
GridPix—Presenting Large Image Files Over the Internet

Satoshi Asami and David A. Patterson

Report No. UCB/CSD-00-1099

May 2000

Computer Science Division (EECS)
University of California
Berkeley, California 94720

GridPix—Presenting Large Image Files Over the Internet

Satoshi Asami and David A. Patterson
Tertiary Disk Project�

University of California at Berkeley
Berkeley, CA 94720-1776

asami@cs.berkeley.edu

Abstract

GRIDPIX is a web-based image presentation system
that allows users to zoom in to portions of a large
image and scroll around to view different parts by
presenting the image as a layered, tiled collection of
grids. GRIDPIX is a collection of server-side scripts
and does not require the user to download a plu-
gin or an applet. The client-side implementation of
GRIDPIX is done entirely in HTML, and thus can be
viewed on any graphical web browser, regardless of
support for advanced features. While an image pre-
sented by GRIDPIX will utilize the memory cache on
both the server and client computers, GRIDPIX itself
is immune to memory leak bugs, as caching of im-
ages are done entirely by the operating system and
the browser.

1 Introduction

This paper describes the design and implementation
of GRIDPIX , a new way of presenting large images
on the Internet. GRIDPIX allows users to zoom in to
portions of a large image and scroll around to view
different parts.

The Tertiary Disk Project, in cooperation with the
Fine Arts Museums of San Francisco, has built a
large database of photographs of artwork. GRID-
PIX was chosen as the method to present the images,
some of which are over 6,000 by 4,000 pixels in their

�This research was funded by DARPA Roboline grant
N00600-93-K-2481 and the State of California MICRO pro-
gram.

native size. The image database has been available
online with GRIDPIX since March 1998.

There are other available methods for image pre-
sentation but neither of them achieve the balance of
simplicity and power of GRIDPIX . The GRIDPIX

implementation is unique in that it uses only stan-
dard HTML features to present the tiled images, so
the user does not have to download a plugin or an ap-
plet before viewing GRIDPIX images. Also, GRID-
PIX is immune to memory leak bugs, as the caching
of images are done by the operating system and the
browser—in other words, GRIDPIX images benefit
fully from memory caching, while not having to im-
plement a complex and error-prone caching system
by itself.

The rest of this paper is organized as follows. Sec-
tion 2 briefly introduces the readers to GRIDPIX and
Section 3 describes the image database and our archi-
tecture. Section 4 compares two currently available
solutions with GRIDPIX . Section 5 describes the
GRIDPIX design and implementation. The GRID-
PIX image concept, file format, and access programs
are explained in detail. Finally, Section 6 discusses a
few design issues and Section 7 concludes the paper.

2 GRIDPIX Usage

Figure 1 is a sample GRIDPIX screen. The grids
are not visible but the image is actually loaded in 15
pieces, 3 rows and 5 columns. There are three main
functions: zooming in, zooming out, and scrolling.

Zoom in The user can zoom in by clicking the
mouse on any part of the image itself. The

1

Figure 1: Sample GridPix Screen

2

new image will be four times the resolution of
the original, i.e., twice the width and twice the
height. The size of the window will not change,
so the user will be seeing the area one quarter of
the original image. The new image will be cen-
tered around the tile clicked by the user. The
user can repeatedly click on the image to zoom
in past the original size to the maximum resolu-
tion, which is set to 1,600% by default.

Zoom out One of the buttons on the right is the
“zoom-out” button. The image will be one quar-
ter the size, centered at the same spot. The user
can repeatedly click on the zoom-out button to
shrink the image down to a minimum defined at
image conversion time, which is 12.5% by de-
fault.

Scroll The user can click on the arrows on the hor-
izontal or vertical scrollbars to scroll the image
one tile in that direction. In addition, the user
can scroll the image all the way to one end by
clicking on the special “scroll to edge” arrows
at the end of the scrollbars.

Note that since GRIDPIX is implemented en-
tirely in HTML, it is not possible to grab and
drag on the “thumb” of the scrollbar or the im-
age itself. All navigation actions are invoked by
clicking.

3 The Imagebase

Over the past few years, The Fine Arts Muse-
ums of San Francisco have photographed over
70,000 objects of art and stored the images on
PhotoCDs to present them on their web site
(http://www.thinker.org/). Visitors to the
web site can search the image database by artist, title,
or description of an art work. The description is a set
of keywords that were compiled by a group of mu-
seum volunteers. The image database is the largest
on-line art collection in the world.

Because of limited storage, the museum offered
only low-resolution versions of the images, JPEG
images from 2KB thumbnails up to about 100KB,

500 � 500 pixels, online. The larger versions of the
images were kept only on CD-ROMs. In the origi-
nal form, many images are 3,072� 2,048 pixels and
about 4.5MB in size, or 6,144�4,096 pixels and oc-
cupy 18MB. They shrink somewhat after cropping
the borders created by the photographing.

3.1 Problems

Since the web site’s launch in 1995, many users have
requested larger versions of the images. There are
four problems with presenting large images over the
Internet:

3.1.1 Storage Space

The first problem is the simple matter of storage
space. Each image, even converted to a space-
efficient format such as JPEG at a cost of image qual-
ity, is still about 1MB in size for the smaller images
and 4MB for the larger variant. That would require a
storage space of about 70GB just for the images. The
original PhotoCDs, as well as an intermediate high-
quality (full 24-bit) format such as TIFFs, will easily
increase the space demand to more than a terabyte.

3.1.2 Network Bandwidth

Another problem is available network bandwidth. It
is not reasonable to simple dump a large file to the
user, which averages 1MB as mentioned previously.
If the user is on a dial-up network, the situation is
even worse, as it will take more than a few minutes
to download the entire image.

3.1.3 Copyright

The third problem, which is a unique situation for
us, is copyright of art works. There are many cur-
rent artists whose art works are photographed by the
museum. It is not appropriate for the museum to dis-
tribute full-size images of those art works, even in
relatively low-quality JPEG format.

3

3.1.4 Usability

The last problem is presentability. Nobody owns a
monitor that can display 6,000 by 4,000 pixels on
the screen. If the full image is presented as a single
HTML page, the user will only see part of it, and
will have to scroll around to view the entire image.
One alternative is to present the images as a sequence
of linked HTML pages, i.e., have the user click on
an image to retrieve a larger version. This approach
will increase the total size of data transfer over the
network.

3.2 Solutions

The first problem is solved by Tertiary Disk, a 3TB
disk storage system developed by the Tertiary Disk
Project[1]. By connecting 400 9GB disks to 20 PCs
over a high-speed network, it allows all the original
PhotoCDs as well as human-processed TIFFs to be
stored on-line. The TIFFs can be used to generate
images in other formats, as well as being used for
some other projects in the university, such as content-
based search. It can also be used to print high-quality
pictures.

GRIDPIX addresses the other three, as we will de-
scribe in detail in the rest of this paper.

4 Previous Solutions

When we started development of GRIDPIX , two
other implementations of tile-based image view-
ers existed. They are called FlashPix[2] and GIS
Viewer[3].

4.1 FlashPix

FlashPix, developed by Eastman Kodak and others,
is a very powerful standard but is overkill for our pur-
poses. It contains support for much more than simple
tiled image storage. For instance, it can store infor-
mation about the brand of film that was used to pho-
tograph the image.

Its current implementation requires a client-side
plugin, so its use is limited to those with the oper-
ating system/browser pair which is supported by the

vendor. The size of the plugin is over 1MB. In ad-
dition, its complexity makes the server very compli-
cated and large. The source code for the server is not
freely available, so there also is a problem of oper-
ating system/web server pair being supported by the
vendor.

GRIDPIX is just a collection of server-side scripts
and does not require the user to download a large
plugin or an applet. Also, GRIDPIX is implemented
using only standard HTML commands, any thus can
be viewed on any graphical web browser.

4.2 GIS Viewer

The GIS Viewer is developed by Prof. Wilensky’s
Digital Library Project at the University of California
at Berkeley. It was originally written for viewing ge-
ographic data, hence its name. It is implemented as
a Java Applet and thus runs on Netscape Navigator,
version 4 or later, and Microsoft Internet Explorer,
version 4 or later.

It has a nice interface, not unlike that of Flash-
Pix. It also has several interesting capabilities, such
as “layering” several images on top of each other and
allowing the user to “annotate” comments on parts of
the images, which will be stored on disk for later use.

The biggest problem with the GIS Viewer is
not the viewer itself, but the web browsers. Both
browsers we tested, Netscape Navigator and Inter-
net Explorer, had a huge memory leak problem when
Java applets were used. This caused the web browser
to quickly bloat to a few dozen megabytes just by
zooming in and scrolling around in a single image.

The applet itself is about 250KB.

5 Implementation

This section illustrates the implementation of GRID-
PIX . We will first describe the layering and how the
picture is broken up into tiles. Subsequently, the file
format will be described in detail, as well as access
functions. Finally, the usage and algorithm of the
script to generate the HTML files is presented.

4

5.1 GRIDPIX Images

Figure 2 shows a GRIDPIX file consisting of three
layers. Conceptually, GRIDPIX images are similar to
Quadtree images. Each layer represents the image at
a certain resolution. In the current implementation,
the difference in resolution between adjacent layers
is 2 in both dimensions; i.e., 1 pixel in one layer be-
comes four pixels in the layer underneath. This fac-
tor is not inherent to the design of GRIDPIX .

offsets

Layer 2

Layer 1 1

2

14 15

19 20 21 22

16 17 18

13121110

23

876

3 9 4 5

Layer 3

struct gridheader

headersize
width, height
numlayers
tilewidth, tileheight
ratio
numtiles

Figure 2: Three-layer GRIDPIX Image

Within each layer, the image is further broken up
into tiles. The tiles are all squares of the same size
except for the right and bottom edges, which are usu-
ally smaller due to the image width and height be-
ing not exactly integer multiples of the tile width and
height.

In Figure 2, the small numbers inside or adjacent
to each tile is the tile’s number. Tile numbers start
from 1 in the smallest layer and continues between
adjacent layers. In our sample, layer 1 consists of
tiles 1 and 2, layer 2 consists of tiles 3 through 8, and
layer 3 consists of tiles 9 through 23. In this example,
tiles 1, 2, 5-8, and 19-23 are not “full” tiles. The tile
numbers have no bearing on the image themselves;
they are used for fast tile retrieval, as the GRIDPIX

server does not have to compute the index of the tile
in the file based on image resolutions and other infor-
mation. Normally, the server only sees the file as a

table of indices which tells it where it can find a tile;
it does not have to understand that they are image
files.

The tiles are numbered in breadth-first order to en-
courage caching of file blocks by the operating sys-
tem. As the user scrolls around in a certain reso-
lution, all the tiles are stored on adjacent disk blocks
and will very likely to be cached. They will also ben-
efit from read-aheads if the filesystem supports it.

The largest layer stored in a GRIDPIX file is the
original size. When the client requests a tile of a
layer larger than the original, the tile retrieval pro-
gram creates those tiles on-the-fly. This is the only
case in which the GRIDPIX server has to decode or
encode JPEG images. The process is described in
detail in Section 5.4.

5.2 File Format

The GRIDPIX file format has evolved over the years.
The original format was byte-order and word-length
dependent, so it was not possible to share GRIDPIX

files between some architectures. The revised for-
mat is byte-order and word-length independent. Pro-
grams that read GRIDPIX files can deal with either
format, which are distinguished by their four-byte
magic numbers.

A GRIDPIX file consists of a header and data.
The header consists of information about the original
image such as width and height, parameters of the
GRIDPIX conversion such as number of layers and
ratio between layers, and an array of offsets of ac-
tual tile images. Each tile is stored as a JFIF format
JPEG file[4], immediately starting after the header.
The header is variable-sized, and its size is stored
near the beginning of the header itself, right after the
magic number. The hidden purpose of that design
was to easily allow future extensions of the file for-
mat, which was utilized when the format was revised.

5.2.1 Original GRIDPIX Format

The header and the rest of the original GRIDPIX file
is shown in Figure 3. The magic number is the string
“Grid ”. Since the entire header was written from

5

memory to disk in one piece, there is no difference
between the file and memory formats. The drawback
of this design is that the file format was architecture
dependent.

There is virtually no limit in either the number of
layers or the image size. The only limits are the num-
bers representable by 32-bit signed integers used in
various fields. For instance, it can’t store an image
that is more than 2,147,483,647 pixels in either width
or height. Unless the image is extremely narrow, the
space required for any single such image will surely
exceed the capacity of any storage system currently
on this planet.

#define Magic "Grid"
#define MaxLayers 20

struct gridheader {
unsigned char magic[4] ;

/* size of this struct */
int headersize ;
int width, height ;
int layers ;
int tilewidth, tileheight ;

/* currently always 2 */
int ratio ;

/* num of tiles in file */
int numfiles ;

/* num of tiles in each layer */
int layersize[MaxLayers] ;

} ;

struct gridpix {
struct gridheader header ;

/* actually an array */
off_t offsets[1] ;

} ;

Figure 3: Original GRIDPIX File Format

The header includes some information that is re-
dundant, e.g., the number of tiles in the file, which
can be computed by image sizes and number of lay-
ers. These are included just as a matter of conve-
nience.

5.2.2 RevisedGRIDPIX Format

To make the GRIDPIX file architecture independent,
the format was revised to decouple the memory and
file layouts. The magic number of this new format
is the string “GPX2”. Numbers are stored in 64-bit
integers (int64 t) in memory, and in an array of
8 bytes (unsigned char [8]) on file. The new
format is shown in Figure 4.

To aid conversion between the memory and file
formats, two functions shown in Figure 5 are pro-
vided to convert the numbers from memory to file
formats and from file to memory formats, respec-
tively.

5.3 GRIDPIX File Generation

GRIDPIX files are created by the programgrid-
pack . gridpack takes a Portable Pixmap (PPM)
file, a 24-bit full-color format, and converts it to
GRIDPIX . It takes a few optional arguments, such
as tile size (“-t size”) and JPEG image quality (“-q
quality”). The netpbm package can be used to con-
vert many image formats, including TIFF and Targa,
to PPM.

5.4 Tile Retrieval

The GRIDPIX tile retriever, gettile , is usually
called with just two arguments, the GRIDPIX file
name and the tile number. In fact,gettile does
not even parse the header past the second field, the
header size, in that case. Figure 6 shows pseudo-
code that illustrates a typical tile retrieval operation.

There are two disk accesses; one to read the
header, including the offset table, and one to read
the actual data. As various tiles in an image are
requested by the client, the whole header will very
likely be in the server filesystem’s memory cache.
For instance, there are up to about 300 tiles in a stan-
dard GRIDPIX file created from a3; 072 � 2; 048

pixel PhotoCD files; the size of the header is about
2KB. Also, the breadth-first ordering clusters the
tiles of the same layer close to each other, thus en-
couraging the filesystem cache to hold them in mem-
ory.

6

#define Magic2 "GPX2"

typedef
unsigned char g_int64_t[8];
/* on file */

#define f_int_t g_int64_t
/* in memory */

#define m_int_t int64_t

/* New header type on file */
struct gridheader2 {

unsigned char magic[4] ;
f_int_t headersize ;
f_int_t width, height ;
f_int_t layers ;
f_int_t tilewidth, tileheight ;
f_int_t ratio ;
f_int_t numfiles ;
f_int_t layersize[MaxLayers] ;

} ;

/* New header type in memory */
struct gridheader {

unsigned char magic[4] ;
m_int_t headersize ;
m_int_t width, height ;
m_int_t layers ;
m_int_t tilewidth, tileheight ;
m_int_t ratio ;
m_int_t numfiles ;
m_int_t layersize[MaxLayers] ;

} ;

struct gridpix {
struct gridheader header ;

/* actually an array */
m_int_t offsets[1] ;

} ;

Figure 4: Revised GRIDPIX File Format

void fromfint(m_int_t *target,
f_int_t source) ;

void tofint(f_int_t *target,
m_int_t source) ;

Figure 5: GRIDPIX Converter Functions

gettile(gridpix, tilenum)
{

read header;
verify header.magic;
tilepos = header.headersize

+ sizeof(pointer) * tilenum;
seek to tilepos;
read two words and store them

in offset1 and offset2;
seek to offset1;
read (offset2 - offset1) bytes

and return it;
}

Figure 6: Thegettile function

When the user zooms in past the original resolu-
tion, the request is given togettile as a retrieval
of a tile whose tile number is larger than that of the
last tile. Whengettile sees such a request, it will
calculate the exact location of where that tile would
be if it were part of the GRIDPIX file, and slices up
one of the JPEG tiles to return the imaginary tile.

Figure 7 illustrates how such a request is handled.
Layer 3, the largest layer of the same GRIDPIX file
as in Figure 2, is shown in solid squares. Suppose
there is a request for tile 34. Since this is larger than
the total number of tiles in this GRIDPIX file, 23,
gettile recognizes it as a subtile request and cal-
culates the exact magnification and location of the
tile. According to the dimensions of this GRIDPIX

file, tile 34 would be in layer 4, shown as shaded
squares, in the lower left quarter of tile 9—tiles 24,
25, 34 and 35 comprise tile 9. Thus,gettile will
decode the JPEG file in tile 9, re-encode its lower left
quarter, and return it as tile 34.

As mentioned earlier, handling requests for sub-
tiles is the only timegettile needs to recognize
the tiles as JPEG files; otherwise, it will just return
the entire file.gettile can provide subtiles of ar-
bitrary resolution. The number of magnification lev-
elsgettile provides past the original resolution is
a compile-time option.

7

11109 12

26

44 45

Layer 4

46

34 3615 16

2019

35

21 22

17 18

13

23

2524

14

Layer 3

Figure 7: Subtile Retrieval

5.5 HTML Page Generation

The HTML pages are generated by the program
mkhtml . In essence,mkhtml is the heart and soul
of GRIDPIX . In addition to reading the GRIDPIX

file itself, it takes arguments such as resolution (layer
number), width and height of user’s screen,x and
y coordinates of the upper-left corner, and returns a
complete HTML page for that portion of the image.

Figure 8 shows the gist of the HTML source for a
simple GRIDPIX image. The image is arranged in
a 3 � 2 grid of tiles. Each image is a hyper-link
button. The images are supplied by thegettile
program in tags and the<a> tags point to
calls tomkhtml . The arrows on the scrollbars are
also hyper-links tomkhtml . In addition, there are
buttons on the right side used for zooming out, dis-
playing a list of images and displaying a help page.

Themkhtml command takes 8 arguments. They
are image number, zoom level, horizontal and ver-
tical sizes of the view area,x and y offsets of the
upper-left corner of the window, smoothing option
and display style, in that order. Smoothing option is
explained in Section 6.3. The display style argument
selects between various page style options. This is
necessary when the samemkhtml command is used
to serve multiple sets of images with differing dis-
play needs.

6 Discussion

In this section, we will discuss several design issues
that came up during the implementation of GRIDPIX .

6.1 Tile Boundaries

One question that comes to most people’s mind when
hearing that GRIDPIX just lays out tiles using HTML
is: “will the tile boundaries bother me?” The answer
is “no” or at least “not any more than the full image”.
It is because the JPEG encryption is inherently tile-
based; theencryption unitof JPEG images is8 � 8

by default. Thus, as long as the tile height and width
are integer multiples of 8, the boundaries of tiles will
not be any more visible than the8 � 8 grids in the
underlying JPEG file.

6.2 Freedom of Scrolling

GRIDPIX does not allow people to scroll in units
other than the tile size. Part of it is inherent to the
pure-HTML implementation; it is impossible to have
the user grab and drag either the image or the scroll-
bar thumb. However, itis possible to have a differ-
ent kind of interface, such as a “half-arrow” button,
that allows the user to specify scroll units of less than
one tile. The tile server will then generate fractions
of tiles, and they will be stitched together using an
HTML file that specifies the fractional tile size.

There are three reasons why I did not implement
this in the current version of GRIDPIX . One is com-
plexity. The second is clarity of user interface. I
could not imagine an interface that is obvious to any-
one how to scroll half a tile. The third is caching.
For instance, if the user scrolls a half-tile, then an-
other half-tile, the server will either have to send a
whole tile for the second scrolling action, thus wast-
ing the half-tile already fetched, or send images al-
ways in half-tile increments, causing the image to be
very fragmented.

This is a weakness in the HTML-based implemen-
tation, as other methods, with more intelligence in
the client, can handle such cases without a problem.
HTML does not allowed us to specify “display the
top half of this image” or some such.

6.3 Image Magnification

In GRIDPIX , users are allowed to zoom in past the
original resolutions of images. By default,get-

8

<table border=0>
<tr><td><table border=1>

<tr><td><table border=0> <!-- 3 x 2 array of tiles -->
<tr><td width=450 height=288 align=left valign=top>

<img width=144 height=144 border=0

src="/cgi-bin/gettile.cgi?2319102115470094&7&0">
[two more images in <a> tags]

<img width=144 height=144 border=0
src="/cgi-bin/gettile.cgi?2319102115470094&12&0">

[two more images in <a> tags]

</td></tr>
</table></td>

<td><table height=292 border=0> <!-- vertical scrollbar -->
<tr><td width=14 border=0>

</td></tr>

</table></td></tr>
<tr height=14><td>

<table width=436 border=0>
[horizontal scrollbar]
</table>

</td><td width=14 height=14 align=center border=0></td></tr>
</table></td>

<td valign=top> <!-- buttons on right side -->
<table>

<tr><td>25\%</td></tr>
<tr><td>

</td></tr>
<tr><td>

</td></tr>
<tr><td>

</td></tr>
</table></td></tr>

</table>

Figure 8: An HTML page generated bymkhtml

9

tile will return a subtile with fewer pixels, which
the web browser will expand it to the requisite size
because of thewidth andheight attributes in the
 tags.

This will cause each pixel in the original image to
be magnified as the user keeps zooming in, first to
2 � 2, then4 � 4, and so on, causing an annoying
aliasing effect. In order to reduce the aliasing, by
specifying the smooth option tomkhtml , the user
can get a subtile with a smoothing filter. This in-
creases the processing load and transfer size, since
the new subtile will be first expanded to the origi-
nal size and then blurred. The effect of this is mixed;
some images look better with smoothing, others look
worse. Overall, it does not seem like it is worth the
additional calculation and transfer speed penalty.

7 Conclusion

GRIDPIX is a web-based image presentation system
that allows users to zoom in and scroll around to
view portions of a large image. As a collection of
server-side scripts with the client side implemented
entirely in HTML, GRIDPIX does not require the
user to download a plugin or an applet, and thus can
be viewed on any graphical web browser regardless
of support for advanced features. The feasibility of
GRIDPIX has been proved by presenting over 70,000
images of art objects over the Internet since March
1998.

References

[1] Nisha Talagala, Satoshi Asami, David Pat-
terson, Bob Futernick, and Dakin Hart.
The Berkeley-San Francisco Fine Arts Database.
In Proceedings of the Fifteenth IEEE Sympo-
sium on Mass Storage Systems, pages 163–167,
March 1998.

[2] Eastman Kodak, Microsoft, Hewlett-Packard,
and Live Picture.FlashPixFormat Specification,
Version 1.0.1. 1997.

[3] UC Berkeley Digital Library Project. The
GIS viewer. http://dlp.CS.Berkeley.
EDU/gis/ .

[4] The Independent JPEG Group.http://www.
jpeg.org/public/jpeghomepage.
htm .

10

