
Querying Large Collections of Music for Similarity

Matt Welsh, Nikita Borisov, Jason Hill, Robert von Behren, and Alec Woo
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720, USA {mdw,nikitab,jhill,jrvb,awoo}@cs.berkeley.edu

Abstract

We present a system capable of performing similarity
queries against a large archive of digital music. Users are
able to search for songs which “sound similar” to a given
query song, thereby aiding the navigation and discovery
of new music in such an archive. Our technique is based
on reduction of the music data to a feature space of rela-
tively small dimensionality (1248 feature dimensions per
song); this is accomplished using a set of feature extrac-
tors which derive frequency, amplitude, and tempo data
from the encoded music data. Queries are then per-
formed using a k-nearest neighbor search in the feature
space. Our system allows subsets of the feature space
to be selected on a per-query basis.

We have integrated the music query engine into an

online MP3 music archive consisting of over 7000 songs.

We present an evaluation of our feature extraction and

query results against this archive.

1 Introduction

Digital music archives are an increasingly popu-
lar Internet resource, supported by a surging mar-
ket for personal digital music devices, an increase of
bandwidth to the home, and the emergence of the
popular MP3 digital audio format. Music archive
sites such as mp3.com and search engines such as
mp3.lycos.com are changing the face of music dis-
tribution by archiving and indexing a vast array of
digital audio files on the Internet. Users of these
sites need a way to navigate and discover music files
based on a variety of factors. Many archive sites
offer text-based searching of artist, song/album ti-
tle, and genre. However, discovering music based
on textual indexing alone can be difficult; for exam-
ple, mp3.com categorizes its 208,000 songs into 215
separate genres. Discovering new music amounts to

This research was sponsored by the Advanced Research
Projects Agency under grant DABT63-98-C-0038, and an
equipment grant from Intel Corporation.

downloading (and listening to!) an arbitrary num-
ber of songs which match a particular text search,
which could potentially number into the thousands.

In this paper, we present a system enabling sim-
ilarity queries against a database of digital music.
Our system allows a user to submit a query which,
given a particular song in the database, returns a
user-supplied number of other songs which “sound
similar” to the query song. Our technique is based
on a set of feature extractors which preprocess the
music archive, distilling each song’s content down
to a small set of values (currently, 1248 floating-
point values per song). Similarity queries can then
be performed using a k-nearest-neighbor search in
the feature space.

We have developed a number of domain-specific
feature extractors, described in Section 3, which
process audio data stored in MP3 format. These
extract data from the music such as frequency his-
tograms, volume, noise, tempo, and tonal transi-
tions. The choice of feature extractors is essential
for music similarity matching to work effectively.
We have found that certain combinations of features
(for example, low-frequency plus tempo data) are
highly selective for certain types of music. Classical
and soul music are particularly well-selected by our
feature extractors, as detailed in Section 5.

We have incorporated our query engine into the
Ninja Jukebox [6], a scalable, online repository of
over 7000 songs totalling over 30 gigabytes of MP3
data. The Jukebox client application, described in
Section 4, allows the user to select, listen to, and
perform queries on the entire database. An addi-
tional feature provided by our system is the abil-
ity to select subsets of the feature space on which
to perform queries, thus facilitating the investiga-
tion of individual feature extractors. The query
engine performs well, with a response time of less
than 1 second for a music database consisting of
10000 songs and 1248 feature dimensions per song.

This paper makes three major contributions.

First, we present a full-featured search facility for
digital music based on acoustic properties alone.
Second, we present a number of novel feature ex-
traction techniques for digital music, specifically tai-
lored for performing similarity queries. Third, we
evaluate our results against a reasonably large music
archive containing a diverse assortment of genres.

2 Design Overview

The music query engine operates in two stages.
The first stage consists of a relatively expensive pre-
processing phase, wherein each song in is passed
over by a number of independent feature extractors.
Each feature extractor reduces the information con-
tent in the raw music data to a vector in a small
number of dimensions (typically one or two, but one
extractor produces as many as 306 dimensions per
song). The music data is stored in MP3 [10] for-
mat, however, the feature extractors generally op-
erate on raw audio samples produced by decoding
the MP3 file. The features associated with each song
are stored in a simple text database for later pro-
cessing by the query engine. Each feature extractor
has its own database file associated with it, allowing
the extractors to run independently and in parallel.

While the preprocessing step is expensive, it must
be executed just once for each song; when new songs
are added, the preprocessor is capable of only pro-
cessing new entries rather than rerunning across the
entire set. Each feature extractor takes approxi-
mately 30-45 seconds to run against a 5-minute song
on a 500 MHz Pentium III system; the longest run
time (for tempo extraction) is about 5 minutes.

The query engine reads the set of feature
databases into main memory, storing each feature
vector as an array of floating-point values. The set
of vectors for a particular song treated as a point in
an n-dimensional Euclidean space. The basic query
model assumes that two songs S1 and S2 sound sim-
ilar if their feature sets v1 and v2, respectively, are
within distance ε as computed by the Euclidean dis-
tance:

d =
√∑

i

(
vi
1 − vi

2

)2

where vi
1 denotes the ith component of v1, i ranges

over (0 . . . |v1|), and |v1| = |v2|.
While it would be interesting to explore other

similarity metrics for music, Euclidean distance is
attractive for our feature extractors because it is in-
tuitive both when implementing a feature extractors
and when querying the database. One concern with

this approach is that the magnitude of feature vec-
tors must be normalized to prevent one feature from
“weighting” the distance function more than others.
For the results presented here, all features were nor-
malized in the range (0.0 . . . 1.0). However, it may
be desirable for the user to assign scalar weights to
given feature vectors, in essence assigning them rel-
ative priorities in terms of computing the Euclidean
distance between two songs. We have not yet ex-
plored this possibility in our prototype.

Rather than have the user specify the desired
clustering distance ε, the query application allows
the user to specify a value k indicating the number
of similar songs to return for a given query. Given
a query song Q and a value for k > 2, the similarity
query is performed by a k-nearest-neighbor search
in the n-dimensional space of song features. Vari-
ous algorithms for computing nearest neighbors ex-
ist; our prototype uses a straightforward algorithm
with early rejection. Section 4 discusses our imple-
mentation in more detail.

Because one of the goals of our system is to fa-
cilitate investigation of different feature extractors,
the query engine allows the user to perform queries
across a subset of the feature space. Each vec-
tor can be independently indexed by a text string
identifying that feature; for example, tempo data is
stored with a tag of “av_tempo”. The query appli-
cation allows the user to select the features used in
the nearest-neighbor matching by specifying one or
more of these feature tags. This allows the user to
compare queries using different subsets of the fea-
ture space, in order to better understand the effect
of each feature on the results of a query.

3 Feature Extraction

To be able to search through a collection of many
gigabytes worth of music, we reduce each song to a
collection of features. A feature is a small vector,
which captures some aspect of a song which can be
used to determine similarity. This is somewhat dif-
ficult because of the large amount of detail present
in a given song. A key challenge is to remove ex-
traneous detail that might overshadow similarities
between songs, while retaining enough detail to ef-
fectively discriminate between qualitatively differ-
ent songs. We achieve this by ensuring that each
feature is very simple. It is more useful if a feature
mistakenly classifies dissimilar songs as similar, than
vice versa, since using a combination of features will
allow us to eliminate these false matches.

This section describes the features we chose to ex-

0

0.05

0.1

0.15

0.2

0.25

0.3

0 500 1000 1500 2000 2500

A
m

lit
ud

e

Frequency, Hz

Amplitude data
Derived normalization function

Figure 1: Derivation of normalization function ν
based on frequency averages.

tract, as well as the mechanisms for extracting them.
The types of data captured are tonal histograms,
tonal transitions, noise, volume, and tempo.

3.1 Tonal histograms

The first feature extractor produces a histogram
of frequency amplitudes across the notes of the
Western music scale. Each bucket of the histogram
corresponds to the average amplitude of a particular
note (e.g., C sharp) across 5 octaves. This informa-
tion can be used to help determine the key that the
music was played in, as well as any dominant chords.
It also has the property of determining how many
different frequencies were active in the sample.

Frequency analysis of this sort should compen-
sate for the characteristics of the human ear, which
is more sensitive to high frequencies than to low
ones. As such, music tends to exhibit greater am-
plitudes in the low frequency range. Therefore, we
must attenuate the energy levels of the music be-
fore performing frequency analysis, in order to per-
form comparisons using the perceived frequencies
that a human would hear. Otherwise, low notes
would dominate the amplitudes in the frequency his-
togram.

The tonal feature extractor determines frequency
amplitudes by performing an FFT on 0.1 sec sam-
ples for 16 sec in the middle of the song. The fre-
quency amplitudes A are then normalized using the
function:

A′
φ =

Aφ

ν(φ)

where the normalization factor ν is

ν(φ) =
43.066

75.366 + φ
+ 0.015

0.6

0.8

1

1.2

1.4

250 500 750 1000 1250 1500 1750 2000 2250 2500

A
m

lit
ud

e

Frequency, Hz

Amplitude data
Derived normalization function

Figure 2: Normalized frequency amplitudes and the
notes of the Western scale.

which is parameterized by φ, the frequency of
the sample being normalized. ν was determined
by applying an inverse linear regression against
amplitude-versus-frequency data averaged across
100 random songs, as shown in Figure 1. Another
way to determine ν would be to use established
models of frequency sensitivity in the human ear,
as in [8]. However, determining this function em-
pirically allows us to adapt it to actual music char-
acteristics, which often exhibit some compensation
for recording and amplification technology.

Figure 2 shows a plot of normalized frequency
ranges across the same set of 100 songs used to de-
termine ν. Superimposed onto this figure are the
frequencies of notes in the Western musical scale;
we can see that frequency peaks occur clearly at
the corresponding notes.

Two types of information are extracted from the
normalized frequency data. The first is the low fre-
quency average, which is the average amplitude of
normalized frequencies from 40Hz to 1KHz. This
feature is meant to distinguish “bass-heavy” music
(such as rock and rap) from “lighter” music such as
classical and jazz. This value is again normalized to
compensate for differences in volume levels between
recordings.

The second type of feature is a histogram of tonal
amplitudes across multiple octaves, as described
earlier. Each bucket of the histogram corresponds
to the average frequency amplitude of a given note
across 5 octaves, ranging from 130Hz to 4.16KHz,
with middle C being 260 Hz. If a measured fre-
quency is within 1/2 of a Hz of a note in the mu-
sical scale, it is counted as that note. We ignore
frequencies less that 130 Hz because the precision
of the FFT below that frequency range is not ac-

curate enough to distinguish between two adjacent
notes. Each interval of the FFT is 10Hz, yet at
100Hz, only 5Hz separates the musical notes.

3.2 Tonal transitions

Music, to some approximation, can be summa-
rized as a collection of frequency transitions over
time. Gibson [5] has investigated the use of fre-
quency transitions to identify individual songs given
a short sample; applying these techniques for simi-
larity matching is the focus of our tonal transition
feature extractor. This extractor produces a set of
306 values, each of which corresponds to the to-
tal number of tonal transitions in a given frequency
range for a 10-second sample of the song. Five such
feature vectors, corresponding to a 50-second sam-
ple, are extracted for each song.

The tonal feature extractor works as follows. Let
a song be modeled as a finite sequence of samples
St. A parameter s can be used to skip s samples
from the beginning of the song. The actual imple-
mentation sets s to correspond to 20 seconds. St+s

is then segmented into a sequence of blocks Bk with
block size b where 0 ≤ k ≤ b |S|−s

b c. FFT is applied
to each block and only the amplitude component is
used. Thus, Bk = |FFT (Bk)|

The frequency amplitudes from the FFT are
mapped onto the Western musical scale for 6 oc-
taves ranging from 53.8Hz (A 3 octaves below mid-
dle C) to 3.43kHz (A 3 octaves above middle C).
This range was chosen as it captures the majority
of the frequencies emitted by acoustic instruments
as well as the human voice, ignoring high-order har-
monics [9].

Tonal transitions are determined by compar-
ing frequency amplitudes between two consecutive
blocks, namely from Bk to Bk+1. Let fφ(k) equal
the amplitude of frequency φ in Bk. If

fφ(k + 1)fρ(k)
fρ(k + 1)fφ(k)

> 1 (1)

there exists a frequency transition from φ to ρ from
block Bk to block Bk+1. Since a relative value is
used for determining frequency transition, effects
from white noise and band filtering can be avoided.

A large block size b corresponds to high resolution
in the frequency domain. However, a large b will not
capture tonal transitions at short time scales. We
choose b = 8192 which corresponds to 0.18 sec at
a sampling rate of 44.1kHz. As a result, frequency
transitions faster than 0.18 sec will not be captured.
However, we believe that this resolution is adequate
to capture the primary tonal properties of music.

Let n be the number of notes that can be cap-
tured per octave and o be the number of octaves to
be examined. Across the o octaves, the number of
all possible tonal transitions is

d = o× n× (o× n− 1)

Let TT be a function that applies the tonal transi-
tion equation given in Equation (1) d times over all
possible tonal transitions and stores each occurrence
on a bit vector ~v with length d. That is,

TT (Bk,Bk+1) → ~v ∈ {0, 1}d

Since d = O((o × n)2), it is desirable to make
n smaller, in order to reduce the dimensionality in
the feature space. In our case, each octave is divided
into 3 segments each, yielding 18 tones. As a result,
d = 18× 17 = 306.

By applying TT to the entire sequence Bi, a se-
quence ~V of bit vectors is generated. If two songs
are similar, the ~V of the two songs should also be
similar using a metric like hamming distance. How-
ever, this approach is not effective since it requires
a pairwise comparison and is prone to phase errors.

One naive method is to count the number of tonal
transitions over a fixed period T . If two songs are
similar, they should have similar number of tonal
transitions over T . The tradeoff is that temporal
information is lost due to summation.

Let FT be the feature extractor function which
performs vector summation over a sequence of vec-
tors and ~F be a sequence of feature vectors.

~FK = FT (~VK×T ...(K+1)×T−1)

where 0 ≤ K ≤ b |S|−s
b c.

Since error due to summation approximation is
cumulative, error increases as T increases. Thus,
T should be tuned by experiment. In our case, T
is chosen to correspond to 10-second samples of a
song, and F contains at most five feature vectors
which correspond to 50-second samples of a song.

3.3 Noise

Another good measure of how similar two songs
are is their relative noise level. It’s unlikely that
a person will characterize a song with pure sound
similar to one with a lot of noise. To convert this to
an objective metric, though, it is necessary to define
what is meant by a “noisy” or a “pure” sound. A
sensible definition should recognize a pure tone (i.e.
a perfect sine

wave) as pure, and random noise (e.g.

random samples) as highly noisy.

Examining these two extremes, we notice that
a pure tone can be identified by a highly regular
Fourier transform. In the ideal case, it consists of
a single spike at the corresponding frequency. The
Fourier transform of random samples, on the other
hand, should exhibit no visible structure. In gen-
eral, we can define a pure sound as one where only a
few dominant frequencies are present in the Fourier
transform, and a noisy one where a large number of
frequencies are present.

Now we are faced with the task of using this def-
inition to algorithmically reduce a sound sample to
a real number representing its noise level. Simply
counting the number dominant frequencies is prob-
lematic, since it’s not always clear which frequencies
are dominant, and which are not. For example, a
discrete Fourier transform of an instrument such as
a violin playing a single tone will produce a peak at
the frequency of the tone, as well as smaller peaks
at several nearby frequencies. Similar difficulties
arise in examining a Fourier transform of a sam-
ple with several instruments playing distinct notes,
some louder than others.

We decided to count peak frequencies by weight-
ing each frequency by the magnitude of the corre-
sponding Fourier coefficient; for example, one loud
tone and two quieter ones with half the magnitude
will count as a total of two peaks. Mathematically,
we simply compute the sum of the magnitudes of
the coefficients corresponding to each dominant fre-
quency. A useful observation is that a non-dominant
frequency would have a nearly negligible contribu-
tion to such a sum, since its magnitude is much
smaller than that of a dominant frequency. Because
of this, we do not perform thresholding to select the
dominant frequencies, and add up all the Fourier
coefficients instead. We then normalize the sum ac-
cording to the maximum Fourier coefficient, so that
songs which are recorded at a louder volume will not
appear more noisy. Therefore,

noise(f) =
∑n

i=1 |f̂(i)|
maxn

i=1 |f̂(i)|

where n is the highest coefficient calculated by the
discrete Fourier transform. This metric applied to
a pure tone will return 1, and applied to a random
set of Fourier coefficients will return approximately
1/2n. A loud pure tone combined with some ran-
dom noise at a half the volume will result in 1/4n
— more noisy than a pure tone, but less noisy than
just random noise. In general, the behavior of this
metric closely approximates the subjective notion of
how noisy a sound is.

Of course, since a Fourier transform is taken over
a small sample of a song, we need to extend this
metric to the entire song. The average noise level
over the entire song is an obvious number to ex-
tract. The maximum level is also useful, since a
song which has some noisy parts and some melo-
dious ones should be classified as dissimilar from a
song which has a uniform medium noise level. This
is especially useful since most songs have quiet in-
tro and outro sections, which tend to be less noisy.
The standard deviation of the noise level across the
song is also an interesting number — it distinguishes
songs which are uniformly noisy from more varied
ones. We use all three of these numbers as separate
feature-space dimensions.

3.4 Volume

It is potentially useful to measure the variations
in the volume level of a song. A primitive way to
calculate the volume of a sound sample is to calcu-
late the average change in the threshold value:

volume(S) =
n∑

i=2

|Si − Si−1|/(n− 1)

(where S is a vector representing the raw sound sam-
ples). This function does not necessarily directly
correspond to the DSP literature notion of volume,
but it does have the property that it returns higher
values for loud songs and lower ones for quiet ones.
For our purposes, this is sufficient.

As with the noise function, we can calculate the
maximum and average volume levels, as well as the
standard deviation. However, the average volume
level is more reflective of the recording equipment
used, rather than the style of the song. For example,
two copies of a song, with one recorded at half the
volume, will produce distinct results in all three of
the metrics. This is especially problematic because
there is a large amount of variance in the average
volume level of commercially available recordings.
It is therefore more useful to normalize these values
with respect to the average volume level. We thus
obtain the relative volume metric, which contains
the maximum volume, and the standard deviation
relative to the average volume level. This metric
better identifies the amount of variation in volume
of a song. The absolute volume metric may still
be useful for purposes of creating a mix of songs:
a selection of many different recordings will likely
have songs with significantly different volume lev-
els. One can either use the absolute volume data to
pick songs with similar volume levels, or to aid in
performing automated volume adjustments.

3.5 Tempo and Rhythm

The specific rhythmic qualities of a piece of mu-
sic have a good deal of influence on how humans
experience it. Fast songs are often upbeat and en-
ergetic, while slower songs are often more peaceful.
The syncopated rhythms of jazz songs feel very dif-
ferent from the more straightforward even tempos
of rock.

Extracting rhythmic information from raw sound
samples is a difficult task. Several studies have fo-
cused on extracting rhythmic information from digi-
tal music representations such as MIDI, or with ref-
erence to a musical score [16]. Neither approach
is suitable for analyzing raw sound data. For the
purposes of our analysis, we adopted the algorithm
proposed by Scheirer [17]. This technique breaks an
input signal into several bands, each representing
one-octave ranges. The algorithm then uses banks
of resonators on each input to settle in on the posi-
tion of the downbeat over time.

The output of this algorithm allows us to extract
several interesting features from a music sample.
First, we can determine the average tempo of a song.
Additionally, we can examine how the tempo varies
throughout the song. Finally, as a measure of the
rhythmic complexity of the song, we track how well
the algorithm was able to settle down to a particular
tempo.

The tempo feature extractor determines the
tempo of the song from three 10-second samples,
at 60, 120, and 180 seconds into the song.1 It then
outputs 4 numbers: the average tempo of the 3 sam-
ples, the spread and deviation of the tempo across
samples, and the fraction of samples for which the
tempo extraction appeared not to work well, as in-
dicated by the inability of the algorithm to settle
in on a steady beat by the end of the 10-second
sample. Note that it is impossible to measure the
actual effectiveness of the algorithm for every sam-
ple, since this involves listening to the sample and
deducing the tempo manually. In the samples that
we listened to, however, a wide variation in the out-
put of the tempo algorithm typically coincided with
the failure of the algorithm, often due to complex
rhythms or noisy music.

1For shorter songs, additional samples are chosen by halv-
ing the start position of the sample until chosen start point
is at least 10 seconds from the end of the song.

4 The Jukebox Query Engine

In order to study the effectiveness of our fea-
ture extraction and similarity-matching algorithms,
we have integrated the query engine into the Ninja
Jukebox [6], a scalable online digital music reposi-
tory consisting of nearly 7000 songs stored in MP3
format. The Ninja Jukebox consists of a cluster of
workstations each hosting a collection of music data
on local disk, as well as a Java-based scalable service
platform, the MultiSpace [7], which manages clus-
ter resources and facilitates application construction
and composability. The Jukebox service itself is en-
tirely coded in Java, using Java Remote Method
Invocation (RMI) for communication between dis-
tributed components (e.g., the music locator service
on each node of the cluster).

The Jukebox user interface is a Java application
which establishes a connection to a centralized Juke-
box directory service to select songs, and which re-
ceives MP3 audio data streaming over HTTP to an
external player application. Access to both the mu-
sic directory and each song in the Jukebox requires
access controls based on client authentication using
public key certificates. The Jukebox also includes a
simple collaborative-filtering feature allowing users
to express song preferences.

Integrating the query engine into the Ninja Juke-
box consisted of two steps: first, adding the similar-
ity query functionality to the Jukebox service itself,
and second, enhancing the Jukebox user interface to
accept queries and return results.

The Jukebox Query Engine is implemented in
Java and runs alongside the other Jukebox subser-
vices in the MultiSpace cluster environment. When
the engine is started, it reads the feature database
(stored as a collection of text files) and exports a
Java RMI interface with a number of methods which
can be invoked by a client application. These meth-
ods are:

• int numSongs() — return the number of songs
in the database;

• String[] getFeatures() — return a list of fea-
ture tags;

• String[] getSongNames() — return a list of
songs;

• getSong(String name) — return the Song data
structure for a given song;

• Song[] query(Song query, int k) — return
the k nearest songs which match the query
song;

• Song[] query(Song query, String features[],

int k) — return the k nearest songs which
match the query song, using only the given
features.

Having the Query Engine export a simple RMI in-
terface allows multiple client applications to be built
which are able to perform remote queries on the en-
tire Ninja Jukebox.

Feature extraction from the Ninja Jukebox is per-
formed in parallel, with each node of the Jukebox
running each of the feature extractors against the
subset of the music database stored on that node.
The scripts performing the feature extraction are
engineered to be highly resilient to failures in the
feature extractors themselves, as well as in the un-
derlying system software. The feature extraction
scripts perform checkpointing so that they may be
stopped and restarted at any time without loss of
data. This functionality is vital considering the ex-
pense of losing feature data (i.e., re-running the fea-
ture extractors, which are slow).

4.1 Query algorithm

The Query Engine performs similarity matches
on the database using a brute-force k-nearest neigh-
bor algorithm. Our nearest-neighbor algorithm
keeps track of the current result set of size k, and
is optimized to quickly reject points which have a
distance exceeding the maximal distance of points
in this set. This early rejection prevents the n-
dimensional distance from being fully computed for
each point.

This algorithm requires at most O(n · d) op-
erations where n is the number of songs in the
database and d is the number of feature dimen-
sions stored per song. Clearly there are more ef-
ficient algorithms for computing nearest neighbors.
Most deterministic algorithms have a query time of
at least Ω(exp(d) · log(n)) [4, 1], while Kleinberg’s
ε-approximate algorithm [12] has a query time of
O((d log2 d)(d + log n)) and a preprocessing step
which requires O((n log d)2d) storage.

However, we feel that our use of a brute-force
technique is reasonable for two reasons. First, it
performs very well given the size of the Ninja Juke-
box, with a query time of less than 1 second in most
cases. Secondly, our algorithm allows queries on
subsets of the feature space. Many of the approx-
imate nearest-neighbor algorithms require prepro-
cessing of the data set which lose information which
is needed to independently identify feature dimen-
sions for such subset queries. Subset queries are an
important tool for studying the effectiveness of our

songs features time

2500 10 4 msec
2500 24 7 msec
2500 100 22 msec
2500 1000 189 msec
2500 1248 235 msec

10000 10 18 msec
10000 24 29 msec
10000 100 85 msec
10000 1000 786 msec
10000 1248 948 msec

50000 10 91 msec
50000 24 143 msec
50000 100 426 msec
50000 1000 3806 msec
50000 1248 14738 msec

Figure 3: Performance of Query Engine on syn-
thetic data set.

feature extractors, so we are willing to trade perfor-
mance for this functionality. Moreover, the design
of our system makes it easy to “drop in” different
nearest-neighbor algorithms with relative ease.

Another issue is large amount of storage required
by the approximate algorithms. For interactive re-
sponse times, it is desirable to trade CPU utilization
for memory, in order to keep the entire database in
core. We feel that our feature extractors have re-
duced the dimensionality of the search space suffi-
ciently that more expensive (and also more straight-
forward) nearest-neighbor algorithms are adequate.

Figure 3 shows the performance of the Query En-
gine using a synthetic data set consisting of 2500,
10000, or 50000 songs with a varying number of
dimensions stored per song. The feature vectors
are initialized with random values in the range
(0 . . . 1). The total number of songs in the real
Jukebox Query Engine is 7090, with 1248 feature
dimensions stored per song. All but 24 of those
dimensions are tonal transition features. All mea-
surements were taken on a dual-processor 500 MHz
Pentium III system running Linux 2.2.13 and IBM
JDK 1.1.8, which employs a highly optimized Java
JIT compiler, the same configuration running the
actual Jukebox Query Engine.

Note that the performance of the Query Engine is
roughly linear in (n · d). If the frequency-transition
features are left out of the database, performance is
very good with a query time of less than 150 msec
even for a Jukebox of 50000 songs — 7 times more
than that in the actual Jukebox. Incorporating the
tonal transition features yields an acceptable query
time of less than 1 sec for a 10000-song database,

Figure 4: The Jukebox Query Engine user interface.

which rises to 14.7 sec for 50000 songs. The per-
formance discontinuity between 1000 and 1248 fea-
tures on the 50000-song database (3.8 and 14.7 sec,
respectively) is due to operating system paging be-
havior, since in the latter case the database size ex-
ceeds the physical memory of the machine, which is
512 MBytes.

Note that the query algorithm is trivially par-
allelizable. In our prototype implementation, the
Query Engine is centralized, but considering that
the Jukebox service itself is distributed on a clus-
ter of workstations, the Query Engine could be as
well. In this case the number of songs per engine
could be reduced significantly, yielding faster query
times even with many feature dimensions per song.
In the current Ninja Jukebox, there are 3 cluster
nodes storing about 2500 songs each.

4.2 Query Engine User Interface

The user interface for the Query Engine is built
into the original Jukebox user interface application.
At any time while listening to a song, the user can
click the “find similar” button, which displays a win-
dow such as that shown in Figure 4. The left panel
allows the user to select the features upon which to
submit queries, or “All” for all features. The slider
allows the number of results to be returned to range
from 2 to 100. After clicking “search”, the list of
matches is displayed in the right panel along with
the computed distance from the query song. The
user can then select one or more songs from the re-
sults list and click “add to playlist” to add them to
the Jukebox’s list of songs to play.

In addition to the graphical UI, we have imple-
mented a text-based query client allowing queries to
be submitted from the command line or embedded
in scripts.

5 Results

This section summarizes our results for each of
the feature extractors in turn, followed by a quanti-

tative analysis based on genre classification.
Analyzing the effectiveness of our work was dif-

ficult because of the inherently subjective nature of
similarity. We were not able to perform an end user
study; instead, much of the analysis consisted of per-
forming queries using a selection of the features, and
then manually examining the results. This provided
anecdotal evidence which allowed us to examine how
well each feature performed. To be able to perform
a quantitative analysis, we hand-classified a set of
songs into genres and measured how well we could
identify songs within the same genre as similar.

5.1 Tonal histograms

The tonal extraction and analysis is exceptionally
successful at determining similar songs when deal-
ing with classical music. This is due to the fact that
classical music is composed of pure tones generated
by instruments or a well-trained human voice. How-
ever, as the tones become less distinct, the frequency
analysis begins to perform poorly. This occurs when
there are vocal harmonies, as in a cappella music, or
notes that are slurred together, as with a jazz trom-
bone. When this occurs, many different frequency
ranges are active. Any two pieces that have this
characteristic will be registered as similar regardless
of the genre of the music.

An an example query over classical music, we
searched for songs similar to a particular Bach piece.
The results contained songs from that same CD as
the top four matches. The query also returned pi-
ano solos by other artists. Likewise, a query on a
piece by Mozart returned six other Mozart songs.
Of the top 10 matches, all but one song were either
other pieces by Mozart or piano sonatas by other
artists. The result of this query contained many of
the other songs on the same album because the en-
tire album was in the same musical key. This led to
similar frequency analysis results for all the songs.

In addition to classical music, many forms of pop
music work well with frequency analysis techniques.
For example, a query against a pop, male vocal song
produced results where every song in the top 10 was
a male vocal with guitar and drum accompaniment.
Along the same lines, a query of ten closest matches
against a typical rap song returned two other simi-
lar songs by the same artist, seven other rap songs,
and one techno song, which was rhythmic and bass
heavy. The use of the low-frequency average feature
contributed significantly here.

However, when a song containing many vocal
harmonies, such as a Beach Boys song, is queried,
the results are not as good. The songs returned also

contain many harmonies, but they span many differ-
ent genres. When the music contains certain instru-
ments, such as harmonicas, a similar effect occurs
— the closest matches don’t exhibit much similar-
ity, but they all tend to contain harmonicas. This is
because many different frequency ranges are active
in this type of music, regardless of the exact style.

5.2 Tonal transitions

Query results against tonal transition data for
classical, folk, and pop songs are quite promising.
That is, they return songs in the same category
which share a similar tonal structure.

A query of a classical cello piece by Bach per-
forms very well. The two most similar songs re-
turned are cello pieces by Bach. A number of classi-
cal and soft guitar pieces are also in the list. A new
age and a techno song are also returned. Despite
the fact that different instruments are used, songs
that contain similar tonal transitions should be con-
sidered similar. This, in fact, is observed from the
result.

A query of a folk song also gives promising re-
sults. In one such query, all the songs returned are
can be classified as folk. Since we are counting the
number of tonal transitions over a fixed time period,
it is expected that songs with similar temporal and
tonal transitions should also be considered similar
by this feature.

Pop and new-age songs are often complex and
contain different streams of tonal transitions concur-
rently. The “noisiness” of the tonal transition data
means that results for these genres are not very spe-
cific; however, other features could be used to help
restrict the search within a particular genre.

Electronic and rock music often share similar
tonal transitions. Therefore, it is difficult for this
feature extractor to find songs specific to these gen-
res, although the tonal transitions are matched well.
Also, these genres tend to involve a great amount
of noise in the frequency domain, which introduces
errors into tonal extraction. It should be possible
to couple the use of tonal transitions with the noise
extractor for better results.

The limitation of not being able to capture tonal
transitions faster than 0.18 seconds does not seem
impose significant errors. Nonetheless, it may be
interesting to explore the tradeoff between resolu-
tion within the frequency domain and the ability to
detect faster tonal transitions.

5.3 Noise

The use of the noise level feature produced sur-
prisingly good results. Out of a random sample of
queries using this feature, more than half produced
a list of songs including one or two songs from the
same artist. Among the other songs returned, most
exhibit some similarity of style. For example, most
of the results for an a capella song query involve a
strong vocal component. Similarly, a query of an
electronic song results in other music of the same
genre.

It was interesting to note that the noise level
seems to capture, to some extent, the “instrumental-
ity” of the song. A query of a song with a strong pi-
ano presence will result in many other piano pieces;
a song with soft vocals and a guitar accompaniment
will return many other such songs. This can likely
be explained by the fact that the frequency signa-
ture of an instrument is definitive enough that the
number and size of peaks, which contribute to the
noise metric, are similar for songs using this metric.
An interesting observation is that there is no appar-
ent distinction between male and female vocals; this
is not surprising considering that the feature is not
dependent on the frequency of a sound, but rather
on its purity characteristics.

The query results are especially good for songs at
the extremes of the noise metric. Queries of highly
melodic and ambient songs pick other such songs
with high accuracy; the same is true for very noisy
and harsh songs. Pop rock songs produce gener-
ally worse results, presumably because of the high
variance in noise within the style. However, in all
queries there are some results which would not be
classified as similar by any human. For example, a
heavy metal song had similar noise level as a ’70s
pop song, and a Beatles song was classified as similar
to a rap song. What’s interesting to note, though,
is that even among the “incorrect” results from a
query, there seems to be high amount of correla-
tion. The heavy metal song query above returned
several songs by the same ’70s pop band, along with
other heavy metal songs.

In general, a result to any given query will re-
turn a list of songs, which appears to be comprised
of one or more clusters of subjectively similar songs.
One of the clusters includes the original query, and
others are sometimes related to the original song,
and sometimes very different. This behavior can be
explained by the fact that the noise feature reduces
a song to three real numbers. While those numbers
may be able to assist in finding similar songs, there
are bound to be cases when significantly different

styles of music will result in similar noise feature.
This means that the noise feature can be used to
identify subclasses of songs, but it is unable to dis-
tinguish between certain subclasses. However, this
is still a useful result, since we can use other features
to separate these subclasses, hopefully leaving only
truly similar songs.

5.4 Volume

The volume level feature produced mixed results.
From experiments, there appears to be some corre-
lation between the queries and the results. In par-
ticular, the number of songs selected which are by
the same artist is higher than that expected in a ran-
dom distribution. However, the correlation is small
enough that it is difficult to analyze the rest of the
results from a query. There are many results which
are highly dissimilar from the original query, and it
is difficult to judge how similar the rest are, due to
the subjective nature of similarity.

These results are perhaps not surprising. The
variation in volume level, unlike some of the other
features, is not something that is very noticeable or
memorable to a human; it is difficult to identify a
style of music with high or low volume variation.
Furthermore, there is a large amount of variance in
the feature based on the recording. For example,
a live and a studio recording of the same song are
bound to have different values for the volume level
feature. It may still be possible, however, to exploit
the small amount of correlation exhibited by this
feature, if it is used in the similarity search but with
a low weight relative to other features.

5.5 Tempo and Rhythm

The use of the tempo features was modestly suc-
cessful. The structure of the tempo extraction al-
gorithm caused it to give poor results for rhythmi-
cally active songs: features such as runs of eighth
or sixteenth notes, trills, and syncopated rhythms
all tended to confuse the algorithm. Additionally,
the beat in the extremely fluid songs of Enya and
other new age artists tended to be too subtle for the
algorithm to detect. Another artifact of the tempo
extraction algorithm was that it took a very long
time to run. Processing only three 10-second sam-
ples required between 3 and 5 minutes. Doing a
full analysis of a 4 minute song would take between
24 and 40 minutes, which made this infeasible for
our analysis. Combined with the noise inherent in
the tempo extraction algorithm, the small number
of samples lead to a high degree of variability in the
tempo data.

The noise in the tempo data limits the usefulness
of the tempo measurements when used by them-
selves to perform similarity queries. Performing
hand measurements of a the query results from a
song with an actual tempo of 138 beats per minute,
we obtained result songs with actual tempos be-
tween 102 bpm and 156 bpm. This gives a rough
idea of the variability in this measure.

The spread measurement attempted to capture
how the tempo changed through the course of the
song. Unfortunately, the noise in the tempo data
rendered this useless by itself: a query for a song
with a steady tempo throughout produced songs
with both steady and variable tempos. The use-
fulness of this measure was also limited to a cer-
tain extent by our data set. The predominance
of rock songs (which typically maintain a steady
tempo throughout) in our music collection meant
that the data set as a whole had little variation on
this measure. If we had been able to analyze whole
songs, a better measure might have been how many
places the tempo predicted in the algorithm seemed
to change for an extended period of time.

The final two tempo measurements (the average
percent deviation with each sample, and the pro-
portion of samples with high deviation) give an in-
dication of how predictable the tempo was, accord-
ing to our algorithm. The small number of samples
limited the discrimitave power of the proportion of
high deviation samples metric. The average percent
deviation metric did a reasonable job of identifying
rhythmically complex songs, precisely because the
tempo extraction algorithm tends to be confused by
these songs.

Although the tempo data were not good at iden-
tifying “similar” songs by themselves, they were use-
ful in helping to narrow down searches when com-
bined with other features. In our experience, adding
average tempo and average percent deviation infor-
mation to the frequency results seemed to give bet-
ter matches for songs with complicated rhythms. In
the queries we examined, adding these measures im-
proved the effectiveness of the frequency measures
by around 10%. The significance of this is somewhat
limited due to the subjective nature of the evalua-
tion and the noisiness of the tempo data. However,
it does suggest that the tempo data could help fine
tune the analysis. We expect that with less noisy
tempo data the impact would be more dramatic.

5.6 Genre classification results

Quantitatively measuring the effectiveness of our
feature extractors is a difficult task, as the notion of

“similarity” in music is highly subjective. However,
it is possible to perform a coarse analysis of our
feature extractors based on genre classification.

We have categorized by hand a selection of 100
random albums from the Ninja Jukebox totalling
1225 songs. Each album was placed into one of the
genres rock, classical, electronic, soul, pop, folk, or
indie. Each song in the list was then queried against
this reduced database, using a selection of feature-
space subsets. The genre of each song returned in
each query was recorded. By comparing the dis-
tribution of genres for query results against that of
the song database as a whole, a measure of genre
selectivity for different feature extractors can be ob-
tained.

For each genre G, we can compute the χ2 metric:

χ2(G) =
∑

g

(Ng − ng)2

ng

where Ng is the percentage of query results in genre
g (given a query song in genre G) and ng is the per-
centage of songs in genre g. A large value of χ2(G)
indicates that a particular set of feature extractors
is highly selective for songs in genre G. A small
value of χ2(G) indicates that those feature extrac-
tors are non-selective; that is, that the distribution
of query results closely matches the genres of songs
in the database as a whole.

Genre songs

Classical 7.59%
Electronic 19.43%
Folk 9.63%
Indie 14.61%
Pop 8.82%
Rock 38.29%
Soul 1.63%

Figure 5: Distribution of songs by genre in Ninja
Jukebox subset.

Genre χ2 (k = 10) χ2 (k = 20) match

Classical 2.593 1.765 50.11%
Electronic 0.102 0.049 31.05%
Folk 0.203 0.109 22.71%
Indie 0.244 0.139 31.23%
Pop 0.251 0.110 22.22%
Rock 0.064 0.038 48.74%
Soul 0.947 0.295 13.00%

Figure 6: χ2 by genre using low-frequency features.

Genre χ2 (k = 10) χ2 (k = 20) match

Classical 4.153 2.783 61.50%
Electronic 0.171 0.065 34.82%
Folk 0.633 0.436 31.92%
Indie 0.368 0.221 35.39%
Pop 0.378 0.212 25.56%
Rock 0.119 0.078 51.96%
Soul 5.358 2.674 30.50%

Figure 7: χ2 by genre using low-frequency, noise,
and tempo features.

Genre χ2 (k = 10) χ2 (k = 20) match

Classical 1.536 1.018 39.57%
Electronic 0.120 0.072 28.95%
Folk 0.449 0.300 27.88%
Indie 0.319 0.120 33.45%
Pop 0.635 0.407 30.51%
Rock 0.096 0.086 46.07%
Soul 4.364 2.564 27.50%

Figure 8: χ2 by genre using low-frequency, noise,
tempo, and tonal transition features.

Figure 5 shows the distribution of songs, by
genre, in the subset of 100 albums chosen from the
Ninja Jukebox. Figure 6 shows the χ2(G) results
for 3 feature vectors representing low-frequency in-
formation. Results for k = 10 and k = 20 are
shown. Also shown is the percentage of results
which matched the query song genre for k = 10.
As we can see, both classical and soul albums
are selected highly by these features, while elec-
tronic and rock albums are not. Combining low-
frequency information with noise and tempo data
produces somewhat better results, as shown in fig-
ure 7. Adding tonal transition data produces some-
what worse results, as shown in Figure 8.

It is apparent that using too many features for a
query can decrease selectivity. This is because any
error in a feature set is magnified by its number of
dimensions; in the case of tonal transitions, which
comprises 1224 dimensions, any noise in this feature
will have a stronger adverse impact on the results.
Testing all combinations of features would help de-
termine which are better for genre classification; we
have not yet performed this analysis.

Note that even in cases where χ2 is low, the
percentage of results which match the query song’s
genre is high — nearly 52% for rock in Figure 7.
That is, although the χ2 might be low due to a close
match with the distribution of songs in other gen-
res, the “target” genre hit rate is high. One reason

for the poor selectivity may be that the genre clas-
sification is rather coarse. What our analysis here
does not capture is the subjective similarity of the
query results — for example, whether results from
a loud, fast rock song are themselves also loud and
fast. Moreover, as a music archive navigation aid,
we believe users will be able to tolerate a certain
error in the query results.

6 Related Work

Our work utilizes simple similarity matching
techniques to find songs with features similar to a
query song. The features we have chosen were mo-
tivated both by their potential to represent mean-
ingful aspects of human musical experience, and
by the feasibility of extracting them from our mu-
sic data. To the best of our knowledge, similarity
matching techniques have not been previously ap-
plied to searching acoustic music.

Much of the work on categorizing and describ-
ing music does so at a very high level, and can’t
be applied directly to acoustic music. Kaper [11]
presents useful a discussion of ways in which humans
experience music, but does not suggest mechanisms
for extracting these features from recorded music.
There is a broad literature on computer generated
music, which also suggests interesting features of
music which are important for generation [2, 14].
Unfortunately, we have not found it feasible to re-
verse this analysis to extract features from recorded
music.

Dannenberg et. al. describe techniques extract-
ing high-level style information from MIDI sam-
ples [13]. Dannenberg also provides a nice sum-
mary of high level music features in [3]. Unfortu-
nately, these works relied on high-level music rep-
resentations such as MIDI or musical scores. The
work which is most relevant for our purposes is Dub-
nov et. al. [18] which includes an interesting discus-
sion of possible acoustic characterizations of tim-
bre and other features of recorded music. Applying
their techniques might yield additional useful fea-
tures for our similarity analysis.

The problem of extracting tempo from music
data has been studied directly in the literature. Eric
Scheirer proposes a mechanism for extracting tempo
information from MIDI music through the aid of a
musical score [16]. The tempo extraction algorithm
used in our work was adopted from the more re-
cent work of Scheirer, and works with acoustic music
data, rather than MIDI [17] [15].

7 Conclusions

We believe that out music query engine serves
as a useful tool for navigating large digital mu-
sic archives. Rather than relying upon text-based
data alone, directly indexing music based on acous-
tic properties gives the user of a music archive the
ability to perform queries with greater information
content — namely, another song.

Our feature extractors have demonstrated excel-
lent results, although this success is somewhat dif-
ficult to quantify. As with other problem domains,
having a human-classified “ground truth” dataset
against which to measure results would be help-
ful. However, subjectively speaking, the applica-
tion of several straightforward feature extractors —
frequency data, amplitude, and tempo information
being foremost —- has produced good results.

We believe that this study is unique in that it is
the first to apply similarity queries against a large
digital music archive. There is much future work
to be done in this area. Fine-tuning the existing
feature extractors, as well as developing new ones
which better encapsulate the aural properties of mu-
sic from a human listener’s perspective, will be es-
sential. Better tools are needed to help develop new
feature extractors for music, and to understand the
results they produce; this problem is complicated
by the inherently temporal and non-spatial nature
of music.

Other possibilities include performing queries on
data gathered from entire albums as well as artists,
rather than on individual songs. Of geometric
interest is the investigation of non-Euclidean dis-
tance metrics as well as the application of efficient
neighbor-finding algorithms. Also, the incorpora-
tion of other forms of data into an inclusive music
search facility is of interest. Synthesizing a music
search engine from acoustic data, text indices, and
collaborative filtering data will probably prove to
yield the best overall results.

References

[1] K. Clarkson. A randomized algorithm for closest-
point queries. SIAM J. Computing, 17:830–847,
1988.

[2] Jeffrey S. Rosenschein Claudia V. Goldman,
Dan Gang and Daniel Lehmann. Netneg: A hybrid
interactive architecture for composing polyphonic
music in real time. In Proceedings of the Inter-
national Computer Music Conference, pages pages
133–140, August 1996.

[3] Roger B. Dannenberg. Recent work in music under-
standing. In Proceedings of the 11th Annual Sympo-
sium on Small Computers in the Arts, pages pages
9–14, November 1991.

[4] D. Dobkin and R. Lipton. Multidimensional search
problems. SIAM J. Computing, 5:181–186, 1976.

[5] David Gibson. Name That Clip:
Content-based music retrieval.
http://www.cs.berkeley.edu/~dag/NameThat-

Clip/, 1999.

[6] I. Goldberg, S. Gribble, D. Wagner, and E. Brewer.
The ninja jukebox. In 2nd USENIX Symposium on
Internet Technologies and Systems, October 1999.

[7] S. Gribble, M. Welsh, D. Culler, and E. Brewer.
Multispace: An evolutionary platform for infras-
tructural services. In Proceedings of the 16th
USENIX Annual Technical Conference, Monterey,
California, 1999.

[8] Gebeshuber I.C. and Rattay F. Modelled human
hearing threshold curve, 1998.

[9] PSB Speakers International. The frequencies
- and sound - of music. http://www.psb-

speakers.com/frequenciesOfMusic.html.

[10] ISO/IEC 13818-3. Information Technology:
Generic coding of moving pictures and associated
audio - audio part. International Standard, 1995.

[11] H. G. Kaper and S. Tipei. Abstract approach to
music. In Preprint ANL/MCS-P748-0399, March
1999.

[12] J. Kleinberg. Two algorithms for nearest-neighbor
search in high dimensions. In Proc. 29th ACM Sym-
posium on Theory of Computing, 1997.

[13] Belinda Thom Roger B. Dannenberg and David
Watson. A machine learning approach to musical
style recognition. In International Computer Music
Conference, pages pages 344–347, September 1997.

[14] B. J. Ross. A process algebra
for stochastic music composition.
http://www.cosc.brocku.ca/Research/TechRep/,
February 1995.

[15] Eric D. Scheirer. Pulse tracking with a pitch
tracker. In Proc 1997 IEEE Workshop on Applica-
tions of Signal Processing to Audio and Acoustics,
October 1997.

[16] Eric D. Scheirer. Using Musical Knowledge to
Extract Expressive Performance Information from
Audio Recordings. 1997.

[17] Eric D. Scheirer. Tempo and beat analysis of acous-
tic musical signals. In J. Acoust. Soc. Am. 103:1,
pages pages 588–601, January 1998.

[18] Naftali Tishby Shlomo Dubnov and Dalia Cohen.
Hearing beyond the spectrum. In Journal of New
Music Research, Vol. 25, 1996.

