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Abstract

Multigrid has been a popular solver method for �nite element and �nite di�erence problems with
regular grids for over 20 years. The application of multigrid to unstructured problems is, however,
not well understood and has been an active area of research in recent years. The two most promising
categories of unstructured multigrid methods are 1) \geometric" methods that use standard �nite element
coarse grid function spaces, and 2) rigid body mode based coarse grid space \algebraic" methods. This
paper evaluates the e�ectiveness of three promising multigrid methods (one geometric and two rigid
body mode algebraic) on several unstructured problems in 3D elasticity with up to 76 million degrees of
freedom.
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1 Introduction

The availability of large high performance computers is providing scientists and engineers with the oppor-
tunity to simulate a variety of complex physical systems with ever more accuracy and thereby exploit the
advantages of computer simulations over laboratory experiments. The �nite element method is widely used
for these simulations. The �nite element method requires that one or several linearized systems of sparse
unstructured algebraic equations (the sti�ness matrix) be solved at each time step when implicit time inte-
gration is used. These linear system solves become the computational bottleneck (once the simulation has
been setup and before the results are interpreted) as the scale of problems increases. Direct solution methods
have been, and still are, popular since they are dependable; however the asymptotic complexity of direct
methods, or any �xed level method, is high in comparison to optimal iterative methods (ie, multigrid).

Multigrid is well known to be an optimal solution method for Poisson's equation on structured meshes
with a serial complexity of O(n) (with n degrees of freedom) and O(log(n)) or polylogarithmic complexity
in parallel. The application of multigrid to unstructured meshes, that are the hallmark of the �nite element
method and the reason for its widespread use, is not well understood and is currently an active area of
research. Multigrid theory (or domain decomposition theory [23]) can not provide hard bounds on the
convergence rate of multilevel methods on unstructured problems, as it can for structured problems, but can
provide expressions for bounds on the condition number of the preconditioned system in terms of coarse grid
subspace quantities (eg, characteristic subdomain sizes H and characteristic discretization size h), as well
as assumptions about the underlying operator and discretization. These bounds can be used to compare
relative convergence rate of di�erent methods so as to anticipate scalability problems for a particular method.

The expected complexity of using most methods can be estimated by combining the expected number of
iterations (assumed proportional to a function of the bound on the condition number of the preconditioned
system) with the complexity of each iteration in terms of the number of unknowns n, or characteristic
discretization size h, and relevant quantities used in the condition number bound (eg, subdomain size H).
Multigrid is optimal on some model problems as 1) the condition number of a system preconditioned with
multigrid is bounded by a constant (ie, is not a function of H or h) and 2) the cost of each iteration (eg,
number of 
oating point operations) is proportional to n. Thus, multigrid applied to some model problems
has O(n) serial complexity and polylogarithmic parallel complexity as some processors remain idle on the
coarsest grids in the limit (see x1.1.1 for more details and references). Theory can provide the order of
complexity for a multigrid method but is not able to prove the superiority of one multigrid method over
another, or even di�erentiate between many multigrid methods. The goal of this paper is to evaluate
three promising unstructured multigrid methods via experimental analysis with several 3D problems in solid
mechanics with up to 76 million degrees of freedom. We also introduce a new aggregation method for the
algebraic multigrid methods.

1.1 Multigrid methods

A multigrid method can best be de�ned by the method's coarse grid function space (see x2 or Smith [23]).
There are two basic categories of functions spaces: geometric and algebraic. We de�ne an algebraicmethod as
a method that explicitly uses the values of a grid's sti�ness matrix in the construction of the next coarse grid
space. We de�ne geometricmultigridmethods as those that use an explicit coarse grid mesh to form standard
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�nite element function spaces (thus, the coarse grid spaces have an explicit geometric representation). Note,
non-nested coarse grid space methods are included in this de�nition of a geometric method.

We are aware of two classes of highly scalable linear solver methods for unstructured problems: geometric
multigrid [2, 17, 15, 21] and algebraic multigrid based on rigid body modes [9, 25]. We wish to investigate
methods that are not only theoretically optimal but that require only information that is readily available in
most applications. To this end we do not investigate methods that require the user provide the coarse grid
spaces or coarse grid operators [17, 15]; this leaves two geometric methods [2, 21] and the rigid body mode
algebraic methods.

We investigate the algebraic method called \smoothed aggregation", by Vanek et. al., as it has superior
theoretical convergence characteristics over plain aggregation methods [26]. We test both smoothed and
plain aggregation in x6. Note, plain aggregation does not require the sti�ness matrix (but it is useful) to
construct the aggregates and the coarse grid spaces have an explicit geometric representation (ie, the rigid
body modes). Thus, plain aggregation could be called a geometric method with our de�nition. We refer to
plain aggregation as an algebraic method as we use the aggregation method of Vanek et.al., which does use
the sti�ness matrix to select the aggregates. Additionally, plain aggregation is closely related to smoothed
aggregation, which is clearly an algebraic method (see x4).

We are aware of two classes of geometric methods for unstructured grids: hybrid and remeshing methods.
The hybrid (or incremental, or annealing) geometric approach to coarsening grids is a promising method [21],
as is the remeshing method [18, 10, 2]. Both methods automatically construct coarse grids from �ne grids
and use standard �nite element shape functions to construct restriction operators for standard multigrid
algorithms. We use the remeshing method as described in [2] as a representative geometric method in this
investigation.

1.1.1 Complexity theory

This section provides a brief introduction and references to the results of convergence theory of our three
unstructured multigridmethods, to complement and inform our numerical experiments. The most important
result of the results of convergence analysis is that the geometric and smoothed aggregation have the potential
of being optimal (ie, O(1) or polylogarithmic O(Poly(log(n))) iterations to a �xed relative residual), and
plain aggregation can only be shown to have polynomial complexity.

Truly optimal convergence is actually O(1) iterations, or work per unknown, to attain accuracy to the
discretization error of the problem. So called full multigrid (see x2), which we use in our experiments, attains
this complexity on model problems [5, 4], but we will assume that all problems are being solved to a �xed
reduction in the residual (eg, 10�6). Note, we see some signs of this truly optimal convergence in some of
our scalability studies in x6 with the geometric method.

Theory indicates that plain aggregation is not optimal in that the condition number of the preconditioned
system is more than polylogarithmic in n - O(log(n)n
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3 ) for 3D problems [7]. Our experiments in x6 show
some indication of super-polylogarithmic complexity, but are not conclusive without access to larger test
problems and computers. Smoothed aggregation can provide us with a guarantee of O(log3(n)) iterations
[26], and O(log(n)) iterations with some assumptions about the problem [27]. Our experiments in x6 indicate
O(1) iterations on an elasticity problem with continuum elements with up to 76 million equations with full
multigrid (note, full multigrid adds a log(n) term to the parallel complexity).

There is a body of unstructured geometric multigrid work that provides support for the optimal conver-
gence rates that we observe in our numerical experiments. First, it is known that with some assumptions
about the regularity of the problem that unstructured geometric multigrid, with nested quasi-uniform grids
which articulate all material interfaces and boundary conditions, has optimal complexity (ie, O(1) iterations
for convergence, or convergence rates independent of problem size, with V-cycle multigrid [23]). Theoretically
optimal convergence rates have been shown in 2D with some assumption about the problem and coarsening
rates, and with multiple smoothing steps, on quasi-uniform meshes [30, 6]. Optimal convergence rates have
also been proven for non-quasi-uniform grids with W-cycles and using a modi�ed multigrid algorithm [31].
These results are not directly applicable to our test problems as they assume some properties that we can
not guarantee in practice and use some modi�ed multigrid algorithms, but they do provide some support
for the optimal convergence rates that we observe.
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2 Multigrid introduction

This section provides a brief introduction to multigrid [8], de�ning terms and comments on the structure
of multigrid relevant to its implementation on high performance (ie, parallel) computers for unstructured
problems. Multigrid has been an active area of research for almost 30 years and much literature can found on
the subject. Multigrid is motivated by the observation that simple (and inexpensive) iterative methods like
Gauss-Seidel, Jacobi, and block Jacobi, are e�ective at reducing the high frequency error e�ectively, but are
ine�ectual in reducing the low frequency content of the error [11]. These simple solvers are called smoothers

as they render the error smooth by reducing the high frequency content of the error (actually they reduce
high energy components of the error, leaving the low energy components which are smooth in, for example,
Poisson's equation with constant material coe�cients). The ine�ectiveness of simple iterative methods can
be ameliorated by projecting the solution onto a smaller space, that can resolve the low frequency content of
the solution in exactly the same manner as the �nite element method which projects the continuous solution
onto a �nite dimensional subspace to compute an approximation to the solution. Multigrid is practical
because this projection can be prepared and computed reasonably cheaply and has O(n) complexity. The
coarse grid correction (the solution projected onto a coarser grid) does not eliminate the low frequency error
exactly, but it \de
ates" the low frequency error to high frequency error by removing an approximation to
the low frequency components from the error.

Multigrid requires three types of operators: 1) restriction and prolongation operators, which can be
implemented with a rectangular matrix (R and P = RT respectively); 2) the PDE operator, a sparse matrix,
for each coarse grid (the �ne grid matrix is provided by the �nite element application); and 3) cheap (one
level) iterative solvers that can e�ectively eliminate high frequency error in the problem at hand. The
coarse grid matrix can be formed in one of two ways - either algebraically to form Galerkin (or variational)
coarse grids (Acoarse  RAfineP ), or by creating a new �nite element problem on each coarse grid (if an
explicit coarse grid is available), thereby letting the �nite element implementation construct the matrix.
Only algebraic coarse grids are considered as we wish to maintain a narrow interface with the �nite element
application so as to place a minimal burden on the application. Additionally we believe algebraic coarse grids
are inherently more robust as, for instance, Jacobians need not be formed with the coarse grid elements.

Figure 1 shows the standard multigridV-cycle and uses a smoother x S(A; b), and restriction operator
Ri+1 that maps residuals from the �ne grid space i to the coarse grid space i + 1 (the rows of Ri+1 are the
discrete representation of the coarse grid function space of grid i + 1).

functionMGV (Ai; ri)
if there is a coarser grid i + 1

xi  S(Ai; ri)
ri  ri � Axi
ri+1  Ri+1(ri) - - restriction of residual to coarse grid
xi+1  MGV (Ri+1AiR

T
i+1; ri+1) - - the recursive application of multigrid

xi  xi + RT
i+1(xi+1) - - prolongation of coarse grid correction

ri  ri � Aixi
xi  xi + S(Ai; ri)

else

xi  A�1i ri - - direct solve of coarsest grid
return xi

Figure 1: Multigrid V-cycle Algorithm

Many multigrid algorithms have been developed; the \full" multigrid algorithm is used in the numerical
experiments. One full multigrid cycle applies the V-cycle to each grid, by �rst restricting the residual (b)
to the coarsest grid and applying a V-cycle (simply a direct solve), interpolating the new solution to the
next �ner grid as an initial guess, computing the residual, applying the V-cycle to this �ner grid, adding
the coarse grid correction to the initial guess, and so on until the �nest grid is reached. One iteration of full
multigrid is used as a preconditioner for the Krylov method \accelerator".
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An important, and advantageous, characteristic of multigrid is that the solver has several distinct parts:
the restriction/prolongation operators, the smoother, the Krylov method accelerator (the actual solver),
multigrid algorithms such as V-cycles, F-cycles, W-cycles, and other standard multigrid infrastructure (ie,
sparse matrix triple products for algebraic coarse grids). The only di�erence between multigrid methods is
the construction of the coarse grid spaces or restriction/prolongation operators - the rest of the infrastructure
for multigrid is standard and can be reused by multiple multigrid methods. This is useful as a well designed
multigrid implementation can facilitate the use of multiple multigrid methods easily.

The reason for using multigrid is to insure that the convergence rate is independent of the scale of the
problem and the cost, in 
oating point operations (
ops), asymptotes to a constant as the scale of the
problem increases. The smoother can have an important impact on this cost, especially on challenging
problems, and is the primary parameter in optimizing the solve time for a particular problem by reducing
the constant in the complexity (ie, the cost per iteration divided by the convergence rate). This structure
has the advantage that the job of the solver is decoupled into two distinct parts: 1) the multigrid method
and 2) one of the many smoothers that have been developed as one level iterative solvers (eg, conjugate
gradients preconditioned with: block Jacobi, overlapping Schwarz, incomplete factorizations, approximate
inverses, etc.). This allows two aspects of the solver (ie, the scale and solving for the operator at hand) to be
attacked independently and allows for new multigrid algorithms to added easily to existing multigrid codes
as only the construction of the restriction operator need be replaced.

3 Remeshing geometric multigrid

The geometric multigrid method was �rst proposed by Guillard [18] and independently by Chan and Smith
[10], and latter extended to 3D and in parallel by Adams [2]. The purpose of this algorithm is to automatically
construct an explicit coarse grid from a �ner grid for use with standard �nite element shape function spaces.
This method is applied recursively to produce a series of coarse grids, and their attendant operators, from a
\�ne" (application provided) grid. A high level view of the algorithm is as follows:

1. The node set at the current level (the \�ne" mesh) is uniformly coarsened, using an maximal indepen-
dent set (MIS) algorithm to produce a subset of vertices.

2. The new node set is then automatically remeshed with tetrahedra with a standard Delaunay algorithm
[16].

3. Standard linear �nite element shape functions are used to produce the restriction operator R.

4. The restriction operator is then used to construct the (algebraic) coarse grid operator from the �ne
grid operator: Acoarse  RAfineR

T .

These operators are then used in a standard multigrid algorithm.
We employ a series of optimizations to the MIS algorithm to preserve the geometric representation of the

�ne mesh as described in [2]. The crux of these optimizations is to automatically de�ne faces of the mesh
and use these faces to modify the graph and order the nodes in standard greedy MIS algorithms. These faces
are used to implicitly improve the representation of the original geometry by 1) modifying the graph for the
MIS algorithm to avoid two separate features from interacting and hence potentially decimating each other
(eg, the two sides of a thin body meshed with continuum elements) and 2) by emphasizing geometrically
\important" nodes (ie, corners and edges) by reordering the nodes in the standard greedy MIS algorithm [1].
The algebraic methods also modify the matrix graph for use in an MIS algorithm to aggregate (or partition)
the �ne grid vertices.

4 Smoothed and plain aggregation algebraic multigrid

Unlike geometric methods, algebraic methods do not construct explicit coarse grid meshes (ie, tetrahedra
and coordinates). The main advantage of algebraic methods is that they need not construct coarse grid
�nite element meshes but only need to work with graphs. Working with graphs is much easier than working
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with meshes - especially in parallel - as mesh coarsening and mesh generation are much more complex
algorithmically than graph partitioning. For example, we do not need to work with 
oating point arithmetic
in any signi�cant way with the graph algorithms of the algebraic methods as we do with the Delaunay mesh
generation of the geometric method.

Plain aggregation can be called \algebraic" as the coarse grid spaces (the rigid body modes or constant
translations in, and rotations about, the three coordinate axis) can, in principle, be constructed from the
sti�ness matrix (without Dirichlet boundary conditions imposed) [13]. However, these spaces are most
easily constructed from the nodal coordinates (ie, geometry) for elasticity problems. Rigid body mode
methods could thus be called \geometric", with our de�nition, as the sti�ness matrix does not need to be
used to construct the coarse grid spaces and they do have a concrete geometric interpretation (though a
representation is never explicitly constructed). Many rigid body mode methods have been developed [9, 13];
the addition of smoothing can provides signi�cant improvement to these methods [25, 20], especially on more
challenging problems in solid mechanics such as shells. This smoothing requires the sti�ness matrix and thus
classi�es this method as algebraic. These aggregates are constructed so that the nodes within an aggregate
are \strongly connected" (see x4.1 and Vanek et. al. [25]); this aggregation strategy requires the sti�ness
matrix and thus classi�es this method as an algebraic method when this aggregation method is used.

For elasticity problems, the smoothed aggregation multigrid method starts with the rigid body modes of
the �nite element problem as its initial coarse grid space, and then applies an iterative solver (ie, smoother)
to the coarse grid functions themselves to reduce the energy of the coarse grid functions [28]. The fact that
this smoothing can be done without any additional input from the user is the key to the practicality of this
algorithm. Smoothed aggregation, as the name suggests, begins by aggregating �ne grid nodes into strongly
connected aggregates as described below. Each of these aggregates will produce a node on the coarse grid.
This process is applied recursively until the top grid is small enough to solve quickly with the available direct
solver. The user supplies the kernel of the sti�ness matrix of the problem without any essential boundary
conditions (a rectangular block vector, or tall skinny matrix, B0). For most static, small deformation, 3D
�nite element formulations in solid mechanics there are six such kernel vectors - the rigid body modes. These
rigid body modes are trivial to construct with the nodal coordinates and are probably a good basis even if
there is no kernel for the operator (as with dynamic problems). These rigid body modes are used exclusively
for elasticity problems and thus an n by 6 block vector B0 is provided (with n degrees of freedom on the �ne
grid).

A high level view of the algorithm is as follows, starting on �ne grid i = 0 with provided kernel block
vector B0.

1. Construct aggregates (nodal partitions) on the current (�ne) grid i, as described in x4.1
2. For each aggregate j extract the submatrix Bj

i of Bi associated with the nodes in aggregate j

3. On each aggregate j construct the initial prolongator �P j
i with a QR factorization: Bj

i ! �P j
i B

I
i+1

4. BI
i+1 is the kernel for coarse grid node I on the next grid i + 1

5. The initial prolongator �Pi for grid i is a (tall skinny) block diagonal matrix with �P j
i in the jth diagonal

block

6. Each column of the initial prolongator �Pi is then \smoothed" with one iteration of a simple iterative
method to provide the prolongator P̂i for grid i: P̂i  (I � !D�1

i Ai) �Pi

7. The next grid operator is constructed algebraically: Ai+1  P̂T
i AiP̂i

This algorithm gives us all of the operators: Pi = P̂i, Ri = PT
i , and Ai for grids 1 thru L (assuming L coarse

grids). Note that each node on the coarse grids will have 6 degrees of freedom even if the original problem
only has three degrees of freedom per node. Di above can be any symmetric positive de�nite preconditioner
matrix; the diagonal of Ai is used in this paper and ! = 1:5

��i
where ��i is an estimate of the highest eigenvalue

of D�1
i Ai (see [20] for details). The construction of the aggregates in step 1 above is the last item in the

algorithm that remains to be speci�ed.
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4.1 Construction of aggregates

The construction of the aggregates in smoothed aggregation is an important aspect of the implementation as
the choice of aggregates can signi�cantly e�ect the convergence rate and the complexity of the coarse grids
which signi�cantly e�ects the complexity of each iteration and the setup cost (ie, coarse grid construction).
We have investigated two aggregation approaches: 1) maximal independent set (MIS) with post-processing
similar to the original algorithm proposed by Vanek et.al. [25], and 2) graph partitioners with some post-
processing to remove tiny aggregates as discussed in x4.1.1. Vanek et.al. recommend that aggregates should
be \connected by a path of strong coupling" as a means of automatically achieving semi-coarsening (semi-
coarsening has been empirically found to be e�ective for anisotropic problems such as some 
uid 
ow problems
[12]). Our experience indicates that the selection of strongly connected aggregates is e�ective for solid
mechanics problems with large jumps in material coe�cients as well.

Given a norm k�k, the edge weight wij between two nodes i and j is computed with wij =
kaijkp

kaiikkajjk
,

where aij is the d by d sub-matrix of the sti�ness matrix associated with the degrees of freedom of node i and
node j and d is the number of degrees of freedom per node on the grid (eg, 3 or 6 for our test problems). Note,
for the symmetric positive de�nite problems wij � 1:0, if the two norm kaijk2 is used, we use a combination
of the one and in�nity norms for simplicity kaijk = (kaijk1 + kaijk1)=2:0. The MIS is computed with a
graph that has been modi�ed by dropping edges that have weights that fall below a certain threshold �; we
use � = 0:08 � (1

2
)l, where l is the grid number (the �ne grid is zero) as suggested by Vanek et.al [25]. Note,

this is similar in spirit to the heuristics used in the geometric multigrid method that identi�es nodes that
should not be connected to each other in the MIS computation.

Common \greedy " MIS algorithms naturally construct a nodal partitioning; these partitions, however,
tend to be too large (ie, the aggregates are too small) for smoothed aggregation as the complexity of the
coarse grids tend to be larger than that which is optimal for the overall complexity of the solver. A post-
processing step is thus advisable to increase the size of the aggregates. We iterate over the aggregates and
coalesce the nodes in the smallest aggregates with nearby aggregates with which each has the largest sum
of edge weights, constrained by requiring that the resulting aggregate be less than two times the minimum
degree of nodes in the original aggregate. This heuristic is used to limit the size of aggregates as large
aggregates would create a \bottleneck" in the convergence of the solver as the residual would be relatively
poorly \covered" by the coarse grid correction on these large aggregates. The minimumdegree term is meant
to re
ect the lower rate of coarsening that the MIS provides in \thin body" regions of the mesh and that is
desirable for the convergence rate of the solver (see below).

4.1.1 Graph partitioner construction of aggregates

We have investigated an alternative to maximal independent set (MIS) based aggregates which recognizes
that the aggregation problem can be formulated as a standard graph partitioning problem. This approach
allows us to construct aggregates with a graph partitioner such as ParMetis [19]. Partitioning has the
advantage that the global rate of reduction in coarse grid points can be explicitly speci�ed - a potentially
useful feature for the optimization of the solve time (ie, the convergence rate of the solver and the complexity
of each iteration). Another advantage of graph partitioners is that one can leverage the expertise of algorithm
development e�orts in a general purpose graph partitioner that has been designed to minimize \edge cuts"
and thereby maximize connectivity within each aggregate - the purpose of the aggregation heuristics in
smoothed aggregation. General purpose graph partitioners are useful as the aggregation problem can be
formulated as the standard graph partitioning problem of minimizing edge cuts and evenly partitioning node
weights. We select node weights to appropriately coarsen locally; we select the number of aggregates to
appropriately coarsen globally.

MIS partitions are e�ective at automatically coarsening thin bodies (plates or line geometries) appropri-
ately (ie, reduction in nodes of about a factor of 8 to 27 for 3D geometries, 4 to 9 for 2D geometries, and 2 or
3 for 1D geometries). Vanek et. al. recommend a high coarsening ratio to reduce the complexity of the coarse
grids; the upper limit on the coarsening ratio for MIS partitions is about the average number of neighbors
(degree) for each node. As the number of edges in the graph is easily available we can chose a coarsening
ratio of b2E

n
c + 1, where E is the number of edges in the graph and n is the number of nodes in the graph.

Note, as ParMetis has high memory complexity with respect to the number of partitions (aggregates) we are
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limited to constructing aggregates on each processor with the serial graph partitioner METIS which has the
disadvantage of not maintaining the serial semantics in parallel (ie, partitions that would be computed with
one processor can not, in general, be generated on multiple processors as the aggregate partitions must be
nested in the processor partitions).

To aggregate planar (or linear) regions appropriately - locally - we can set the node weights in the graph
partitioner so as to give a higher weight to planar regions. Node i with jij degree is given a weight wi =

1

jij ;

this provides about the same weight per partition in a 27 node aggregate of interior nodes of a regular 3D
mesh of hexahedra and a 9 node aggregate in the interior of a regular quadrilateral mesh. The partitioning
method does not result in better solve times on any of our test problems; we have seen solve times of about
15
Thus, as we can not use ParMetis and must use METIS locally on each processor and as we do not see an
increase in performance, we do not use the partitioning aggregation method for any of our numerical exper-
iments. Though, we see the graph partitioner approach as potentially useful method and the development
of e�ective graph partitioners for this purpose as an area of potential future work.

5 Parallel architecture

A highly scalable implementation of the algorithms and of a �nite element application are used to test the
solvers. The parallel �nite element system is composed of two basic parts: 1) Athena, a parallel �nite element
program built on a serial �nite element code (FEAP [14]) and a parallel graph partitioner (ParMetis [19]) and
2) our solver Prometheus. Prometheus can be further decomposed into three parts: 1) Epimetheus, general
unstructured multigrid support (built on PETSc [3]); 2) the geometric multigrid method Prometheus; and
3) the algebraic multigrid method Atlas. Prometheus, Atlas, and Epimetheus are available as a publicly
domain library called Prometheus [22].

Athena reads a large \
at" �nite element mesh input �le in parallel (ie, each processor seeks and reads
only the part of the input �le that it, and it alone, is responsible for), uses ParMetis to partition the �nite
element graph, and then constructs a complete �nite element problem on each processor. These processor
sub-problems are constructed so that each processor can compute all rows of the sti�ness matrix, and entries
of the residual vector, associated with vertices that have been partitioned to the processor. This negates the
need for communication in the �nite element operator evaluation at the expense of a little bit of redundant
work.

Explicit message passing (MPI) is used for performance and portability and all parts of the algorithm
have been parallelized for scalability. All components of multigrid can scale reasonably well.

Clusters of symmetric multi-processors (SMPs) are targeted as this seems to be the architecture of choice
for future large machines. Clusters of SMPs are accommodated by �rst partitioning the problem onto
the SMPs and then the local problem is partitioned onto each processor. This approach implicitly takes
advantage of any increase in communication performance within each SMP, though the numerical kernels
(in PETSc) are \
at" MPI codes.

6 Numerical results

This section investigates the performance of the three multigrid methods (geometric, aggregation, smoothed
aggregation) on several problems in solid mechanics with up to 76 million degrees of freedom (dof). The goal
of these experiments is to test a wide variety of features found in challenging �nite element simulations so as
to best inform application developers of the potential value of these algorithms and implementations. FEAP's
trilinear hexahedra mixed linear elastic element and linear elastic four node quadrilateral shell element are
used [14, 24]. Two linear elasticity continuum element material constitutions are used: a \hard" steel like
material and a \soft" incompressible rubber-like material. Table 1 lists these material properties. The shell
elements have a thickness of 1

2000
of the principle (longest orthogonal) dimension of the mesh (eg, the \wing"

problem in x6.4 is 50:0 units long and has a thickness of 0:025 units). Continuum element problems will use
the \hard" material unless otherwise stated.
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Material Elastic mod. (E) Poisson ratio
soft 10�4 0:49
hard 1 0:3
shell 1 0:3

Table 1: Continuum materials

The test problems are designed to include several features of challenging �nite element simulations: thin
body domains (thin), large jumps in material coe�cients (jumps), incompressible materials (incomp.), large
scale problems with parameterized meshes for scalability studies (scale), and shell problems (shell). Table 2
lists the test problems and their properties.

Test problem Section n Processors thin jumps incomp. scale shell
Cone x6.1 21,600 1

p
Beam-column x6.2 34,460 4

p
Plate x6.3 155,280 4

p
Wing x6.4 617,760 16

p
Cylinder with large cutouts x6.5 135,318 4

p
Cantilever x6.6 62,208 3

p p
Sphere in a cube (Sp.) x6.7 7,534,488 512

p p
Concentric Sp. (C.Sp.) x6.8 80K - 76M 1 - 1024

p p p p

Table 2: Test problems and characteristics

All of the test problems are symmetric positive de�nite and thus preconditioned conjugate gradient
(PCG) is used. One pre-smoothing and one post-smoothing step are used within multigrid, preconditioned
with block Jacobi. The Jacobi blocks (sub-domains) are constructed with METIS.

The goal of this paper is to evaluate the e�ectiveness of the three multigrid methods: smoothed aggre-
gation, (plain) aggregation, and geometric multigrid. These experiments are, to our knowledge, unique in
that several scalable solver methods are tested head-to-head on the same problems, on the same machines
and with the same multigrid infrastructure and numerical kernels, thus providing comparable performance
data for these methods as the only parameter that is tested is the construction of the coarse grid spaces
(manifested in the prolongation and restriction operators). This is the �rst time, to our knowledge, that
multiple highly scalable, and fully parallelized, solvers have been tested end-to-end. Parallel unstructured
solvers are inherently complex; conducting controlled experiments to compare methods is a challenge. Thus
a few observation are in order to aid in interpreting this data:

� The nature of unstructured parallel computing today is such that results are non-deterministic. That
is, we usually get slightly di�erent performance results from one run to the next. This is primarily
due to the fact that the parallel graph partitioner is not deterministic and we are in general allocated
a di�erent set of processors each time a job is run which can e�ect the performance. We observe
variations of about 10% in M
op rates in the solver from one run to the next.

� The nature of unstructured iterative solvers is such that the performance results are somewhat \ill-
conditioned" in that small algorithmic changes (eg, changes in the number of processors used, small
code changes) can noticeably change the performance of the solver. In general we have seen a variance
of up to about 10% in convergence rate between runs with multiple processors for each of the three
multigrid methods that we investigate. The parallel semantics are not identical to the serial semantics
for either method (ie, the space of all possible coarse grid spaces for a problems is smaller or di�erent
when multiple processors are used). We have maintained nearly identical parallel semantics, but the
price of maintaining identical semantics in parallel, which would be desirable, would signi�cantly com-
plicate the implementation and incur some performance penalty. The geometric method only meshes
the coarse grids locally, hence the global coarse grid has overlapping regions and is not a valid �nite
element mesh. Aggregation for the parallel algebraic methods has some slight inconsistencies with the
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serial semantics. These inconsistencies are small and we have not observed any systematic decrease in
convergence rate as more processors are used in most of the test problems with the exception of the
geometric method when many more processors are used than is common practice on typical machines
of today (ie, machines with 256 Mb or more of memory per processor). We have found, on a few of our
test problems, that we can get increases in convergence rate of up to about 20% when one processor is
used for both the algebraic methods and geometric method.

� We have worked with the geometric method for several years and the algebraic method for about a
year; the algebraic method is much simpler (and is implemented with about half as much code) and we
have done less algorithmic development on the algebraic method. We believe that we have optimized
the algebraic method reasonably well but it may not be as highly developed as the geometric method.

There are three primary parts of a linear solve: 1) \mesh setup": setup for the mesh, 2) \matrix setup":
setup for the matrix, and 3) the actual \solve for x". The mesh setup is work that needs to be done for
each mesh (for a direct solver this is the symbolic factorization). Note, that all three of the solvers require
essentially the same data for the mesh setup phase (ie, the �ne grid mesh with coordinates). The setup
for each matrix includes the construction of the coarse grid sti�ness matrices, setup for the smoothers, the
factorization for the coarsest grid, the smoothing of the coarse grid spaces for the smoothed aggregation
method (for direct solvers this is the factorization). The matrix setup work need not be repeated in solving
for multiple right hand sides, as in linear dynamic problem, and the only cost incurred are those of the solve
phase (for direct solver this is the front substitution and back solve phase). The times for each of these three
phases is reported for each of the test problems that follow.

Two machines are employed for these experiments:

� Cray T3E at NERSC has 640 single processor nodes total, 450 MHz., 900 M
op/sec theoretical peak,
256 Mb memory per processor, and a peak M
op rate of 662 M
op/sec (1/2 of 2 processor Linpack
\toward perfect parallelism" Rmax).

� IBM PowerPC cluster at LLNL, has about 256 4-way-SMPs available to users, 332 MHz PowerPC 604e
processors, 664 M
op/sec theoretical peak, 512 Mb of memory per node, and a peak M
op rate of 258
M
op/sec (1/2 of 2 processor Linpack \toward perfect parallelism" Rmax [29]).

6.1 Cone

The \cone" problems is mesh of linear hexahedral elements of a truncated cone with 21,600 degrees of
freedom, �xed at the base and loaded at the end with a twisting load (see Figure 2). This problem is
challenging as it has poorly proportioned elements with aspect ratios as high as 12:1, and has thin body
features. This problem is run with a 64-block block Jacobi preconditioner for the PCG smoother. This
problem has a condition number of about 3:5 � 107 and Figure 2 (left) shows the undeformed mesh and
Figure 2 (right) shows the deformed mesh with the stress in the direction of the primary axis of the problem.

Table 3 shows the sizes of the coarse grids for this problem.

Solver Smoothed aggregation Plain agg. Geometric
Grid 0 1 2 0 1 2 0 1 2

Equations (eq.) 21,600 2,160 126 21,600 2,766 342 21,600 2,424 606
Ave. non-zeros per eq. 65 144 89 65 77 46 65 79 126

Table 3: Grid sizes for cone

Figure 3 (left) shows the residual history of this problem on one PowerPC processor and solved to a
tolerance of 10�6 in units of the time to do one matrix-vector product on the �ne grid.

This data shows that geometric multigrid and smoothed aggregation are the fastest and the aggregation
method is the slowest. Figure 3 (right) shows the times for the three primary parts of a linear solve: setup
for the mesh, setup for the matrix, and the actual solve. One matrix vector product on the �ne 21,600
degrees of freedom grid takes 0:08 seconds on one PowerPC processor.
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Figure 2: Truncated cone
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Figure 3: (left) Truncated cone residual history vs. solve times and (right) sum of mesh setup, matrix setup
and solve times on one PowerPC processor

6.2 Beam-column

The next problem is that of a steel \beam-column" connection with 34,460 degrees of freedom and is meshed
with thin (poorly proportioned) hexahedral elements. This problem is solved with a 64-block block Jacobi
preconditioner for the PCG smoother. This problem has a condition number of about 1:0 � 108 and Figure
4 (left) shows the undeformed mesh and Figure 4 (right) shows the deformed mesh with the �rst principle
stress.

Table 4 shows the sizes of the coarse grids for this problem.
Figure 5(left) shows the residual history of this problem on four PowerPC processors and solved to a

tolerance of 10�6 in units of the time to do one matrix-vector product on the �ne grid.
This data shows that the geometric multigridmethod is the fastest by a small margin and the aggregation

method is the slowest. Figure 5 (right) shows the times for the three primary parts of a linear solve: setup
for the mesh, setup for the matrix, and the actual solve. One matrix vector product on the �ne 34,460 dof
grid takes 0:0394 seconds on four PowerPC processors.
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Figure 4: Beam Column

Solver Smoothed aggregation Plain agg. Geometric
Grid 0 1 2 0 1 2 0 1 2 3

Equations (eq.) 34,460 3,456 180 34,460 3,402 396 34,460 4,539 789 144
Ave. non-zeros per eq. 65 168 108 65 67 45 65 89 115 89

Table 4: Grid sizes for beam-column
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Figure 5: (left) Beam-column residual history vs. solve times and (right) sum of mesh setup, matrix setup
and solve times on four PowerPC processors

6.3 Plate

The next problem is that of a 
at square \plate" with fully clamped boundary condition on one quarter of
one side and a uniform load down. The plate is meshed with four node quadrilateral shell elements and has
155,280 degrees of freedom (note, as this problem is linear it has no in plane stress nor \drilling" rotations
and thus has one half as many true degrees of freedom, ie, three per node). This problem is run with a
257-block block Jacobi preconditioner for the PCG smoother. This problem has a condition number of over
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4:0 � 1010 and Figure 6 (left) shows the undeformed mesh of an 8K dof version of this problem and Figure 6
(right) shows the deformed mesh with the �rst principle stress.
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Figure 6: Flat plate

Table 5 shows the sizes of the coarse grids for this problem.

Solver Smoothed aggregation Plain agg. Geometric
Grid 0 1 2 0 1 2 3 0 1 2 3

Equations (eq.) 155,280 18,840 1,764 155,280 20,922 3,408 564 155,280 29,550 4,872 576
Ave. non-zeros per eq. 53 84 124 53 43 41 38 53 72 102 94

Table 5: Grid sizes for the 
at plate

Figure 7(left) shows the residual history of this problem on four PowerPC processors and solved to a
tolerance of 10�4 in units of the time to do one matrix-vector product on the �ne grid.
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Figure 7: (left) Flat plate residual history vs. solve times and (right) sum of mesh setup, matrix setup and
solve times on four PowerPC processors

This data shows that smoothed aggregation multigrid is the fastest by far and that the aggregation
method is the slowest. Figure 7 (right) shows the times for the three primary parts of a linear solve: setup
for the mesh, setup for the matrix, and the actual solve. One matrix vector product on the �ne 155,280 dof
grid takes 0:1160 seconds on four PowerPC processors.
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6.4 Wing

The next problem is a \wing" like mesh with fully clamped boundary condition at the base and a uniform
load down on the under side of the wing. The wing is meshed with four node quadrilateral shell elements,
has 561,330 degrees of freedom, and four internal sti�ener plates. This problem is run with a 560-block block
Jacobi preconditioner for the PCG smoother. This problem has a condition number of about 1:0 � 109 and
Figure 8 (left) shows the undeformed mesh of an 22,000 dof version of this problem and Figure 8 (right)
shows the deformed mesh with the �rst principle stress.
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Figure 8: Simple wing (50K dof version)

Table 6 shows the sizes of the coarse grids for this problem.

Solver Smoothed aggregation Plain agg. Geometric
Grid 0 1 2 3 0 1 2 3 0 1 2 3 4

Equations (eq.) 561K 52K 4,506 270 561K 53K 6,768 876 561K 129K 25K 7K 1,116
Ave. non-zeros per eq. 54 79 130 99 54 44 43 43 54 67 113 161 201

Table 6: Grid sizes for the simple wing

Figure 9(left) shows the residual history of this problem on 16 PowerPC processors and solved to a
tolerance of 10�4 in units of the time to do one matrix-vector product on the �ne grid.

This data shows that the smoothed aggregation method is the fastest by a small margin and the ag-
gregation method is the slowest. Figure 9 (right) shows the times for the three primary parts of a linear
solve: setup for the mesh, setup for the matrix, and the actual solve. One matrix vector product on the �ne
617,760 dof grid takes 0:109 seconds on 16 PowerPC processors.

6.5 Tube with holes

The next problem is shell element mesh of a \cylinder with large cutouts", roller boundary conditions on
the base (with minimal constraints for stability), and several point loads. It is meshed with four node
quadrilateral shell elements and has 135,318 degrees of freedom. This problem is run with a 67-block block
Jacobi preconditioner for the PCG smoother. This problem has a condition number of over 1:0 � 109 and
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Figure 9: (left) Simple wing residual history vs. solve times and (right) sum of mesh setup, matrix setup
and solve times on 16 PowerPC processors

Figure 10 (left) shows the undeformed mesh of an 13,000 dof version of this problem and Figure 10 (right)
shows the deformed mesh with the �rst principle stress.
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Figure 10: Tube with holes (13K dof version)

Table 7 shows the sizes of the coarse grids for this problem.

Solver Smoothed aggregation Plain agg. Geometric
Grid 0 1 2 0 1 2 0 1 2

Equations (eq.) 135K 14K 1,488 135K 14K 2,034 135,318 34K 5,448
Ave. non-zeros per eq. 52 67 75 52 39 32 52 88 135

Table 7: Grid sizes for the tube with holes

Figure 11(left) shows the residual history of this problem on four PowerPC processors and solved to a
tolerance of 10�4 in units of the time to do one matrix-vector product on the �ne grid.

14



0 1000 2000 3000 4000 5000 6000
10

−6

10
−4

10
−2

10
0

10
2

10
4

Time (MatVec on fine grid)

R
el

at
iv

e 
re

si
du

al
Relative residual history (fillet)

Smoothed aggregation
Aggregation         
Geometric           

1 2 3
0

100

200

300

400

500

600

700

800

900

Smoothed aggregation   Aggregation   Geometric

T
im

e 
(s

)

Total solve times (fillet)

Mesh setup   
Matrix setup 
Solve for "x"

Figure 11: (left) Tube with holes residual history vs. solve times and (right) sum of mesh setup, matrix
setup and solve times on four PowerPC processors

This data shows that smoothed aggregation multigrid is the fastest and that the geometric method is the
slowest. Figure 11 (right) shows the times for the three primary parts of a linear solve: setup for the mesh,
setup for the matrix, and the actual solve (note, the geometric method was not run to completions as shown
in the left plot of Figure 11). One matrix vector product on the �ne 135,318 dof grid takes 0:0992 seconds
on four PowerPC processors.

6.6 Soft section cantilever

The \cantilever" problem is 8 by 8 by 256 mesh of linear hexahedral (cube) elements of a \cantilever" with
62,208 degrees of freedom and three layers of the \soft" material in the middle, �xed at the base and loaded
at the end (see Figure 12). This problem is challenging as it poorly conditioned with a large jump in material
coe�cients and as the elastic modulus of the soft material goes to zero the problem becomes singular.

This problem is run with a 512-block block Jacobi preconditioner for the PCG smoother. This problem
has a condition number of over 5 � 1010.

Table 8 shows the sizes of the coarse grids for this problem.

Solver Smoothed aggregation Plain agg. Geometric Geometric (3 levels)
Grid 0 1 2 0 1 2 0 1 2 3 0 1 2

Equations (eq.) 62K 5,550 282 62K 5,406 576 62K 6,807 744 189 62K 7,335 954
Ave. non-zeros per eq. 69 180 56 69 72 44 69 89 65 49 69 84 72

Table 8: Grid sizes for soft section cantilever

Figure 13(left) shows the residual history of this problem on three PowerPC processors and solved to
a tolerance of 10�6 in units of the time to do one matrix-vector product on the �ne grid. This problem
is a good example of robustness problems of the geometric method on pathological problems. It is well
know that if the coarse grids can capture the material discontinuities on all of the coarse meshes that the
convergence rate of geometric multigrid will not deteriorate with large jumps in material coe�cients [23].
The geometric method can not guarantee that material discontinuities are articulated on the coarse mesh
(in fact material discontinuities need to be neglected on problems with many �ne geometric features for
complexity reasons). This problem thus \breaks" the geometric method as it does not maintain a material
boundary on the coarsest grid (that should be maintained) as can be inferred by the performance with one
fewer coarse grids which show the faster results that we expect (\Geometric (3 levels)" in Figure 13).
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Figure 12: Soft section cantilever
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Figure 13: (left) Soft section cantilever residual history vs. solve times and (right) sum of mesh setup, matrix
setup and solve times on three PowerPC processors

This data shows that the geometric multigridmethod is the fastest by a small margin and the aggregation
method is the slowest, but that the geometric method has robustness problems. Figure 13 (right) shows
the times for the three primary parts of a linear solve: setup for the mesh, setup for the matrix, and the
actual solve. One matrix vector product on the �ne 62,208 dof grid takes 0:0915 seconds on three PowerPC
processors.

6.7 Sphere in a cube

The next problem is hard sphere embedded in a soft cube and crushed with a uniform pressure load on
two sides. One octant is meshed with linear hexahedral elements with 7,534K degrees of freedom and with
symmetric boundary conditions (see Figure 14). This problem is challenging as it has a large jump in material
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coe�cients. This problem is run with a 59,904-block block Jacobi preconditioner for the PCG smoother.
This problem has a condition number of about 3 � 108.
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Figure 14: Sphere in a cube (15K dof version)

Table 9 shows the sizes of the coarse grids for this problem.

Solver Smoothed aggregation Plain agg. Geometric
Grid 0 1 2 3 0 1 2 3 4 0 1 2 3 4

Equations (eq.) 7.5M 492K 12K 240 7.5M 492K 32K 2,322 204 7.5M 642K 32K 1,938 216
Ave. non-zeros per eq. 80 333 574 219 80 106 98 86 60 80 176 216 170 121

Table 9: Grid sizes for sphere

Figure 15(left) shows the residual history of this problem on 512 processors of a Cray T3E and solved to
a tolerance of 10�6 in units of the time to do one matrix-vector product on the �ne grid.
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Figure 15: (left) Sphere in a cube residual history vs. solve times and (right) sum of mesh setup, matrix
setup and solve times on 512 Cray T3E processor

This data shows that the geometric multigrid method is the fastest and the aggregation method is the
slowest. Figure 15 (right) shows the times for the three primary parts of a linear solve: setup for the mesh,
setup for the matrix, and the actual solve.
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One matrix vector product on the �ne 7,534,488 dof grid takes 0:0314 seconds on 512 processors of a
Cray T3E.

6.8 Concentric spheres in cube

The \concentric sphere" problem is a series of 17 alternating hard and soft concentric spheres embedded
in a soft cube and crushed with displacement boundary conditions on two sides. Like the problem in the
previous section, one octant is meshed with linear hexahedral elements with symmetric boundary conditions
(see Figure 16). This problem is challenging as it has many large jumps in material coe�cients and thin body
features. This problem has a parameterized mesh so as to perform scalability studies. The smallest version
of the problem has 79,679 degrees of freedom and the largest version has 76,395,359 degrees of freedom.
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Figure 16: Concentric spheres in a cube (80K dof version)

Figures 17 and 18 (left) show the times for the three major phases of one linear solve (setup for the mesh,
setup for the matrix, and the actual solve), for each of the three solver methods on 3 to 640 processors of
a Cray T3E solved to a tolerance of 10�6 plotted against the log10 of the number of processors. There are
about 27,000 dof per processor and the largest problem has 16,553,759 dof. This problems are run with a
block diagonal preconditioner for the PCG smoother with about b n

125
c blocks (with n equal to the number

of degrees of freedom).
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Figure 17: Concentric spheres in a cube, sum of mesh setup, matrix setup and solve times for algebraic
methods, vs. log10 of number of Cray T3E (from 3 to 640) processors
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Figure 18: (left) Concentric spheres in a cube, sum of mesh setup, matrix setup and solve times vs. log10 of
number of Cray T3E (from 3 to 640) processors for the geometric method and (right) iteration counts from
IBM with up to 76M dof vs. log10 of number of PowerPC processors

This data shows that the aggregation multigrid method is the fastest and the smoothed aggregation
method is the slowest for one complete linear solve. However, the geometric method is fastest for multiple
solves (as the setup phase is amortized). Figures 19 and 20 (left) show the residual history, in terms of
iterations, of the three solvers, run on one to 1024 processors of an IBM SP with about 80,000 dof per
processor. Note, the largest smoothed aggregation data point is not available. This problems are run with
a b n

128
c block block Jacobi preconditioner for the PCG smoother. Figure 17 (right) shows the iteration

counts of the three solver methods plotted against the log of the problem size and shows that the number
of iteration for the geometric method is decreasing, the smoothed aggregation method iterations are about
constant, and the aggregation method iterations are increasing. This data re
ects what the theory predicts
- namely the convergence rate (both asymptotic and total) is decreasing for the aggregation method, staying
relatively steady for the smoothed aggregation method and increasing for the geometric method. Thus, this
data suggests that the geometric method is scaling well and the (plain) aggregation method is scaling poorly.

Figure 20 (right) and Table 10 show the average number of non-zeros per row of the sti�ness matrices for
each solver on the largest problem. From this data we can see a large growth in the number of non-zeros per
row of the smoothed aggregation coarse grids (which results in relatively high memory complexity for the
smoothed aggregation method) that is partially ameliorated by the faster rate of coarsening (recall that as
we use MIS coarsening, denser graphs and hence higher average node degree will result in faster coarsening,
see Table 10). Table 10 shows the sizes of the coarse grids for the largest problem.

Solver Smoothed aggregation Plain agg. Geometric
Grid 0 1 2 3 4 0 1 2 3 4 5 0 1 2 3 4 5

Eeqs. 56M 3.9M 91K 3.2K 168 56M 4.1M 356K 35K 4.1K 576 56M 4.6M 212K 10K 840 66
nz/eq. 80 364 834 1351 168 80 116 123 111 102 576 80 178 230 209 159 63

Table 10: Grid sizes for concentric spheres

7 Conclusion

We have shown that the three multigrid methods geometric, smoothed aggregation and plain aggregation
are e�ective on many of our test problems in 3D solid mechanics. We have also introduced a new method for
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Figure 19: Concentric spheres in a cube residual histories, vs. iterations, on one to 1024 PowerPC processors
for algebraic methods
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Figure 20: (left) Concentric spheres in a cube residual histories, vs. iterations, on one to 1024 PowerPC
processors for geometric method and (right) average non-zeros per row for all grids of largest problem

constructing the aggregates for the algebraic methods that exploits the fact that the aggregation problem
can be formulated as a standard graph partitioning problem. Plain aggregation has been shown to have the
smallest setup times but has the longest solve times. Additionally, plain aggregation has demonstrated its
scalability problems as theory predicts (as described in x1.1.1 and the references therein). Our geometric
multigrid method has been shown to be e�ective on continuum element problems with many of the smallest
solve times, but with the highest setup costs of the three methods. The geometric method also has some
potential robustness problems stemming from the complex nature of grid coarsening. The smoothed ag-
gregation method is shown to be an e�ective, scalable and robust method, particularly on shell problems.
For the solve times, the smoothed aggregation and geometric methods were each the fastest in four of our
eight test problems. For one complete linear solve, the geometric method was the fastest in three of the test
problems, the smoothed aggregation method was fastest in two, and the plain aggregation method the was
fastest in three of the eight test problems.
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Future work includes continuing to test a variety of linear elasticity problems and to explore other
application areas such as nonlinear elasticity and plasticity, 
uid dynamics problems and multi-physics
problems.
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