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ABSTRACT
Usability evaluation is an increasingly important part of
the iterative design process. Automated usability eval-
uation has great promise as a way to augment existing
evaluation techniques, but is greatly underexplored. We
present a new taxonomy for automated usability anal-
ysis and illustrate it with an extensive survey of eval-
uation methods. We present analyses of existing tech-
niques, and suggest which areas of automated usability
evaluation are most promising for future research.
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Introduction
Usability is the extent to which a computer system can
be used by users to achieve speci�ed goals with e�ec-
tiveness, e�ciency and satisfaction in a given context
of use.1 Usability evaluation (UE) is a methodology
for measuring these usability aspects of a system's user
interface and identifying speci�c problems with the in-
terface [23, 64]. Usability evaluation is an important
part of the overall user interface iterative design pro-
cess, which consists of cycles of designing, prototyping
and evaluation [23, 64]. Usability evaluation is itself a
process that entails many activities: specifying evalu-
ation goals, identifying target users, selecting usability
metrics, selecting an evaluation method and tasks, de-
signing experiments, collecting usability data, and ana-
lyzing and interpreting data.

A wide range of usability evaluation techniques have
been proposed, and a subset of these are currently in
common use. Some evaluation techniques, such as for-
mal user testing, can only be applied after the interface
design has been implemented. Others, such as heuristic
evaluation, can be applied in the early stages of design.
Each technique has its own requirements, and gener-
ally di�erent techniques uncover di�erent usability prob-
lems.

Usability �ndings can vary widely when di�erent evalu-

1From ISO9241 (Ergonomic requirements for o�ce work with

visual display terminals [41]).

ators study the same user interface, even if they use the
same evaluation technique [44, 62, 63, 64]. Two studies
in particular, the �rst and second comparative user test-
ing studies (CUE-1 [62] and CUE-2 [63]), demonstrated
less than a 1% overlap in �ndings among 4 and 8 inde-
pendent usability testing teams for evaluations of two
user interfaces. This result implies a lack of systematic-
ity or predictability in the �ndings of usability evalua-
tions. Furthermore, usability evaluation typically only
covers a subset of the possible actions users might take.
For these reasons, usability experts often recommend
using several di�erent evaluation techniques [23, 64].

How can systematicity of results and fuller coverage in
usability assessment be achieved? One solution is to
increase the number of usability teams evaluating the
system, and increase the number of study participants.
An alternative is to make use of automated usability
evaluation (AUE) methods.

Automated usability evaluation has several potential ad-
vantages over
non-automated methods, including uncovering various
types of errors more consistently, increasing the cover-
age of evaluated features, enabling comparisons between
alternative designs, and predicting time and error costs
across an entire design. They should reduce the need for
evaluation expertise among individual developers and
reduce the cost of usability evaluation as compared to
standard techniques. Some automated evaluation tech-
niques can be embedded within the design phase of UI
development, as opposed to being applied after imple-
mentation. This is important because evaluation with
most traditional methods can be done only after the in-
terface has been built and changes are more costly [64].

It is important to note that we consider automated tech-
niques to be a useful complement and addition to stan-
dard evaluation techniques such as heuristic evaluation
and user testing { not a substitute. Di�erent techniques
uncover di�erent kinds of problems, and subjective mea-
sures such as user satisfaction are unlikely to be pre-
dictable via automated methods.

Despite the potential advantages, the space of auto-



mated usability evaluation is quite underexplored. In
this article, we discuss the state of the art in automated
usability evaluation, and highlight the approaches that
merit further investigation. Section presents a taxon-
omy for classifying UE automation, and Section sum-
marizes the application of this taxonomy to 128 us-
ability methods. Sections { describe these methods in
more detail, including our summative assessments of the
methods. The results of this survey suggest promising
ways to expand existing methods to better support au-
tomated usability evaluation.

Taxonomy of Automated Usability Evaluation
In this discussion, we make a distinction between WIMP
(Windows, Icons, Pointer, and Mouse) interfaces and
Web interfaces, in part because the nature of these in-
terfaces di�er and in part because the usability methods
discussed have often only been applied to one type or the
other. WIMP interfaces tend to be more functionally-
oriented than Web interfaces. In WIMP interfaces, users
complete tasks, such as opening or saving a �le, by fol-
lowing speci�c sequences of operations. Although there
are some functional Web applications, most Web inter-
faces o�er limited functionality (i.e., selecting links or
completing forms), but the primary role of many web
sites is to provide information. Of course, the two types
of interfaces share many characteristics; we highlight
their di�erences when relevant to usability evaluation.

Several surveys of UE methods for WIMP interfaces
exist; Hom [38] and Human Factors Engineering [40]
provide a detailed discussion of inspection, inquiry and
testing methods (these terms are de�ned below). Sev-
eral taxonomies of UE methods have also been proposed.
The most commonly used taxonomy is one that distin-
guishes between predictive (e.g., GOMS analysis and
cognitive walkthrough, also de�ned below) and experi-
mental (e.g., user testing) techniques [19]. White�eld,
Wilson, and Dowell [101] present another classi�cation
scheme based on the presence or absence of a user and
a computer. Neither of these taxonomies reect the au-
tomation aspects of UE methods.

The sole existing survey of automated usability evalua-
tion, by Balbo [6], uses a taxonomy which distinguishes
among four features of automation:

� Non Automatic - no level of automation sup-
ported (i.e., evaluator performs method).

� AutomaticCapture - software automatically cap-
tures interface usage (e.g., logging).

� Automatic Analysis - automatic identi�cation
of usability problems.

� Automatic Critique - automatic analysis cou-
pled with automated suggestions for improvements.

Balbo uses these categories to classify 13 common and
uncommon UE methods. However, most of the methods
surveyed require extensive human e�ort, because they
rely on formal user testing and/or require extensive eval-
uator interaction. For example, Balbo classi�es several
techniques for processing log �les as automatic analysis
methods despite the fact that these approaches require
formal testing or informal use to generate those log �les.
What Balbo calls an automatic critique method may
require the evaluator to create a complex UI model as
input. Thus, this classi�cation scheme is somewhat mis-
leading since it ignores the non-automated requirements
of the UE methods.

We expand this taxonomy to include consideration of
a method's non-automated testing requirements, both
in terms of users and evaluators. We augment each of
Balbo's features with an attribute called testing level;
this indicates the human testing e�ort required for exe-
cution of the method:

� Minimal E�ort: does not require testing or mod-
eling.

� Informal Use: requires normal use (i.e., unstruc-
tured tasks completed by a user or evaluator).

� Model Development: requires the evaluator to
develop a UI model and/or a user model in order
to employ the method.

� Formal Study: requires a user or evaluator to
complete a set of structured tasks and/or a proce-
dure.

Finally, we group existing UE methods into the 5 general
classes: testing, inquiry, inspection, analytical modeling
and simulation.

� Testing: an evaluator observes users interacting
with an interface (i.e., completing tasks) to deter-
mine usability problems.

� Inspection: an evaluator uses a set of criteria to
identify potential usability problems in an inter-
face.

� Inquiry: users provide feedback on an interface
via interviews, surveys, and other methods.

� AnalyticalModeling: an evaluator employs user
and interface models to generate quantitative us-
ability predictions.

� Simulation: an evaluator employs user and in-
terface models to mimic a user interacting with
an interface and report the results of this inter-
action (e.g., simulated activities, errors and other
quantitative measures).
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Both testing and inspection are formative (i.e., they
identify speci�c usability problems) unlike inquiry meth-
ods, which are summative (i.e., they provide general as-
sessments of usability). Analytical modeling and sim-
ulation are engineering approaches to UE that enable
evaluators to predict usability with user and interface
models. Software engineering practices have had a ma-
jor inuence on the �rst three classes, while the latter
two, analytical modeling and simulation, are quite simi-
lar to performance evaluation techniques used to analyze
the performance of computer systems [42, 43]. Table 1
maps these method classes into automation and test-
ing combinations for surveyed evaluation methods (see
below).

In summary, the taxonomy consists of: a UE method
type (testing, inquiry, inspection, analytical modeling
and simulation); an automation type (none, capture,
analysis and critique); and a testing level (minimal, in-
formal, model and formal). In the remainder of this
article, we use this taxonomy to analyze UE evaluation
methods.

Summary of Automated Usability Evaluation Methods
We surveyed 70 UE methods applied to WIMP inter-
faces, and 58 methods applied to Web UIs. Of these 128
methods, only 27 apply to both Web and WIMP UIs.
Table 2 combines survey results for both types of inter-
faces showing automation type and testing level. Table
2 contains only 101 methods, since we depict methods
applicable to both UIs once. For some methods, we
will discuss more than one approach; hence, we show
the number of methods surveyed in parenthesis beside
the testing level. There are major di�erences in automa-
tion among the 5 types of methods. Overall, automation
patterns are similar for WIMP and Web interfaces, with
the exception that analytical modeling and simulation
methods are far less explored in the Web domain than
for WIMP interfaces (2 vs. 17 methods). Appendix
shows the information in Table 2 separated by UI type.

Table 2 shows that AUE in general is greatly under-
explored. Non automatic methods represent 64% of
the methods surveyed, while automated methods collec-
tively represent only 36%. Of this 36%, automatic cap-
ture methods represent 17%, automatic analysis meth-
ods represent 17% and automatic critique methods rep-
resent 2%. All but two of the automatic capture and log
�le analysis methods require some level of testing; ge-
netic algorithms and information scent modeling employ
simulation to generate usage data. Hence, only 22% of
the automated methods do not require formal testing or
informal use to employ.

To be fully automated, an AUE method would pro-
vide the highest level of automation (i.e., critique) and
require no user testing or informal use. Our survey

found that this level of automation has been accom-
plished using only one method: guideline reviews (e.g.,
[27, 29, 57, 83]). Operationalized guidelines automat-
ically detect and report usability violations and then
make suggestions for �xing them (discussed further in
Section ).

Of those methods that support the next level of automa-
tion (i.e., analysis), Table 2 shows that analytical model-
ing and simulation methods represent the majority. All
but one of these methods support automatic analysis
without requiring formal testing or informal use. Most
of these methods embed analysis within the design phase
of UI development, as opposed to employment after de-
velopment.

The next sections discuss the various UE types and their
automation levels in more detail. Most methods are ap-
plicable to both WIMP and Web interfaces, however,
we make distinctions where necessary about a method's
applicability. We also present our assessments of au-
tomatic capture, analysis and critique techniques using
the following criteria:

� E�ectiveness: how well does a method inform
UI improvements,

� Ease of use: how easy is a method to employ,

� E�ort to learn: how easy is a method to learn,
and

� Applicability: how widely applicable is amethod
to WIMP and/or Web UIs other than those orig-
inally applied to.

We discuss the e�ectiveness, ease of use, e�ort to learn,
and applicability of automatedmethods within each class
of techniques.

User Testing Methods
Usability testing with real participants is one of the most
fundamental usability evaluation methods [64]. It pro-
vides an evaluator with direct information about how
people use computers and what some of the problems
are with the interface being tested. During usability
testing, participants use the system or a prototype to
complete a pre-determined set of tasks while the tester
records the results of the participants' work. The tester
then uses these results to determine how well the in-
terface supports users' task completion as well as other
measures, such as number of errors and task completion
time.

Automation has been used predominantly in two ways
within user testing: automatic capture of use data and
automatic analysis of this data according to some met-
rics or a model (referred to as log �le analysis in Table
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Testing Level
Minimal Informal Model Formal

Automation Type E�ort Use Development Study

Non Automatic Inquiry Testing
Inspection
Inquiry

Automatic Capture Simulation Inquiry Simulation Testing
Testing Inspection

Inquiry
Automatic Analysis Inspection Testing Testing Testing

Simulation Analytical Modeling Simulation
Simulation

Automatic Critique Inspection Inspection

Table 1: Surveyed UE methods associated with combinations of automation type and testing level.

2). In rare cases methods support both automatically
capturing and analyzing usage data [3, 96].

Automatic Capture Methods
Many usability testing methods require the recording of
the actions a user makes while exercising an interface.
This can be done by an evaluator taking notes while the
participant uses the system, either live or by repeatedly
viewing a videotape of the session, a time-consuming ac-
tivity. As an alternative, automatic capture techniques
can log user activity automatically. An important dis-
tinction can be made between information that is easy
to record but di�cult to interpret (e.g., keystrokes) and
information that is meaningful but di�cult to automat-
ically label, such as task completion.

Within the testing category of UE, automatic capture of
usage data is supported by two methods: performance
measurement and remote testing. Both require the in-
strumentation of a user interface, incorporation into a
user interface management system (UIMS), or capture
at the system level. A UIMS is a software library that
provides high-level abstractions for specifying portable
and consistent interface models that are then compiled
into UI implementations [65].

Performance measurement techniques automatically
record timestamps along with usage data, thus auto-
matically and accurately aligning timing data with user
interface events. Most video recording and event log-
ging tools record timestamps along with usage data [3,
33, 96]. Some video recording tools (e.g., [33]) record
events at the keystroke or system level. Recording data
at this level produces voluminous log �les and makes it
di�cult to map recorded usage into high-level tasks. As
an alternative, two systems log events within a UIMS.
UsAGE (User Action Graphing E�ort)2 [96] enables the
evaluator to replay logged events, meaning it must be
able to replicate logged events during playback. To

2This method is not to be confusedwith the USAGE analytical
modeling approach discussed in Section .

replicate logged events, it needs the same study data
(e.g., databases or documents) and expects the system
to behave as it did during the study. Integrated Data
Capture and Analysis Tool [33] logs events and auto-
matically �lters and classi�es them into meaningful ac-
tions. This system requires a video recorder to synchro-
nize taped footage with logged events. KALDI (Key-
board/mouse Action Logger and Display Instrument)
[3] supports event logging and screen capture via Java
and so does not require special equipment. Both KALDI
and UsAGE support log �le analysis (see Section ).

Remote testing is a method that enables testing between
a evaluator and participant who are not co-located. In
this case the evaluator is not able to observe the testing
process directly, but can gather data about the process
over a computer network. Remote testing methods are
distinguished according to whether or not they are co-
located in time or in location.

Same-time di�erent-place and di�erent-time di�erent-
place are two major remote testing approaches [34]. In
same-time di�erent-place or remote-control testing the
tester observes the participant's screen through network
transmissions (e.g., using PC Anywhere or Timbuktu)
and may be able to hear what the participant says dur-
ing the test via a speaker telephone or the computer.

An example of a di�erent-time di�erent-place testing
method is the journaled session [64], in which software
guides the participant through a testing session and logs
the results. Evaluators can use this approach with pro-
totypes to get feedback early in the design process, as
well as with released products. In the early stages, eval-
uators distribute disks containing a prototype of a soft-
ware product and embedded code for recording users'
actions. Users experiment with the prototype and re-
turn the disks to evaluators upon completion. It is
also possible to embed dialog boxes within the proto-
type in order to record user comments or observations
during usage. For released products, evaluators use this
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Automation Type
UE Method None Capture Analysis Critique Description

Testing (Formative)
Thinking-aloud Protocol F (1) user talks during test
Question-asking Protocol F (1) tester asks user questions
Shadowing Method F (1) expert explains user actions
Coaching Method F (1) user can ask an expert questions
Teaching Method F (1) user teaches novice
Co-discovery Learning F (1) two users collaborate
Performance Measurement F (1) F (7) capture usage and quantitative data
Log File Analysis FIM (19)� analyze captured usage data
Retrospective Testing F (1) review videotape with user
Remote Testing FI (3) distance testing

Inspection (Formative)

Guideline Reviews F (6) (6) M (13)y guideline conformance
Cognitive Walkthrough F (1) F (1) simulate problem solving
Pluralistic Walkthrough F (1) group cog. walkthrough
Heuristic Evaluation F (1) identify heuristic violations
Perspective-based Inspection F (1) narrowly focused heur. eval.
Feature Inspection F (1) evaluate product features
Formal Usability Inspection F (1) formal heur. eval.
Consistency Inspection F (1) UI consist. across products
Standards Inspection F (1) industry standard compliance

Inquiry (Summative)
Contextual Inquiry F (1) �eld interviewing
Field Observation F (1) observe system use
Focus Groups F (1) user group discussion
Interviews F (1) formally ask user questions
Surveys F (1) I (1) informal interview
Questionnaires F (1) I (1) subjective evaluation
Self-reporting Logs FI (1) user records UI operations
Screen Snapshots FI (1) user captures UI screens
User Feedback F (1) user-initiated comments

Analytical Modeling (Predictive)
GOMS Analysis M (4) execution & learning time
UIDE Analysis M (2) analysis within a UIDE
Programmable User Models M (1) programming UI to �t user

Simulation (Predictive)
Information Processor Model M (9) simulating user interaction
Petri Nets FM (1) simulating user interaction
Genetic Algorithms (1) simulating novice user interaction
Information Scent Model M (1) simulating Web site navigation

Automation Type
Total 26 7 7 1
Percent 64% 17% 17% 2%

Table 2: Automation characteristics of WIMP and Web UE methods. A number in parentheses indicates the number of methods
surveyed for a particular method and automation type. The testing level for each method is represented as: minimal (blank),
formal (F), informal (I) and model (M). The * for the FIM entry indicates that either formal or informal testing is required. In
addition, a model may be used in the analysis. The y indicates that methods may or may not employ a model.
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method to capture statistics about the frequency with
which the user has used a feature or the occurrence of
events of interest (e.g., error messages). This informa-
tion is valuable for optimizing frequently-used features
and the overall usability of future releases.

Remote testing approaches allow for wider testing than
traditional methods, but evaluators may experience tech-
nical di�culties with hardware and/or software com-
ponents. This can be especially problematic for same-
time di�erent-place testing. Most techniques also have
restrictions on the types of UIs to which they can be
applied. This is mainly determined by the underlying
hardware (e.g., PC Anywhere only operates on PC plat-
forms) [34]. KALDI, mentioned above, also supports re-
mote testing. Since it was developed in Java, evaluators
can use it for same- and di�erent-time testing of Java
applications on a wide range of computing platforms.

The Web enables remote testing and performance mea-
surement on a much larger scale than is economically
feasible with WIMP interfaces. Similar to journaled
sessions, Web servers maintain usage logs and automat-
ically generate a log �le entry for each request. These
entries include the IP address of the requester, request
time, name of the requested Web page, and in some
cases the URL of the referring page (i.e., where the user
came from). Server logs track only unique navigational
events, since they cannot record user interactions that
occur on the client side only (e.g., use of within-page an-
chor links, back button or cached pages). Furthermore,
the validity of the data is questionable due to caching
by proxy servers and browsers [25, 83]. Server logs may
not reect usability, especially since these logs are often
di�cult to interpret [84].

Client-side logs capture more accurate, comprehensive
usage data than server-side logs because they allow all
browser events to be recorded. Such logging may pro-
vide more insight about usability. On the downside,
however, it requires every Web page to be modi�ed to
log usage data, or else use of an instrumented browser
or special proxy server.

The NIST WebMetrics tool suite [83] supports remote
testing of a Web site. This suite includes WebVIP (Vi-
sual Instrumentor Program), a visual tool that enables
the evaluator to add event handling code to Web pages.
This code automatically records the page identi�er and
a time stamp in an ASCII �le every time a user selects
a link. (There is also a visualization tool, VISVIP [20],
for viewing logs collected with WebVIP; see Section .)
Using this client-side data, the evaluator can accurately
measure time spent on tasks or particular pages as well
as study use of the back button and user paths. De-
spite its advantages over server-side logging, WebVIP
requires the evaluator to make a copy of an entire Web

site, which could lead to invalid path speci�cations and
di�culties getting the copied site to function properly.
The evaluator must also add logging code to each indi-
vidual link on a page. Since WebVIP only collects data
on selected HTML links, it does not record interactions
with other Web objects, such as forms. It also does not
record usage of external or non-instrumented links.

Similar to WebVIP, the Web Event-logging Tool (WET)
[25] supports the capture of client-side data, includ-
ing clicks on Web objects, window resizing, typing in
a form object and form resetting. WET interacts with
Microsoft Internet Explorer and Netscape Navigator to
record browser event information, including the type of
event, a time stamp, and the document-window loca-
tion. This gives the evaluator a more complete view of
the user's interaction with a Web interface than Web-
VIP. WET does not require as much e�ort to employ
as WebVIP, nor does it su�er from the same limita-
tions. To use this tool, the evaluator speci�es events
(e.g., clicks, changes, loads and mouseovers) and event
handling functions in a text �le on the Web server; sam-
ple �les are available to simplify this step. The evalua-
tor must also add a single call to the text �le within the
HEAD tag of each Web page to be logged. Currently,
the log �le analysis for both WebVIP and WET is man-
ual. Future work has been proposed to automate this
analysis.

The NIST WebMetrics tool suite also includes WebCAT
(Category Analysis Tool), a tool that aids in Web site
category analysis, by a technique sometimes known as
card sorting [64]. In non-automated card sorting, the
evaluator (or a team of evaluators) writes concepts on
pieces of paper, and users group the topics into piles.
The evaluator manually analyzes these groupings to de-
termine a good category structure. WebCAT allows the
evaluator to test proposed topic categories for a site via
a category matching task; this task can be completed re-
motely by users. Results are compared to the designer's
category structure, and the evaluator can use the analy-
sis to inform the best information organization for a site.
WebCAT enables wider testing and faster analysis, and
helps make the technique scale for a large number of
topic categories.

Automatic capture methods represent important �rst
steps toward informing UI improvements { they pro-
vide input data for analysis and in the case of remote
testing, enable the evaluator to collect data for a larger
number of users than traditional methods. Without this
automation, evaluators would have to manually record
usage data, expend considerable time reviewing video-
taped testing sessions or in the case of the Web, rely
on questionable server logs. Methods such as KALDI
and WET capture high-level events that correspond to
speci�c tasks or UI features. KALDI also supports au-
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tomated analysis of captured data, discussed below.

It is di�cult to assess the ease of use and learning of
these approaches, especially the Integrated Data Cap-
ture and Analysis Tool and remote testing approaches
that require integration of hardware and software com-
ponents, such as video recorders and logging software.
For Web site logging, WET appears to be easier to use
and learn than WebVIP. It requires the creation of an
event handling �le and the addition of a small block of
code in each Web page header, while WebVIP requires
the evaluator to add code to every link on all Web pages.
WET also enables the evaluator to capture more com-
prehensive usage data than WebVIP. WebCAT appears
straightforward to use and learn for topic category anal-
ysis.

Both remote testing and performance measurement tech-
niques have restrictions on the types of UIs to which
they can be applied. This is mainly determined by the
underlying hardware (e.g., PC Anywhere only operates
on PC platforms) or UIMS, although KALDI can poten-
tially be used to evaluate Java applications on a wide
range of platforms.

Automatic Analysis Methods
Log �le analysis methods support automatic analysis
of data captured during formal testing or informal use.
Since Web servers automatically log client requests, log
�le analysis is a heavily used methodology for evaluating
Web interfaces [24, 30, 36, 92]. Our survey reveals �ve
general approaches for analyzing WIMP and Web log
�les: metric-based, pattern-matching, task-based, task-
based pattern-matching, and inferential.

Metric-based Analysis of Log Files. Metric-based
approaches generate quantitative performance measure-
ments. Three examples for WIMP interfaces are DRUM
[60], the MIKE UIMS [66], and AMME (Automatic
Mental Model Evaluator) [76, 78, 79]. DRUM enables
the evaluator to review a video tape of a user test and
manually log starting and ending points for tasks. DRUM
processes this log and derives the following measure-
ments: task e�ectiveness (i.e., how correctly and com-
pletely tasks are completed), user e�ciency (i.e., e�ec-
tiveness divided by task completion time), productive
period (i.e., portion of time the user did not have prob-
lems) and learnability (i.e., comparison of the user's and
expert user's e�ciency for a task). DRUM also synchro-
nizes the occurrence of events in the log with videotaped
footage, thus speeding up video analysis.

The MIKE UIMS enables an evaluator to assess the us-
ability of a UI speci�ed as a model that can be rapidly
changed and compiled into a functional UI. MIKE cap-
tures usage data and generates a number of general,
physical, logical and visual metrics, including perfor-

mance time, command frequency, the number of physi-
cal operations required to complete a task, and required
changes in the user's focus of attention on the screen.
MIKE also calculates these metrics separately for com-
mand selection (e.g., traversing a menu, typing a com-
mand name or hitting a function button) and command
speci�cation (e.g., entering arguments for a command)
to help the evaluator locate speci�c problems within the
UI.

AMME employs petri nets [72] to reconstruct the user's
model (i.e., problem solving process) and analyzes this
model. It requires a specially-formatted log �le and a
manually-created system description �le (i.e., a list of
interface states and a state transition matrix) in order
to generate the net. It then computes measures of be-
havioral complexity (i.e., steps taken to perform tasks),
routinization (i.e., repetitive use of task sequences), and
ratios of thinking vs. waiting time. User studies with
novices and experts validated these quantitative mea-
sures and showed behavioral complexity to correlate neg-
atively with learning (i.e., less steps are taken to solve
tasks as a user learns the interface) [79]. Hence, this
measure provides insight on interface complexity. It is
also possible to simulate the generated petri net (see
Section ) to further analyze the user's task solving and
learning processes. Multidimensional scaling andMarkov
analysis tools are available for comparing multiple petri
nets (e.g., nets generated from novice and expert user
logs). Since AMME processes log �les, it could easily be
extended to Web interfaces.

For the Web, site analysis tools developed by Service
Metrics [86] and others [5] allow evaluators to pinpoint
performance bottlenecks, such as slow server response
time, that may negatively impact the usability of a Web
site. Service Metrics' tools supports this kind of per-
formance analysis, including software that can collect
these measures frommultiple geographical locations un-
der various access conditions. These approaches focus
on server and network performance, but provide little
insight into the usability of the Web site itself.

Pattern-Matching Analysis of Log Files. Pattern-
matching approaches, such as MRP (MaximumRepeat-
ing Pattern) [87], analyze user behavior captured in logs.
MRP detects and reports repeated user actions (e.g.,
consecutive invocations of the same command and er-
rors) that may indicate usability problems. Studies with
MRP showed the technique to be useful for detecting
problems with expert users, but additional data pre-
�ltering was required for detecting problems with novice
users. Whether the evaluator performed this pre�ltering
or it was automated is unclear in the literature.

Task-based Analysis of Log Files. Task-based ap-
proaches analyze discrepancies between the designer and
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Figure 1: QUIP usage pro�le contrasting task ows for
two users to the designer's task ow (diagonal shading).
Each node represents a user action, and directed arcs in-
dicate actions taken by users. The width of arcs denote
the fraction of users completing actions, while the color
of arcs reect the average time between actions (darker
colors correspond to longer time).

user task models. For example, the IBOT system [107]
automatically analyzes log �les to detect task comple-
tion events. The IBOT system interacts with Windows
operating systems to capture low-level window events
(e.g., keyboard and mouse actions) and screen bu�er in-
formation (i.e., a screen image that can be processed
to automatically identify widgets). The system then
combines this information into higher-level abstractions
(e.g., menu select and menubar search operations). Eval-
uators can use the system to compare user and designer
behavior on high-level tasks and to recognize patterns
of ine�cient or incorrect behaviors during task comple-
tion. Without such a tool, the evaluator has to study
the log �les and do the comparison manually. Future
work has been proposed to support automated critique.

The QUIP (Quantitative User Interface Pro�ling) tool
[35] and KALDI provide the most advanced approaches
to task-based, log �le analysis for Java-based UIs. Un-
like other approaches, QUIP aggregates traces of mul-
tiple user interactions and compares the task ows of
these users to the designer's task ow. QUIP encodes
quantitative time-based and trace-based information into
directed graphs (see Figure 1). For example, the average
time between actions is indicated by the color of each
arrow, and the proportion of users who performed a par-
ticular sequence of actions is indicated by the width of
each arrow. The designer's task ow is indicated by the
diagonal shading in Figure 1. Currently, the evaluator
must instrument the UI to collect the necessary usage
data, and must manually analyze the graphs to identify
usability problems.

KALDI [3] automatically captures usage data and screen
shots for Java applications (see previous section). It also
enables the evaluator to classify tasks (both manually
and via automatic �lters), compare user performance
on tasks, and playback synchronized screen shots. It
depicts logs graphically in order to facilitate analysis.
UsAGE, which also supports automatic logging within
a UIMS, provides a similar graphical presentation for

comparing event logs for expert and novice users. Graph
nodes are labeled with UIMS event names, thus making
it di�cult to map events to speci�c interface tasks. To
mitigate this shortcoming, UsAGE allows the evaluator
to replay recorded events in the interface.

Task-based Pattern-matching Analysis of Log

Files. �EMA (Automatic Analysis Mechanism for the
Ergonomic Evaluation of User Interfaces) [7] and USINE
(USer Interface Evaluator) [53] combine task-based and
pattern-matching techniques.

�EMA uses a manually-created data-ow task model and
standard behavior heuristics to ag usage patterns that
may indicate usability problems. �EMA extends the
MRP approach (repeated command execution) to detect
additional patterns, including immediate task cancella-
tion, shifts in direction during task completion, and dis-
crepancies between task completion and the task model.
�EMA outputs results in an annotated log �le, which the
evaluator must manually inspect to identify usability
problems. Application of this technique to the evalua-
tion of ATM (Automated Teller Machine) usage corre-
sponded with problems identi�ed using standard heuris-
tic evaluations.

USINE (USer Interface Evaluator) [53] employs the Con-
curTaskTrees [70] notation to express temporal relation-
ships among UI tasks (e.g., enabling, disabling, and
synchronization). Using this information, USINE looks
for precondition errors (i.e., task sequences that vio-
late temporal relationships) and also reports quantita-
tive metrics (e.g., task completion time) and information
about task patterns, missing tasks and user preferences
reected in the usage data. Studies with a graphical
interface showed that USINE's results correspond with
empirical observations and highlight the source of some
usability problems. To use the system, evaluators must
create task models using the ConcurTaskTrees editor as
well as a table specifying mappings between log entries
and the task model. USINE processes log �les and out-
puts detailed reports and graphs to highlight usability
problems. RemUSINE (Remote USer Interface Eval-
uator) [71] is an extension that analyzes multiple log
�les (typically captured remotely) to enable comparison
across users.

Inferential Analysis of Log Files. Inferential anal-
ysis of Web log �les includes both statistical and vi-
sualization techniques. Statistical approaches include
tra�c-based analysis (e.g., pages-per-visitor or visitors-
per-page) and time-based analysis (e.g., click paths and
page-view durations) [24, 30, 92, 93]. Some methods
require manual pre-processing or �ltering of the logs
before analysis. Furthermore, the evaluator must in-
terpret reported measures in order to identify usabil-
ity problems. This analysis is largely inconclusive for
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Web server logs, since they provide only a partial trace
of user behavior and timing estimates may be skewed
by network latencies. Server log �les are also miss-
ing valuable information about what tasks users want
to accomplish [12, 84]. Nonetheless, inferential analysis
techniques have been useful for improving usability and
enable ongoing, cost-e�ective evaluation throughout the
life of a site [30, 92].

Visualization is also used for inferential analysis of Web
and WIMP log �les [32, 36]. Star�eld visualization [36]
is one approach that enables evaluators to interactively
explore server log data in order to gain an understand-
ing of human factors issues related to visitation patterns.
This approach combines the simultaneous display of a
large number of individual data points (e.g., URLs re-
quested versus time of requests) in an interface that sup-
ports zooming, �ltering and dynamic querying [2]. Vi-
sualizations provide a high-level view of usage patterns
(e.g., usage frequency, correlated references, bandwidth
usage, HTTP errors and patterns of repeated visits over
time) that the evaluator must explore to identify usabil-
ity problems. As such, it would be bene�cial to employ
a statistical inferential approach, such as time-based log
�le analysis, prior to exploring visualizations.

Dome Tree visualization [15] provides a more insightful
representation of simulated (see Section ) and Web us-
age captured in server log �les. This approach maps a
Web site into a three dimensional surface representing
the hyperlinks (see top part of Figure 2). The location of
links on the surface are determined by a combination of
content similarity, link usage and link structure of Web
pages. The visualization highlights the most commonly
traversed subpaths. An evaluator can explore these us-
age paths to possibly gain insight about the information
\scent" (i.e., common topics among Web pages on the
path) as depicted in the bottom window of Figure 2.
This additional information may help the evaluator in-
fer what the information needs of site users are, and
more importantly, may help infer whether the site sat-
is�es those needs. The Dome Tree visualization also
reports a crude path traversal time based on the sizes of
pages (i.e., number of bytes in HTML and image �les)
along the path. Server log accuracy limits the extent
to which this approach can successfully indicate usabil-
ity problems. As is the case for Star�eld visualization,
it would be bene�cial to employ a statistical inferential
approach prior to site exploration with this approach.

VISVIP [20] is a three-dimensional tool for visualizing
log �les compiled by WebVIP during user testing (see
previous section). Figure 3 shows VISVIP's Web site
(top graph) and usage path (bottom graph) depictions
to be similar to the Dome Tree visualization approach.
VISVIP generates a 2D layout of the site using a force-
directed algorithm, wherein adjacent nodes are placed

closer together than non-adjacent nodes. The third di-
mension reects path timing data as a dotted verti-
cal bar at each node; the height is proportional to the
amount of time. VISVIP also provides animation facil-
ities for visualizing path traversal. Since WebVIP logs
reect task completion, prior statistical inferential pro-
cessing is not necessary for VISVIP usage.

Although the log �le analysis techniques vary widely on
the four assessment criteria, all approaches o�er sub-
stantial bene�ts over the alternative { time-consuming,
unaided analysis of potentially large amounts of raw
data. Task-based and task-based pattern-matching tech-
niques like USINE may be the most e�ective (i.e., pro-
vide clear insight for improving usability via task analy-
sis), however, they require additional e�ort and learning
time over simpler pattern-matching approaches; this ad-
ditional e�ort is mainly in the development of task mod-
els. Although pattern-matching approaches are easier
to use and learn, they only detect problems for pre-
speci�ed usage patterns.

Metric-based approaches in the WIMP domain have been
e�ective at associating measurements with speci�c in-
terface aspects (e.g., commands and tasks), which can
then be used to identify usability problems. AMME also
helps the evaluator to understand the user's model of
an interface and conduct simulation studies. However,
metric-based approaches require the evaluator to con-
duct more analysis than task-based approaches. Metric-
based techniques in the Web domain focus on server and
network performance, which provides little usability in-
sight. Similarly, inferential analysis of Web server logs is
limited by their accuracy and may provide inconclusive
usability information.

Most of the techniques surveyed could be applied to
WIMP and Web UIs other than those demonstrated
on, with the exception of the MIKE UIMS and UsAGE,
which require a WIMP UI to be developed within a spe-
cial environment.

Inspection Methods
A usability inspection is an informal evaluation method-
ology whereby an evaluator examines the usability as-
pects of a UI design with respect to its conformance to a
set of guidelines. Unlike other UE methods, inspections
rely solely on the evaluator's judgment as a source of
evaluation feedback. A large number of detailed usabil-
ity guidelines have been developed for WIMP [67, 89]
and Web [17, 22, 55, 59, 99] interface design. Common
non-automated inspection techniques are heuristic eval-
uation [64] and cognitive walkthroughs [56].

Designers have historically experienced di�culties fol-
lowing design guidelines [10, 21, 57, 88]. One study
has also demonstrated that designers are biased towards
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Figure 2: Dome Tree visualization of a Web site with a usage path displayed. The bottom part of the �gure displays information
about the usage path, including an estimated navigation time and information scent (i.e., common keywords along the path).
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Figure 3: VISVIP visualization of a Web site. The bottom part of the �gure displays a usage path laid over the site.

11



aesthetically pleasing interfaces, regardless of e�ciency
[85]. Screen layout tools, especially validated ones, assist
designers with objective evaluation of WIMP UIs. Such
tools have been e�ective at identifying visual problems
(e.g., ine�cient screen usage, misaligned elements, or
size imbalance among elements), but they cannot detect
logical and semantic problems that arise during usage.
Although such tools appear easy to use and learn, their
application is dependent on the development platform
employed.

Because designers have di�culty applying design guide-
lines, automation has been predominately used within
the inspection class to check guideline conformance. One
notable method is operationalized guidelines, which au-
tomatically detect and report usability violations and
in some cases make suggestions for �xing them. Au-
tomated capture, analysis, and critique methods have
been applied to other inspection methods, as described
in the following subsections.

Automatic Capture Methods
During a cognitive walkthrough, an evaluator attempts
to simulate a user's problem-solving process while ex-
amining UI tasks. At each step of a task, the evalu-
ator assesses whether a user would succeed or fail to
complete the step. Hence, the evaluator produces ex-
tensive documentation during this analysis. There was
an early attempt to \automate" cognitive walkthroughs
by prompting evaluators with walkthrough questions
and enabling evaluators to record their analyses in Hy-
perCard [81]. Unfortunately, evaluators found this ap-
proach too cumbersome and time-consuming to employ.

Automatic Analysis Methods
Several quantitative measures have been proposed for
evaluating interfaces. Tullis [95] derived size measures
(Overall Density, Local Density, Number of Groups, Size
of Groups, Number of Items, and Layout Complexity).
Streveler and Wasserman [91] proposed \boxing," \hot-
spot," and \alignment" analysis techniques. These early
techniques were designed for alphanumeric
displays, while more recent techniques evaluate WIMP
interfaces. Vanderdonckt and Gillo [98] proposed �ve vi-
sual techniques (Physical Composition, Association and
Dissociation, Ordering, and Photographic Techniques),
which identi�ed more visual design properties than tra-
ditional balance, symmetry and alignment measures.
Rauterberg [77] proposed and validated four measures
(Functional Feedback, Interactive Directness, Applica-
tion Flexibility, and DialogFlexibility) to evaluateWIMP
UIs. Quantitative measures have been incorporated into
automatic layout tools [9, 51] as well as several auto-
matic analysis tools [61, 69, 85], discussed immediately
below.

Parush, Nadir, and Shtub [69] developed and validated

a tool for computing the complexity of Visual Basic di-
alog boxes. It considers changes in the size of screen
elements, the alignment and grouping of elements as
well as the utilization of screen space in its calculations.
User studies demonstrated that tool results can be used
to decrease screen search time and ultimately to im-
prove screen layout. AIDE (semi-Automated Interface
Designer and Evaluator) [85] is a more advanced tool
that helps designers assess and compare di�erent de-
sign options using quantitative task-sensitive and task-
independent metrics, including e�ciency (i.e., distance
of cursor movement), vertical and horizontal alignment
of elements, horizontal and vertical balance, and designer-
speci�ed constraints (e.g., position of elements). AIDE
also employs an optimizationalgorithm to automatically
generate initial UI layouts. Studies with AIDE showed it
to provide valuable support for analyzing the e�ciency
of a UI and incorporating task information into designs.

Sherlock [61] is another automatic analysis tool for Win-
dows interfaces. Rather than assessing ergonomic fac-
tors, it focuses on task-independent consistency check-
ing (e.g., same widget placement and labels) within the
UI or across multiple UIs; user studies have shown a
10-25% speedup for consistent interfaces [61]. Sherlock
evaluates visual properties of dialog boxes, terminol-
ogy (e.g., identify confusing terms and check spelling),
as well as button sizes and labels. Sherlock evaluates
any Windows UI that has been translated into a spe-
cial canonical format �le; this �le contains GUI object
descriptions. Currently, there are translators for Visual
Basic and Visual C++ resource �les.

The Rating Game [90] is an automated analysis tool
that attempts to measure the quality of a set of Web
pages using a set of easily measurable features. These
include: an information feature (word to link ratio), a
graphics feature (number of graphics on a page), a gad-
gets feature (number of applets, controls and scripts on
a page), and so on. The tool reports these raw measures
without providing guidance for improving a Web page.

Two authoring tools from Middlesex University, Hy-
perAT [93] and Gentler [94], perform a similar struc-
tural analysis at the site level. The goal of the Hyper-
text Authoring Tool (HyperAT) is to support the cre-
ation of well-structured hyperdocuments. It provides a
structural analysis which focuses on verifying that the
breadths and depths within a page and at the site level
fall within thresholds. (HyperAT also supports inferen-
tial analysis of server log �les similar to other log �le
analysis techniques; see Section .) Gentler [94] provides
similar structural analysis but focuses on maintenance
of existing sites rather than design of new ones.

The Rating Game, HyperAT and Gentler compute and
report a number of statistics about a page (e.g., number
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of links, graphics and words). However, the e�ective-
ness of these structural analyses is questionable, since
the thresholds have not been empirically validated. Al-
though there have been some investigations into breadth
and depth tradeo�s for the Web [52, 106], general thresh-
olds still remain to be established. On the other hand,
these approaches are easy to use, learn and apply to all
Web UIs.

Automatic Critique Methods
Critiques give designers clear directions for conforming
to violated guidelines and consequently improving us-
ability. As mentioned above, following guidelines has
historically been problematic, especially for a large num-
ber of guidelines. Automatic critique approaches, espe-
cially ones that modify a UI, provide the highest level
of support for adhering to guidelines.

The KRI/AG tool (Knowledge-based Review of user In-
terface) [57] is an automatic critique that checks the
guideline conformance of X Window UI designs created
using the TeleUSE UIMS [54]. KRI/AG contains a
knowledge base of guidelines and style guides, includ-
ing the Smith and Mosier guidelines [89] and Motif style
guides [67]. It uses this information to automatically cri-
tique a UI design and generate comments about possible
aws in the design. IDA (user Interface Design Assis-
tance) [80] also embeds rule-based (i.e., expert system)
guideline checks within a UIMS. SYNOP [6] is a similar
automatic critique system that performs a rule-based
critique of a control system application. SYNOP also
modi�es the UI model based on its evaluation. CHIMES
(Computer-Human Interaction ModElS) [45] is a an-
other approach that assesses the degree to which NASA's
space-related critical and high risk interfaces meet hu-
man factors standards.

Unlike KRI/AG, IDA, SYNOP, and CHIMES, Ergo-
val [29] is widely applicable to WIMP UIs on Win-
dows platforms. It organizes guidelines into an object-
based framework (i.e., guidelines that are relevant to
each graphical object) in order to bridge the gap be-
tween the developer's view of an interface and how guide-
lines are traditionally presented (i.e., checklists). This
approach is being incorporated into a petri net envi-
ronment [68] to enable guideline checks throughout the
development process.

All of these approaches are highly e�ective at suggest-
ing UI improvements for those guidelines that can be
operationalized. These include checking for the exis-
tence of labels for text �elds, listing menu options in
alphabetical order, and setting default values for input
�elds. However, they cannot assess UI aspects that can-
not be operationalized, such as whether the labels used
on elements will be understood by users. For example,
Farenc, Liberati, and Barthet [28] show that only 78%

of a set of established ergonomic guidelines could be op-
erationalized in the best case scenario and only 44% in
the worst case. Another drawback of approaches that
are not embedded within a UIMS is that they require
considerable modeling and learning e�ort on the part of
the evaluator. All methods, except Ergoval, also su�er
from limited applicability.

Several automatic critique tools use guidelines for Web
site usability checks (see [103] for a listing). The World
Wide Web Consortium's HTML Validation Service [102]
checks that HTML code conforms to standards. Weblint
[11] and Dr Watson [1] also check HTML syntax and in
addition verify links. Dr Watson also computes down-
load speed and spell checks text.

The Web Static Analyzer Tool (SAT) [83], part of the
NIST WebMetrics suite of tools, assesses static HTML
according to a number of usability guidelines, such as
whether all graphics contain ALT tags, the average num-
ber of words in link text, and the existence of at least
one outgoing link on a page. Future plans for this tool
include adding the ability to inspect the entire site more
holistically in order to identify potential problems in in-
teractions between pages. UsableNet's LIFT Online and
LIFT Onsite [97] perform similar usability checks as well
as checking for use of standard and portable link, text,
and background colors, the existence of stretched im-
ages, and other guideline violations. LIFT Onsite guides
users through making suggested improvements. Bobby
[16, 18] is another HTML analysis tool that checks Web
pages for their accessibility [99] to people with disabili-
ties.

Conforming to the guidelines embedded in these tools
can potentially eliminate usability problems that arise
due to poor HTML syntax (e.g., missing page elements)
or guideline violations. However, Ratner, Grose, and
Forsythe [75] question the validity of HTML usability
guidelines, since most have not been subjected to a rig-
orous development process as established guidelines for
WIMP interfaces. Analysis of 21 HTML guidelines
showed little consistency among them, with 75% of rec-
ommendations appearing in only one style guide. Fur-
thermore, only 20% of HTML-relevant recommendations
from established guidelines existed in the 21 HTML style
guides. WebEval [82] is one automated critique ap-
proach being developed to address this issue. Similar
to Ergoval (discussed above), it provides a framework
for applying established WIMP guidelines to relevant
HTML components. Even with Ergoval, some problems,
such as whether text will be understood by users, are
di�cult to detect automatically.

Unlike other automatic critique approaches, the Design
Advisor [27] enables visual critique of Web pages. The
tool uses empirical results from eye tracking studies de-
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Figure 4: The Design Advisor superimposes a scanning path on the Web page. The numbers indicate the order in which elements
will be scanned.

signed to assess the attentional e�ects of various ele-
ments, such as animation, images, and highlighting, in
multimedia presentations [26]; these studies found mo-
tion, size, images, color, text style, and position to be
scanned in this order. The Design Advisor determines
and superimposes a scanning path on a Web page as
depicted in Figure 4. It also provides suggestions for
improving scanning paths.

Inquiry Methods
Similar to user testing approaches, inquiry methods re-
quire feedback from users and are often employed dur-
ing user testing. The focus, however, is not on study-
ing speci�c tasks or measuring performance. Rather the
goal of these methods is to gather subjective impressions
(i.e., preferences or opinions) about various aspects of a
UI. Evaluators usually employ inquiry methods, such as
surveys, questionnaires, and interviews, to gather sup-
plementary data after a system is released.3 Inquiry
methods are summative in nature and provide feedback
on the overall quality of the interface, such as whether
users like it, generally have problems with it, and so on.
This is useful information for improving the interface for
future releases. These methods vary based on whether
the evaluator interacts with a user or a group of users
or whether users report their experiences using ques-
tionnaires, surveys or usage logs possibly in conjunction
with screen snapshots.

Automation has been used predominately for automat-
ically capturing use data during formal testing or in-

3Contextual inquiry [37] is an exception to this; it is a needs
assessment method used early in the design process.

formal use. Interactive surveys and questionnaires can
be embedded into a user interface to semi-automate the
usage capture process. The Web inherently facilitates
automatic capture of survey and questionnaire data us-
ing forms. These approaches enable the evaluator to
collect subjective usability data and possibly make im-
provements throughout the life of an interface.

As previously discussed, automatic capture methods rep-
resent an important �rst step toward informing UI im-
provements. Automated inquiry methods make it possi-
ble to collect data quickly from a larger number of users
than is typically possible with non-automated methods.
However, automated inquiry methods su�er from the
same limitation of non-automated approaches { they
may not clearly indicate usability problems due to the
subjective nature of user responses. Furthermore, they
do not enable automated analysis or critique of inter-
faces. The real value of these techniques is that they
are easy to use and widely applicable.

Analytical Modeling Methods

Analytical modeling complements traditional evaluation
techniques like user testing. Given some representation
or model of the UI and/or user, these methods inexpen-
sively generate quantitative usability predictions. Au-
tomation has been predominately used to analyze task
completion (e.g., execution and learning time) within
WIMP UIs and Web site structure (e.g., breadth and
depth). Analytical modeling inherently supports au-
tomatic analysis. Our survey did not reveal analyti-
cal modeling techniques to support automated critique.
Most analytical modeling and simulation approaches for
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WIMP and Web UIs are based on the model human
processor (MHP) proposed by Card et al. [14]. GOMS
analysis is one of the most widely accepted analytical
modeling methods based on the MHP [46]. Other meth-
ods based on the MHP employ simulation and will be
discussed in the next section.

The GOMS family of analytical methods use a task
structure consisting of Goals, Operators, Methods and
Selection rules. Using this task structure along with
validated time parameters for each operator, the meth-
ods predict task execution and learning times for error-
free expert performance. The four approaches in this
family include the original GOMS method proposed by
Card, Moran and Newell (CMN-GOMS) [14], the sim-
pler keystroke-level model (KLM), the natural GOMS
language (NGOMSL) and the critical path method
(CPM-GOMS) [46]. These approaches di�er in the task
granularity modeled (e.g., keystrokes or a high-level pro-
cedure) and in the support for alternative methods (i.e.,
selections) and multiple goals.

Two of the major roadblocks to using GOMS have been
the tedious task analysis and the need to estimate ex-
ecution and learning times. These must be speci�ed
and computed manually. USAGE4 (the UIDE System
for semi-Automated GOMS Evaluation) [13] and CRI-
TIQUE (the Convenient, Rapid, Interactive Tool for
Integrating Quick Usability Evaluations) [39] are tools
that address these limitations by automatically gener-
ating a task model and quantitative predictions for the
model. Both of these tools accomplish this within a user
interface development environment (UIDE). GLEAN
(GOMS Language Evaluation and ANalysis) [49] is an-
other tool that generates quantitative predictions for a
given GOMS task model (discussed in more detail in
Section ). These tools reduce the e�ort required to em-
ploy GOMS analysis and generate predictions that are
consistent with models produced by experts. The major
hindrance to their wide application is that they operate
on limited platforms (e.g., Sun machines), model low-
level goals (e.g., at the keystroke level for CRITIQUE),
and do not support multiple ways of accomplishing tasks
because they use an idealized expert user model.

The Programmable User Model (PUM) [104] is an en-
tirely di�erent analytical modeling technique for auto-
matic analysis. In this approach, the designer is required
to write a program that acts like a user using the inter-
face design; the designer must specify explicit sequences
of operations for each task. These are executed within
an architecture that imposes approximations of psycho-
logical constraints, such as memory limitations. Di�cul-
ties experienced by the designer while programming the

4This is not to be confused with the UsAGE log �le capture
and analysis tool discussed in Section .

architecture can then be used to improve the UI. Once
the designer successfully programs the architecture, the
model can be executed to generate quantitative perfor-
mance predictions similar to GOMS analysis. By mak-
ing a designer aware of considerations and constraints
a�ecting usability from the user's perspective, this ap-
proach provides clear insight into speci�c problems with
a UI.

Analytical modeling approaches enable the evaluator to
produce relatively inexpensive results to inform design
choices. GOMS has been shown to be applicable to all
types of UIs and is e�ective at predicting usability prob-
lems. However, these predictions are limited to error-
free expert performance. The development of USAGE
and CRITIQUE has reduced the learning time and e�ort
required to apply GOMS analysis, but they su�er from
limitations previously discussed. PUMs, however, still
requires considerable e�ort and learning time to employ,
since it is a programming approach. Although it appears
that this technique is applicable to all WIMP UIs, its
e�ectiveness is not discussed in detail in the literature.

Analytical modeling of Web UIs lags far behind e�orts
for WIMP interfaces. Many Web authoring tools, such
as Microsoft FrontPage and Macromedia
Dreamweaver, provide limited support for usability eval-
uation in the design phase (e.g., predict download time
and check HTML syntax). This addresses only a small
fraction of usability problems. While analytical mod-
eling techniques are potentially bene�cial, our survey
did not uncover any approaches that address this gap
in Web site evaluation. Approaches like GOMS analysis
will not map as well to the Web domain, because it is dif-
�cult to predict how a user will accomplish the goals in a
task hierarchy given that there are many di�erent ways
to navigate a typical site. Another problem is GOMS'
reliance on an expert user model, which does not �t the
diverse user community of the Web. Hence, new ana-
lytical modeling approaches are required to evaluate the
usability of Web sites.

Simulation Methods

Simulation complements traditional UE methods and,
like analytical modeling, inherently supports automatic
analysis. Using models of the user and/or the inter-
face design, these approaches simulate the user inter-
acting with the interface and report the results of this
interaction. Simulation is also used to automatically
generate usage data for analysis with log �le analysis
techniques [15] or event playback in a UI [47]. Hence,
simulation also supports automatic capture. Evaluators
can run simulations with di�erent parameters in order
to study various UI design tradeo�s and thus make more
informed decisions about UI implementation.
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Automatic Capture

Kasik and George [47] developed an automatic capture
technique for driving tools that replay events (such as
executing a log �le) for Motif-based UIs. The goal of
this work is to use a small number of input parameters
to inexpensively generate a large number of usage traces
(or test scripts) that an evaluator can then use to �nd
weak spots, failures, and other usability problems dur-
ing the design phase. The system enables a designer to
generate an expert user trace and then insert deviation
commands at di�erent points within the trace. It uses
a genetic algorithm to determine user behavior during
deviation points, and in e�ect simulates a novice user
learning by experimentation. Genetic algorithms con-
sider past history in generating future random numbers;
this enables the emulation of user learning. Altering key
features of the genetic algorithm enables the evaluator
to simulate other user models. Although currently not
supported by this tool, traditional random number gen-
eration can also be employed to explore the outer limits
of a UI (i.e., completely random user behavior).

Without such an automated capture technique, the eval-
uator must anticipate all possible usage scenarios or rely
on user testing or informal use to generate usage traces.
Testing and informal use limit UI coverage to a small
number of tasks or to UI features that are employed
in regular use. Automated capture techniques, such as
the genetic algorithm approach, enable the evaluator to
produce a larger number of usage scenarios and widen
UI coverage with minimal e�ort. This system appears
to be relatively straightforward to use, since it interacts
directly with a running application and does not require
modeling. Interaction with the running application also
ensures that generated usage traces are plausible. Ex-
periments demonstrated that it is possible to generate
a large number of usage traces within an hour. How-
ever, an evaluator must manually analyze the execution
of each trace in order to identify problems. The authors
propose future work to automatically verify that a trace
produced the correct result. Currently, this tool is only
applicable to Motif-based UIs.

Chi, Pirolli, and Pitkow [15] developed a similar auto-
matic capture approach for generating navigation paths
for Web UIs. This approach creates a model of an ex-
isting site that embeds information about the similarity
of content among pages, captured usage data, and link-
ing structure. The evaluator speci�es starting points in
the site and information needs (i.e., target pages) as in-
put to the simulator. The simulation models a num-
ber of agents (i.e., hypothetical users) traversing the
links and content of the site model. At each page, the
model considers information scent (i.e., common key-
words between an agent's goal and content on linked
pages) in making navigation decisions. Navigation de-

cisions are controlled probabilistically such that most
agents traverse higher-scent links (i.e., closest match to
information goal) and some agents traverse lower-scent
links. Simulated agents stop when they reach the target
pages or after an arbitrary amount of e�ort (e.g., maxi-
mum number of links or browsing time). The simulator
records navigation paths and reports the proportion of
agents that reached target pages.

The authors use these usage paths as input to the Dome
Tree visualization methodology, an inferential log �le
analysis approach discussed in Section . The authors
compared actual and simulated navigation paths for Xe-
rox's corporate site and discovered a close match when
scent is clearly visible (i.e., not buried under graphics or
text). Since the site model does not consider actual page
elements, the simulator cannot account for the impact
of various page aspects, such as the amount of text or
reading complexity, on navigation choices. Hence, this
approach may enable only crude approximations of user
behavior for sites with complex pages.

Automatic Analysis

AMME [79] (see Section ) is the only surveyed approach
that constructs a WIMP simulation model (petri net)
directly from usage data. Other methods are based on
a model similar to the MHP and require the evaluator
to conduct a task analysis (and subsequently validate
it with empirical data) in order to develop a simulator.
Hence, AMME is more accurate, exible (i.e., task and
user independent), and simulates more detail (e.g., er-
ror performance and preferred task sequences). AMME
simulates learning, user decisions, and task completion
and outputs a measure of behavior complexity, which
has been shown to correlate negatively with learning
and interface complexity. Studies have also validated
the accuracy of generated models with usage data [76].
AMME should be applicable to Web interfaces as well,
since it constructs models from log �les. Despite its
advantages, AMME still requires formal user testing to
generate log �les for simulation studies.

The remaining WIMP simulations rely on some vari-
ation of a human information processor model similar
to the MHP previously discussed. Pew and Mavor [73]
provide a detailed discussion of this type of modeling
and an overview of many of these approaches, includ-
ing �ve that we discuss: ACT-R (Adaptive Control of
Thought) [4], COGNET (COGnition as a NEtwork of
Tasks) [105], EPIC (Executive-Process Interactive Con-
trol) [50], HOS (Human Operator Simulator) [31] and
Soar [74]. Here, we also consider CCT (Cognitive Com-
plexity Theory) [48], ICS (Interacting Cognitive Sub-
systems) [8] and GLEAN (GOMS Language Evaluation
and ANalysis) [49]. Rather than describe each method
individually, we summarize the major characteristics of
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these simulation methods in Table 3 and discuss them
below.

Modeled Tasks The models we surveyed simulate the
following 3 types of tasks: a user performing cog-
nitive tasks (e.g., problem-solving and learning:
COGNET, ACT-R, Soar, ICS); a user immersed
in a human-machine system (e.g., an aircraft or
tank: HOS); and a user interacting with a typical
UI (EPIC, GLEAN, CCT).

Modeled Components Some simulations focus solely
on cognitive processing (ACT-R, COGNET) while
others incorporate perceptual and motor process-
ing as well (EPIC, ICS, HOS, Soar, GLEAN, CCT).

Component Processing Task execution is modeled
either as serial processing (ACT-R, GLEAN, CCT),
parallel processing (EPIC, ICS, Soar), or semi-
parallel processing (serial processing with rapid
attention switching among the modeled compo-
nents, giving the appearance of parallel process-
ing: COGNET, HOS).

Model Representation To represent the underlying
user, simulation methods use either task hierar-
chies (as in a GOMS task structure: HOS, CCT),
production rules (CCT, ACT-R, EPIC, Soar, ICS),
or declarative/procedural programs (GLEAN,
COGNET). CCT uses both a task hierarchy and
production rules to represent the user and system
models respectively.

Predictions The surveyed methods return a number
of simulation results, including predictions of task
performance (EPIC, CCT, COGNET, GLEAN,
HOS, Soar), memory load (ICS, CCT), learning
(ACT-R, SOAR, ICS, GLEAN, CCT), or behavior
predictions such as action traces (ACT-R,
COGNET, EPIC).

These simulation methods vary widely in their ability
to illustrate usability problems. Their e�ectiveness is
largely determined by the characteristics discussed (mod-
eled tasks, modeled components, component processing,
model representation and predictions). Methods that
are potentially the most e�ective at illustrating usabil-
ity problems model UI interaction and all components
(perception, cognition and motor) processing in paral-
lel, employ production rules and report on task perfor-
mance, memory load, learning and simulated user be-
havior. Such methods would enable the most exibility
and closest approximation of actual user behavior. The
use of production rules is important in this methodol-
ogy, because it relaxes the requirement for an explicit
task hierarchy, thus allowing for the modeling of more
dynamic behavior, such as Web site navigation.

EPIC is the only simulation analysis method that em-
bodies most of these ideal characteristics. It employs
production rules and models UI interaction and all com-
ponents (perception, cognition and motor) processing in
parallel. It reports task performance and simulated user
behavior, but does not report memory load and learn-
ing estimates. Studies with EPIC demonstrated that
predictions for telephone operator and menu searching
tasks closely match observed data. EPIC and all of the
other methods require considerable learning time and ef-
fort to employ. They are also applicable to a wide range
of UIs.

Our survey revealed only one simulation approach for
automatic analysis of Web interfaces { WebCriteria's
Site Pro�le [100]. Unlike the other simulationapproaches,
it requires an implemented interface for evaluation. Site
Pro�le performs analysis in four phases: gather, model,
analyze and report. During the gather phase, a spi-
der traverses a site (200-600 unique pages) to collect
Web site data. This data is then used to construct
a nodes-and-links model of the site. For the analysis
phase, it uses a standard Web user model (called Max
[58]) to simulate a user's information seeking behavior;
this model is based on prior research with GOMS anal-
ysis. Given a starting point in the site, a path and a
target, Max \follows" the path from the starting point
to the target and logs measurement data. These mea-
surements are used to compute an accessibility metric,
which is then used to generate a report. This approach
can be used to compare Web sites, provided that an
appropriate navigation path is supplied for each.

The usefulness of this approach is questionable, since
currently it only computes accessibility (navigation time)
for the shortest path between speci�ed start and desti-
nation pages using a single user model. Other mea-
surements, such as freshness and page composition, also
have questionable value in improving the Web site. This
method does not entail any learning time or e�ort on
the part of the evaluator, since WebCriteria performs
the analysis. The method is applicable to all Web UIs.

Expanding Existing Automated Usability Evaluation
Methods
Automated usability evaluation has many potential ben-
e�ts, including reducing the costs of non-automatedmeth-
ods, aiding in comparisons between alternative designs
and for improving consistency in problems found. Re-
search to further develop analytical modeling, simula-
tion and log �le analysis techniques could result in sev-
eral promising AUE techniques as discussed below.

Our survey showed log �le analysis to be a viable method-
ology for automated analysis of usage data. However,
it still requires formal testing or informal use to em-
ploy. One way to expand the use and bene�ts of this
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Parameter Methods

Modeled Tasks
problem-solving and/or learning COGNET, ACT-R, Soar, ICS
human-machine system HOS
UI interaction EPIC, GLEAN, CCT

Modeled Components
cognition ACT-R, COGNET
perception, cognition & motor EPIC, ICS, HOS, Soar, GLEAN, CCT
Component Processing
serial ACT-R, GLEAN, CCT
semi-parallel COGNET, HOS
parallel EPIC, ICS, Soar

Model Representation
task hierarchy HOS, CCT
production rules CCT, ACT-R, EPIC, Soar, ICS
program GLEAN, COGNET

Predictions
task performance EPIC, CCT, COGNET, GLEAN, HOS, Soar
memory load ICS, CCT
learning ACT-R, Soar, ICS, GLEAN, CCT
behavior ACT-R, COGNET, EPIC

Table 3: Characteristics of simulation methods surveyed.

methodology is to leverage a small amount of test data
to generate a larger set of plausible usage data. This
is even more important for Web interfaces, since server
logs do not capture a complete record of user interac-
tions. We discussed two simulation approaches, genetic
algorithms and information scent modeling, that auto-
matically generate plausible usage data. Genetic algo-
rithms determine user behavior during deviation points
in an expert user script, while the information scent
model selects navigation paths by considering informa-
tion scent. Hence, both of these approaches generate
plausible usage traces without user testing or informal
use. These techniques also provide valuable insight on
leveraging real usage data from usability tests or infor-
mal use. For example, real data could also serve as input
scripts for genetic algorithms; the evaluator could add
deviation points to these as well.

Real and simulated usage data could also be used to
evaluate comparable WIMP UIs, such as word proces-
sors and image editors. Task sequences could comprise
a usability benchmark (i.e., a program for measuring
UI performance). After mapping task sequences into
speci�c UI operations in each interface, the benchmark
could be executed within each UI to collect measure-
ments. This is a promising open area of research for
evaluating comparable WIMP UIs.

Given a wider sampling of usage data, task-based pattern-
matching log �le analysis is a promising research area to
pursue. Task-based approaches that follow the USINE
model in particular (i.e., compare a task model expressed
in terms of temporal relationships to usage traces) pro-
vide the most support, among the methods surveyed,

for understanding user behavior, preferences and errors.
Although the authors claim that this approach works
well for WIMP UIs, it needs to be adapted to work
for Web UIs where tasks may not be clearly-de�ned.
Additionally, since USINE already reports substantial
analysis data, this data could be compared to usability
guidelines in order to support automated critique.

Our survey also showed that evaluation within a user in-
terface development environment (UIDE) is a promising
approach for automated analysis. The AIDE approach
provides the most support for evaluating and improving
UI designs and could be expanded to Web interfaces.
Guidelines could also be incorporated into AIDE analy-
sis to support automatic critique. Although UIDE anal-
ysis is promising, it is not widely used in practice. This
may be due to the fact that most tools are research sys-
tems and have not been incorporated into popular com-
mercial tools. Applying such analysis approaches out-
side of these user interface development environments is
an open research problem.

In addition, our survey showed that existing simulations
based on a human information processor model have
widely di�erent uses (e.g., modeling a user interacting
with a UI or solving a problem). Thus, it is di�cult
to draw concrete conclusions about the e�ectiveness of
these approaches. Simulation in general is a promising
research area to pursue for AUE, especially for evaluat-
ing alternative designs.

Several simulation techniques employed in the perfor-
mance analysis of computer systems, in particular traced-
driven discrete-event simulation and Monte Carlo sim-
ulation [43], would enable designers to perform what-
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if analysis with UIs. Trace-driven discrete-event sim-
ulations employ real usage data to model a system as
it evolves over time. Analysts use this approach to
simulate many aspects of computer systems, such as
the processing subsystem, operating system and vari-
ous resource scheduling algorithms. In the user interface
�eld, all surveyed approaches use discrete-event simula-
tion. AMME, however, constructs simulationmodels di-
rectly from logged usage, which is a form of trace-driven
discrete-event simulation. Similarly, other simulators
could be altered to process log �les as input instead of
explicit task or user models, potentially producing more
realistic and accurate simulations.

Monte Carlo simulations enable an evaluator to model a
system probabilistically (i.e., a probability distribution
over possible events determines what event occurs next).
Monte Carlo simulation could contribute substantially
to automated UE by eliminating the need for explicit
task hierarchies or user models. Most simulations in this
domain rely on a single user model, typically an expert
user. This would enable designers to perform what-if
analysis and study design alternatives with many user
models. The approach employed by Chi, Pirolli, and
Pitkow [15] to simulate Web site navigation is a close
approximation to Monte Carlo simulation.

Conclusions
In this article we provided an overview of automated
usability evaluation and presented a taxonomy for com-
paring various methods. We also presented an exten-
sive survey of AUE methods for WIMP and Web in-
terfaces, �nding that AUE methods represent only 36%
of methods surveyed. Of these methods, only 22% are
free from requirements of formal testing or informal use.
Of these, all approaches, with the exception of opera-
tionalized guidelines, are based on analytical modeling
or simulation.

It is important to keep in mind that AUE does not
capture important qualitative and subjective informa-
tion (such as user preferences and misconceptions) that
can only be unveiled via user testing, heuristic evalua-
tion, and other standard inquiry methods. Nevertheless,
simulation and analytical modeling should be useful for
helping designers choose among design alternatives be-
fore committing to expensive development costs.

Furthermore, evaluators could use automated
approaches in tandemwith non-automatedmethods, such
as heuristic evaluation and user testing. For example,
an evaluator doing a heuristic evaluation could observe
automatically-generated usage traces executing within
a UI.

Automated usability evaluation has many potential ben-
e�ts, including reducing the costs of non-automated

methods, aiding in comparisons between alternative de-
signs and for improving consistency in problems found.
Research to further develop analytical modeling, sim-
ulation and log �le analysis techniques could result in
several promising AUE techniques.

Automation Characteristics of WIMP and Web Interfaces
The following tables depict automation characteristics
for WIMP and Web interfaces separately. We combined
this information in Table 2.
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Automation Type
Total 26 6 7 1
Percent 65% 15% 17% 3%

Table 4: Automation characteristics of 70 WIMP UE methods. A number in parentheses indicates the number of methods
surveyed for a particular method and automation type. The testing level for each method is represented as: minimal (blank),
formal (F), informal (I) and model (M). The * for the FIM entry indicates that either formal or informal testing is required. In
addition, a model may be used in the analysis. The y indicates that methods may or may not employ a model. Four methods
support multiple levels of automation: DRUM - performancemeasurement and log �le analysis; AMME - log �le analysis and petri
net simulation; KALDI - performancemeasurement, log �le analysis, and remote testing; and UsAGE - performancemeasurement
and log �le analysis.
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Automation Type
UE Method None Capture Analysis Critique Description

Testing (Formative)
Thinking-aloud Protocol F (1) user talks during test
Question-asking Protocol F (1) tester asks user questions
Shadowing Method F (1) expert explains user actions
Coaching Method F (1) user can ask an expert questions
Teaching Method F (1) user teaches novice
Co-discovery Learning F (1) two users collaborate
Performance Measurement F (1) F (4) capture usage and quantitative data
Log File Analysis FIM (9) analyze captured usage data
Retrospective Testing F (1) review videotape with user
Remote Testing FI (1) distance testing

Inspection (Formative)
Guideline Reviews F (4) (3) (8) guideline conformance
Cognitive Walkthrough F (1) simulate problem solving
Pluralistic Walkthrough F (1) group cog. walkthrough
Heuristic Evaluation F (1) identify heuristic violations
Perspective-based Inspection F (1) narrowly focused heur. eval.
Feature Inspection F (1) evaluate product features
Formal Usability Inspection F (1) formal heur. eval.
Consistency Inspection F (1) UI consist. across products
Standards Inspection F (1) industry standard compliance

Inquiry (Summative)
Contextual Inquiry F (1) �eld interviewing
Field Observation F (1) observe system use
Focus Groups F (1) user group discussion
Interviews F (1) formally ask user questions
Surveys F (1) I (1) informal interview
Questionnaires F (1) I (1) subjective evaluation
Self-reporting Logs FI (1) user records UI operations
Screen Snapshots FI (1) user captures UI screens
User Feedback F (1) user-initiated comments

Analytical Modeling (Predictive)
No Methods Surveyed

Simulation (Predictive)
Information Processor Model M (1) simulating user interaction
Information Scent Model M (1) simulating Web site navigation

Automation Type
Total 26 5 3 1
Percent 74% 14% 9% 3%

Table 5: Automation characteristics of 58 Web UE methods. A number in parentheses indicates the number of methods surveyed
for a particular method and automation type. The testing level for each method is represented as: minimal (blank), formal (F),
informal (I) and model (M). Two methods support multiple levels of automation: Dome Tree visualization - log �le analysis and
simulation; and WebVIP - performance measurement and remote testing.
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