
Language Support and Compilation Techniques for Regions

David Gay and Alex Aiken
{dgay,aiken}@cs.berkeley.edu

Report No. UCB//CSD-00-1115

November 2000

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Language Support and Compilation Techniques for Regions

David Gay and Alex Aiken∗

EECS Department
University of California, Berkeley
{dgay,aiken}@cs.berkeley.edu

Abstract

Region-based memory management systems structures
memory by grouping objects in regions under program con-
trol. Memory is reclaimed by deleting regions, freeing all
objects stored therein. Our compiler for C with regions,
RC, prevents unsafe region deletions by keeping a count of
references to each region. RC is compiled to C. Using type
annotations that make the structure of a program’s regions
more explicit and a reference counting scheme that optimises
reference count operations on local variables, we reduce the
overhead of reference counting from a maximum of 27% to
a maximum of 18% on our benchmarks. We generalise these
annotations in a region type system whose main novelty is
the use of existentially quantified abstract regions to repre-
sent pointers to objects whose region is partially or totally
unknown.

1 Introduction

In region-based memory management each allocated object
is placed in a program-specified region. Objects cannot be
freed individually; instead regions are deleted with all their
contained objects. Figure 1’s simple example builds a list
and its contents (the data field) in a single region, outputs
the list, then frees the region and therefore the list. The
sameregion qualifier is discussed below.

Traditional region-based systems such as arenas [Han90]
are unsafe: deleting a region may leave dangling pointers
that are subsequently accessed. In this paper we present
RC, a dialect of C with regions that guarantees safety dy-
namically. RC maintains for each region r a reference count
of the number of external pointers to objects in r, i.e., of
pointers not stored within r. Calls to deleteregion fail if
this count is not zero. Section 3 gives a short introduction
to RC. RC compiles to C, so can be used with any C com-
piler on any platform. While our results are presented in the
context of a C dialect, our techniques can be used to add
support for regions to languages other than C (Section 3).

We believe that region-based programming has sev-
eral advantages over traditional memory management tech-
niques. First, it brings structure to memory management by
grouping related objects, making programs clearer and eas-
ier to write and to understand (especially when compared

∗This work was supported in part by NASA Contract No. NAG2-
1210 and NSF CCR-0085949. The information presented here does
not necessarily reflect the position or the policy of the Government
and no official endorsement should be inferred.

struct rlist {
struct rlist *sameregion next;
struct finfo *sameregion data;

} *rl, *last = NULL;
region r = newregion();

while (...) { /* build list */
rl = ralloc(r, struct rlist);
rl->data = ralloc(r, finfo);
... /* fill in data */
rl->next = last; last = rl;

}
output_rlist(l);
deleteregion(r);

Figure 1: An example of region-based allocation.

to malloc and free). Second, regions provide safety with
good performance: on our benchmarks, regions with refer-
ence counting are from 12% slower to 59% faster than the
same programs using malloc/free or the Boehm-Weiser con-
servative garbage collector, and the overhead of reference
counting is at most 18% of execution time. Furthermore
Stoutamire [Sto97] and our earlier study of regions [GA98]
show that regions can be used to improve locality by pro-
viding a mechanism for programmers to specify which val-
ues should be colocated in memory, as well as which values
should be kept separated.

Our language RC makes four contributions. First, RC is
a realistic proposal for adding language support for regions
to mainstream languages. We have used RC in large appli-
cations and found programming with regions both straight-
forward and productive.

The second contribution of RC, and the main change over
our previous system C@ [GA98], is the addition of static in-
formation in the form of two type annotations, sameregion
and traditional. These annotations are based on our
observations about programming patterns in large region-
based applications.

• A pointer declared sameregion is never external, i.e.,
is null or points to an object in the same region as the
pointer’s containing object. Sameregion pointers cap-
ture the natural organisation that places all elements
of a data structure in one region.

• A pointer declared traditional never points to an ob-
ject allocated in a region, e.g., it is always the address
of a local variable. Traditional pointers improve the in-

1

teroperation of RC with legacy code that does not use
regions.

The type annotations both make the structure of an ap-
plication’s memory management more explicit and improve
the performance of the reference counting as assignments to
sameregion or traditional pointers never update reference
counts. Excepting one benchmark in which reference count-
ing overhead was negligible, we found that between 31% and
99.93% of pointer assignments executed were to annotated
types. The correctness of assignments to annotated pointers
is enforced by runtime checks (Section 3.2).

Our third contribution is a type system for dynamically
checked regions that provides a formal framework for anno-
tations such as sameregion and traditional. Analysis of
the translation of RC programs into rlang, a language based
on this type system, allows us to statically eliminate the
checks from many runtime assignments to annotated point-
ers (Section 4).

The compiler for RC generates ANSI C code, allowing
its use on any platform with any C compiler. Our previ-
ous system, C@, relied for performance on being able to
scan stack frames to find local variables of pointer type, but
this is impossible when compiling to a high-level language.
Our last contribution is an algorithm that places reference
count operations for local variables in the generated C code
in a fashion that minimises the runtime cost of reference
counting local variables. In practice we have found that this
optimal algorithm is little better than a simple heuristic and
has significant compile-time cost (Section 3.4).

The combination of the type annotation and runtime
check elimination reduces the largest reference counting
overhead from 27% to 18% of runtime. On two benchmarks,
more than 90% of the reference counting cost is eliminated,
on three other benchmarks between 20% and 57% of the
reference counting cost is removed. Two of the three other
benchmarks already have very low reference counting over-
head (less than 2% of total execution time). For a full dis-
cussion of the results, see Section 5.

2 Related Work

The statically checked region-based systems proposed by
Tofte and Talpin [TT97] and Crary, Walker and Mor-
risett [CWM99] include type systems that are similar to the
one used in rlang: all these systems annotate pointers with
a name for the targeted region. The main innovation in
rlang is the introduction of existentially quantified region
names that can denote any existing region. This leads to
two important differences with the type systems of [TT97]
and [CWM99]:

• RC loses the ability to check statically the safety of
deleteregion, as values stored in types with existen-
tially quantified regions are not tracked by the type
system.

• RC gains the ability to represent programs such as:
region r[10];
for(i = 0; i < 10; i++) r[i] = newregion();
x = ralloc(r[random(0, 10)], ...);

There is no type for r in the type systems of [TT97]
or [CWM99]. This code is not very useful, but similar ex-
amples are found in real programs, e.g., one of our bench-
marks contains a list of environments with each environment
allocated in its own region.

Our system preserves the safety of deleteregion by us-
ing reference counting. We believe that the gain in expres-
sivity from the use of existential types, which allows straight-
forward porting of existing unsafe region programs to RC
(even large ones such as the Apache web server) is in most
cases worth the loss of static checking of deleteregion.

In [GA98] we found that our previous version of C with
safe regions, C@, had performance and space usage com-
petitive (sometimes better, sometimes slightly worse) with
explicit allocation and deallocation and with garbage collec-
tion. C@’s overhead due to reference counting was reason-
able (from negligible to 17% of runtime). Our new system,
RC, has lower reference count overhead (in absolute time),
allows use of any C compiler rather than requiring modifi-
cation of an existing compiler (lcc [FH95] in [GA98]) and
incorporates some static information about a program’s re-
gion structure.

Regions have been used for decades. Ross [Ros67]
presents a storage package that allows objects to be allo-
cated in specific zones. Each zone can have a different al-
location policy, but deallocation is done on an object-by-
object basis. Vo’s [Vo96] Vmalloc package is similar: allo-
cations are done in regions with specific allocation policies.
Some regions allow object-by-object deallocation; some re-
gions can only be freed all at once. Hanson’s [Han90] arenas
are freed all at once. Barrett and Zorn [BZ93] use profiling
to identify allocations that are short-lived, then place these
allocations in fixed-size regions. A new region is created
when the previous one fills up, and regions are deleted when
all objects they contain are freed. This provides some of
the performance advantages of regions without programmer
intervention, but does not work for all programs. None of
these proposals attempt to provide safe memory manage-
ment.

Stoutamire [Sto97] adds zones, which are garbage-
collected regions, to Sather [SO96] to allow explicit pro-
gramming for locality. His benchmarks compare zones with
Sather’s standard garbage collector. Reclamation is still on
an object-by-object basis.

Bobrow [Bob80] is the first to propose the use of regions
to make reference counting tolerant of cycles. This idea
is taken up by Ichisugi and Yonezawa in [IY90] for use in
distributed systems. Neither of these papers include any
performance measurements.

Surveys of memory management can be found in [Wil92]
for garbage collection and [WJNB95] for explicit allocation
and deallocation.

3 RC

From the programmer’s point of view, RC is essentially C
with a region library (Figure 2) and a few type annotations
(Section 3.2). RC programs can reuse existing C code, and
even in most cases object code (this is important as the C
runtime library is not always available in source form), as
long as the restrictions detailed in Section 3.1 are met. The
implementation of RC is given in Sections 3.3 and 3.4.

We stress that the ideas in RC are portable to other lan-
guages. In addition, different notions of memory safety can
be realised in the RC framework. First, as in our system,
deleteregion can abort the program when there remain
references to the region. The second option is to simply re-
turn a failure code from deleteregion when its use would
be unsafe. A final choice is implicit region deletion: at var-

2

typedef struct region *region;

region newregion(void);
void deleteregion(region r);
/* ralloc, rarrayalloc are not functions (they

take a type as last argument) */
type *ralloc(region r, type);
type *rarrayalloc(region r, size_t n, type);
region regionof(void *x);

Figure 2: Region API

ious times, e.g., when memory is running out, the system
deallocates any regions whose reference count has dropped
to zero. This last option provides memory safety semantics
similar to traditional garbage collection.

RC is a dialect of C: if the type annotations are removed
(e.g., via the C preprocessor) and a region library is pro-
vided, any RC program can be compiled with a regular C
compiler. Of course, deleteregion is then unsafe.

RC’s reference counting scheme, which keeps a count of
external references into each region, has two advantages over
traditional reference counting: the space overhead is low
(one integer per region) and cyclical data structures can be
used transparently as long as the cycles are contained within
a single region.

3.1 RC restrictions

RC imposes a number of restrictions on some unsafe, low-
level features of the C language. None of these would be
necessary if regions were added to, e.g., Java:

• Integers that do not correspond to valid pointers may
not be cast to a pointer type.

• Region pointers must always be updated explicitly:

– Copying objects containing region pointers byte-
by-byte with char * pointers is not allowed.

– Unions containing pointers are only partially sup-
ported: RC must be able to track these point-
ers, so the programmer must provide functions
to copy such unions in a type-safe way (i.e., by
copying pointers from within the union iff these
pointers are valid).

• Object code compiled by compilers other than RC can
be used so long as this code does not write or overwrite
any region pointers in the heap or in global variables.
For example, printf can be used with no problems
while memcpy and memset functions can only be used
on objects containing no pointers.

Our current implementation does not detect these situ-
ations. We expect to add some support for detecting and
working around these situations in later versions of RC.

3.2 Type Annotations

Our previous version of C-with-regions, C@ [GA98] made a
type distinction between pointers to objects in regions and
traditional C pointers (to the stack, global data, or malloc
heap). Any conversion between these two kinds of pointers
was potentially unsafe and could lead to incorrect behaviour.
We found this approach too restrictive: existing code cannot

be used with regions without modification; some code must
be provided in both traditional pointer and region pointer
versions. RC has one basic kind of pointer that can hold
both region and traditional pointers. Traditional C pointers
are viewed as pointers to a distinguished “traditional region”
which contains the code, stack, global data and malloc heap.

Examination of our benchmarks shows that particular
pointers still have properties of interest to both the pro-
grammer (to make the intent of the program clearer and to
catch violations of this intent) and to the RC compiler (to re-
duce the overhead of maintaining the reference counts). For
example, in our moss benchmark 94% of runtime pointer as-
signments are of traditional pointers in code produced by
the flex lexical analyser generator. RC has a traditional
type qualifier (int *traditional x) which declares that a
pointer is null or points into the traditional region. Updating
a traditional pointer never changes any reference counts.
The compiler guarantees, by static analysis or by inser-
tion of a runtime check (whose failure aborts the program),
that only pointers to the traditional region are written to
traditional pointers. Pointers declared traditional can
be used in any portion of a program where there is a need,
for whatever reason, to use conventional C memory man-
agement. Also, pointers to functions are traditional.

In our lcc benchmark, 49% of runtime pointer assign-
ments write a pointer to an object in region r into another
object in the same region. Similar percentages are found in
several other benchmarks. This, combined with examination
of our benchmarks’ source code, lead us to add a sameregion
type qualifier for pointers that stay within the same region or
are null. The next and data fields of Figure 1 are examples
of this annotation. We have found that sameregion equates
well with “part of the same data structure”: data structures
that are freed all at once can be allocated within the same
region, and therefore all their internal pointers can be de-
clared sameregion. As with the traditional annotation,
writes to sameregion pointers do not change any reference
counts (they do not create or destroy any external refer-
ences). The compiler ensures, as for traditional pointers,
that values written to sameregion pointers are either null
or belong to the correct region.

A third type qualifier, deletes, is used on function types
to help with separate compilation (see Section 3.4).

3.3 Implementation

The implementation of RC is based on an RC-to-C compiler
and a runtime library that together provide the region API
of Figure 2 (Section 3.3.1) and maintain the region’s refer-
ence counts (Section 3.3.2). Updates to local variables are
particularly common, so we investigated three approaches
for minimising the cost of this operation (Section 3.4). By
compiling to C, we are able to use RC with any C compiler,
rather than being tied to a particular compiler as in our
previous system C@ [GA98].

3.3.1 Region Library

The implementation of the region library is similar to the
one in [GA98]: a region, defined by

struct region {
int rc;
struct allocator normal;
struct allocator pointerfree;

};

3

(a) Reference count update for *p = newval
oldval = *p;
if (regionof(oldval) != regionof(newval)) {
if (regionof(oldval) != regionof(p))

regionof(oldval)->rc−−;
if (regionof(newval) != regionof(p))

regionof(newval)->rc++;
}

(b) Annotation runtime checks for *p = newval

sameregion:
if (regionof(newval) != regionof(p))
abort();

traditional :
if (regionof(newval) != traditional region)
abort();

Figure 3: Reference counting and annotation checking

is composed of a reference count and two allocators, the
pointerfree allocator for objects containing only non-
pointer data or annotated pointers, and the normal allocator
for all other objects. This distinction reduces the cost of up-
dating reference counts when deleting a region (see below).

Allocation of memory to regions is in blocks whose size
is a multiple of the page size (currently 8KB1) and which
are aligned on a page-size boundary. Each page belongs
to one region only and the library maintains a map from
pages to regions. This allows efficient implementation of
the regionof function and of reference counting.

3.3.2 Maintaining Reference Counts

Reference count updates may occur on any pointer assign-
ment2 and when a region is deleted. Allocation and deallo-
cation occur only once, but a pointer may be assigned many
times. The straightforward implementation of reference
count updates for pointer assignment (Figure 3(a)) takes 23
SPARC instructions, so maintaining reference counts is po-
tentially very expensive. RC reduces this cost through use
of the type annotations of Section 3.2 and by eliminating
most reference count operations for local variables.

Assignments to sameregion and traditional pointers
only need one of the runtime checks of Figure 3(b) rather
than a reference count update. These checks take only 8
SPARC instructions (and do not need to read the value be-
ing overwritten). Section 4.5 discusses how we eliminate a
significant fraction of these runtime checks.

The references from local variables are discussed in Sec-
tion 3.4.

When deleting a region, references from the now dead re-
gion to other regions are removed by scanning all the objects
in the region, using type information recorded when the ob-
jects were allocated. The pages of the pointerfree allocator
need not be scanned as they do not contain pointers to other
regions. We have found that the cost of this scan operation
remains reasonable (2% or less on most benchmarks, 6% in
one case). However, we plan to investigate ways of reducing
this cost further.

1This page size need not be the same as the system’s page size.
2Copies of structured types containing pointers can be viewed as

copying each field individually.

3.4 Local Variable Reference Counts

The references from local variables need only be included in
a region’s reference count when calling deleteregion. As we
are compiling RC to C we cannot use C@’s [GA98] approach
and have deleteregion scan the stack for pointers to regions
from local variables. Instead we place operations to incre-
ment and decrement the reference counts of regions referred
to from local variables in positions that guarantee that the
reference count is correct when calling deleteregion but
that allows the count to be incorrect at other times. We
investigated three placement schemes. For each scheme, we
will write incrc(v) and decrc(v) for the operation that in-
crements or decrements the reference count of the region
referred to by local pointer variable v:

• Assignment : in functions that might call
deleteregion, for each variable v, we add an
incrc(v) operation when v goes dead to live on a
control-flow-graph edge and a decrc(v) operation
when v goes from live to dead on a control-flow-graph
edge. This has the effect of wrapping each assignment
to v in a decrc(v) and incrc(v) pair and is very
similar to the usual reference counting rules.

• Function: before every call to a function that might
call deleteregion we add an incrc(v) for every live
variable v. After every such call we add a decrc(v)
operation.

• Optimal : we place the incrc(v) and decrc(v) opera-
tions so as to minimise the number of operations exe-
cuted while maintaining the invariant that the reference
counts of regions are correct at all calls to functions that
might call deleteregion. The details are found below.

For all these approaches, RC needs to know which func-
tions may delete a region. While this information is easily
derived using a simple whole-program analysis, we sought to
maintain separate compilation of source files in RC. There-
fore RC requires that the programmer add a deletes key-
word to each function that may delete a region. This anno-
tation is part of the function’s type.

3.4.1 Minimising local variable reference counting

Our optimal scheme for reference counting local variables is
based on the following observation. For each local variable
v (that contains a pointer), the statements of a function f
can be divided into three sets:

• S: The statements where the reference counts must
take v into account. The variable v is said to be
counted. These statements are all calls to functions
that may delete a region.

• U : The statements where the reference counts must
not take v into account. The variable is said to be
uncounted. These statements are assignments to v and
all points where v is dead.

• O: All other statements.

The incrc operation changes variable v from uncounted
to counted. A decrc operation changes variable v from
counted to uncounted.

By assigning every statement in O to either S or U , the
places where incrc and decrc operations must be inserted

4

are completely determined. To maximise performance, an
assignment of statements to S and U must be chosen that
minimises the total time spent in incrc and decrc oper-
ations. We show how to compute the optimal assignment
under the assumption that all incrc and decrc operations
take the same time, and given an execution frequency pro-
file.

Formally, each function f has an edge-weighted control-
flow graph G = (V, E, W) and variables v1, v2, . . . , vn. The
edge weights correspond to execution frequencies. The sum
of the weights on all incoming edges to a node n must be
equal to the sum of the outgoing weights for all nodes n
except the entry and exit of f .

Each local variable vi is considered independently. Each
node n of G is assigned an initial colour:

• white: if vi must be counted at n.

• black : if vi must be uncounted at n.

• grey : all other nodes.

Minimising reference counting then becomes equivalent
to assigning the colour white or black to each grey node so
as to minimise the sum of weights between white and black
nodes in the resulting coloured graph (an incrc or decrc
operation must be inserted on every edge between black and
white nodes).

To find this minimum, we first note that the solution will
be unchanged if we collapse the graph G = (V, E, W) into a
graph G′ = (V ′, E′, W ′) as follows:

• V ′ = {v|v ∈ V ∧ v is a grey node} ∪ {sb, sw} where sb
represents all black nodes, and sw represents all white
nodes.

• E′, W ′ are the obvious edges and weights obtained
when merging the black (white) nodes of G into sb
(sw): multiple edges between the same pairs of nodes
are merged into a single edge with weights summed.

An optimal assignment of white and black nodes for G′

is the same as a partition of G′ into two graphs, with sb and
sw separated, which minimises the weight of the cut edges.
In other words, the optimal assignment is a minimum cut of
G′ viewed as an undirected graph and with sb, sw separated
by the cut. This minimum cut can be found by finding
the maximum flow [CLR90] on G′ (viewed as an undirected
graph) with source sw and sink sb. The actual cut is found
by disconnecting all edges saturated in the maximum flow.
All nodes reachable from sb are black, all other nodes are
white.

There is an O(|V ′||E′| log(|V ′|2/|E′|)) algorithm for
maximum flow [GT88]. In control-flow graphs |E| ≤ 2|V |,
so for our problem the complexity is O(|V |2). A separate
minimum cut problem must be solved for each local variable,
so the total complexity is O(|V |3) (assuming the number of
local variables is proportional to the function size).

3.4.2 Implementation

We use a simple static estimate (loops executed ten times,
if’s split 50/50) to get an execution profile for the control-
flow graph.

Our implementation uses a cubic time minimum cut algo-
rithm, giving a worst case complexity of O(|V |4) where |V |
is function size. However the optimal placement of incrc

τ = µ@σ | ∃ρ ≤ σ.τ (types)
µ = region | T [σ1, . . . , σm] (base types)
σ = ρ | R | ⊥ (region expressions)
struct T [ρ1, . . . , ρm]{field1 : τ1, . . . , fieldn : τn}

(structure declarations)

T : type names, ρ: abstract regions, R: region constants

Figure 4: Region type language

and decrc operations is found in less than a few seconds on
all but one function. This one exception takes 77s, however
the subsequent compilation in gcc (with optimisation on)
takes 182s. For this early version of RC it did not appear
worthwhile to implement a faster minimum cut algorithm.

4 A Region Type System

The type annotations of Section 3.2 can be viewed as a sim-
ple way for the user to specify types from a more general
region type language (Section 4.1) which partially tracks the
regions of pointers. This type language is used in a simple
region-based language rlang (Section 4.2). We use a simple
semantics for rlang (Section 4.3) to show the soundness of
our type checking rules (Section 4.4). By translating RC
programs into rlang, our compiler for RC can check the cor-
rectness of some annotations and reduce the reference count
overheads in some programs (Section 4.5).

4.1 Region Types

We first define a simple model for the heap of a region-
based language. The heap H is divided into regions, each
containing a number of objects. Objects are named struc-
tures with named fields containing pointers. Pointers can
be null, point to objects, or to regions. We write AH =
{⊥, r1, . . . , rn} for the set of regions of H . We define a par-
tial order on AH : r � r′ if r = ⊥ ∨ r = r′. The region of
an object pointer is the region of the targeted object. The
region of a pointer v is ⊥ iff v = null.

Figure 4 gives types for pointers that reflect this heap
structure: there are pointers to regions (region), and point-
ers to named records with named fields. All types are anno-
tated with a region expression σ which specifies the region
to which values of that type point (. . . @σ). Function and
non-pointer types could be added easily to both the heap
model and type language.

Region expressions are either abstract regions ρ or ele-
ments of the set CR = R ∪ {⊥} of region constants. Region
constants denote regions that always exist and cannot be
deleted, such as the “traditional region”. Abstract regions
denote any region in AH . Abstract regions are introduced
existentially with the ∃ρ ≤ σ.τ construct, which means that
ρ is a region in AH that meets the specified constraint under
the � relation. The scope of ρ includes the bound,3 so the
type ∃ρ ≤ ρ.T [. . .]@ρ represents an object of type T in any
region. To simplify notation, we write ∃ρ as a shorthand
for ∃ρ ≤ ρ. Structure definitions are parameterised over a
set ρ1, . . . , ρm of abstract regions; structure uses instanti-
ate structure declarations with a set of region expressions.
Function declarations also introduce abstract regions (see
Section 4.2).

3This avoids having separate existential constructs for bounded
and unbounded regions and so simplifies the type-checking rules.

5

If two values point to the same abstract region ρ then
the values must specify objects in the same region. As a
consequence, if one of the values is null then ρ = ⊥ so the
other value is null too. Existentially quantified regions must
be used if two values can be null independently of each other,
but point to the same region if non-null. For instance, the
structure definition

struct L[ρ]{v : ∃ρ′.region@ρ′, next : ∃ρ′′ ≤ ρ.L[ρ′′]@ρ′′}
is a list stored in region ρ of arbitrary regions. Without the
existentially quantified type the next field could not be null
as it would be in the same region as its parent (which is
obviously not null if next exists).

4.2 Region Typechecking in rlang

We chose to define rlang (Figure 5) as an imperative lan-
guage both because this is closer to C and because the prop-
erties of abstract regions are flow-sensitive: they change as
a result of function calls, field accesses and runtime checks
and so may be different at every program point.

Functions f have arguments x1, . . . , xn, local variables
x′1, . . . , x

′
q, body s and are parameterised over abstract re-

gions ρ1, . . . , ρm. The result of f is found in x after s has
executed. The set of simple region expressions valid in the
argument and result types of f is {ρ1, . . . , ρm} ∪ CR. The
set of region expressions valid in the local variables of f is
{ρ1, . . . , ρm, ρ′1, . . . , ρ

′
p} ∪CR. The local variables x′1, . . . , x

′
q

must be dead before s. The meaning of the input and output
constraint sets C and C

′ is given below. The chk x0 ≤ x1 (or
R) statement is a runtime check that x0 is null or in the same
region as x1 (or in the region denoted by region constant R).
If the check fails, the program is aborted. Instantiation and
generalisation of existential types is implicit in the rules for
assignment (Figure 6) rather than being done by explicit
instantiate and generalise operations. The rest of the lan-
guage is straightforward: if and while statements assume
null is false and everything else is true; new statements
specify values for the structure’s fields; the program is exe-
cuted by calling a function called main with no arguments.
Figure 5 also gives signatures for the predefined newregion,
deleteregion and regionof T (one for each structure type
T) functions.

A constraint set (C, D, etc) specifies properties of a set of
region expressions. The domain of a constraint set, written
dom(C) is the set of region expressions appearing in C. A
constraint set can specify:

• That σ is not the ⊥ region. We write C ` σ 6= ⊥.

• That region σ1 ≤ σ2. We write C ` σ1 ≤ σ2.
C ` σ1 = σ2 is shorthand for C ` σ1 ≤ σ2 ∧C ` σ2 ≤ σ1.

A function f parameterised over abstract regions
ρ1, . . . , ρm has an input constraint set C with domain
{ρ1, . . . , ρm} ∪ CR which expresses requirements on the re-
gions of f ’s arguments that the callers of f must respect, and
an output constraint set C

′ (with the same domain) which
expresses the constraints that are known to hold when f
exits.

A constraint set C must respect the following properties
(σ1, σ2, σ3 are region expressions from dom(C)):

C ` σ1 ≤ σ1 (reflexivity)
C ` σ1 ≤ σ2 ∧ C ` σ2 ≤ σ3 ⇒ C ` σ1 ≤ σ3 (transitivity)
C ` ⊥ ≤ σ1

C ` σ1 6= ⊥ ∧ C ` σ1 ≤ σ2 ⇒ C ` σ1 = σ2 ∧ C ` σ2 6= ⊥

program ::= fn∗

fn ::= f [ρ1, . . . , ρm][C](x1 : τ1, . . . , xn : τn) : τ, C
′

is [ρ′1, . . . , ρ
′
p]x

′
1 : τ ′1, . . . , x

′
q : τ ′q, s, x

s ::= s1; s2

| if x s1 s2

| while x s
| x0 = x1

| x0 = f [σ1, . . . , σm](x1, . . . , xn)
| x0 = x1.field
| x1.field = x2

| x0 = null
| x0 = new T [σ1, . . . , σm](x1, . . . , xn)@x′

| chk x0 ≤ x1

| chk x0 ≤ R

Some predefined functions:
newregion[][∅]() : ∃ρ.region@ρ, ∅
deleteregion[ρ][∅](r : region@ρ) : region@⊥, ∅
regionof T [ρ, ρ1, . . .][∅](x : T [ρ1, . . .]@ρ) : region@ρ, ∅

Figure 5: rlang, a simple imperative language with regions

Constraint sets form a lattice with the following partial
order:

C ≤ C
′ if ∀σ1, σ2 ∈ dom(C) (C ` σ1 6= ⊥ ⇒ C

′ ` σ1 6= ⊥)∧
(C ` σ1 ≤ σ2 ⇒ C

′ ` σ1 ≤ σ2)

The least constraint set is ∅.
We define some transformations on constraint sets. In

each case the resulting set is the smallest constraint set that
meets the specified constraints (σ1, σ2 are any region expres-
sion from dom(C)):

• C[¬ρ] (kill an abstract region):
(σ1 6= ρ ∧ C ` σ1 6= ⊥ ⇒ C[¬ρ] ` σ1 6= ⊥) ∧
(σ1 6= ρ ∧ σ2 6= ρ ∧ C ` σ1 ≤ σ2 ⇒ C[¬ρ] ` σ1 ≤ σ2

• C[σ1 ≤ σ2] (assert order of abstract regions):
(C[σ1 ≤ σ2] ` σ1 ≤ σ2) ∧ C ≤ C[σ1 ≤ σ2]

• C[σ 6= ⊥] (assert an abstract region is not ⊥):
C[σ 6= ⊥] ` σ 6= ⊥ ∧ C ≤ C[σ 6= ⊥].

• C[σ1 = σ2] is shorthand for C[σ1 ≤ σ2][σ2 ≤ σ1].

• C//S restricts C’s domain to S.

We write X[σ1/ρ1, . . . , σm/ρm] for substitution of region
expressions for (free) abstract regions in region expressions,
types and constraint sets. The notation x : τ and x.field : τ
asserts that x, or a field of x, has type τ .

Type checking for rlang (Figure 6) relies extensively on
constraint sets. Statements of a function f are checked by
the judgment C, L ` s, C

′. These judgments take an input
constraint set C with domain {ρ1, . . . , ρm, ρ′1, . . . , ρ

′
p} ∪ CR

(describing the properties of all arguments and live local
variables) and produce an output constraint set C

′. Instead
of an explicit binding construct for abstract regions, assign-
ments may bind any abstract region of the assignment target
which is not used in any function argument or live variable.
This set of region expressions that cannot be bound at entry
to s is called the live region expression set and is denoted
by L (or Ls where necessary for clarity). We assume that L
is precomputed for each statement using a standard liveness

6

C, Ls ` s, C
′ x : τ C

′′ ≤ C
′ x′1, . . . , x

′
q are dead before s

` f [ρ1, . . . , ρm][C](x1 : τ1, . . . , xn : τn) : τ, C
′′ is [ρ′1, . . . , ρ

′
p]x

′
1 : τ ′1, . . . , x

′
q : τ ′q, s, x

(fndef)

x0 : τ0 x1 : τ1 C, L ` τ0 ← τ1, C
′, L′

C, L ` x0 = x1, C
′ (assign)

x0 : τ0 x1 : µ1@σ1 x1.field : τ ′1 C[σ1 6= ⊥], L ` τ0 ← τ ′1, C
′, L′

C, L ` x0 = x1.field, C
′ (read)

x1 : µ1@σ1 x1.field : τ ′1 x2 : τ2 C[σ1 6= ⊥], L ` τ ′1 ← τ2, C
′, L′

C, L ` x1.field = x2, C
′ (write)

struct T [ρ1, . . . , ρm]{field1 : τ ′1, . . . , fieldn : τ ′n}
xi : τi Ci, Li ` τ ′i [σ1/ρ1, . . . , σm/ρm]← τi, Ci+1, Li+1

x0 : τ0 x′ : region@σ′ Cn+1, Ln+1 ` τ0 ← T [σ1, . . . , σm]@σ′, C
′, L′

C1, L1 ` x0 = new T [σ1, . . . , σm](x1, . . . , xn)@x′, C
′ (new)

x0 : µ0@σ0 C, L ` µ0@σ0 ← µ0@⊥, C
′, L′

C, L ` x0 = null, C
′ (null)

x0 : µ0@σ0 x1 : µ1@σ1

C, L ` chk x0 ≤ x1, C[σ0 ≤ σ1]
(check)

x0 : µ0@σ0

C, L ` chk x0 ≤ R, C[σ0 ≤ R]
(check const)

C, L ` s1, C
′

C
′, Ls2 ` s2, C

′′

C, L ` s1; s2, C
′′

C, Ls1 ` s1, C
′

C, Ls2 ` s2, C
′′

C, L ` if x s1 s2, C
′ u C

′′
C
′, Ls ` s, C

′′
C
′ = C u C

′′

C, L ` while x s, C
′

f [ρ1, . . . , ρm][D](y1 : τ ′1, . . . yn : τ ′n) : τ ′, D
′

xi : τi Ci, Li ` τ ′i [σ1/ρ1, . . . , σm/ρm]← τi, Ci+1, Li+1 D[σ1/ρ1, . . . , σm/ρm] ≤ Cn+1

σi ∈ Fτ ′ ⇐⇒ ρi free in τ ′ and for all k, ρi not free in τ ′k Fτ ′ ∩ Ln+1 = ∅
Cn+1 t D

′[σ1/ρ1, . . . , σm/ρm], Ln+1 ∪ Fτ ′ ` τ0 ← τ ′[σ1/ρ1, . . . , σm/ρm], C
′, L′

C1, L1 ` x0 = f [σ1, . . . , σm](x1, . . . , xn), C
′ (fncall)

Assignment
σ′ ∈ L σ[σ′/ρ] ∈ L C ` σ′ ≤ σ[σ′/ρ]

C, L ` τ [σ′/ρ]← τ ′, C
′, L′

C, L ` ∃ρ ≤ σ.τ ← τ ′, C
′, L′

(∃gen.)

ρ 6∈ L ρ ∈ dom(C)
C[¬ρ][ρ ≤ σ′[ρ/ρ′]], L ∪ {ρ} ` τ ← τ ′[ρ/ρ′], C

′, L′

C, L ` τ ← ∃ρ′ ≤ σ′.τ ′, C
′, L′

(∃inst.)

C, L ` σ ← σ′, C
′, L′

C, L ` region@σ ← region@σ′, C
′, L′

C, L ` σ ← σ′, C1, L1 Ci, Li ` σi ← σ′i, Ci+1, Li+1

C, L ` T [σ1, . . . , σm]@σ ← T [σ′1, . . . , σ
′
m]@σ′, Cm+1, Lm+1

σ ∈ L C ` σ = σ′

C, L ` σ ← σ′, C, L

ρ 6∈ L

C, L ` ρ← σ′, C[¬ρ][ρ = σ′], L ∪ {ρ}

Figure 6: Region Typechecking

analysis. The abstract regions of a function’s arguments
and the constant regions CR are included in all sets L and
so cannot be rebound. This guarantees that the properties
asserted in a function’s output constraint set actually apply
to the region expressions of the function’s input arguments.
Notice that abstract regions used only in the function’s re-
sult type are not affected by this restriction (see the discus-
sion of function calls below).

The judgments C, L ` τ1 ← τ2, C
′, L′ of Figure 6 check

that a value of type τ2 is assignable to a location of type
τ1. These judgments take an input constraint set C and
live region expression set L and produce an updated (as a
result of binding abstract regions) output constraint set C

′

and live region expression set L′. The (∃gen.) rule allows
assignment as long as τ2 can be existentially quantified to
match τ1. The (∃inst.) rule allows instantiation of an exis-
tentially quantified region into a dead abstract region ρ, and
updates C and L to reflect ρ’s new properties. Base types

are assignable if their region expressions match. Two region
expressions match if they are equal according to C or if the
abstract region ρ of the assignment target is dead. In this
last case C is updated to reflect ρ’s new properties.

The rules for assigning local variables (assign), reading a
field (read) or writing a field (write) check that the source is
assignable to the target. Additionally, reading or writing a
field of x guarantees that x is not null, hence that x’s region
is not ⊥. Object creation (new) is essentially a sequence of
assignments from the field values to the fields of the newly
created object, and of the newly created object to the new
statement’s target. Initialisation to null (null) requires only
that the target variable’s region be ⊥. After execution of a
runtime check, the checked relation holds (check and check
const).

The rules statement sequencing, if and while state-
ments are standard for a forward data-flow problem. Func-
tion definition (fndef) is straightforward: the result vari-

7

able’s type must match the function declaration and the
function’s output constraints must be a subset of the func-
tion body’s output constraints.

The most complicated rule is a call to a function f (fn-
call). All references to elements of f ’s signature must sub-
stitute the actual region expressions at a call for f ’s formal
region parameters. The second line checks that the call’s
arguments are assignable to f ’s parameters and that the
constraints at the call site match f ’s input constraint. The
set Fτ ′ is the region arguments of the call to f that cor-
respond to abstract regions mentioned solely in f ’s return
type. Elements of Fτ ′ are bound on return from f , so we re-
quire that they be dead (not in Ln+1) before the call. After
the call, f ’s output constraints are known to hold and f ’s
result must be assignable to the call’s destination. These
special rules for elements of Fτ ′ make the translation of RC
into rlang simpler (see Section 4.5).

4.3 Semantics

Our semantics concentrates on the regions of variables and
objects and ignores the other aspects of the types to sim-
plify our presentation. We assume, in both the seman-
tics and soundness proof, that a non-null pointer of type
region points to a region, and that a non-null pointer of
type T [σ1, . . . , σm]@σ points to some object of type T . Our
semantics does represent the concrete regions correspond-
ing to the abstract regions, both for local variables and for
heap-allocated objects.

We first define a representation for heaps, values and
regions:

• A value (or pointer) is represented as a unique natural
integer. null pointers are represented by 0.

• A region is represented as a unique natural integer. The
⊥ region is represented by 0. We represent our partial
order on regions with �, so n � m if n = 0 ∨ n = m.

• Given a type struct T [ρ1, . . . , ρm]{f1 : τ1, . . . , fn : τn},
an object o of type T is represented as a pair (R,P)
containing a tuple of regions R = (r0, r1, . . . , rm) and
a tuple of values P = (v1, . . . , vm). The region of o is
r0, ri is the value of ρi and vi is the value of fi. As
the ⊥ region contains no object r0 6= 0. The object
representing region r is the pair ((r), ()). Note that the
⊥ region is represented by object ((0), ()).

• A heap H is a partial map from N to objects, with 0 6∈
dom(H). Formally, H : N ↪→ (

⋃∞
i=1

N
i) × (

⋃∞
i=0

N
i).

We assume that the set AH of regions of H is available.
For simplicity of notation the source language names
of the region constants are reused as names for the
corresponding runtime regions, so CR ⊆ AH .

Our semantics will use two environments during evalua-
tion:

• An environment E mapping variables to values.

• An abstract region map R over abstract regions X,
R : X ∪ CR → AH (in a heap H), mapping region
expressions to regions. We assume that Rσ = σ for all
σ ∈ CR.

The natural operational semantics (Figure 7) has rules of
the form < H, E, R, s >;< H ′, E′, R′ > meaning that eval-
uation of s with heap H , environment E and abstract region

map R produces a heap H ′, environment E′ and abstract re-
gion map R′. The rules for assignment (s assign), field read
(s read) and write (s write) are straightforward: they apply
sub-rules for assignment (Figure 8, detailed below) to up-
date the abstract region map, then modify the environment
or heap as necessary. Creation of an object (s new) is simi-
lar, but must pick an unique value (v) for the pointer to the
new object. Assignment of null (s null) is a little strange
as it does not update R for the abstract regions (used in µ0)
bound as a result of this assignment. These newly bound
abstract regions have no meaningful value as x0 does not
point to an object after being assigned null.

The rules for chk statements simply check that the as-
serted relation holds at runtime. The rules for statement
sequencing, if and while are standard. Function calls
(s fncall) assign the function arguments to the instantiated
types of the function’s arguments (so as to update the ab-
stract region map), then evaluates the function’s body in a
new environment (with the function’s arguments) and new
abstract region map (with the function’s region arguments).
The function’s result is assigned to the result variable.

An implementation of rlang does not need the abstract
region map, and its heap need only contain the field values
and the r0 field of the region tuple (which is necessary for
implementing the regionof function, reference counting and
the chk operations).

Assignment (Figure 6) binds abstract regions, so can up-
date the abstract region map R. Hence assignment reduc-
tion rules (Figure 8) take the form < H,R, v, τ1, τ2 >; R′

to represent assignment of a value v of type τ2 to a location
of type τ1 with heap H and abstract region map R. These
rules return an updated abstract region map R′.

Except for instantiation of existential types, these rules
are simple: assignment of region (a region) and structured
types (a struct) updates R so that region expression of the
target type are equal to the corresponding region expres-
sions of the source type. The proof of soundness will show
that this is correct even if the target region expression is
a live region expression. Existential generalisation (a gen)
simply substitutes the region expression σ′ used when type
checking this assignment to allow the rest of the assignment
derivation to see the same types as the type checking deriva-
tion.

The instantiation of existential types is more complex as
the reduction rules must pick a region r for the instantiated
abstract region ρ. This is straightforward if ρ′ is used in the
base type of τ ′ or if ρ′ is the region of v: r can be found in the
object stored at H(v). If v = 0, ρ′ is used only as a bound
in subsequent existential quantifiers in τ ′, or is not used at
all in τ ′ there is no value for r that can be read directly
from the heap. Rather than enumerate all the cases that
must be considered, we instead pick an arbitrary r that that
matches the existential quantifier’s bound and is consistent
with τ ′ and H(v), as specified by partial consistency. Partial
consistency asserts that the regions stored in the heap object
for v match those specified in v’s type (we write fr(τ) for the
free abstract regions of a type τ):

Definition 4.1 v : τ is partially consistent with H under R
(with fr(τ) ⊆ dom(R)) if it is not partially inconsistent with
H under R.4 v : τ is partially inconsistent with H under R:

• if v = 0 and τ = µ@σ then Rσ 6= 0.

4We choose to make partial inconsistency the primary definition
to match Definition 4.2.

8

x0 : τ0 x1 : τ1 < H,R, E(x1), τ0, τ1 >; R′

< H, E,R, x0 = x1 >;< H,E[x0 = E(x1)], R
′ >

(s assign)

x0 : τ0 x1 : T [σ1, . . . , σm]@σ struct T [ρ1, . . . , ρm]{. . . , fi : τi, . . .}
H(E(x1)) = (, (x1, . . . , xn)) < H,R, xi, τ0, τi[σ1/ρ1, . . . , σm/ρm] >; R′

< H,E, R, x0 = x1.fi >;< H,E[x0 = xi], R
′ >

(s read)

x1 : T [σ1, . . . , σm]@σ struct T [ρ1, . . . , ρm]{. . . , fi : τi, . . .} x2 : τ2

H(E(x1)) = ((r0, . . . , rm), (x1, . . . , xn)) < H,R, E(x2), τi[σ1/ρ1, . . . , σm/ρm], τ2 >; R′

< H, E, R, x1.fi = x2 >;< H [E(x1) = ((r0, . . . , rm), (x1, . . . , xi−1, E(x2), xi+1, . . . , xn), E, R′ >
(s write)

x0 : τ0 xi : τi x′ : region@σ′ struct T [ρ1, . . . , ρm]{f1 : τ ′1, . . . , fn : τ ′n}
< H, Ri, E(xi), τ

′
i [σ1/ρ1, . . . , σm, ρm], τi >; Ri+1 v 6∈ dom(H) ∧ v 6= 0

H(E(x′)) = ((r), ()) r 6= 0 o = ((r,Rn+1σ1, . . . , Rn+1σm), (E(x1), . . . , E(xn)))
< H [v = o], Rn+1, v, τ0, T [σ1, . . . , σm]@σ′ >; R′

< H, E,R1, x0 = new T [σ1, . . . , σm](x1, . . . , xn)@x′ >;< H [v = o], E[x0 = v], R′ >
(s new)

x0 : µ0@σ0

< H, E,x0 = null >;< H,E[x0 = 0], R[σ0 = 0] >
(s null)

H(E(x0)) = ((r, . . .),) H(E(x1)) = ((r, . . .),)

< H,E, R, chk x0 ≤ x1 >;< H,E, R >
(s chk)

E(x0) = 0

< H,E, R, chk x0 ≤ x1 >;< H,E, R >
(s chk null)

H(E(x0)) = ((R0, . . .), . . .)

< H,E, R, chk x0 ≤ R0 >;< H, E, R >
(s chk const)

E(x0) = 0

< H, E,R, chk x0 ≤ R0 >;< H,E, R >
(s chk const null)

< H,E, R, s1 >;< H ′, E′, R′ > < H ′, E′, R′, s2 >;< H ′′, E′′, R′′ >

< H, E, R, s1; s2 >;< H ′′, E′′, R′′ >

E(x) 6= 0 < H,E, R, s1 >;< H ′, E′, R′ >

< H,E, R, if x s1 s2 >;< H ′, E′, R′ >

E(x) = 0 < H,E, R, s2 >;< H ′, E′, R′ >

< H, E, R,if x s1 s2 >;< H ′, E′, R′ >

E(x) 6= 0 < H, E, R, s >;< H ′, E′, R′ > < H ′, E′, R′, while x s >;< H ′′, E′′, R′′ >

< H,E, R, while x s >;< H ′′, E′′, R′′ >

E(x) = 0

< H,E, R, while x s >;< H,E, R >

f [ρ1, . . . , ρm][D](y1 : τ ′1, . . . yn : τ ′n) : τ ′, D
′ is [ρ′1, . . . , ρ

′
p]w

′
1 : τ ′′1 , . . . , w′

q : τ ′′q , s, y
Ef = [y1 = E(x1), . . . , yn = E(xn), w′

1 = 0, . . . , w′
q = 0] < H, Ef , Rf , s >;< H ′, E′

f , R′
f >

Rf = [ρ1 = Rn+1σ1, . . . , ρm = Rn+1σm, ρ′1 = 0, . . . , ρ′p = 0]
xi : τi < H,Ri, E(xi), τ

′
i [σ1/ρ1, . . . , σm, ρm], τi >; Ri+1

< H ′, Rn+1, E
′
f (y), τ0, τ

′[σ1/ρ1, . . . , σm, ρm] >; R′

< H,E, R1, x0 = f [σ1, . . . , σm](x1, . . . , xn) >;< H ′, E[x0 = E′
f (y)], R′ >

(s fncall)

Figure 7: Semantic reduction rules

9

< H,R, v, τ [σ′/ρ], τ ′ >; R′ σ′ from ∃gen.

< H,R, v,∃ρ ≤ σ.τ, τ ′ >; R′ (a gen)

exists r ∈ AH such that v : τ ′ is partially consistent with H under R[ρ′ = r]
r � R[ρ′ = r]σ′ ρ from ∃inst. < H,R[ρ = r], v, τ, τ ′[ρ/ρ′] >; R′

< H,R, v, τ, ∃ρ′ ≤ σ′.τ ′ >; R′ (a inst)

there does not exist r ∈ AH such that r � R[ρ′ = r]σ′

and v : τ ′ is partially consistent with H under R[ρ′ = r]

< H, R, v, τ, ∃ρ′ ≤ σ′.τ ′ >; R
(a inst unsafe)

< H, R, v, region@σ, region@σ′ >; R[σ = Rσ′]
(a region)

R1 = R[σ = Rσ′] Ri+1 = Ri[σi = Riσ
′
i]

< H,R, v, T [σ1, . . . , σm]@σ, T [σ′1, . . . , σ
′
m]@σ′ >; Rm+1

(a struct)

Figure 8: Semantic assignment rules

• if τ = region@σ and H(v) = ((r), ()) then r 6= Rσ

• if τ = T [σ1, . . . , σm]@σ, T is defined by
struct T [ρ1, . . . , ρm]{f1 : τ1, . . . , fn : τn} and
H(v) = ((r0, r1, . . . , rm),). The property holds if
(r0 6= Rσ) ∨ (∃j.Rσj 6= rj).

• if τ = ∃ρ ≤ σ.τ ′ then for all r ∈ AH such that r �
R[ρ = r]σ, v : τ ′ is partially inconsistent with H under
R[ρ = r]

The rule for existential type assignment (a inst) then
simply assigns a value r to ρ that allows v : τ ′ to be par-
tially consistent with H . When there does not exist such a
region r, evaluation of the assignment can continue with the
(a inst unsafe) rule which aborts the update of the abstract
region map. We will show in the proof of soundness that the
(a inst unsafe) rule is never used by a well-typed program.
It is easy to see that an r that matches the constraints of
(a inst) can be found by simple enumeration in time pro-

portional to |AH |(n+1) where n is the number of existential
quantifiers in τ ′. With a little more care, such an r can be
found at worst in time proportional to n.

4.4 Soundness

We express the soundness of our type system as the preser-
vation by reductions of the consistency of typed values with
the heap and of constraint sets with the abstract region map.
These definitions of consistency are as follows (consistency
of values is defined as a lack of inconsistency to allow for
consistent and circular data structures):

Definition 4.2 v : τ is consistent with H under R (with
fr(τ) ⊆ dom(R)) if it is not inconsistent with H under R.
v : τ is inconsistent with H under R:

• if v = 0 and τ = µ@σ then Rσ 6= 0.

• if τ = region@σ and H(v) = ((r), ()) then r 6= Rσ

• if τ = T [σ1, . . . , σm]@σ, T is defined by
struct T [ρ1, . . . , ρm]{f1 : τ1, . . . , fn : τn} and
H(v) = ((r0, r1, . . . , rm), (v1, . . . , vn)). The property
holds if (r0 6= Rσ) ∨ (∃j.Rσj 6= rj) ∨ (∃i.vi : τi is
inconsistent with H under [ρ1 = r1, . . . , ρm = rm]).

• if τ = ∃ρ ≤ σ.τ ′ then for all r ∈ AH such that r �
R[ρ = r]σ, v : τ ′ is inconsistent with H under R[ρ = r]

Definition 4.3 A set of values v1 : τ1, . . . , vn : τn is con-
sistent with H under R if each vi : τi is consistent with H
under R.

Definition 4.4 An abstract region map R over X is con-
sistent with a constraint set C (with X ⊆ dom(C)) if
∀σ, σ1, σ2 ∈ X: C ` σ 6= ⊥ ⇒ Rσ 6= 0 and C ` σ1 ≤
σ2 ⇒ Rσ1 � Rσ2.

Note that consistency of a value is a generalisation to
all objects reachable from a value of the partial consistency
relation used by rlang’s semantics.

The main soundness theorem is as follows:

Theorem 4.5 Soundness: If

• C, L ` s, C
′

• < H, E,R, s >;< H ′, E′, R′ >

• Variables x1 : τ1, . . . , xn : τn are live before s

• Variables x′1 : τ ′1, . . . , x
′
m : τ ′m are live after s

• R is consistent with C

• E(x1) : τ1, . . . , E(xn) : τn are consistent with H under
R

• w1 : α1, . . . , wl : αl are consistent with H under Q

then

• R′ is consistent with C
′

• E′(x′1) : τ ′1, . . . , E
′(xm) : τ ′m are consistent with H ′

under R′

• w1 : α1, . . . , wl : αl are consistent with H ′ under Q

• The (a inst unsafe) assignment rule is not used in the
semantic reduction

Proof: See Appendix A.

10

An important lemma used in the proof of soundness
shows that the semantic rules for assignment preserve sound-
ness, and that the (a inst unsafe) reduction rule is never
used:

Lemma 4.6 Assignability If:

• C, L ` τ1 ← τ2, C
′, L′

• < H, R, v, τ1, τ2 >; R′,

• v : τ2 is consistent with H under R

• R is consistent with C

then v : τ1 is consistent with H under R′, R′ is con-
sistent with C

′ and R//L = R′//L. Additionally, the
(a inst unsafe) assignment rule is not used in the reduction.
Proof: See Appendix A

4.5 Translating RC to the Region Type System

There are severals ways RC can be translated to rlang.
For instance, one could apply a “region inference”-like al-
gorithm [TT97] to RC programs, representing the results in
rlang, in an attempt to find a very precise description of the
program’s region structure. Our goal is different: we want
to translate an RC program P into an rlang program P ′

that faithfully matches P , then analyse P ′ to verify the cor-
rectness of sameregion and traditional annotations. We
therefore perform a straightforward translation, while guar-
anteeing the following properties of P ′:

• There is one region constant, RT , for the “traditional
region”.

• For every structured type X in P there is a structured
type X[ρ] in P ′. The abstract region ρ represents the
region in which the structure is stored. So pointers to
X in P ′ are always of the form X[σ]@σ.

A field f in X[ρ] of type T which is not sameregion
or traditional in P can point to any region. So its
type in P ′ is ∃ρ′.T [ρ′]@ρ′. If f is traditional then
it can be null or point to the traditional region so its
type is ∃ρ′ ≤ RT .T [ρ′]@ρ′. If f is sameregion then it
can be null or point to an object in ρ, so its type is
∃ρ′ ≤ ρ.T [ρ′]@ρ′. For example,

struct L { region v; L *sameregion n; };

becomes

struct L[ρ]{v : ∃ρ′.region@ρ′, n : ∃ρ′ ≤ ρ.L[ρ′]@ρ′}
Global variables are represented as fields of a Global
structure, stored in the traditional region, which is
passed to every function.

• Every field assignment x1.f = x2 is immediately pre-
ceded by an appropriate runtime check: chk x2 ≤ x1 if
f is sameregion in P ; chk x2 ≤ RT if f is traditional.
This matches the model for these annotations given in
Section 3.2: assignments will abort the program if the
requirements of sameregion or traditional are not
met.

• Every local variable and function argument x in P ′ is
associated with a distinct abstract region ρx. If x is of
type T in P , its type becomes T [ρx]@ρx in P ′. Function
arguments are never assigned or used directly as the

function result, and the destination of an assignment is
not used elsewhere in the assignment statement. 5

• The result type of a function f is parameterised by a
distinct abstract region ρf . Combined with the previ-
ous rule, this implies that a function f with arguments
T and result T ′ always has signature

f [ρx, ρf][C](x : T [ρx]@ρx) : T ′[ρf]@ρf , C
′

for some constraint sets C and C
′. The use of a dis-

tinct abstract region for f ’s result relies on the special
handling of abstract regions not used in the function
arguments (Figure 6). This allows us to have the same
type (ignoring the constraint sets) for a function re-
turning the region of its argument (myregionof) and
for a function returning a new region (mynewregion):

myregionof[ρx, ρf][∅](x : T [ρx]@ρx) :
region@ρf , [ρf = ρx]

mynewregion[ρx, ρf][∅](x : T [ρx]@ρx) :
region@ρf , [∅]

Without the special rule for function result types, we
would have to perform type inference to find function result
types, or would have to assume that all result types were
existential, which would reduce the precision of our analysis.

It is easy to verify that an rlang program with these
properties can be type checked, under the assumption that
all function input and output constraint sets are ∅.

However we can infer better constraint sets using the
typechecking rules: we start by assuming all possible con-
straints hold (including contradictions such as ⊥ 6= ⊥) ev-
erywhere, except for main’s input constraint set which is
∅. We then iteratively remove any constraints that violate
the typechecking rules of Figure 6 until a valid typing is
found. The operations transforming input to output con-
straint sets are monotonic, the constraint sets form a lattice
and there is at least one solution, so this process will find
the greatest valid constraint sets and hence the most precise
typing. Once the best constraint sets have been found, any
chk statement that asserts a relation that already holds in
its input constraint set can be safely eliminated.

RC implements the transformation and analysis outlined
above on a single source file. Calls to unknown functions
(including calls via function pointers) are conservatively as-
sumed to have the empty input and output constraint set,
any function callable from other files (or used as a function
pointer) is conservatively required to have the empty input
constraint set. Results of this analysis are presented in Sec-
tion 5.2.

5 Results

We use a set of eight small to large C benchmarks to analyse
the performance of RC: cfrac and gröbner perform numeric
computations using large integers, mudlle, lcc and rc are
compilers, tile and moss process text and apache is a web
server. Half of these programs (mudlle, lcc, rc, apache)
were already region-based (using simple region libraries with
no safety guarantees); the other half were converted to use
regions (details can be found in [GA98]). Table 1 reports the
benchmarks’ sizes (in lines of code) and summarises their
memory allocation behaviour.

5This last restriction is due to the rules for handling liveness in
Figure 6.

11

C@ lea GC norc RC
0

1

2

3

4

5

6

7

8

9

cfrac
tim

e(
s)

C@ lea GC norc RC
0

5

10

15

grobner

C@ lea GC norc RC
0

1

2

3

4

5

6

mudlle

C@ lea GC norc RC
0

0.5

1

1.5

2

2.5

3

lcc

C@ lea GC norc RC
0

1

2

3

4

5

6

7

8

moss

C@ lea GC norc RC
0

1

2

3

4

5

6

tile

C@ lea GC norc RC
0

0.5

1

1.5

2

2.5

3

rc

C@ lea GC norc RC
0

1

2

3

4

5

6

apache

Figure 9: Execution time

Name Lines Number Mem alloc Max use
allocs (kB) (kB)

cfrac 4203 3812425 56076 102
gröbner 3219 5971710 312992 474
mudlle 5078 1594372 22354 210
lcc 12430 380206 22236 2470
moss 2675 553986 6312 2185
tile 926 10459 309 153
rc 22823 80756 4714 4204
apache 62289 164296 30806 78

Table 1: Benchmark characteristics.

5.1 Performance

We compared the performance of RC with our old system,
C@, with conventional malloc/free-based memory manage-
ment and with conservative garbage collection. Measure-
ments were made on a Sun Ultra 10 with a 333Mhz Ultra-
Sparc II processor, a 2MB L2 cache and 256MB of memory.

Figure 9 reports elapsed time (from the best of five
runs) for each benchmark for five compiler/allocator com-
binations: “C@” is our previous region compiler (we did
not convert rc or apache to run under C@ as this would
have required substantial effort); “lea” is gcc 2.95.2 with
Doug Lea’s malloc/free replacement library v2.6.66 (which
has much better performance than Sun’s default malloc li-
brary); “GC” is gcc 2.95.2 with the Boehm-Weiser conser-
vative garbage collector v5.3; “norc” is gcc 2.95.2 with our
RC compiler and reference counting disabled; “RC” is gcc
2.95.2 with our RC compiler, reference counting enabled and
the “Function” approach for reference counting local vari-
ables. For the benchmarks which were originally not region-
based (cfrac, gröbner, tile, moss), the “lea” column is the
execution time obtained when running the original code.
For those benchmarks which were region-based, the “lea”
column uses a simple “region-emulation” library that uses
malloc and free to allocate and free each individual object.
The “GC” column uses the same code as “lea”, except that
calls to malloc are replaced by calls to garbage collected
allocation and calls to free are removed. RC with refer-
ence counting always performs better than C@ and is faster
than malloc/free or the Boehm-Weiser garbage collector on
cfrac, gröbner, mudlle and moss (up to 59%). At worst,
RC is 12% slower (on lcc).

Table 2 shows the reference counting cost for C@ and
RC, and, for RC, the time spent removing references from
deleted regions (“Region unscan”). The largest reference
counting overhead is for lcc at 18% of execution time, it

6This library is available at ftp://g.oswego.edu/pub/misc/malloc.c

Name C@ (s) RC (s) Region
unscan (s)

cfrac 0.53 0.05 .01
gröbner 1.12 0.05 .02
mudlle 0.65 0.43 .09
lcc 0.44 0.36 .11
moss 0.30 -0.05 <.01
tile -0.03 0.06 <.01
rc 0.13 .01
apache 0.62 .10

Table 2: Reference counting overhead in RC and C@

is below 12% on all other benchmarks. The region unscan
accounts for 6% of execution time on lcc, and 2% or less on
all other benchmarks. This table also shows that the better
performance of RC over C@ is due to to both a better base
compiler (gcc vs lcc) and to a reduction in the reference
counting overhead (which is not affected by the C compiler
used). We discuss the performance anomalies (negative time
for reference counting) below.

5.2 Region Type System results

We added sameregion and traditional annotations to all
our benchmarks. Table 3 reports the number of annotations
we added, the number of lines of code we had to change to
allow annotations (excluding the lines with the annotations
themselves) and the percentage of assignment statements of
annotated types whose safety we were able to check stati-
cally.

On most benchmarks the only changes were the addition
of the sameregion and traditional keywords. In gröbner,
which represents large integers as a structure with a pointer
to an array, we allocated some of these structures in a region
rather than on the stack and explicitly allocated the array in
the same region as the structure. This allowed us to declare
the pointer to the array as sameregion. In lcc and moss
we improve the results of constraint inference by replacing
some uses of global variables (whose region is not tracked in
our region type system) by parameters, local variables and
calls to regionof (whose region is tracked).

Figure 10 shows the effects on execution time of the
sameregion and traditional annotations and of our con-
straint inference system. In the “nq” column, the anno-
tations are ignored; in “qs” the annotations are used and
checked at runtime; in “inf” the constraint inference system
has removed provably safe runtime checks; in “nc” all run-
time checks are (unsafely) removed (and is thus the maxi-

12

nq qs inf nc

5.3

5.4

5.5

5.6

5.7

5.8

cfrac
tim

e(
s)

nq qs inf nc

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

grobner

nq qs inf nc

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

mudlle

nq qs inf nc

1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

lcc

nq qs inf nc

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

5.4

moss

nq qs inf nc

3.7

3.75

3.8

3.85

3.9

3.95

4

tile

nq qs inf nc

2.75

2.8

2.85

2.9

2.95

3

rc

nq qs inf nc

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

5.05

5.1

5.15

apache

Figure 10: Execution time with sameregion and traditional

Name Keywords Lines % safe
added changed assigns

cfrac 8 0 50
gröbner 4 217 80
mudlle 59 0 90
lcc 57 3 18
moss 20 22 89
tile 21 0 84
rc 331 0 7
apache 47 0 37

Table 3: sameregion and traditional: static statistics

mum improvement our inference system can provide). Some
of these results are anomalous: the change from “nq” to “qs”
in cfrac should produce no change in execution time as less
than 1% of all pointer assignments are to annotated types
and the total reference count overhead is 0.05s. The exe-
cution time for apache increases as less work is performed.
Our conclusion is that our performance measurements are
affected by noise (due to minor changes in code and the
process’s environment) whose amplitude is hard to quan-
tify, but that this noise does not affect overall conclusions
when examining a sufficiently large set of benchmarks. The
negative reference count times above are other instances of
this phenomenon.

Figure 11 presents the runtime frequencies of several cat-
egories of pointer assignments (excluding assignments to
local variables) in our benchmarks. The first category is
“safe”, the percentage of pointer assignments to sameregion
or traditional pointers that were shown to be statically
safe by our constraint inference. These require no runtime
work. The next category, “checked”, is the percentage of
assignments to sameregion or traditional pointers that
required a runtime check. The remaining category, “no
change”, is the percentage of assignments to unannotated
pointer types that did not lead to a change in any region’s
reference count. The goal of our annotations is to reduce
the number of “no change” pointer assignments; the goal of
our constraint inference system is to reduce the number of
“checked” pointer assignments.

From figures 10 and 11 we conclude that our type annota-
tions are important to the performance of gröbner, mudlle,
lcc, moss and to a lesser extent rc. The constraint inference
system provides useful reductions in reference count over-
head in gröbner, mudlle, lcc and moss. For instance, with-
out any qualifiers the reference count overhead of lcc would
be 27% instead of 18%, and the overhead of mudlle would
be 21% instead of 10%. The anomalous performance results
for apache prevent any useful conclusion. In all these bench-
marks at least 30% of pointer assignments are of annotated

cfrac grobner mudlle lcc tile moss rc apache
0

20

40

60

80

100

%
 o

f a
ll

no
n−

lo
ca

l a
ss

ig
nm

en
ts

safe
checked
no change

Figure 11: Details of reference count operations

types. The programs (gröbner, mudlle, tile, moss) where
the percentage of annotated assignments is high are dom-
inated by one or two data structures which use annotated
types for their internal pointers (large integers in gröbner,
an instruction list in mudlle and the input buffer used by
code produced by the flex lexical analyser generator in tile,
moss and mudlle). In cfrac essentially all pointer assign-
ments are of pointers to local variables used for by-reference
parameters in functions with signatures such as

int *pdivmod(int *u, int *v, int **qp, int **rp)

We do not think this is representative of typical programs.
The effectiveness of our constraint inference system

in verifying the safety assignments to sameregion and
traditional pointers, and hence eliminating runtime
checks, is also variable. Most checks remain in rc, while
virtually all are eliminated in gröbner, tile and moss. We
illustrate here, using the linked list type of Figure 1, the
kinds of code whose safety our system successfully or unsuc-
cessfully verifies. The examples will assume the following
local variables are declared:

struct rlist *x, *y;
region r;
struct rlist **objects[100];

A simple idiom that is successfully verified is the creation
of the contents of x after x itself exists:

x->next = ralloc(regionof(x), ...);

Similar situations often arise with imperative data struc-
tures such as hash tables (as in moss). The large integers in
gröbner also follow this pattern.

Our constraint inference system remains successful on
fairly complex loops as long as all the variables are locals
or function parameters. For instance, we can successfully
verify all the assignments in Figure 1. A more elaborate
version of this loop (involving inter-procedural analysis) is
found in moss and is also verified.

13

asgn fn opt
0

1

2

3

4

5

6

cfrac
m

ill
io

ns
 o

f i
nc

rc
/d

ec
rc

 o
pe

ra
tio

ns

asgn fn opt
0

1

2

3

4

5

6

7

8

grobner

asgn fn opt
0

0.5

1

1.5

2

2.5

3

3.5

mudlle

asgn fn opt
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

lcc

asgn fn opt
0

5

10

15

20

25

30

moss

asgn fn opt
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

tile

asgn fn opt
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

rc

asgn fn opt
0

0.2

0.4

0.6

0.8

1

1.2

1.4

apache

Figure 12: Number of incrc and decrc operations

asgn fn opt

5.3

5.4

5.5

5.6

5.7

5.8

cfrac

tim
e(

s)

asgn fn opt

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

grobner

asgn fn opt

4.1

4.15

4.2

4.25

4.3

4.35

4.4

mudlle

asgn fn opt

1.85

1.9

1.95

2

2.05

lcc

asgn fn opt

4.8

4.9

5

5.1

5.2

5.3

5.4

5.5

5.6

5.7

moss

asgn fn opt

3.75

3.8

3.85

3.9

3.95

4

tile

asgn fn opt

2.75

2.8

2.85

2.9

2.95

rc

asgn fn opt

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

apache

Figure 13: Performance of incrc/decrc placement algorithms

The sameregion and traditional annotations allow ver-
ification of some code that accesses data from the heap (or
from global variables), e.g.:

x = ralloc(regionof(y), ...);
x->next = y->next;

The traditional annotations in the code generated by
the flex lexical analyser generator used by tile, moss and
mudlle are more complex examples (also involving inter-
procedural analysis) of this.

Other constructions do not work so well. Nothing is
known about objects accessed from arbitrary arrays, e.g.:

x = ralloc(r, ...);
x->next = objects[23];

The parse stack used in the code generated by the bison
parser generator is like the objects array and prevents ver-
ification of the construction of parse trees in mudlle and rc
(which use sameregion pointers).

Most of the benchmarks allocate memory in a region
stored in a global variable, partly as an artifact of converting
the programs to use regions (adding a region argument to
every function would have been painful), partly as a result of
using bison generated parsers (the parsing actions only have
access to the parsing state and to global variables). Our
region type system does not represent the region of global
variables, so verification of annotations often fails in these
programs. Where possible, we changed these programs to
keep regions in local variables, or used regionof to find the
appropriate region in which to allocate objects.

The final case which our system does not handle well is
hand-written constructors such as:

rlist *new_rlist(region r, rlist *next)
{

rlist *new = ralloc(r, ...);
new->next = next;
return new;

}

To verify the assignment to next, our system must verify
that at every call to new rlist, next is null or in the same
region as r. This is often not possible, e.g., in rc where these
functions are called from a bison generated parser. It is not
possible to apply a technique similar to the first idiom and
replace the allocation with:

rlist *new = ralloc(regionof(next), ...);

because next may be null.7

5.3 Local Variable Reference Counting

Figure 12 shows the number of incrc and decrc operations
executed to maintain the reference counts from local vari-
ables using the three approaches presented in Section 3.4:
“asgn” is Assignment, “fn” is Function and “opt” is Opti-
mal. Figure 13 shows the corresponding variations in run-
time, which are not always consistent with the reduction in
work.

The Optimal algorithm always gives the lowest number
of scan and unscan operations (from from 61% to 99.998%
less than Assignment), but Function also keeps the overhead
of reference counting local variables low and has the simplest
implementation of all three approaches. In moss and tile,
Optimal leaves less than a thousand scan or unscan opera-
tions.

7In a new language it would be possible to have a separate null
value for each region, which would allow this idiom to work. It is not
clear whether this would be otherwise desirable.

14

6 Conclusion and Future Work

We have designed and implemented RC, a dialect of C ex-
tended with safe regions. The overhead of safety is low (less
than 11%) on all but one benchmark (where it reaches 20%).
Even with this overhead, RC programs perform competi-
tively with malloc/free based programs (from 13% slower
to 53% faster) on our benchmarks. Our main contribu-
tions are a type system for dynamically checked region sys-
tems that brings some structure to region-based programs
and improves the performance of reference counting, and an
algorithm for efficiently tracking reference counts for local
variables when compiling to a high-level language.

There are still a number of issues open in RC. Our pre-
vious paper [GA98] did a detailed breakdown of reference
count overheads by counting the cost of each reference count
operation using the UltraSparc’s cycle counters. We could
not repeat this approach when compiling to C because the C
compiler’s instruction scheduling mixes the instructions for
updating reference counts with the surrounding code. We
plan to perform a detailed analysis of the costs of reference
counting in RC using other methods.

Deleting a region is relatively expensive. We have imple-
mented a version of RC where counts are kept of the number
of references between every pair of regions. This approach
makes deleting a region very efficient, however it does not
scale to programs which use large numbers of regions simul-
taneously. We plan to investigate this and other approaches
for reducing the cost of deleteregion further.

The ordering relation between regions in our region type
system could be extended to a tree of regions. Reference
counts would not be kept from region a to region b if b ≤
a. This would allow the creation of subregions that could
be deleted independently, or automatically when the parent
region is deleted. It is not yet clear if this is a useful concept
or if it can be implemented efficiently enough.

The current translation from RC into our region type
system is very simple. There is scope for both a more elab-
orate translation and for more annotations in RC to make
a program’s region structure more explicit.

References

[Bob80] Daniel G. Bobrow. Managing re-entrant struc-
tures using reference counts. ACM Transac-
tions on Programming Languages and Systems,
2(3):269–273, July 1980.

[BZ93] David A. Barrett and Benjamin G. Zorn. Us-
ing lifetime predictors to improve memory allo-
cation performance. In Proceedings of the ACM
SIGPLAN ’93 Conference on Programming Lan-
guages Design and Implementation, pages 187–
196, Albuquerque, New Mexico, June 1993.

[CLR90] Thomas H Cormen, Charles E Leiserson, and
Ronald L Rivest. Introduction to Algorithms,
chapter 27. MIT Press, Cambridge, Mass., 1990.

[CWM99] Karl Crary, David Walker, and Greg Morrisett.
Typed memory management in a calculus of ca-
pabilities. In Conference Record of POPL 99:
The 26th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, San
Antonio, Texas, pages 262–275, New York, NY,
January 1999. ACM.

[FH95] Chris W. Fraser and David R. Hanson. A Re-
targetable C Compiler: Design and Implementa-
tion. Benjamin/Cummings Pub. Co., Redwood
City, CA, USA, 1995.

[GA98] D. Gay and A. Aiken. Memory Management
with Explicit Regions. In Proceedings of the
ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages
313–323, June 1998.

[GT88] Andrew V. Goldberg and Robert E. Tarjan. A
new approach to the maximum-flow problem.
Journal of the ACM, 35(4):921–940, October
1988. Preliminary version in Proc. 18th Annual
ACM Symposium on the Theory of Computing,
pages 136–146, 1986.

[Han90] David R. Hanson. Fast allocation and dealloca-
tion of memory based on object lifetimes. Soft-
ware Practice and Experience, 20(1):5–12, Jan-
uary 1990.

[IY90] Yuuji Ichisugi and Akinori Yonezawa. Dis-
tributed garbage collection using group reference
counting. In OOPSLA/ECOOP ’90 Workshop
on Garbage Collection in Object-Oriented Sys-
tems, October 1990.

[Joh75] S. C. Johnson. YACC: Yet another compiler
compiler. Computing Science TR, 32, 1975.

[Ros67] D. T. Ross. The AED free storage package.
Communications of the ACM, 10(8):481–492,
August 1967.

[SO96] David Stoutamire and Stephen Omohundro.
The Sather 1.1 Specification. Technical Report
TR-96-012, International Computer Science In-
stitute, Berkeley, CA, August 1996.

[Sto97] D. Stoutamire. Portable, Modular Expression of
Locality. PhD thesis, University of California at
Berkeley, 1997.

[TT97] Mads Tofte and Jean-Pierre Talpin. Region-
based memory management. Information and
Computation, 132(2):109–176, February 1997.

[Vo96] Kiem-Phong Vo. Vmalloc: A general and effi-
cient memory allocator. Software Practice and
Experience, 26(3):357–374, March 1996.

[Wil92] Paul R. Wilson. Uniprocessor garbage collec-
tion techniques. In Proceedings of International
Workshop on Memory Management, volume 637
of Lecture Notes in Computer Science, St Malo,
France, September 1992. Springer-Verlag.

[WJNB95] Paul R. Wilson, Mark S. Johnstone, Michael
Neely, and David Boles. Dynamic storage al-
location: A survey and critical review. In Pro-
ceedings of International Workshop on Memory
Management, volume 986 of Lecture Notes in
Computer Science, Kinross, Scotland, Septem-
ber 1995. Springer-Verlag.

15

A Soundness Proof

Some preliminary lemmas:

Lemma A.1 If R//fr(τ) = R′//fr(τ) then v : τ is consistent with H under R iff v : τ is consistent with H under R′.
Proof: obvious from the definition of consistency.

Lemma A.2 v : τ is consistent with H under R[ρ = Rσ] iff v : τ [σ/ρ] is consistent with H under R.
Proof: obvious from the definition of consistency.

Lemma A.3 Let τ be a type and ρ1, . . . , ρm be distinct abstract regions with fr(τ) ⊆ {ρ1, . . . , ρm}. v : τ is consistent with
H under [ρ1 = Rσ1, . . . , ρm = Rσm] iff v : τ [σ1/ρ1, . . . , σm/ρm] is consistent with H under R.
Proof: follows from lemmas A.2 and A.1.

Lemma A.4 Let R be an abstract region map, C a constraint set with domain {ρ1, . . . , ρm}∪CR. Then R is consistent with
C[σ1/ρ1, . . . , σm/ρm] iff [ρ1 = Rσ1, . . . , ρm = Rσm] is consistent with C.
Proof: obvious.

Lemma A.5 Constraint set closure properties: Let R be an abstract region map, C, D be constraint sets, σ, σ1, σ2 be region
expressions and {σ, σ1, σ2} ⊆ dom(R) = dom(C) = dom(D). Then:

• If R is consistent with C and D then R is consistent with C t D.

• If R is consistent with C and Rσ 6= 0 then R is consistent with C[σ 6= ⊥].

• If R is consistent with C and Rσ1 � Rσ2 then R is consistent with C[σ1 ≤ σ2].

• If R is consistent with C then R[ρ =] is consistent with C[¬ρ].

Proof: constraint set properties match those of the � partial order.

Lemma A.6 If v : τ is consistent with H under R then v : τ is partially consistent with H under R.
Proof: obvious.

Lemma A.7 If v : ∃ρ ≤ σ.τ is consistent with H under R, r is such that r � R[ρ = r]σ and v : τ is partially consistent with
H under R[ρ = r] then v : τ is consistent with H under R[ρ = r].
Proof: obvious from definition of consistency and partial consistency (the abstract region map used for checking the consis-
tency of fields of objects does not depend on the instantiation of quantified variables)

Lemma A.8 Assignability If:

• C, L ` τ1 ← τ2, C
′, L′

• < H, R, v, τ1, τ2 >; R′,

• v : τ2 is consistent with H under R

• R is consistent with C

then v : τ1 is consistent with H under R′, R′ is consistent with C
′ and R//L = R′//L. Additionally, the (a inst unsafe)

assignment rule is not used in the reduction.
Proof: By induction on the structure of the evaluation of the type assignment. The proof considers each reduction rule in
turn (each case starts with the reduction and type checking rules).

• < H, R, v, τ [σ′/ρ], τ ′ >; R′

< H,R, v,∃ρ ≤ σ.τ, τ ′ >; R′
σ′ ∈ L σ[σ′/ρ] ∈ L C ` σ′ ≤ σ[σ′/ρ] C, L ` τ [σ′/ρ]← τ ′, C

′, L′

C, L ` ∃ρ ≤ σ.τ ← τ ′, C
′, L′

By induction v : τ [σ′/ρ] is consistent with H under R′, R′ is consistent with C
′ and R//L = R′//L. By lemma A.2 v : τ

is consistent with H under R′[ρ = R′σ′]. Also R′σ′ � R′[ρ = R′σ′]σ (from R//L = R′//L, σ′ ∈ L, σ[σ′/ρ] ∈ L and R
consistent with C). Therefore v : ∃ρ ≤ σ.τ is consistent with H under R′.

•
exists r ∈ AH such that v : τ ′ is partially consistent with H under R[ρ′ = r]

r � R[ρ′ = r]σ′ < H,R[ρ = r], v, τ, τ ′[ρ/ρ′] >; R′

< H,R, v, τ, ∃ρ′ ≤ σ′.τ ′ >; R′

ρ 6∈ L ρ ∈ dom(C) C[¬ρ][ρ ≤ σ′[ρ/ρ′]], L ∪ {ρ} ` τ ← τ ′[ρ/ρ′], C
′, L′

C, L ` τ ← ∃ρ′ ≤ σ′.τ ′, C
′, L′

By hypothesis, v : ∃ρ′ ≤ σ′.τ ′ is consistent with H under R so (lemma A.7) v : τ ′ is consistent with H under R[ρ′ = r].
By lemmas A.2 and A.1 v : τ ′[ρ/ρ′] is consistent with H under R[ρ = r]. By lemma A.5 R[ρ = r] is consistent with
C[¬ρ][ρ ≤ σ′[ρ/ρ′]]. By induction, v : τ is consistent with H under R′, R′ is consistent with C

′ and R//L = R′//L.

16

•
there does not exist r ∈ AH such that r � R[ρ′ = r]σ′

and v : τ ′ is partially consistent with H under R[ρ′ = r]

< H,R, v, τ, ∃ρ′ ≤ σ′.τ ′ >; R
(a inst unsafe)

By hypothesis, v : ∃ρ′ ≤ σ′.τ ′ is consistent with H under R so (lemma A.6) v : ∃ρ′ ≤ σ′.τ ′ is partially consistent with H
under R. Therefore there does exist r ∈ AH such that r � R[ρ′ = r]σ′

and v : τ ′ is partially consistent with H under R[ρ′ = r], a contradiction. Therefore this (a inst unsafe) rule can never
be applied.

•
< H,R, v, region@σ, region@σ′ >; R[σ = Rσ′]

C, L ` σ ← σ′, C
′, L′

C, L ` region@σ ← region@σ′, C
′, L′

σ ∈ L C ` σ = σ′

C, L ` σ ← σ′, C, L

σ 6∈ L

C, L ` σ ← σ′, C[¬σ][σ = σ′], L ∪ {σ}
If σ ∈ L, then by consistency of R with C, Rσ = Rσ′ so R[σ = Rσ′] = R. Therefore v : region@σ′ is consistent with H
under R[σ = Rσ′].

If σ 6∈ L, then R[σ = Rσ′]//L = R//L. By lemma A.5 R[σ = Rσ′] is consistent with C[¬σ][σ = σ′] and v : region@σ′ is
consistent with H under R[σ = Rσ′].

• R1 = R[σ = Rσ′] Ri+1 = Ri[σi = Riσ
′
i]

< H,R, v, T [σ1, . . . , σm]@σ, T [σ′1, . . . , σ
′
m]@σ′ >; Rm+1

C, L ` σ ← σ′, C1, L1 Ci, Li ` σi ← σ′i, Ci+1, Li+1

C, L ` T [σ1, . . . , σm]@σ ← T [σ′1, . . . , σ
′
m]@σ′, Cm+1, Lm+1

The argument from the previous case is repeated m + 1 times.

Theorem A.9 Soundness: If

• C, L ` s, C
′

• < H, E, R, s >;< H ′, E′, R′ >

• Variables x1 : τ1, . . . , xn : τn are live before s

• Variables x′1 : τ ′1, . . . , x
′
m : τ ′m are live after s

• R is consistent with C

• E(x1) : τ1, . . . , E(xn) : τn are consistent with H under R

• w1 : α1, . . . , wl : αl are consistent with H under Q

then

• R′ is consistent with C
′

• E′(x′1) : τ ′1, . . . , E
′(xm) : τ ′m are consistent with H ′ under R′

• w1 : α1, . . . , wl : αl are consistent with H ′ under Q

• The (a inst unsafe) assignment rule is not used in the semantic reduction

Proof: By induction on the structure of the evaluation of s. The proof considers each reduction rule in turn (each case starts
with the reduction and type checking rules). In rules where H = H ′ we can immediately conclude that:

• w1 : α1, . . . , wl : αl are consistent with H ′ under Q.

• If R//L = R′//L all variables live after s that are not assigned in s are consistent with H ′ under R′.

In these rules we will thus only show that R′ is consistent with C
′, R//L = R′//L, and assigned variables are consistent with

H under R′.
The fact that (a inst unsafe) is not used in the reduction follows from lemma A.8, used in all cases where semantic reduction
rules invoke the semantic assignment rules. This fact will not be repeated in the cases below.

17

• < H,E, R, s1 >;< H ′, E′, R′ > < H ′, E′, R′, s2 >;< H ′′, E′′, R′′ >

< H, E, R, s1; s2 >;< H ′′, E′′, R′′ >

C, L ` s1, C
′

C
′, Ls2 ` s2, C

′′

C, L ` s1; s2, C
′′

The live variables before s1; s2 are the same as those before s1 so by induction, we conclude that R′ is consistent with
C
′, that the variables live after s1 are consistent with H ′ under R′ and that w1 : α1, . . . , wl : αl are consistent with H ′

under Q. The variables live after s1 are the variables live before s2 so by induction, we conclude that R′′ is consistent
with C

′′, that variables live after s2 (which are the same as those live after s1; s2) are consistent with H ′′ under R′′ and
that w1 : α1, . . . , wl : αl are consistent with H ′′ under Q.

• E(x) = 0 < H,E, R, s2 >;< H ′, E′, R′ >

< H, E, R,if x s1 s2 >;< H ′, E′, R′ >

C, Ls1 ` s1, C
′

C, Ls2 ` s2, C
′′

C, L ` if x s1 s2, C
′ u C

′′

The live variables before s1 are a subset of those before the if, so by induction, we conclude that R′ is consistent with
C
′, that variables live after s1 (which are the same as those after the if) are consistent with H ′ under R′, and that

w1 : α1, . . . , wl : αl are consistent with H ′ under Q. As C
′uC

′′ ≤ C
′′ this case concludes. The E(x) 6= 0 case is essentially

identical.

• E(x) 6= 0 < H,E, R, s >;< H ′, E′, R′ > < H ′, E′, R′, while x s >;< H ′′, E′′, R′′ >

< H, E, R,while x s >;< H ′′, E′′, R′′ >

C
′, Ls ` s, C

′′
C
′ = C u C

′′

C, L ` while x s, C
′

The live variables before s are a subset of those before the while and C
′ ≤ C so by induction, R′ is consistent with C

′′,
the live variables after s are consistent with H ′ under R and w1 : α1, . . . , wl : αl are consistent with H ′ under Q. The
variables live after s are a superset of those before the while and C

′ ≤ C
′′ so by induction R′′ is consistent with C

′, the
live variables after the while are consistent with H ′′ under R′′ and w1 : α1, . . . , wl : αl are consistent with H ′′ under Q.

• E(x) = 0

< H,E, R, while x s >;< H,E, R >

C
′, Ls ` s, C

′′
C
′ = C u C

′′

C, L ` while x s, C
′

The live variables after the while are a subset of those before it, and C
′ ≤ C so this case concludes.

• v0 : τ0 v1 : τ1 < H,R, E(v1), τ0, τ1 >; R′

< H,E, R, v0 = v1 >;< H,E[v0 = E(v1)], R
′ >

C, L ` τ0 ← τ1, C
′, L′

C, L ` v0 = v1, C
′

By assumption, E(v1) : τ1 is consistent with H under R and R is consistent with C, so by lemma A.8, E(v1) : τ0 is
consistent with H under R′, R′ is consistent with C

′ and R′//L = R//L.

•
x0 : τ0 x1 : T [σ1, . . . , σm]@σ struct T [ρ1, . . . , ρm]{. . . , fi : τi, . . .}

H(E(x1)) = ((r0, . . .), (v1, . . . , vn)) < H,R, vi, τ0, τi[σ1/ρ1, . . . , σm/ρm] >; R′

< H,E, R, x0 = x1.fi >;< H, E[x0 = vi], R
′ >

C[σ 6= ⊥], L ` τ0 ← τi[σ1/ρ1, . . . , σm/ρm], C
′, L′

C, L ` x0 = x1.fi, C
′

From the definition of a heap, r0 6= 0 so by consistency of E(x1) with H under R, Rσ = r0 6= 0. Therefore by lemma A.5
R is consistent with C[σ 6= ⊥]. Also vi : τi is consistent with H under [ρ1 = Rσ1, . . . , ρm = Rσm], so (lemma A.3)
vi : τi[σ1/ρ1, . . . , σm/ρm] is consistent with H under R. By lemma A.8 vi : τ0 is consistent with H under R′, R′ is
consistent with C

′ and R′//L = R//L.

•

x1 : T [σ1, . . . , σm]@σ struct T [ρ1, . . . , ρm]{. . . , fi : τi, . . .} x2 : τ2

H(E(x1)) = ((r0, . . . , rm), (v1, . . . , vn)) < H, R,E(x2), τi[σ1/ρ1, . . . , σm/ρm], τ2 >; R′

o = ((r0, . . . , rm), (v1, . . . , vi−1, E(x2), vi+1, . . . , vn)) H ′ = H [E(x1) = o]

< H,E, R, x1.fi = x2 >;< H ′, E, R′ >

C[σ 6= ⊥], L ` τi[σ1/ρ1, . . . , σm/ρm]← τ2, C
′, L′

C, L ` x1.fi = x2, C
′

From the definition of a heap, r0 6= 0 so by consistency of E(x1) with H under R, Rσ = r0 6= 0. Therefore by lemma A.5 R
is consistent with C[σ 6= ⊥]. Also E(x2) : τ2 is consistent with H under R, so by lemma A.8 E(x2) : τi[σ1/ρ1, . . . , σm/ρm]
is consistent with H under R′, R′ is consistent with C

′ and R//L = R′//L. By lemma A.3 E(x2) : τi is consistent with
H under [ρ1 = R′σ1, . . . , ρm = R′σm]. Also L = L′ as {σ1, . . . , σm} ⊆ L, so R = R′.

We must show the consistency of E(x′1), . . . , E(x′m) with H ′ under R and of w1, . . . , wl with H ′ under Q. The live variables
after this statement are a subset of those live before it so we can replace the E(x′1), . . . , E(x′m) by E(x1), . . . , E(xn).

18

We consider these variables and the wi’s together by showing that there is no value v : τ consistent with H under some
abstract region map P and inconsistent with H ′ under P .

First we note that if v : τ is consistent with H ′ under P then it is not partially inconsistent with H ′ under P . Also
AH = AH′ , the regions of heap objects are unchanged in H and H ′ and dom(H) = dom(H ′). Thus partial inconsistency
of v : τ with H ′ under P is equivalent to partial inconsistency of v : τ with H under P .

Assume there exists some value v : τ consistent with H under P and inconsistent with H ′ under P . Any proof of
inconsistency can be reduced to one of the two following cases:

– v : τ is partially inconsistent with H ′ (so also with H) under P . But v : τ is consistent with H under P , a
contradiction.

– There exists w : U [. . .]@ reachable in H ′ from v such that H ′(w) = ((s0, . . . , sp), (w
′
1, . . . , w

′
q)),

struct U [ρ′1, . . . , ρ
′
p]{f1 : τ ′1, . . . , fq : τ ′q} and w′

k : τ ′k is partially inconsistent with H ′ under P ′ = [ρ′1 = s1, . . . , ρ
′
q =

sq]. So w′
k : τ ′k is partially inconsistent with H under P ′. Note also that H(w) = ((s0, . . . , sp), . . .) and w must

be reachable in H from some some v′ : τ ′ (either the value of a live variable or one of w1, . . . , wl), with v′ : τ ′

consistent with H under P . There are again two cases:

∗ If w 6= E(x1) or k 6= i (i.e., yk is not the assigned field) then w′
k : τ ′k is not partially inconsistent with H under

P ′, a contradiction.

∗ If w = E(x1) and k = i (i.e., we are considering the assigned field) we saw above that E(x2) = w′
k : τi = τ ′k

is consistent with H under [ρ1 = Rσ1, . . . , ρm = Rσm]. By the consistency of E(x1) : T [σ1, . . . , σm]@σ with
R we conclude P ′ = [ρ1 = Rσ1, . . . , ρm = Rσm] so w′

k : τ ′k is not partially inconsistent with H under P ′, a
contradiction.

• x0 : µ0@σ0

< H,E, x0 = null >;< H,E[x0 = 0], R[σ0 = 0] >

C, L ` µ0@σ0 ← µ0@⊥, C
′, L′

C, L ` x0 = null, C
′

We show that R//L = R[σ0 = 0]//L:

– σ0 6∈ L: obvious.

– σ0 ∈ L: from the assignment rules we get C ` σ0 = ⊥ and from the consistency of R with C we get Rσ0 = 0, so
R//L = R[σ0 = 0]//L.

As for x0: E[x0 = 0](x0) = 0 : µ0@σ0 is consistent with H under R[σ0 = 0].

Consistency of R[σ0 = 0] with C
′:

– σ0 ∈ L: from the assignment rules it is easy to see that C
′ ≤ C so R[σ0 = 0] = R is consistent with C

′.

– σ0 6∈ L: from lemma A.5 we conclude that R[σ0 = 0] is consistent with C[¬σ0][σ0 = ⊥]. As in the first case,
C
′ ≤ C[¬σ0][σ0 = ⊥], so R[σ0 = 0] = R is consistent with C

′.

•

x0 : τ0 xi : τi x′ : region@σ′ struct T [ρ1, . . . , ρm]{f1 : τ ′1, . . . , fn : τ ′n}
< H,Ri, E(xi), τ

′
i [σ1/ρ1, . . . , σm, ρm], τi >; Ri+1 < H [v = o], Rn+1, x, τ0, T [σ1, . . . , σm]@σ′ >; R′

v 6∈ dom(H) ∧ v 6= 0 H(E(x′)) = (region, r,) o = ((r, Rn+1σ1, . . . , Rn+1σm), (E(x1), . . . , E(xn)))

< H, E,R1, x0 = new T [σ1, . . . , σm](x1, . . . , xn)@x′ >;< H [v = o], E[x0 = v], R′ >

Ci, Li ` τ ′i [σ1/ρ1, . . . , σm/ρm]← τi, Ci+1, Li+1 Cn+1, Ln+1 ` τ0 ← T [σ1, . . . , σm]@σ′, C
′, L′

C1, L1 ` x0 = new T [σ1, . . . , σm](x1, . . . , xn)@x′, C
′

By induction on 1 . . . n and lemmas A.8, A.3 and A.1 we conclude that E(xi) : τ ′i are consistent with [ρ1 =
Rn+1σ1, . . . , ρm = Rn+1σm], Rn+1 is consistent with Cn+1 and Rn+1//L = R. As v 6∈ dom(H) (so v is not a value in the
environment or in any object in H), v : T [σ1, . . . , σm]@σ is consistent with H [v = o] under Rn+1, and all live variables
after this statement are consistent with H [v = o] under Rn+1. Similarly w1 : α1, . . . , wl : αl are consistent with H [v = 0]
under Q.

The assignment to x0 is a special case of the x0 = x1 rule seen above (replacing E(x1) by v).

• H(E(x0)) = ((r, . . .),) H(E(x1)) = ((r, . . .),)

< H,E, R, chk x0 ≤ x1 >;< H,E, R >

x0 : µ0@σ0 x1 : µ1@σ1

C, L ` chk x0 ≤ x1, C[σ0 ≤ σ1]

By consistency of R with C and of E(x0) : µ0@σ0, E(x1) : µ1@σ1 with H under R we conclude that Rσ0 = r = Rσ1. By
lemma A.5 R is consistent with C[σ0 ≤ σ1].

• E(x0) = 0

< H,E, R, chk x0 ≤ x1 >;< H,E, R >

x0 : µ0@σ0 x1 : µ1@σ1

C, L ` chk x0 ≤ x1, C[σ0 ≤ σ1]

By consistency of R with C and of 0 = E(x0) : µ0@σ0 with H under R we conclude that Rσ0 = 0. Therefore Rσ0 � Rσ1

and by lemma A.5 R is consistent with C[σ0 ≤ σ1].

19

• H(E(x0)) = ((R0, . . .), . . .)

< H,E, R, chk x0 ≤ R0 >;< H, E, R >

x0 : µ0@σ0

C, L ` chk x0 ≤ R0, C[σ0 ≤ R0]

By consistency of R with C and of E(x0) : µ0@σ0 with H under R we conclude that Rσ0 = R0. By lemma A.5 R is
consistent with C[σ0 ≤ R0].

• E(x0) = 0

< H,E, R, chk x0 ≤ R0 >;< H, E, R >

x0 : µ0@σ0

C, L ` chk x0 ≤ R0, C[σ0 ≤ R0]

By consistency of R with C and of 0 = E(x0) : µ0@σ0 with H under R we conclude that Rσ0 = 0. Therefore Rσ0 � RR0

so by lemma A.5 R is consistent with C[σ0 ≤ R0].

•

f [ρ1, . . . , ρm][D](y1 : τ ′1, . . . yn : τ ′n) : τ ′, D
′ is [ρ′1, . . . , ρ

′
p]y

′
1 : τ ′′1 , . . . , y′q : τ ′′q , s, y

Ef = [y1 = E(x1), . . . , yn = E(xn), y′1 = 0, . . . , y′q = 0] < H,Ef , Rf , s >;< H ′, E′
f , R′

f >

Rf = [ρ1 = Rn+1σ1, . . . , ρm = Rn+1σm, ρ′1 = 0, . . . , ρ′p = 0]
xi : τi < H, Ri, E(xi), τ

′
i [σ1/ρ1, . . . , σm, ρm], τi >; Ri+1

σ ∈ Fτ ′ ⇒ Rτ ′σ = R′
fσ σ 6∈ Fτ ′ ⇒ Rτ ′σ = Rn+1σ < H ′, Rτ ′ , E′

f (y), τ0, τ
′[σ1/ρ1, . . . , σm, ρm] >; R′

< H,E, R1, x0 = f [σ1, . . . , σm](x1, . . . , xn) >;< H ′, E[x0 = E′
f (y)],R′ >

Ci, Li ` τ ′i [σ1/ρ1, . . . , σm/ρm]← τi, Ci+1, Li+1 D[σ1/ρ1, . . . , σm/ρm] ≤ Cn+1

Cn+1//Ln+1 t D
′[σ1/ρ1, . . . , σm/ρm], Ln+1 ∪ Fτ ′ ` τ0 ← τ ′[σ1/ρ1, . . . , σm/ρm], C

′, L′

σi ∈ Fτ ′ ⇐⇒ ρi free in τ ′ and for all k, ρi not free in τ ′k Fτ ′ ∩ Ln+1 = ∅
D, Ls ` s, D

′′
D
′ ≤ D

′′//({ρ1, . . . , ρm} ∪ CR)

C1, L1 ` x0 = f [σ1, . . . , σm](x1, . . . , xn), C
′

By induction on 1 . . . n we conclude that ∀i.E(xi) : τ ′i [σ1/ρ1, . . . , σm/ρm] is consistent with H under Rn+1, and Rn+1

is consistent with Cn+1 and D[σ1/ρ1, . . . , σm/ρm]. Therefore (lemmas A.1 and A.3) ∀i.E(xi) = Ef (yi) : τ ′i is consistent
with H under Rf and Rf is consistent with D (lemma A.4). By assumption, y′1, . . . , y

′
q are dead before s, so all live

variables before s are consistent with H under Rf .

Let N be the abstract regions in Ln+1 (N = Ln+1 −CR). For simplicity of exposition, we assume N ∩ dom(Q) = ∅ (this
is easily achieved by suitable renaming). We define Q′ as Q′σ = Qσ if σ ∈ dom(Q) and Q′σ = Rn+1σ if σ ∈ N . Let the
live variables before the function call be x′′1 : τ ′′1 , . . . , x′′p : τ ′′p .

By induction, with extra values w1 : α1, . . . , wl : αl, E(x′′1) : τ ′′1 , . . . , E(x′′p) : τ ′′p consistent with H under Q′, we conclude
that R′

f is consistent with D
′, E′

f (y) : τ ′ is consistent with H ′ under R′
f and w1 : α1, . . . , wl : αl, E(x′′1) : τ ′′1 , . . . , E(x′′p) : τ ′′p

consistent with H ′ under Q′. From this we conclude that w1 : α1, . . . , wl : αl are consistent with H ′ under Q.

Let F be the abstract regions free in τ ′1, . . . , τ
′
n. F is in every live abstract region set of f , so it is easy to check

that ∀ρ ∈ F.R′
f ρ = Rfρ. Therefore, Rτ ′σi = R′

fρi, so (lemma A.4) Rτ ′ is consistent with D
′[σ1/ρ1, . . . , σm/ρm]. By

lemmas A.1 and A.3 E′
f (y) : τ ′[σ1/ρ1, . . . , σm/ρm] is consistent with H ′ under Rτ ′ . As ∀σ ∈ Ln+1.Rτ ′σ = Rn+1σ, Rτ ′

is consistent with Cn+1//Ln+1, therefore (lemma A.5) Rτ ′ is consistent with Cn+1//Ln+1 t D
′[σ1/ρ1, . . . , σm/ρm]. By

lemma A.8, E[x0 = E′
f (y)](x0) = E′

f (y) : τ0 is consistent with H ′ under R′, R′ is consistent with C
′ and R′//(Ln+1 ∪

Fτ ′) = Rtau′//(Ln+1 ∪ Fτ ′).

Finally, ∀σ ∈ Ln+1.R
′σ = Rn+1σ = Q′σ, so all live variables other than x0 are also consistent with H ′ under R′.

20

