devised the method as follows. WinDbg comes with
debug symbols for Windows NT files, so we used it to find
the assembler code for the Windows NT function SwapCon-
text(). The function is more than five bytes long, and con-
tains no jumps, branches, or calls in its first five bytes, en-
abling us to do the following. We overwrite, in memory, its
first five bytes with a jump to our own function, NewSwap-
Context(), as shown in Figures 7 and 8. NewSwapCon-
text() logs the context switch, including the thread being
switched to; then executes the first five bytes of the original,
pre-overwrite version of SwapContext(); then jumps to the
sixth byte of SwapContext(). This method was inspired by
an article in Microsoft Systems Journal unrelated to context
switches[10].

Finding the location of SwapContext() in memory is not
straightforward, however. It is always in the in-memory im-
age of the kernel executable, NTOSKRNL.EXE, which is
loaded at address 0x80100000. However, its position within
NTOSKRNL.EXE varies from version to version of Win-
dows NT 4.0. For instance, in the original Windows NT
4.0 it’s at 0x8013F4F0, but after applying Service Pack 3
it’s at 0x80140CA0, and after applying Service Pack 5 it’s at

8

Before:

SwapContext:
mov byte ptr es:[esi+2Dh],2
or cl,cl
mov ecx,dword ptr [ebx]
pushfd
push
[etc.]

After:

SwapContext:
jmp NewSwapContext
or cl,cl
mov ecx,dword ptr [ebx]
pushfd
push
[etc.]

Figure 7: How we hook the context switch routine.
(NewSwapContext is shown in Figure 8.)

0x80141E70. However, in all these versions, the instructions
of the function are unchanged, and we expect this to remain
the case in future versions of Windows NT 4.0. Thus, to
find SwapContext(), we simply search for the known first 28
bytes of the routine in the memory section where we expect
it. (We check a few common locations first, since the routine
is most likely to be in one of them.) Doing this check is dan-
gerous, since an access to an invalid (e.g., paged out) mem-
ory location by kernel-mode software will crash the system.
Thus, before checking any location, we first call MmIsAd-
dressValid() to make sure we can read it.

When Service Pack 6 became available, we tested this
technique on it, and it worked perfectly.

One final complication in logging context switches in-
volves locking. Normally, we require a thread to hold a spin
lock when writing to the log. However, we found that the
system sometimes crashed when the context-swap hook tried
to acquire this spin lock. This may be because acquring the
spin lock can itself cause a context-swap, creating an infinite
loop. Thus, we instead disable interrupts while the context-
swap routine accesses the log. We can be sure that no other
thread holds the spin lock, since context-swaps cannot occur
on a uniprocessor while a thread holds a spin lock.

6 Logging Win32 System Calls

The Windows NT/2000 kernel supports multiple user-
level subsystems, such as Win32, POSIX, and OS/2. Thus,
the term “system call” is vague; it could refer to a call to the
Win32 subsystem, to some other subsystem such as OS/2,
or even to the Windows NT/2000 kernel itself. In this sec-
tion, we will discuss logging system calls to the Win32 sub-
system. Section 7 will discuss logging system calls to the
kernel.

Our technique for logging Win32 system calls borrows

void FASTCALL NewSwapContext (void)
{

// Save parameters we will overwrite.
push eax
push ecx

// Save interrupt mask and stop all
// interrupts. Since context-swaps can’t
// occur while a spinlock is held, we
// know no one else has the spinlock.
pushfd
cli

// Put space on stack for local variable
// eventBuffer, which will be [esp].
push ecx

// eventBuffer = LogEvent(
// (char) ENTRY_TYPE_THREAD_SWITCH, 5);
push 5
push 0Eh
call LogEvent

// if (eventBuffer)
cmp eax, 0
je DoneLogging
mov dword ptr [esp], eax

// eventBuffer[1] = PsGetCurrentThreadId();
call PsGetCurrentThreadId
mov ecx, dword ptr [esp]
mov dword ptr [ecx+1], eax

DoneLogging:
// Pop space on stack for local variable.
pop ecx

// Restore interrupt mask.
popfd

// Pop saved parameters.
pop ecx
pop eax

// Execute the overwritten instruction from
// the original swap routine.
mov byte ptr es:[esi+2dh],2

// Jump to the point in the original swap
// routine past the overwritten part.
jmp dword ptr globals.nonOverwrittenPart;

}
}

Figure 8: VTrace uses this routine for logging context
switches.

9

Code Explanation
...

call GetMessageA@16
...

Application code. The application calls GetMessageA(), which is compiled as a
call to GetMessageA@16.

GetMessageA@16:
jmp dword ptr [imp GetMessageA@16]

PeekMessageA@20:
jmp dword ptr [imp PeekMessageA@20]

...

Stub functions. GetMessageA@16 is one of several stub functions;
it simply performs an indirect jump to the function pointer at location

imp GetMessageA@16.

imp PostThreadMessageA@16: 0x10001E50
imp GetMessageA@16: 0x10001410
imp PeekMessageA@20: 0x10001550

...

Array of function pointers. The location imp GetMessageA@16 is part of an
array of imported function pointers located in the import data section.

0x10001410:
sub esp, 18h
push ebx

...

Function body. The actual body of the function GetMessageA() is at the specified
memory location, 0x10001410. This location is part of the memory image of the
USER32 DLL.

Figure 9: An example of how Win32 system calls are performed

heavily from the technique developed by Matt Pietrek for
his APISPY32 program [10]. In this section, we describe
Pietrek’s technique only briefly; the reader is referred to [10]
for a more complete description. We then describe the major
ways in which our technique differs from it.

Pietrek’s technique relies on a key observation about how
applications make Win32 system calls. A Win32 system call
is effected by calling a stub function which does an indirect
jump to one of an array of function pointers. (See Figure 9.)
We must therefore merely find that array of function pointers
(which is easy to do once the image and file format is under-
stood [6, 9]), and replace the pointers to functions we want
to log with pointers to our own logging functions. These
logging functions, which reside in a special DLL that is part
of the tracer software, will call the original functions and log
those calls. The tracer must load this special DLL into every
application’s address space.

Pietrek describes several techniques for loading the log-
ging DLL into every application’s address space. We
chose the simplest of those, putting the name of the
DLL in the registry key HKEYLOCAL MACHINEnSoft-
warenMicrosoftnWindows NTnCurrentVersionnWindowsn
AppInit DLLs. This does not take effect until reboot, but
our tracer requires a reboot anyway to install the raw disk
filter driver.

APISPY32 was designed for Windows NT 3.5, and some
USENET articles report it cannot be used with Windows NT
4.0. The reason is that virtual memory protections prevent
the replacement of some of the function pointers. To fix
this problem, we call VirtualProtect() to temporarily change
these protections.

Another problem with APISPY32 is that it only hooks
system calls made directly by the application. If an appli-

cation calls a DLL function, which in turn makes a system
call, it does not notice that system call. This is because
APISPY32 performs its function interception on the appli-
cation executable image but not on the image of any loaded
DLL. Our solution to this is twofold. First, when the log-
ging DLL is loaded, it calls EnumerateLoadedModules() to
obtain the memory locations of the application and all its
loaded DLL’s. Then, it does the function interception in each
of those modules. Second, we intercept the LoadLibrary: : :()
functions (even though we do not need to log them), so that
when a new library is loaded we can perform function inter-
ception on its image.

We found it useful for the logging DLL to be able to de-
termine whether the current thread had performed any recent
activity. In this way, we could perform online compression
of the log entries logging calls to functions like PeekMes-
sage and SendMessage when the thread was not doing any-
thing else. However, since most thread activity is recorded at
kernel level, this required either expensive, frequent commu-
nication between kernel and user level, or a region of mem-
ory that could be shared between these levels. We opted for
the latter approach, to improve the performance of our tracer.
Figure 10 shows how a driver can map a region of non-paged
pool to a user-level address. One important issue is that the
driver must undo this mapping before the process exits, or
the system will crash. Fortunately, in order to access the
driver to request the mapping, a user process must create a
“file” representing a link to the driver. When that process is
about to terminate, it automatically closes this file. There-
fore, VTrace stores the user-level address in the correspond-
ing file object, and unmaps the address when it receives a
close request for the file object.

Debugging a logging DLL can be difficult, since any bug

10

PVOID GetUserLevelAddress
(PVOID kernelLevelAddress, ULONG length,

FILE_OBJECT *fileObject)
{

PVOID address;
PMDL mdl;

mdl = IoAllocateMdl(kernelLevelAddress, length,
FALSE, FALSE, NULL);

if (mdl == NULL)
return NULL;

// Build the MDL for the kernel-level address,
// assumed to lie in non-paged memory. Then,
// map it into user level.

MmBuildMdlForNonPagedPool(mdl);
address = MmMapLockedPages(mdl, UserMode);
if (address == NULL) {

IoFreeMdl(mdl);
return NULL;

}

// Save the address and MDL pointer so they
// can be unmapped and freed, respectively,
// when this file object is closed.

fileObject->FsContext = address;
fileObject->FsContext2 = mdl;

return (PVOID) ((ULONG)PAGE_ALIGN(address) +
MmGetMdlByteOffset(mdl));

}

Figure 10: VTrace uses a function like this one to map a
region of kernel-level non-paged memory to user level.

in it can make the system unusable, e.g., by making a fun-
damental application like the login screen fail. If this hap-
pens, the only recourse may be to restore the registry to a
previous state in which the DLL is not in the AppInitDLLs
list, or to delete the offending DLL file. Each of these ap-
proaches is annoying and time-consuming if the system can-
not be run normally. One solution is to avoid putting the
DLL into AppInit DLLs and write test applications that ex-
plicitly load the DLL. However, this will not test how the
DLL works with general applications. The best approach,
suggested by a USENET post, is to put the DLL on a floppy
disk and tell AppInitDLLs to get it from there. In this way,
if there is a bug, one can simply remove the floppy disk and
the DLL will not get loaded into any application.

7 Logging NT System Calls

Our approach for logging system calls to the kernel is de-
rived from the Regmon application, available from the Sys-
tems Internals web site and described in [11]. The idea is
to find theservice table list, an in-memory array of system
call function pointers indexed by system call number, and
replace those function pointers with pointers to special log-

ging functions. The trickiest part is figuring out what system
call number corresponds to each system call.

Regmon accomplishes this by observing the following
about how kernel-mode software makes these system calls.
NTOSKRNL.EXE provides the interface to the system calls
by exporting functions whose names have the prefix “Zw.”
Inspecting these functions, one can see that the first thing
they do is load the system call number into register EAX.
Thus, the system call number can be extracted from bytes
2–5 of the Zw function.

As mentioned in Subsection 4.4, we hooked the system
calls for opening files so we could make sure our file sys-
tem filter driver attached a device to each active file system.
Unfortunately, one of these system calls, ZwOpenFile(), is
undocumented in the DDK, so we did not know how to
use its parameters to determine what file system to filter.
Fortunately, we found this function documented in Nagar’s
book [8].

Another problem we encountered is that
NTOSKRNL.EXE does not export all the system calls
we were interested in logging. Some, such as Zw-
SignalAndWaitForSingleObject(), are only exported by
NTDLL.DLL, with which we were unable to link our
driver. (Regmon does not have this problem, since it only
hooks system calls exported by NTOSKRNL.EXE.) So, our
tracer reads and parses the file NTDLL.DLL to find the Zw
function bodies. The file format it uses, called the portable
executable (PE) file format, is well documented [6, 9], so
parsing it is not difficult.

An important part of parsing a PE format file is translat-
ing virtual addresses into file positions. Many structures in
the file refer to other structures in the file using the virtual
addresses they will have when loaded into memory, but we
need to know where in thefile those structures are.

To translate from virtual addresses to file positions, we
need the section header information. This is an array of
IMAGE SECTIONHEADER structures, each of which de-
scribes the absolute file position of a section, the length of
that section, and the virtual address where that section will
be loaded. Using this information, we can figure out which
section contains a given virtual address, and from that the
file position for that address. Figure 11 shows where to find
these section header structures in the file.

Once we can translate from virtual addresses to file posi-
tions, we can find the names and bodies of all the exported
functions, using the outline shown in Figure 11. This lets us
find where the Zw function bodies are and what their first
few bytes are.

As mentioned earlier, we hook the system calls for open-
ing files so our file system filter driver can attach a device to
each file system. Unfortunately, the DDK fails to document
one of these system calls, ZwOpenFile(), so we could not at
first determine how to use its parameters to determine what
file system to filter. Fortunately, Nagar’s book documents
this function [8].

11

Optional
Header
(224
bytes)

Section
Header
(40 bytes)

(More Section Headers...)

Export
Directory
Structure
(40 bytes)

Array of virtual addresses of functions (each 4 bytes)

Array of virtual addresses of function names
(each 4 bytes)

Absolute file position of PE Signature (4 bytes)

PE Signature (4 bytes: P, E, \0, \0)

COFF
File
Header
(20 bytes)

(irrelevant 60 bytes at beginning of file)

Size of section (4 bytes)

Virtual addr of Export Directory (4 bytes)

Virtual address of section (4 bytes)

Number of functions (4 bytes)

Number of function names (4 bytes)

Virtual address of function array (4 bytes)

Virtual address of name array (4 bytes)

Number of Section Headers (2 bytes)

(irrelevant 2 bytes)

(irrelevant 12 bytes)

(irrelevant 124 bytes)

(irrelevant 96 bytes)

(irrelevant 12 bytes)

(irrelevant 16 bytes)

(irrelevant 4 bytes)

(irrelevant 20 bytes)

Absolute file position of section (4 bytes)

PE File

Figure 11: This outline of the structure of PE image files
shows how to get what we need from NTDLL.DLL. It shows
how to find the section headers you need to translate virtual
addresses into absolute file positions. It also shows how to
find the virtual addresses of the names and bodies of the ex-
ported functions.

8 Parsing File System Metadata

Our design goals required us to take periodic snapshots
of the file system metadata of each local NTFS partition.
Helen Custer’s book about NTFS [3] discusses NTFS at a
high level, but we needed detailed information about its lay-
out. For this, we used the documentation and source code
for the Linux NTFS driver.This documentation is at http://
www.via.ecp.fr/�regis/ntfs/new/, and the source code is at
http://www.informatik.hu-berlin.de/�loewis/ntfs/.

We learned that essentially all the data we needed is in
a special file in each partition called the Master File Ta-
ble (MFT). This file, named $MFT, contains fixed-length
records describing the attributes of each file (and directory,
since directories are basically just special files). However,
there are at least three problems with recording the metadata
by simply dumping this file. First, the file is sparse, because
(1) many files’ attributes do not use an entire record, and (2)
many records are unused, having been allocated to files that
have since been deleted. Second, an attribute can benon-
resident, meaning that it is somewhere else on disk and only
a pointer to it is in the MFT record. Third, the contents of
a file are considered an attribute of the file, so recording the
MFT might also record file contents; this would violate the
confidentiality of our users’ data.

This led us to the following approach. We do a depth-
first search of the directory structure of each NTFS partition
and, for each file found, we find and record certain non-data
attributes of that file. Finding the metadata for a file requires
knowing itsfile number, the number of the MFT record con-
taining that file’s attributes. The partition root always has
file number 5.

We still have not explained how one reads directly from
a disk, or how one finds specific MFT records. To read a
raw disk on Windows NT, a user-mode program opens a file
called “nn:nX:”, replacing “X” with the appropriate drive
letter. The first file block contains useful information: the
size of a block (the 2-byte value at offset 0xB), the number
of blocks in a cluster (the 1-byte value at offset 0xD), the
number of clusters in an MFT record (the 1-byte value at
offset 0x40), and the cluster number of the first MFT record
(the 8-byte value at offset 0x30). The first MFT record is
useful to find, since it contains the file attributes for $MFT
itself. By parsing its data attribute information one can lo-
cate any MFT record. Parsing a file’s MFT record reveals
all the file’s attributes. (This is not difficult, especially if one
judiciously copies sections of the Linux NTFS driver code
and reads the Linux NTFS documentation described above.)
If the file is actually a directory, one can parse its index allo-
cation attribute to find its subfiles’ file numbers.

To determine what raw disk device a DOS disk name like
“X:” corresponds to, we call QueryDosDevice(). It takes
a DOS disk name and returns the corresponding raw disk
name, such as “nDevicenHarddisk1nPartition3.”

12

#define TAG_GET_PROC_THREAD_INFO 5
#define FIRST_GUESS_AT_PT_INFO_SIZE 8192
#define INCREMENT_FOR_PT_INFO_SIZE 1024

char *GetProcessAndThreadInfo
(ULONG *bytesReturnedPtr)

{
char *buf; // buffer to hold the process

// and thread information
ULONG bufSize; // size of the buffer
NTSTATUS status; // status code returned by

// ZwQuerySystemInformation

bufSize = FIRST_GUESS_AT_PT_INFO_SIZE;
while ((buf = ExAllocatePool(NonPagedPool,

bufSize))
!= NULL) {

*bytesReturnedPtr = 0;
status = ZwQuerySystemInformation

(TAG_GET_PROC_THREAD_INFO, buf, bufSize,
bytesReturnedPtr);

if (status == STATUS_SUCCESS) return buf;

// If the buffer was the wrong size, make the
// buffer bigger; use the value returned in
// bytesReturnedPtr as a hint about the needed
// size.

ExFreePool(buf);
if (status == STATUS_BUFFER_OVERFLOW ||

status == STATUS_INFO_LENGTH_MISMATCH)
bufSize = MAX(*bytesReturnedPtr, bufSize +

INCREMENT_FOR_PT_INFO_SIZE);
else

return NULL;
}
return NULL;

}

Figure 12: This function returns a buffer containing a se-
quence of process information structures, one for each pro-
cess. It puts the length of the returned buffer in bytesRe-
turnedPtr. The caller of this function is responsible for free-
ing the returned buffer if it is not NULL.

9 Miscellaneous Features of VTrace

9.1 Listing processes and threads

To log when processes and threads start and stop, we use
the barely documented functions PsSetCreateProcessNotify-
Routine() and PsSetCreateThreadNotifyRoutine(). With
them, we can set a logging function to be called when a pro-
cess (or thread) is created or destroyed.

We also need to record a list of the existing pro-
cesses and threads when the tracer starts logging. Unfor-
tunately, there is no documented way to do this from kernel
mode. Fortunately, there was a USENET article on comp.
os.ms-windows.programmer.nt.kernel-mode by Fizal Khan
describing how do this with the undocumented function Zw-
QuerySystemInformation(). This function has the following
prototype:

last structure in the list (4 bytes)

Number of threads in this process (4 bytes)

(unknown 48 bytes)

Length of process name in bytes (2 bytes)

Length of this structure in bytes, or 0 if this is the

Pointer to process name in memory (4 bytes)

(unknown 2 bytes)

(unknown 4 bytes)

Process ID (4 bytes)

(unknown 64 bytes)

Thread
Info
Structure
(64 bytes)

(unknown 36 bytes)

Thread ID (4 bytes)

(unknown 24 bytes)

(More Thread Info Structures...)

Process Information Structure

Figure 13: NtQuerySystemInformation() returns a list of
process information structures, each of which looks like this.

unsigned long ZwQuerySystemInformation
(ULONG tag, VOID *buffer, ULONG bufSize,

ULONG *returnedSize);

The tag parameter in this prototype indicates what kind of
information is to be returned; the value 5, for instance, indi-
cates process and thread information. Figure 12 shows how
we use this function to get a sequence of process informa-
tion structures, one for each process. Figure 13 illustrates
the contents of each of these structures.

We also use this undocumented feature to obtain and log
the name of a process when we are notified of it starting,
since the notification only tells us the process ID.

9.2 Idle timer

To keep trace file sizes down, the tracer should automat-
ically stop logging when the user is idle for 10 minutes. Be-
cause we were logging keyboard and mouse messages, we
could determine when the user was active; this permitted the
following approach.

When the system starts up, we initialize a timer to go off
in ten minutes, using code like that in Figure 14. In this
code, the constant is�6 billion, meaning 6 billion 100-ns
units (10 minutes) from now (negativeness indicates rela-
tive time). The call to KeInitializeDpc() initializes a deferred
procedure call object by binding it to the function UserGoes-
IdleRoutine(). KeInitializeTimer() associates the timer with
that deferred procedure call, so that its associated function is
executed when the timer goes off. Finally, KeSetTimer() ini-
tializes the timer to go off ten minutes later. When we detect
user activity, we repeat the call to KeSetTimer(), delaying
when the timer will go off until ten minutes afterthen.

13

void InitializeUserInactivityWatch (void)
{

LARGE_INTEGER tenMinsFromNow =
{ 0x9A5F4400, -2 };

KeInitializeDpc(&globals.userGoesIdleDpc,
&UserGoesIdleRoutine, NULL);

KeInitializeTimer(&globals.userGoesIdleTimer);
KeSetTimer(&globals.userGoesIdleTimer,

tenMinsFromNow,
&globals.userGoesIdleDpc);

}

Figure 14: This code initializes a timer. If this timer is not
canceled, it will call UserGoesIdleRoutine 10 minutes from
now.

9.3 Disabling drivers at startup

Many of VTrace’s drivers must be started automatically
at startup time for them to work. This means that if they
cause problems, it may be impossible to remove them by
any means short of reinstalling the operating system. Thus,
it is useful to be able to disable the drivers at startup.

In order to do this, we need access in the very early stages
of startup to some state that the user can control. About the
only thing the user can indicate to the system at this stage
is what boot configuration to use. For instance, the user can
choose to boot with the “last known good” configuration,
meaning the most recent registry configuration that led to a
successful boot. This is a natural signal we can use to decide
to turn off VTrace.

To determine which configuration is in use, we
open the registry key HKEYLOCAL MACHINEnSystemn
Select and read the Current and LastKnownGood values.
Each of these is an index into the list of registry configu-
rations. If the current configuration in use is the same as the
last known good configuration, we know that the user has
chosen the last known good configuration and we turn off all
components of VTrace.

9.4 User-level service

Some of VTrace’s general operations are easier and safer
to implement at user level than at kernel level. For this rea-
son, VTrace includes a user-level service, VTrcSrvc, that is
launched at startup and runs in the background to perform
the following two operations: (1) After the user has been
idle for 2 hours, it turns off tracing, takes a metadata snap-
shot, compresses all the trace and metadata files collected,
uploads those files to our web site, deletes them from the lo-
cal hard drive, and turns tracing on again. It waits 24 hours
before doing any of this again. (2) Whenever a new user
logs in or the logger signals that a new log file has started, it
generates a log entry describing the current user’s name.

Paula Tomlinson’s article [15] describes in detail how to
write and install a user-level service, so we describe it only

void main (void)
{

SERVICE_TABLE_ENTRY ServiceTable[] =
{ { "VTrcSrvc",

(LPSERVICE_MAIN_FUNCTION) &ServiceMain },
{ NULL, NULL } };

StartServiceCtrlDispatcher(ServiceTable);
}

Figure 15: This is the main routine of VTrace’s service,
VTrcSrvc.

__asm {
_emit 0x0F ; Byte 1 of the RDTSC instruction
_emit 0x31 ; Byte 2 of the RDTSC instruction
mov ebx, bufPtr ; Put the addr where we want the

; timestamp in register ebx.
mov [ebx], eax ; Save low 4 bytes of timestamp.

}

Figure 16: This code reads the Pentium cycle counter by
invoking assembler in C.

briefly here. The main() routine initializes a table of service
table entries and dispatches them. Ours looks like Figure 15.
The service main function, in our case called ServiceMain(),
registers a handler for service control messages (such as
pause and stop), initializes other global state, launches
threads to perform the service’s tasks, then waits on an event
set when a stop message is received. Throughout the initial-
ization process, it calls SetServiceStatus() to send messages
to the service control manager indicating how far along it is.

One of the service control messages VTrcSrvc is pro-
grammed to respond to is one we made up called SER-
VICE CONTROL RELOAD REGISTRY. When VTrcSrvc
receives this message, it rechecks the VTrace parameters
in the registry and starts using the new values if they have
changed. This allows the utility that changes VTrace pa-
rameters to make those changes go into effect immediately
without waiting for the next reboot.

9.5 Pentium cycle counter

To get accurate time stamps on each of our trace events,
we use the Pentium cycle counter. This counter contains the
number of cycles that have passed since the computer was
started up. It is accessed via the RDTSC instruction, which
can be coded in C by invoking assembler as in Figure 16.

VTrace only needs the low four bytes of the counter for
the following reason. Given the low four bytes of two con-
secutive event times, one can determine, modulo2

32, how
many cycles separated the events. The logger automatically
places a null event in the log every0:75 �232 cycles, ensuring
that no two consecutive events are separated by2

32 cycles or
more. Thus, the time between any two consecutive events is
unambiguous. (If the high four bytes were needed as well,
they could be found in register EDX.)

14

10 Windows 2000

Windows 2000 is substantially similar to Windows NT,
but different enough that porting VTrace to it required some
effort. In this section, we briefly describe some of the
changes we made so VTrace would work on Windows 2000.

The biggest difference between Windows 2000 and
Windows NT is that Windows 2000 has kernel-mode write
protection. This means that any attempt to overwrite kernel
code in memory causes a system crash. Since our method
of hooking context switches requires that we overwrite the
first instruction of the context-swap code in memory, this
causes problems for VTrace. The solution is to turn off
kernel-mode write protection by opening the registry key
HKEY LOCAL MACHINEnSystemnCurrentControlSetn
ControlnSession ManagernMemory Management, and
creating in it the value EnforceWriteProtection=0. A
USENET poster described this feature when discussing how
to get a certain debugger to work with Windows 2000.

The context swap routine is different in Windows 2000,
so the tracer must look for this new routine in memory.

Windows 2000 expects drivers to provide two additional
dispatch routines, to deal with power-management and plug-
and-play requests. To pass on a power-management IRP,
a dispatch routine must first call PoStartNextPowerIrp, and
must use PoCallDriver instead of IoCallDriver. When a fil-
ter device receives a plug-and-play request, it must check
whether the minor function number is IRPMN REMOVE
DEVICE. If this type of request completes successfully, the
device to which the filter device is attached has removed it-
self, so the filter device should detach and delete itself.

A particularly complicated plug-and-play request type
to handle is IRPMN DEVICE USAGE NOTIFICATION.
Such a request can indicate that a page file on the underly-
ing device either started or stopped being used. A file sys-
tem filter or disk filter must keep track of how many in-use
page files the underlying device has, and update this count
whenever it receives one of these notifications. Updating this
count is complicated by the fact that the device must in some
cases update the count when this request arrives, then undo
it if the request fails. The DDK provides examples showing
how to do this.

At the end of Section 8, we discussed how to deter-
mine the disk and partition numbers of a given disk, such
as “X:”. Unfortunately, this method does not work in Win-
dows 2000, and the Windows 2000 method does not work in
Windows NT. In Windows 2000, you must use a new device
I/O control code called IOCTLSTORAGEGET DEVICE
NUMBER. Passing this code to an open file representing the
raw disk yields a STORAGEDEVICE NUMBER structure
containing the disk and partition numbers.

In Windows 2000, the process information structure is
slightly changed from Figure 13. The “unknown 64 bytes”
in the header are actually 112 bytes long in Windows 2000.

Time Time Slow-
Operation without with down

VTrace VTrace

Read an uncached 32KB file 9.16 ms 9.17 ms 0.1%
Write 1KB file (write-thru) 25.05 ms 25.05 ms 0%
Read 32 KB direct from disk 9.17 ms 9.17 ms 0%
Copy a 32 KB file locally 6.29 ms 6.57 ms 4.5%
Copy a 32 KB file remotely 27.73 ms 35.07 ms 26.4%
ZwFlushInstructionCache() 2.78�s 3.72�s 33.8%
WaitMessage() 8.98�s 64.84�s 722%
TranslateMessage() 0.11�s 42.19�s 40178%
Compile logger with DDK 10.23 s 11.60 s 13.4%
Format article with LATEX 1.69 s 1.79 s 5.3%

Figure 17: These benchmark result means show how much
VTrace slows down various operations.

11 Benchmarks

Considering all the tracing that VTrace does, it is impor-
tant to determine how much it slows down the system. We
wanted to make the overhead unnoticeable, so users would
let us install it on their systems. By this measure, we suc-
ceeded, since none of our users has ever complained about
performance suffering.

That said, it can be hard for users to detect subtle differ-
ences, especially on today’s fast machines. So we designed
various benchmarks to show the effect of running VTrace.
We ran each of these benchmarks on our PC, which has a
450 MHz Pentium III, is connected to a 100 Mbps switched
Ethernet, has 128 MB of memory, has 10 GB divided among
three SCSI disks, and is running Windows NT 4.0 with Ser-
vice Pack 6a. We ran each benchmark (other than the com-
pilation and document format benchmarks, which take too
long) enough times that the 95% confidence interval about
the sample mean included no values more than 0.1% away
from the sample mean. We also instrumented VTrace to find
out how much overhead there is just to write a single short
log entry; on average, this takes 20.24�s from user level but
only 0.95�s from kernel level.

Figure 17 shows the results. We see that VTrace has al-
most no effect on simple reads and writes, since there is little
to log and all the logging is at kernel level. Copying files in-
curs more tracing overhead, especially when VTrace is also
tracing network operations. Calling various traced functions
like ZwFlushInstructionCache(), WaitMessage(), and Trans-
lateMessage() incurs overhead essentially due to the over-
head of writing log entries. As you can see, this is substantial
for the latter two functions since they do little but are at user
level, and furthermore because each call requires two log
entries: one for the initiation of the function and one for its
completion. Finally, one can see the “big picture” from the
two application benchmarks, which show that VTrace makes
a 10-second compilation take 13.4% longer and a 2-second
document formatting take 5.3% longer.

15

These benchmarks suggest that the biggest area for im-
provement is the overhead of tracing user-level events.
It would thus seem that we could substantially improve
VTrace’s performance by having it trace user-level events
entirely at user level. To test this, we wrote a version of
VTrace that did separate kernel-level and user-level log-
ging. This approach reduced the overhead for user-level log-
ging tremendously, from about 20�s to only about 0.25�s.
However, the extra processing required to perform sepa-
rate user-level and kernel-level tracing dominated these im-
provements, causing this separation approach to actually do
slightly worse in the macrobenchmarks than our original ap-
proach. Thus, in the final version of VTrace, we perform all
logging at kernel level.

12 Similar Software

VTrace is not the first piece of software to modify the
operating system (without recompiling it) on machines used
for normal operation. WMonitor [16] uses the Windows
message hook facility and installable file system support to
trace application messages and file activity in Windows 95.
SLIC [4] uses interposition to intercept system calls and sig-
nals in Solaris 2.5. KernInst [14] performs a structural anal-
ysis on the Solaris 2.5.1 kernel running on an UltraSPARC
so that it can insert code at almost any point in the kernel
without rebooting and without disturbing any live registers.
COLA [7], like our Win32 system call hooking method,
looks into each library loaded into a UNIX application to
find all the points at which system calls are made, in order
to intercept those system calls at those points. Instrumented
Connectors [1] is a general system you can use to wrap your
own function around any function exported by a Windows
dynamically linked library. Michael Jones created an inter-
position agents toolkit [5] that expresses the objects in the
4.3BSD operating system as C++ classes, so that you can
extend their functionality by writing derived classes. And
there are many other examples, including various commer-
cial virus checkers and disk compression utilities.

13 Summary

Writing the tracer VTrace for Windows NT/2000 was
a difficult task, because of both the inherent difficulty of
system-level programming and the lack of official documen-
tation. Nevertheless, with the help of many sources of infor-
mation, including developer tools, magazines, books, web
sites, and USENET, we achieved our goal. This paper has
described the major techniques we used in doing so.

Writing the tracer involved a lot of driver programming
to implement special device types. The heart of our tracer
is the logger device, which processes requests to add events
to the log. The other devices we implemented were filter
devices, which layer themselves above existing devices in

order to intercept and log I/O requests destined for them. We
filter file systems, the keyboard, disk partitions, and network
transport layers.

We also did a substantial amount of hooking system func-
tions. We developed a technique for intercepting calls to the
context switch function. We also adapted to our purposes
some published hacks for intercepting NT kernel and Win32
system calls.

We had to do many other things for our tracer, several
of which we describe. We designed a file system metadata
parser, used a technique to get a list of existing processes and
threads, implemented an idle timer, and included a user-level
service, among other things.

Although VTrace incurs overhead on the system, this
overhead is relatively low considering how much it traces.
No user has complained about the load VTrace places on
the system. Logging common file operations incurs very lit-
tle overhead. Benchmarks measuring the effect on realistic
batch workloads show only a 5–13% increase in execution
time.

It is our hope that the techniques we describe, as well
as the references we give to more detailed descriptions of re-
lated techniques, will be helpful to future Windows NT/2000
system-level programmers. These techniques can be used
for tracing many things VTrace does not trace, and for many
things besides tracing.

References

[1] Balzer, R. and Goldman, N. Mediating Connectors.Pro-
ceedings of the 19th IEEE International Conference on Dis-
tributed Computing Systems Workshop, Austin, TX, 73–77,
May/June 1999.

[2] Custer, H.Inside Windows NT, Microsoft Press, Redmond,
WA, 1993.

[3] Custer, H. Inside the Windows NT File System, Microsoft
Press, Redmond, WA, 1994.

[4] Ghormley, D., Petrou, D., Rodrigues, S., and Anderson, T.
SLIC: an Extensibility System for Commodity Operating
Systems.Proceedings of the 1998 USENIX Annual Techni-
cal Conference, New Orleans, LA, 39–52, June 1998.

[5] Jones, M. Interposition Agents: Transparently Interposing
User Code at the System Interface.Proceedings of the 14th
ACM Symposium on Operating Systems Principles, Ashville,
NC, 80–93, December 1993.

[6] Kath, R. The Portable Executable File Format, from Top
to Bottom, Microsoft Developer Network Technology
Group Technical Report, June, 1993. Available from
http://premium.microsoft.com/msdn/library/techartmsdn
pefile.htm.

[7] Krell, E. and Krishnamurthy, B. COLA: Customized Over-
laying. Proceedings of the USENIX Winter 1992 Technical
Conference, San Francisco, CA, 3–7, January 1992.

16

[8] Nagar, R.Windows NT File System Internals, O’Reilly and
Associates, Inc., Sebastopol, CA, 1997.

[9] Pietrek, M. Peering inside the PE: a tour of the Win32
portable executable file format.Microsoft Systems Journal,
9(3):15–32, March 1994.

[10] Pietrek, M. Learn system-level Win32 coding techniques
by writing an API spy program.Microsoft Systems Journal,
9(12):17–38, December 1994.

[11] Russinovich, M. and Cogswell, B. Windows NT system-call
hooking.Dr. Dobb’s Journal, 22(1):42–46, January 1997.

[12] Russinovich, M. and Cogswell, B. Examining the Windows
NT filesystem.Dr. Dobb’s Journal, 22(2):42–50, February
1997.

[13] Schildt, H.Windows NT Programming from the Ground Up,
Osborne/McGraw-Hill, Berkeley, CA, 1997.

[14] Tamches, A. and Miller, B. Fine-Grained Dynamic Instru-
mentation of Commodity Operating System Kernels.Pro-
ceedings of the Third Symposium on Operating Systems
Design and Implementation, New Orleans, LA, 117–130,
February 1999.

[15] Tomlinson, P. How to Write an NT Service.Windows Devel-
oper’s Journal, 7(2):6–18, February 1996.

[16] Zhou, M. and Smith, A. Tracing Windows 95.Technical Re-
port UCB/CSD-99-1037, Computer Science Division, EECS,
University of California at Berkeley, January 1999. Available
from http://www.ncstrl.org.

17

