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Abstract

Geometric Algorithms and Data Representation for Solid Freeform
Fabrication

by

Sara Anne McMains

Doctor of Philosophy in Computer Science

University of California, Berkeley
Professor Carlo H. Sequin, Chair

Solid freeform fabrication (SFF) refersto aclass of technol ogies used for making rapid
prototypes of 3-D parts. With these processes, a triangulated boundary representation of
the CAD model of thepartis®dliced” into horizontal 2.5-D layersof uniform thicknessthat
are successively deposited, hardened, fused, or cut, depending on the particular process,
and attached to the layer beneath. The stacked layersform thefinal part.

The current defacto standard interfaceto these machines, STL, has many shortcomings.
We have developed a new “Solid Interchange Format” (SIF) for use as a digital interface
to SFF machines. SIF includes constructs for specifying surface and volume properties,
precisioninformation, and transmitting uneval uated Bool ean trees. We have a so devel oped
a2-D variant, LSIF (Layered SIF), for describing the diced layers.

Many solid modeling applications require information not only about the geometry of
an object but also about its “topology” — the connectivity of its faces, edges, and vertices.
We have designed a new topological data structure, the loop edge data structure (LEDS),
specifically targeted at supporting SFF software. For very large data sets, the topological
data structure itself can be bigger than core memory, and a naive algorithm for building it
becomes prohibitively ow due to memory thrashing. We have developed an algorithm for
building the LEDS efficiently from a boundary representation, even when it doesn't fit in



main memory, improving software performance for highly tessellated parts by two orders
of magnitude.

We have implemented an analysis and cleanup tool for faceted B-reps on top of this
data structure. The analysis module reports basic topological information about the part
and checks the boundary for cracks. The cleanup module closes cracks via intelligent
vertex merging.

We have developed a new sweep-plane dlicing algorithm that also operates on the
LEDS. Our dlicer outputs L SIF, passing along the unevaluated booleans to be resolved at
the 2-D level. This dlicer exploits the coherence between the finely spaced parallel dices
needed for SFF process planning and fabrication. Its performance is two to three times
faster than that of a comparison commercial STL dlicer on typical parts.

Gt A (ern,

Professor Carlo H. Séquj
Dissertation Committee Chair
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Chapter 1

| ntroduction

1.1 Solid Freeform Fabrication

Several technologiescollectively referred to aslayered manufacturing or solid freeform
fabrication (SFF) have been developed recently for making prototypes of solid three-
dimensional partsdirectly from CAD descriptions. These include stereolithography (SLA)
[33], 3-D printing [63], selective laser sintering (SLS) [9], fused deposition modeling
(FDM) and laminated object manufacturing (LOM) [2, 3, 42, 48, 52, 82]. The prototypes
they produce can serveas physical modelsduring design review, allow engineersto perform
functional testing of parts, or be used as mold patterns or positives for secondary tooling.
These technol ogies promiseto play an increasingly important rolein fully automated rapid
prototyping of mechanical parts of arbitrarily complex shape with only aminimal amount
of process planning.

Inall these processes, atriangulated boundary representation (b-rep) of the CAD model
of thepartin STL format [1] is“diced” into horizontal 2.5-D layers of uniform thickness.
Each cross sectional layer is successively deposited, hardened, fused, or cut, depending on
the particular process, and attached to the layer beneath it. The stacked layers form the
final part.



1.2 Motivation

The introduction of the first commercial SFF technology, stereolithography, was ac-
companied by theintroduction of STL, adescriptive format to specify the solid shapeto be
produced. Unfortunately, although STL has become the de facto standard exchange format
for the SFF industry, it is inadequate for many reasons. STL is a faceted, non-connected,
boundary description of asolid. The facets are triangles, transmitted as three 3-D vertex
coordinates and a normal vector. Redundant information at the lowest level isinherently
required, since each vertex must appear in at least three triangular facets on the boundary
of avalid closed solid, and its coordinates must be specified explicitly for each facet that
shares that vertex. The inside and outside of the solid relative to each facet is specified by
the ordering of thefacet verticesaswell asby asurface normal. This constitutes redundant
information, yet there is no semantic resolution if this information isinconsistent. Since
triangle vertices are not explicitly shared, round-off errors may produce small cracksin
the described boundary. This lack of connectivity also makes it more difficult to check
whether amodel describes a closed solid.

After receiving apart description, whether in STL or some other format, an application
must build an internal representation to processit. Ideally, theinternal representation will
record not only geometry, but also topological information about adjacency relationships.
Adjacency informationisuseful for avariety of applications, including analysis, filerepair,
dicing, and offsetting.

Building such a topological data structure efficiently presents a challenge for large
data sets. When the data is small enough, memory-resident auxiliary intermediate data
structures can be used to derive the connectivity. But for very large data sets, where
these intermediate structures will not fit in memory, random accesses to read them can
lead to thrashing. In addition, random accesses to update the existing data structure with
connectivity information to newly processed geometry can cause additional thrashing.

The first step in processing an SFF input file is to verify that it indeed represents the
boundary of a valid, closed solid (or in the case of SIF input with Booleans, that the
primitives are valid, closed solids). Often there will be gaps or cracks in the boundary,
particularly for STL input where vertices are not shared, caused by round-off errors that



occur as the result of instancing or trimming operations on the design side.  An un-
ambiguous, closed boundary is necessary in order to determine what volume is inside
of and what is outside of the part, because the SFF machine needs to know where to
deposit/fuse/harden/etc. the build material.

The next step that is required to build the SFF part isto dice it into paralel layers.
Previous algorithms for dicing the 3-D b-rep into the layers that form the process plan
for these machines have treated each dice operation as an individual intersection with a
plane. But for atypical stereolithography build with .005" layers, a 5" high part will be
made from one thousand parallel slices with significant coherence between dices. An
additional shortcoming of many existing dicersis alack of robustness when dealing with
non-2-manifold geometry.

1.3 Contribution

We have developed a smple and clean interchange format for SFF called “SIF” for
“Solid Interchange Format,” in close analogy to CIF, the Caltech Intermediate Form, which
serves a sSimilar function for the exchange of LSI layout descriptions [49]. With SIF, our
goa was a smple and easy-to-describe interchange format powerful enough to describe
awide variety of parts unambiguously. We have fixed some of the obvious shortcomings
of STL by giving vertices identifiers and sharing the vertices between triangles, eliminat-
ing redundant surface normal information, and specifying units and version information.
We have introduced constructs for specifying surface and volume properties, precision
information, and the ability to describe parts with unevaluated Boolean constructive solid
geometry (CSG) operations.

We have implemented a new variation of aradial edge data structure, the loop edge
datastructure (LEDS), specifically targeted at supporting SFF software. LEDS isdesigned
to record connectivity information for al valid solids, including non-2-manifold solids.
For efficient memory allocation, we use constant space storage for each vertex and each
edge use, at the same time answering the majority of topological adjacency queriesintime
linear in the number of responses, independent of the size of the input. We aso study



trade-offs between time and space efficiency.

For building the LEDS, we implemented and optimized two different algorithms.
The first is designed for an in-memory build, using hash tables for efficient derivation
of connectivity information. Unfortunately, using this ssimple algorithm with large files
causes virtual memory thrashing. The second algorithm is an out-of-core algorithm,
designed such that the only random accesses are to structures that fit in main memory,
[imiting disk accesses to sequential reads and writes. This algorithm exhibits run times
that only increase linearly, not exponentially, when main memory size is exceeded. One
of the goals of this work was to demonstrate that a full topological data structure can be
constructed efficiently from abucket of facets, obviating the need to include the topological
data structure explicitly in the interchange format.

After building the LEDS, we use it to analyze the input. We verify that there are no
gaps in the boundary, or if there are gaps, we make a limited attempt to repair the file
automatically (we only attempt to fix problems caused by round-off errorsin the vertices).
If thedatastill has problems, other filerepair programs, possibly involving user interaction,
must be used to fix thefile.

Our dlicing algorithm exploits both geometric and topological inter-slice coherence
to output clean dlices with no self-intersections and explicit nesting of contours.  After
building the initial LEDS, we logicaly separate non-2-manifold edges and vertices into
coincident “pseudo-2-manifold” edges and vertices, so that they will be handled correctly.
The main body of the algorithm uses a sweep plane approach, using the connectivity
information for the 3-D solid to derive and update the connectivity of the 2-D dlices.
Actual intersection cal culations on the edges are performed quickly and efficiently through
incremental updates between dices. The resulting slice descriptions are topologically
consistent, connected, nested contours, rather than ssimply unordered collections of edges.



Chapter 2

Background and Previous Wor k

2.1 Solid Representation Schemes

Several representations are commonly used to define solid geometry, including param-
eterized sweeps and generalized cylinders, spatial partitioning schemes such as voxels,
octrees, or binary space partitioning trees, constructive solid geometry (CSG), and bound-
ary representations (b-reps) [20, 29, 50]. For manufacturing applications, CSG and b-reps
are most common.

211 CSG

With CSG, solid primitives such as cones, spheres, cubes, and half spaces are scaled,
trandated, and/or rotated using geometric transforms and then combined via Boolean
set operations (union, intersection, and difference) to describe more complicated shapes.
Since the domain of solid objects is not closed under standard Boolean operations (for
example, theintersection of two 3-D solids can result in a2-D face or a1-D edge as shown
in Figure 2.1), a variation called regularized Boolean set operations are used for solid
modeling with CSG [57].

A regularized Boolean set operation is carried out by first performing the standard
Boolean operation, then taking the result and finding the closure of its interior (see Fig-
ure 2.2). The process of taking the closure of the interior is called “regularization.” The



regul arized Boolean operators are denoted as(*, |J*, and —*.

AR

Figure 2.1: Examples of Boolean operations on manifold solids that do not yield solids.
The intersection of the two cubes on the left is the gray 2-D face. The intersection of the
two cubes on theright is the gray 1-D edge.

4

b) Thetwo objectssuperimposed after their
geometric transforms are applied.

a) Two objects we wish to intersect.

.
l" ) 0’
....... -

d) Theinterior of their in-  €) The closure of theinterior
tersection. of their intersection.

¢) Their intersection.

Figure 2.2: A regularized Boolean intersection operation ((*).



An unevaluated CSG representation is in the form of a tree with the operands (the
transforms and Boolean operators) at the nodes and the solid primitives at the leaves (see
Figure 2.3). Although some display algorithms operate on unevaluated CSG trees directly
[56], for analysis purposesit is generally necessary to convert the CSG treeto an evaluated
representation such as a b-rep.

[]
\ﬁ “ /5

Figure2.3: A CSG tree describing a wedge of Swiss cheese astheintersection of a cylinder
and two half spaces, minusseveral spheres. Thespheresareillustrated after theapplication
of scaling transforms; trandation transforms applied to each of the leaves of the tree are
not pictured.

212 B-reps

With a b-rep, only the geometry of the surface that forms the boundary between the
interior and exterior of the solid is represented explicitly. The boundary surface may be



described by polygonal faces, by trimmed and untrimmed tensor-product spline patches
[7, 31], or by subdivision surfaces [30, 58, 65].

These faces are oriented, having a front and a back. By convention, the front face of
a polygon in a b-rep is the side that is visible when viewed from outside the solid. In a
right-handed coordinate system, a simple polygonal face’s boundary is defined by alist of
vertices ordered so that if we walk the oriented edges between them, while standing on the
outside of the polyhedron, the face will always be to our left. For a non-ssmple polygonal
face defined by multiple contours, the same will be true if we walk the oriented edges of
the inner hole contours. The outer contour of afaceis oriented counter-clockwise as seen
from the front of the face; any inner hole contours are oriented clockwise. The normal of
afaceisfound by taking the cross product of two consecutive edges of its outer contour
that form a convex corner. This surface normal points out of the front of the face toward
the exterior of the part (see Figure 2.4). Thus by looking at the orientation of a face we
can tell on which side solid material lies—which sideisthe interior of the part and which
the exterior.

Figure2.4: Inaright handed coordinate system, the outer contour of each face isoriented
counter-clockwise, while any hole contours are oriented clockwise (gray arrows indicate
contour orientations). Surface normals point toward the outside of the solid (black arrows
indicate surface normals).

Itisin principle straightforward to evaluate a CSG tree to obtain a b-rep, but rounding
errors are a common problem. Such a conversion operation is needed when a modeling
system provides a CSG interface but the exchange format is a b-rep. Deriving a compact
CSG tree from an initial b-rep is conceptually more complicated, as there are many



different possible CSG trees to describe the same geometry. This is one reason that
b-reps, or a combination of b-rep and CSG, are favored over CSG-only for exchange
formats. Another advantage of b-repsis their compatibility with data structures providing
adjacency information, which is useful for analysis operations, such as the determination
of connectedness and counting components [83, 77].

2.1.3 Manifold Properties

Many solid modeling kernels are restricted to 2-manifold geometry. On a 2-manifold
boundary, the mathematical neighborhood of each point is topologically equivalent to a
2-D disk. Any geometry that does not have this property isnon-manifold. Inthe b-rep of a
2-manifold, each edgeis used by exactly two faces, in opposite directions (see Figure 2.5).
(Note that thisis a necessary, but not a sufficient, condition for manifoldness.)

Figure 2.5: The cube on the left is 2-manifold. The shaded neighborhood of the point
indicated on the front edgeis topologically equivalent to a disk, and the edgeis used once
in both directions, asindicated by the gray arrows on the faces that use it. The two cubes
on theright share the central, non-manifold edge. The shaded neighborhood of the point
indicated on the non-manifold edge i s topol ogically equivalent to two disks, and the edge
isused twice in each direction.

Merely supporting 2-manifold geometry is inadequate for robust solid modeling sys-
tems. The set of 2-manifold solidsisnot closed even under regularized Boolean operations
— the two touching cubes in Figure 2.5 are one example: a non-manifold edge appears
in the union of two manifold cubes. It is not physically possible to manufacture such
an infinitely thin edge, but the ideal shape the designer wants could still be a connected
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solid with a non-manifold edge (see Figure 2.6). Non-homogeneous parts where multiple

L

Figure 2.6: Two examples of rigidly connected parts that contain non-manifold edges.

materials abut are also non-2-manifold.

Ideally, a design system should support other non-manifolds so that mixed dimension
geometry can be represented, not just solids. Even if a designer ultimately wants a solid
part, the intermediate geometry that arises in the process of designing that part may not
be closed. Non-manifold entities are aso useful for partitioning an object for analysis, to
identify features for machining, or to establish reference points or planes for measurement
and tolerancing.

2.2 Topological Data Structures for Solid Models

To analyze a b-rep (for example, to determine whether each edge is used in opposite
directions by two faces in a valid 2-manifold), a data structure that includes adjacency
information, or topology, is useful. A popular topological data structure for b-reps of 2-
manifoldsisBaumgart’swinged edge datastructure[8], illustratedin Figure 2.7. Each edge
pointsto its endpoints, to the two adjacent faces that share it, and to the next and previous
edges around thosetwo faces. Facesand verticeseach point to oneof their edges. Thisdata
structure allows us to answer many questions about topological adjacency relationships
efficiently, such asthe two faces coincident to an edge, or all the edges adjacent to a vertex.
Mantyla's half-edge data structure [47] is a variation on the winged-edge data structure,
also limited to 2-manifolds, that divides the information stored with a winged edge into
two half-edges, one associated with each adjacent face. Kalay, in a2-D architectural floor
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plan editor, has also used asimilar encoding [37].

Figure 2.7: In a winged edge data structure, connectivity information is stored primarily
with the edges. The front edge of the cube on the left points to its vertices, adjacent faces,
and neighboring edges around these faces, as pictured on the right. \ertices and faces
point back to a single adjacent edge.

Valid non-2-manifold b-rep solids, such as the ones pictured in Figure 2.6, can be
represented using pseudo-2-manifold representations, which have 2-manifold connectivity
but non-2-manifold geometry [46, 62]. For these valid solids, the neighborhood of each
point is topologically equivalent to n disks, and each edge in the b-rep is used an equal
number of timesin both directions. To make a pseudo-2-manifold representation, we must
virtually separatethesedisks(see Figure 2.8). For non-manifold edges, thisisaccomplished
by pairing up edges with opposite orientation so that each pair corresponds to one of n
abutting but non-intersecting disks. For non-manifold vertices, this is accomplished by
making duplicate coincident vertices for each disk, connected to the edges on that disk.
With a pseudo-2-manifold representation, adjacency information is lost at non-manifold
points on the boundary.

Weller'sradial edge data structureis ageneralization of the winged-edge data structure
that supports adjacency queries on non-2-manifolds [78]. An important concept from
Weller's work is the distinction between an abstract, unoriented geometric entity, such as
an edge, and an oriented use of that entity, such asadirected edge-use that describes part of
the boundary of aface. For example, the geometry of an edge between two pointsis stored
once and then referred to by as many edge-uses as faces share that edge. In the winged
edge structure, theimplicit edge-uses are limited by the two pointersthat pointed to the two
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Figure 2.8: The non-2-manifold edge on the left can be represented as pseudo-2-manifold
by duplicating both end points and connecting pairs of edges with opposite orientation.
The edges and duplicated vertices will be geometrically coincident, but their connectivity
will be as for the 2-manifold geometry shown on the right.

faces that used the edge in opposite directions. In the radia edge data structure, both the
unoriented geometry and its uses are stored explicitly. Weiler’s data structure al so records
the radial ordering of facesaround non-manifold edges (henceits name). Theinternal data
structure that we build is a stripped-down version of the radial edge data structure.

Another pioneering non-manifold representation forms the basis for the NOODLES
geometric modeling system devel oped at Carnegie Mellon[27, 28]. Inadditiontotheradial
ordering of faces around non-manifold edges, Noodles divides the distinct areas around
non-manifold vertices into explicit zones. The manifold sheets that form the boundaries
between zones are called disks (see Figure 2.9).

B

B

Figure 2.9: The vertex in the center is surrounded by three zones, A, B, and C. They are
bounded by two disks, D1 and D2.

Each disk records a cyclicaly ordered list of edge-uses incident to the vertex and
on the surface of the disk. Thisis called a disk cycle (see Figure 2.10). Weller subse-
guently described amodificationto hisoriginal radial edge structureto represent thisvertex
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neighborhood information explicitly [79].

Figure 2.10: Thisvertex hasa single disk cycle made up of three edge-uses. The edge-uses
are depicted as shaded regions on the face_uses that they bound (figure adapted from
Gursoz et al).

Rock and Wozny [61] designed a smple topological data structure specifically for
2-manifold STL input. Each triangular face points to its three vertices, its three adjacent
faces, and the three edges shared with the adjacent faces. Edges point to their two endpoint
vertices and the two adjacent faces. Vertices point to alist of the adjacent faces. In the
first pass of their algorithm to build this data structure from STL input, they allocate the
vertices and faces and fill in the pointers between them. During this stage, they must
identify the vertices shared between different triangles. To do so, they incrementally build
a balanced binary search tree of the vertex entities they create, searching the binary tree
for the vertices of each new triangle read in order to determine if the vertices are new, or
if they match up with identical or nearly identical existing vertices. In the second pass of
their algorithm, they use the lists of adjacent triangles stored with each vertex to limit the
search for adjacent faces for each triangle edge, and fill in the edge/face adjacencies.

2.3 Exchange Formats

231 STL

The industry de facto standard for exchanging part descriptions for layered manufac-
turing isthe STL format. STL is aboundary representation that consists of asimple list of
triangular facets. The vertex coordinates are specified explicitly for each trianglein which
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the vertex appears. The vertices are enumerated in counter clockwise order as seen from
the exterior of the part. In addition, for each triangle, a surface normal that points to the
exterior of the part is specified. Figure 2.11 shows an example of an STL file for a cube
centered at the origin.

STL files comein two types, ASCII and binary. Although the ASCII version uses an
organization and keyword choice that suggests the possibility of defining non-triangular
facets with multipleloops and grouping them into multiple solids, the binary format has no
way of capturing thisinformation. The binary format consists of only a header string, the
number of trianglesto follow, and alist of four 3-D coordinates for each triangular facet,
defining the normal and the three vertices.

STL has many shortcomings. Itisvery low level and verbose, making it unwieldy for
data exchange. It isredundant, both in repeating the coordinates of shared verticesin each
trianglein which they appear, and in the specification of where the exterior of the part lies
(the surface normal, as well as the ordering of the vertices, gives this information). This
redundancy not only makes files unnecessarily verbose, it also allows for inconsistency if
the two methods of specifying the exterior do not agree. There are no rules associated with
STL for resolving such inconsistencies if they arise. Because the vertices are not shared
between triangles, gaps can beintroduced between verticesthat should be coincident. With
no information about topology or connectivity included, it isimpossible to communicate
the designer’s original intent. As a dtrictly faceted, triangular representation, curved
surfaces can only be approximated, and any approximation must make process dependent
assumptions about the resol ution of the fabrication method. Units are unspecified in STL,
leading some manufacturersto guess the intended units based on the bounding box of the
part compared to the machine build volume. There is no way to specify solid or surface
properties. And because there is no version specification in the format, it is difficult to
updateit.

2.3.2 TheACIS .sat Format

Another popular exchange format is the .sat save file format [69] used by the ACIS
geometric modeling kernel. The .sat format is closely tied to ACIS's internal topological



solid ascii

facet normal 0.000000 1.000000 0.000000
outer loop

vertex 1.000000 1.000000 1.000000
vertex 1.000000 1.000000 -1.000000
vertex -1.000000 1.000000 -1.000000
endloop

endfacet

facet normal 0.000000 1.000000 0.000000
outer loop

vertex 1.000000 1.000000 1.000000
vertex -1.000000 1.000000 -1.000000
vertex -1.000000 1.000000 1.000000
endloop

endfacet

facet normal 0.000000 0.000000 1.000000
outer loop

vertex 1.000000 1.000000 1.000000
vertex -1.000000 1.000000 1.000000
vertex -1.000000 -1.000000 1.000000
endloop

endfacet

facet normal 0.000000 0.000000 1.000000
outer loop

vertex 1.000000 1.000000 1.000000
vertex -1.000000 -1.000000 1.000000
vertex 1,000000 -1.000000 1.000000
endloop

endfacet

facet normal 1.000000 0.000000 0.000000
outer loop

vertex 1.000000 1.000000 1.000000
vertex 1.000000 -1.000000 1.000000
vertex 1.000000 -1.000000 -1.000000
endloop

endfacet

facet normal 1.000000 0.000000 0.000000
outer loop

vertex 1.000000 1.000000 1.000000
vertex 1.000000 -1.000000 -1.000000
vertex 1.000000 1.000000 -1.000000
endloop

endfacet

facet normal 0.000000 0.000000 -1.000000
outer loop

vertex -1.000000 -1.000000 -1.000000
vertex 1.000000 1.000000 -1.000000
vertex 1.000000 -1.000000 -1.000000
endloop

endfacet

facet normal 0.000000 -1.000000 0.000000
outer loop

vertex -1.000000 -1.000000 -1.000000
vertex 1.000000 -1.000000 -1.000000
vertex 1.000000 -1.000000 1.000000
endloop

endfacet

facet normal 0.000000 -1.000000 0.000000
outer loop

vertex -1.000000 -1.000000 -1.000000
vertex 1,000000 -1.000000 1.000000
vertex -1.000000 -1.000000 1.000000
endloop

endfacet

facet normal -1.000000 0.000000 0.000000
outer loop

vertex -1.000000 -1.000000 -1.000000
vertex -1.000000 -1.000000 1.000000
vertex -1.000000 1.000000 1.000000
endloop

endfacet

facet normal -1.000000 0.000000 0.000000
outer loop

vertex -1.000000 -1.000000 -1.000000
vertex -1.000000 1.000000 1.000000
vertex -1.000000 1.000000 -1.000000
endloop

endfacet

facet normal 0.000000 0.000000 -1.000000
outer loop

vertex -1.000000 -1.000000 -1.000000
vertex -1.000000 1.000000 -1.000000
vertex 1.000000 1.000000 -1.000000
endloop

endfacet

end solid

Figure2.11: An ASCII STL filefor a cube.

15

data structure, allowing the kernel to quickly rebuild the data structure from saved files.
While it makes sense to use this type of “data structure dump” as an internal save file
format for applications which use ACIS, it is inappropriate for an SFF exchange format.
An exchangeformat should beindependent of theinternal datastructure of any onemodeler.
Furthermore, since the process of exchanging geometric information consists primarily of
writing, transmitting, and reading back in datafiles, an exchange format should be compact.
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An internal data structure for a modeler, on the other hand, generally contains redundant
information to facilitate real-time analysis and modeling operations; space-time tradeoff
considerations will sacrifice acompact data structure for interactivity.

Therefore, it isnot surprising that ACIS .sat files are generally even more bloated than
STL files. Yet some of the additional information they contain would in fact be useful
for SFF applications. For example, the faces that define each connected boundary surface
are grouped together into “shells” and the shells that bound a connected piece of solid
material aregrouped together into “lumps.” Surface and solid propertiescould conceivably
be attached to the shells and lumps, respectively. Another improvement over STL is that
faces can be embedded in curved surfaces, not just flat planes.

Other information isredundant and not always useful for SFF. For afaceted model, the
plane equation of the plane contai ning each facet and the line equation of theline containing
each edge must still be specified explicitly. Each vertex is specified separately fromthe 3-D
point that determines its location. Every edge-use, or “coedge,” is transmitted separately
fromits edge and the loop that containsit. Each entity is assigned an index corresponding
to itsline number in the ASCII version of the .sat file, and the full radial-edge connectivity
of the entitiesisrecorded using theseindices. Figure 2.12 shows an excerpt froman ACIS
.sat file representing a simple cube.

2.3.3 Alternate SFF Interchange Formats

Several alternate interchange formats have been proposed specifically for SFF. Stroud
and Xirouchakis [71] proposed extending an STL file with an extra section at the end
that lists the faces in the original CAD model and indicates which triangles in the STL
file came from which faces. This information about the designer’s intent could then be
used to clean up inconsistencies in the generated STL. They do not specify the details
of how the original face information should be communicated; they used ACIS in their
example implementation, but ideally the origina faces would be described in a CAD-
system independent manner.

Other proposed exchange formats encode their own full topological data structure as
well as geometric information. Rock and Wozny [59] devel oped the “RPI Format” shortly
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201010 coedge $-1 $45 $22 $27 $54 1$12 $-1 #
7 Unknown 16 ACIS 2.1 Solaris 24 Wed Jul 30 16:51:37 1997 coedge $-1 $22 $45 $49 $65 1$12 $-1 #

-1 9.999999999999999547e-07 1.000000000000000036e-10 coedge $-1 $64 $30 $22 $44 0$20 $-1 #

body $1$1$1 $1# edge $-1 $57 $66 $43 $67 forward #
lump $-1$-1 $2 $0# coedge $1 $42 $41 $23 $46 0$12 $-1 #
shell $1$1$183$1 81 # edge $-1 $55 $51 $45 $68 forward #
face $-1 $4 $5 $2 $-1 $6 reversed single # edge $-1 $52 $35 $33 $69 forward #
face $-1 $7 $8 $2 $-1 $9 reversed single # coedge $-1 $70 $25 $59 $71 0 $50 $-1 #
loop $-1 $-1 $10 $3 # coedge $-1 $25 $70 $42 $65 0 $50 $-1 #
plane-surface $-100500-1-100 forward_v | | | I # loop $-1 $-1 $70 $38 #

vertex $-1 $18 $62 # point $-1-55-5#

straight-curve $15-55-1001 1 # straight-curve $15-5-5-1001 | #
face $-1 $-1 $50 $2 $-1 $63 reversed single # point $1-5-5-5#

plane-surface $10-5001-0-001 forward_v I | | | # straight-curve $1-5-5-50101 1 #
coedge $-1 $30 $64 $32 $60 1 $20 $-1 # End-of-ACIS-data

Figure 2.12: An excerpt froman ACIS .sat file for a cube.

after STL wasintroduced. A header section specifies the intended manufacturing process,
scanning methodology, material, and part name, followed by sections that define the
vertices, straight line edges, and triangular faces of the part. Vertices, edges, and faces are
stored inindexed array-likelists, allowing trianglesthat share verticesto referencethe same
vertex index. In addition to the implicit connectivity information provided by the shared
vertex indices, each triangular face explicitly records the indices of the adjacent faces and
the edges shared between them. Faces also record outward facing surface normals. Edges
record the indices of their endpoints and the adjacent faces. CSG trees can also be built
from cuboid, cylinder, cone, sphere and tori primitives using geometric transforms. Like
STL, the RPI Format includes redundant surface normal information. In addition, the
face connectivity information and the edges are redundant and directly tied to their data
structure representation.

Similarly, Jacob et al.’sLMI (Layered Manufacturing I nterface) format [ 32] isorganized
to match their own topological data structure choice. It isrestricted to 2-manifold objects
with asingle boundary shell. The faceted version containstriangular facets defined by one



18

loop consisting of three edges. Connectivity information is recorded in the edges, which
reference their two endpoints and two adjacent faces. Each facet points to a plane and
each edgetoaline. Inthe precise version, edges can point to curves and facets to surfaces.
Loops can have any number of edges. Connectivity is again recorded in edges, but this
time they are divided into half-edges. Each half edge records one adjacent face, the next
half-edge in the loop around that face, and the previous half-edge in the loop around the
other adjacent face.

The differences between the organization of ACIS .sat, the RPI format, and LMI, all of
which include similar topological information, reflect the many variations on topological
data structures that can represent that information. Clearly a neutral interchange format
should not favor aparticular data structure. The fact that connectivity showsup in so many
different interchange formats, however, reflects the fact that deriving the connectivity is
non-trivial.

Standard algorithms for deriving connectivity information break down when memory
is not big enough to hold all the data at once. One obstacle to building atopological data
structure efficiently is that each new element created may be connected to elements that
appear anywhereintheinput, and pointers need to be set up from those elements (assuming
they have been created yet) back to the new element. Unfortunately, when the datastructure
does not all fit in physical memory, this can cause thrashing as the same blocks of dataare
repeatedly read into memory from disk, modified dightly, and then written out to make
room for other blocks, only to be read back in again later. We also need auxiliary data
structures, such as the binary balanced search trees Rock and Wozny use, to derive the
connectivity information. Binary trees will be inefficient if they do not fit in memory
because a single traversal might cause a page fault at each level of thetree. If, instead, we
build hash tables to look up the connectivity information, the hash table lookups will also
contribute to thrashing, since hash tables by their very nature destroy locality. Because it
is extremely slow to read and write information to and from the disk compared to reading
and writing main memory, we need to consider our memory access patterns carefully
when building topological data structures for large input files. Algorithmsthat take these
considerations into account are called external-memory or out-of-core agorithms.
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2.4 Out-of-Core Geometric Algorithms

Numerous out-of -core technigques have been developed for other geometric applica
tions. In the graphics domain, these applications include large building walk-throughs,
radiosity, and ray tracing [22, 73, 54]. In the visualization domain, severa researchers
have addressed out-of-core isosurface extraction [13, 12, 72, 4]; others have looked at vi-
sualization of terrain and computational fluid dynamics, including streamlines on meshes
[16, 15, 76].

For interactive walk-throughs of large, densely occluded building environments, Teller
developed efficient pre-computation visibility algorithms and real-time culling algorithms
to speed up hidden surface calculations[ 74, 75], and Funkhouser implemented apredictive
algorithmfor adaptively selectingamodel |evel-of-detail and type of rendering algorithmto
achieve constant framerates[ 22, 23]. For out-of-coreradiosity calculation, Teller etal. [ 73]
used both partitioning, to reduce the working set size, and reordering sub-computations,
bal ancing faster convergence against memory coherent access patternsfor reduced external
1/O. For out-of-coreray tracing, Pharr et a. [54] reorder rendering computations using a
voxelized scheduling grid that holds queued rays and a voxelized geometry grid that
partitions the geometry. They process rays contained in one scheduling voxel at a time,
intersecting the contained rays with the contents of the overlapping geometry voxels,
continuing to trace each contained ray and its spawned rays until they leave the scheduling
voxel, which causes the rays to be queued in their new scheduling voxels.

For isosurface extraction, Chiang and Silva [13] introduced a new preprocessing al-
gorithm on external memory interval trees to speed up finding the cells intersected by
the isosurface. Chiang et al.’s revised algorithm [13, 12] reduces the external memory
requirements, partitions the data into spatially coherent meta-cells through afew external
sorts, and introduces a more compact version of the out-of-coreinterval tree datastructure.
Sulatycke and Ghose describe an out-of-core, parallel isosurface renderer that also uses
an interval tree, focusing on reducing seek times as well as the number of disk 1/0Os, and
overlapping rendering computations with disk 1/0 [72]. Bajg et al. [4] only index asmall
set of seed cells that are guaranteed to intersect each connected component of the desired
isosurface.
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Davis et a. discuss out-of-core terrain visualization [16], addressing the problem of
interactive visualization of small subsets of a data set that is much larger than memory.
The major issues they address are scheduling and moving between different levels of
detail. Cox and Ellworth describe disk storage and paging approaches to support a wide
variety of computational fluid dynamics (CFD) visualizations[15]. Noting that most CFD
visualizationsonly use asubset of thetotal data, they first obtained speedups by using using
the Unix operator nmraip( ) to support demand paging rather than loading the full data set.
They achieved even better performance by instead implementing demand paging with
smaller than the default system page size and storing the data in hierarchical cubes rather
than flat planes for improved locality of reference. For their data, however, the storage of
the hierarchical cubes required substantial padding for alignment, resulting in files up to
two times larger. To avoid this “file bloat,” they packed the data on disk and unpacked it
in memory, which required custom memory management, as did the smaller page sizes.
They note that using their custom memory management with the same default page size
and flat plane layout as their map() version uses, performance is often considerably
worse. This illustrates the potential performance hit with custom memory management
that does not take advantage of the hardware and operating system. Requiring custom
memory management also complicates implementation and testing.

Ueng et a. describe an out-of-corealgorithm for constructing streamlinesfor visualiza-
tion of large, unstructured grid data sets [ 76]. Their agorithm sorts the data into an octree
structure and then processes the data within a group of octree cells that fit in memory.
Calculations that require additional octree cells are queued to be performed later, when
no more calculations are possible with the data currently in memory. One disadvantage
of this approach is data-redundancy, since the same grid element needs to be stored in as
many octree cells as it intersects. Another disadvantage is non-uniform data sizes in the
octree cells (differing by one or two orders of magnitude) because some areas of the input
have greater detail; they allocate memory blocks of different sizes to address this problem,
which complicates memory management bookkeeping. As with Cox and Ellsworth, this
means they cannot use the operating system’s memory management efficiently, and thus
they implement their own memory manager, with the drawbacks discussed above.
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2.5 Wiener’sAlgorithm

Although our input is geometric, the problem of updating connectivity pointersin a
topological datastructureactually hasacloser analogy in building object oriented databases
(OODBS). In these databases, the presence of inverse relationships in the data means that
inserting one object in the database requires the system to update its inverses as well.
A related issue is resolving “forward references,” where an object includes a pointer to
another object that has not yet been created (because it appears later in the input file).
Wiener and Naughton have proposed a solution for efficient bulk-loading of OODBs [80]
that provides the inspiration for our approach.

Their basic algorithm makes a first pass through the input to assign each object a
sequential logical identifier, hashes the object name and records the identifier assignment
in a hash table called the ID map, and records any inverse relationships that need to be
assigned referring back to the object in a sequential file called the “inverse todo list.” The
entries in this list will consist of alogical identifier for the object just read, but only the
“surrogate” input identifier —the object name—for the object that needsto pointtoit. After
the input is completely read, they use the hash table ID map to trandate each surrogate
identifier intheinversetodo list into the corresponding logical identifier. Next Wiener does
an external sort of the inverse todo list by the (newly-trandated) logical identifier of the
entity with which the inverse pointer will be stored, so that all updates to the same object
will be grouped together, and since the identifiers were assigned in the order of the objects
intheinput, they will aso bein creation order. Finally, on asecond pass through theinput,
coordinated with a sequential read of the sorted, trandated inverse todo list, they build the
real data structure. They store all inverse relationships with the objects at creation time,
and use the correct logical identifiersfor their pointers.

The basic agorithm relies on the hash table for the ID map (the only structure that is
accessed randomly) fitting into main memory. In their revised partitioned-list version of
the algorithm, instead of building ahash tablefor the ID map immediately, the assignments
from surrogate to logical identifier are divided up into hash partitions based on the hash
value of the surrogate. This just requires a sequential write of the pair onto the end of
the appropriate partition. While reading the input file, they use the same hash function to



22

partition the inverse todo list by the hash value of the surrogate for the object to update. In
addition, the forward references in each object are recorded in a separate todo list which
they also partition, in this case based on the hash value of the surrogate for the referenced
object rather than of thereferring object. After theinput file has been read, they ensure that
each partition of the ID map fitsin memory, repartitioning it and its corresponding inverse
todo list and todo list partitionsif necessary. Then they take one partition at atime, build
the hash tablefor itsID map, and useit to trand ate the appropriate partition of first thetodo
list and then theinversetodo list, which are read sequentially and then written sequentially
after trandation to an update list. Thisisequivalent to a partitioned hash-join [24]. Next
they sort thisupdate list, again using an external merge sort. Finally, they re-read the input
file and update list smultaneoudly to create each object.

2.6 FileRepair

A topological data structure is often used to aid in repairing input files which do
not describe closed, “water-tight” boundaries. One approach is to repair faceted files by
matching up pairs of facet edges, identifying those without matches, and adding triangles
to fill the cracks. Bohn and Wozny [11, 10] identify closed curves aong unmatched
boundaries, and triangulate to fill in one hole at a time. Barequet and Sharir [6] locate
unmatched bordersand find mates using partial curve matching techniques from computer
vision, then triangulate to fill the holes. Both approaches were able to repair real files
with thousands to tens of thousands of trianglesin under a minute on a SparcStation2, but
there is no guarantee that the repaired files will not have self-intersections or that these
connectionsareformedin the“correct” or intended way. In later work Barequet performed
with Kumar [5], they first try to close small cracks by merging edges, and then triangulate
to fill remaining larger holes. Then they visualize the repairs they have made, allowing
the user to over-ride any incorrect decisions made during automatic repair. Running on an
unspecified SGI workstation, they were able to automatically repair a 10,000 facet filein
8 seconds.

Another approach is to find and close gaps in the original curved surface representa
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tions to produce an STL file without gaps. Dolenc [18] fills gaps by matching trimming
curves, discretized with a user-supplied parameter, if they are within a user-supplied tol-
erance. Sheng and Meier [67] aso rely on a user-supplied tolerance and try to merge
boundary curves, which they discretize using asmaller tolerance. They also try to prevent
intersections between geometry while triangulating the curved surfaces.

Murali and Funkhouser have acompletely different approachto filerepair that isglobal
instead of local [51]. They build a BSP (binary space-partioning) tree from the input
polygons, identify solid regions, and output their boundaries. A BSP has size ©(n?)
[53] and requires numerous floating point intersection calculations even for parts of the
geometry that were clean to begin with. The algorithm’s strength isits ability to produce
consistent solid output from almost any polygonal input. It is ow, however; files with
only 1-2K polygons took 1-3 minutes to repair on an Indigo2 with a 200MHz processor
(one or two orders of magnitude slower than the STL repair results cited above for runs
on SparcStation2s with slower processors). The global nature of this approach presents a
challengeto efficiently scaling it to work with the larger filesthat are typical in CAD/CAM
environments.

2.7 Slicing

After making any necessary repairs to the input, the next step in processing afile for
layered manufacturingisto calculate the closely spaced parallel dices. One of the simplest
dicing agorithm for STL filesis to intersect all triangles with each z-plane and connect
the resulting line segments into closed polygons, one dice at atime. Thisis the approach
that is used by Kirschman, et a. [39], who aso parallelized this algorithm. In a different
context, Mantyla [47] developed a “splitting algorithm,” which uses his half-edge data
structure. Hisalgorithm, like ours, istopology based, but since he is making only asingle
dice through the part, the technique is quite different; there is no coherence to exploit.
Another difference is that he builds and outputs solid models (one on each side of the
dice plane), not 2.5-D dlices. Rock and Wozny [60] also build atopological model before
dicing and use it to derive connectivity on a dice by dice basis by marching from one
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intersected face to the next based on their connectivity. To find multiple contours in a
single dice, they search for unvisited edges. They do not exploit topological coherence
between dices, but they do use geometric coherence to calculate intersection coordinates
incrementally. Dolenc and Makela [19] concentrate on where to dice a part to obtain the
greatest accuracy with the fewest number of 2.5-D slices when adaptive dlice thicknesses
are an option.

Other dicing literature focuses on dicing higher-order descriptions of apart. Luo and
Ma [44] dlice parametric, C? continuous surfaces and fit bi-arcs to the resulting curves.
Guduri et al. [25, 26] dlice curved primitives prior to computing CSG operations on them.
Mani, et a. and Kulkarni and Dutta [45, 43] address adaptive dicing for curved surfaces.
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Chapter 3

SIF: A New Solid Interchange For mat
for SFF

The STL format has remained popular because of its simplicity. On the input side, the
SFF machine vendorsneed only writeasimple programto read thesingletriangle primitive.
On the output side, virtually every modeling application that renders a shaded solid model
on the screen has aready triangulated the model to send it down the graphics pipeline; thus
outputting those same trianglesin STL format isatrivial change. Unfortunately, triangles
that appear to bound a watertight solid when rendered on the screen can easily contain
hidden intersections or gaps that are not visible at thislow resolution. These problemsmay
not be discovered until the SFF fabricator dicesthe STL file.

Our goal with SIF was aformat that would help to make the part submission process a
one-way process, instead of aback-and-forth between designer and manufacturer trying to
reach an understanding of what the designer really meant and what the manufacturer was
capable of producing. We havetried to keep our format relatively smple, only introducing
features that help usto achieve thisgoal.

In the course of developing the SIF format, we introduced three different dialects.
The “pure” SIF dialect, for transmitting solid descriptions for SFF, is formally known as
SIF_SFF, but we oftenrefer to it smply as SIF. Layered SIF, or L SIF, describesthe 2.5-D
layers that will be built by the SFF machine. We also developed a third dialect, for the
Cybercut system [84], to serve as an interchange format between a CAD tool that restricts
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the user to adesign space of parts that can be expressed using Destructive Solid Geometry
(DSG) operations [64] and automated process planning tools for 3-axis machining. This
diaect, SIF_DSG, is outside the scope of thisthesis.

3.1 TheSF (SIF_SFF) Format

Like STL, SIF_SFF remainstriangle based, but instead of repeating vertex coordinates
in each triangle, a vertex array containing each unique vertex is transmitted for each
connected shell. The vertices of triangles are specified as indices into this array. The
connectivity of the triangles in each shell, specified implicitly via these shared vertices,
must correspond to asingle, closed, “water-tight” boundary surface, with outward pointing
surfacenormals. Requiring closed boundariesand vertex sharing in the interchange format
puts more of a burden on the modeling application that produces it, but this serves to
highlight problems and ambiguities on the design end, before the part description has been
transmitted to the manufacturer.

One common sources of cracks in triangulated models is instancing. For example, a
gear wheel may be described as a central hub containing holes where each tooth will be
placed, along with the geometry of a single involute-profile gear tooth, open at the base,
instanced with appropriate rotations and transformations for each tooth of the final gear.
But wheretheinstanced gear teeth meet up with the holesin the hub, round-off errorsin the
finite precision floating point operations that implement the rotations and transformations
may leave the transformed gear tooth vertices slightly apart from the vertices on the hub
that they were meant to coincide with. This type of crack arising from simple round-off
errors where connected pieces of geometry meet along boundaries with identical topology
can be fixed using the vertex merging approach described in Chapter 6.

Problems also arise when Boolean CSG trees with curved primitives are converted
into boundary representations composed of trimmed spline patches. Cracks between
these trimmed spline patches cannot be closed smply by vertex merging. Trim curves
calculated where patches intersect are approximated, since the intersection is generaly of
higher order than the origina surfaces and is difficult to calculate exactly if the surfaces
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are both expressed parametrically. This approximate intersection curve is projected back
onto the surfaces of the two original patches to “trim” away the part of the patch that is
not wanted. Then the two trimmed patches are triangulated separately. This causes gaps
in the triangulation along the trim curve, often with different vertex distributions on the
two adjacent patches. Models constructed from these patches do not need to be water-tight
to render views for manual process planning, or even for finite element analyses such as
computational fluid dynamics. Some CSG rendering agorithms, such as the ray tracing
algorithm described in Foley et al. [20] or constrained difference aggregates [56], do not
even need to calculate the intersections explicitly. Sometimesimplicit unions occur where
separate shellsintersect. Such implicit unionslook correct on the screen, but SFF software
may process them inconsistently. The QuickSlice 6.2 software [70] that ships with fused
deposition modeling (FDM) machines, for example, will treat them as differencesin some
dices and unionsin others, depending on whether the slice contours of the two shells are
nested or intersect in a particular dlice.

Because it is burdensome for the designer to convert a Boolean description into a
water-tight mesh with shared vertices, we allow unevaluated Boolean expressions in SIF.
We dtill require that the leaves of the Boolean tree be closed shells with outward facing
surface normals, so that theresult of applying the Booleanswill befinite and unambiguous.
Transmitting uneval uated Bool eans putsthe burden of eval uating them on the manufacturer,
but the manufacturer can slice each shell separately and only evaluate the Booleansin 2-D,
afar easier operation than resolving 3-D Booleans. The 2-D Booleans can be evaluated
efficiently using readily available OpenGL software, often accelerated by inexpensive
graphics cards. Booleans are implemented in OpenGL by using the polygon tessellator
and setting thewinding number rulesappropriately [81]. The OpenGL tesselator canreturn
either filled polygons, which would be appropriate input for araster scan technology such
as 3-D printing, or the polygons' oriented boundary contours, which would be appropriate
input for a calligraphic scan technology such as fused deposition modeling.

Earlier versions of SIF_SFF included tensor product spline patches, allowing curved
surfacesto betransmitted in aresol ution-independent form. We have removed themfor two
reasons: they did not generally describe water-tight boundaries, and they required alarge
software infrastructure to represent and process this information on the manufacturing
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side. Even after we had implemented this infrastructure, the effort to maintain it was
considerable. We believe that by keeping SIF ssmple, thereis a much better chance that it
will actually be accepted by the SFF machine manufacturers.

We also believe that as more mechanical engineers discover subdivision surfaces, they
will replace spline patches as the representation of choice for curved surface geometry.
A subdivision surface is defined by a polyhedral control mesh and a subdivision scheme
that specifies how to divide each polygon into sub-polygons and adjust their vertices at
each iteration. The schemeis designed so that the limit surface, obtained by applying the
subdivision rule an infinite number of times, will be smooth. Sharp corners and fillets
can be defined by tagging edges of the original control mesh to control the amount of
smoothing around that edge. Schemes based on triangular meshes ssimplify defining parts
of arbitrary topology. The advantage of subdivision surfacesfor SFF is that smooth parts
of arbitrary topology can be defined by asimple control mesh and still be guaranteed to be
water-tight at each level of refinement. Triangular control meshes can be specified using
the exact same syntax as for SIF_SFF shells.

Table 3.1 contains the context-free grammar for the current version of SIF_SFF, version
2.0. We specify the grammar by listing its production rules, with the start symbol (part)
at the top of the table. Non-terminals appear in (angle brackets) and terminals appear in
bold. We use {curly braces} for grouping subexpressions and [square brackets| to denote
optional subexpressions. Comments describing some of the fields appear in italics. The
symbol | indicates”or,” +indicates”oneor more,” and * indicates*zero or more.” Table3.2
contains a summary of the semantics of the tokens. A sample SIF_SFF file is shown in
Table 3.3.

All diaects of SIF use a simple L1SP-like syntax, enclosing each construct in paren-
theses and following each open parenthesis by a keyword. This syntax alows for limited
forward compatibility, since a parser that encounters a keyword it does not recognize can
ignore everything up to the matching parenthesis and then continue parsing with awarning
message about the construct it skipped.

All SIF files start by specifying the dialect, a major version number and minor release
number, and the units for the file. There are no default units, they must be specified
explicitly. For a SIF_SFF part, thefile also optionally specifiesthe desired accuracy for the
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Nonter minal Production Rule
(part) —  ( SIF_SFF version: (unsigned.int)
release: (unsigned_int) (units) (accuracy)
(constellation)+ )
(units) —  (‘units (units_setting) )
(units_setting) — mm | inches
(accuracy) — [ (desired_accuracy (float) ) ]
(constellation) —  (congtéllation (solid)+)
(solid) —  (solid (volume_property)* (shell_set)+)
(shell _set) —  (shell) | (boolean)
(shell) —  (shell (vertex_array) (open_2d_list) )
(vertex_array) —  (verticesnumber: (unsigned_int) (vertex)+)
(vertex) —  (vx(float) y:(float) z (float) )
(open_2d_list) —  (‘triangles number: (unsigned_int) (open_2d)+)
(open_2d) —  (triangle) | (surface)
(triangle) —  (tvertexindex: (unsigned._int)
vertex index: (unsigned_int)
vertex index: (unsigned._int) )
(surface) —  (surface (surface_property)* (open_2d)+)
(boolean) —  (intersection) | (union) | (difference)
(union) —  (union (shell_set)+)
(intersection) —  (lintersection (shell_set)+ )
(difference) —  (difference (shell_set)+)
(surface_property) — (color (color_setting) )
| (user extension)
(volume_property) — (color (color_setting) )
| (user extension)
(color_setting) —  (rgb R(float) G:(float) B:(float) )
(float) — [ -Ndigity*[ . ](digit)+
| (emantissa: (int) exponent: (int) )
(unsigned_int) —  (digit)+
(int) — [ -]{digit)+
(digit) — 0]1]2]3|4|5/6|7]|8]|9

Table 3.1: The context-free grammar for SF 2.0.

part. This field specifies the maximum acceptable deviation from the geometry described
in the file when the part is manufactured on areal world, finite precision machine. This
information is aso useful input for a networked brokering service which may advise
a designer on an appropriate SFF manufacturing technology for a part, in the spirit of



SIF tokens and lexical conventions

[
*... %)
#...\n

0)

color
constellation

desired_accuracy
difference

e
inches
intersection
mm

rgb

shell

SIF_SFF
solid
surface
triangles
t

union
units
vertices
v

White space is used as separatorsin SIF

Multiline comments; can be nested

Single line comments; can be used inside
multiline comments

Delimit expression asin LISP

A volume or surface property

A group of solids whose positionsrelative to each other
and to the coordinate system should be maintained
when the part is built

The accuracy with which the designer wants the part
manufactured

A Boolean difference operation (returnsfirst operand
minus subsequent operands, if any)

Exponential (ak.a. scientific) notation for avalue

Sets unitsto inches

A Boolean intersection operation

Sets unitsto millimeters

Specification of color asan rgb triple

A closed surface with outward pointing surface
normals (by the right-hand rule)

Header stating that thisis a SIF_SFF file

A set of shell(s) enclosing volume(s)

A set of 2-D elements

A list of triangles (possibly contained in surfaces)

A triangle, specified by indicesinto the O-indexed
vertex list

A Boolean union operation

Setsthe unitsfor thefile

A list of vertices

A vertex

Table 3.2: SF lexical conventions, tokens and their semantics

Smith’'s Manufacturing Advisory Service[68].
Theremainder of thefile specifies the geometry of the part, with optional constructsfor

30

specifying material and/or surface properties. Each connected 2-manifold boundary must
be grouped in a separate shell, with the shared vertices for that shell specified at the start
of the shell. (If the solid's boundary is not 2-manifold, vertices must be duplicated and

referenced as for a pseudo-2-manifold.) For ease of memory alocation on the receiving
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(* file for a yellow cube centered at the origin *)
(SIF_SFF 2 0
(units inches)
(desired_accuracy .05)
(constel lation
(solid (color (rgh 11 0))

(shel |

(vertices 8
(v 111
(v11-1)
(v -11-1)
(v -111)
(v -1-11)
(v 1-11)
(v 1-1-1)
(v -1-1-1)

)

(triangles 12
(t 71 6)
(t 615)
(t 6 5 4)
(t 4523
(t 43 2
(t 231
(t 72 1)
(t 510
(t 76 4)
(t 50 3)
(t 427)
(t 013

)

Table 3.3: Sample SF file describing a yellow cube.

end, the number of vertices is specified at the beginning of the vertex block. The vertex
block is followed by a triangle block, with the number of triangles ssmilarly specified at
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the beginning of the block. The trianglestreat the vertex block as azero-indexed array for
the purposes of referencing vertices.

In ACIS and other formats based on Weller’s taxonomy, shells that bound a connected
region of solid material are grouped into lumps. In such a scheme, a hollow sphere
would be described as a single lump with an outer spherical shell and a smaller inner
spherical shell with opposite orientation (surface normals pointing inward) defining the
hollow center. Inearlier versionsof SIF_SFF, we specified lumps by an outer shell and any
number of optional inner shells, with the syntactic nesting of the parentheses enclosing
the shell descriptions mirroring the intended nesting of the shells. We abandoned the
explicit specification of nesting because it is another instance of redundant information
that could be contradictory: the topological nesting of the shells specified by the nesting
of parentheses may disagree with the nesting implied by the actual geometry of the shell
boundaries. Thusin SIF_SFF 2.0, a hollow sphere is described as a Boolean difference
between two boundary shells; if the shells intersect dightly due to round-off errors, this
will still be an unambiguous description. As mentioned above, all shells must be oriented
with outward facing surface normals in SIF_SFF; differences must be specified explicitly,
not just implied by shell orientation. We also abandoned the specification of individual
lumpswhen weintroduced uneval uated Booleans. A Boolean expression or treemay yield
zero, one, or more lumps, and the individual lumps cannot be identified until after the
Booleans are eval uated.

We have included constructs for specifying solid and surface properties in SIF_SFF,
even though current systems make no use of this information, because we believe that the
capabilitiesof commercial systemsinthe near futurewill requirethisinformation. Already,
high-end FDM machines have two nozzles for depositing a different build material and
support materia in the same layer; additional nozzles would allow different materials to
be used in the part as well as the support. Z-corporation is currently developing new
3-D printers (which use ink-jet printing technology to deposit binder) that use four-color
printing technol ogy to make multi-colored parts. Researchin controlling the surfacetexture
of parts produced with 3-D printing is also underway [35].

In SIF_SFF 2.0, surface properties can be associated with sets of triangleswithinashell.
The set of surface properties is extensible beyond the immediately foreseeable ability to
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gpecify color or finish quality. When shells are combined via Boolean operations, the
individual surface pieces retain their original surface properties. Thus a part with arough
finish overall except for some finely finished screw holes can be described by subtracting
a screw hole geometry specified with a finer surface finish. In the case of an ambiguity
where shells with conflicting surface properties have overlapping faces, the last one read
inwill over-ride earlier specifications. Some surface properties, such as color and surface
finish, can be considered orthogonal: color and surface finish do not conflict with each
other and can both be defined for the same surface. Manufacturers who support surface
properties will have to specify how they interact.

Solid volume properties can be assigned to a collection of any number of shells and/or
Boolean trees grouped together with the keyword solid. If a Boolean operation results in
different lumps of material that should have different solid volume properties, the output
must use intersections to separate them into distinct Boolean trees inside their own solid
statements. Solid properties can only be assigned above the level of Booleans; therefore,
it is impossible to perform explicit Boolean unions or intersections on geometry with
different solid properties. Again, manufacturers will have to define how different solid
properties, such as material and density, interact and whether they can be assigned to the
same piece of geometry.

Above the level where solid volume properties are defined, geometry is grouped into
one or more constellations. The constellation statement indicates that the geometric
relationships between the contained objects is fixed. For example, within a constellation,
touching lumps with different solid volume properties will fuse, and interlocking chain
links will be constructed in the exact relationship specified, guaranteeing that they will
interlock. Implicit unions can still appear in SIF_SFF files if lumps defined by different
Boolean trees or non-leaf shells in the same constellation overlap. These are treated like
explicit unions; if conflicting solid volume properties are defined, again the last one read
in should over-ride previous specifications.

Each constellation has its own coordinate system. If the contents of different constel-
lations overlap, the fabricator is expected to separate them. More advanced tools are free
to move the separate constellations, whether they overlap or not, anywhere in the build
volume. This allows an intelligent process planner to pack parts into the build volume
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more efficiently, rotating or translating individual constellationsfor faster or more accurate
builds.

3.2 ThelLSIF Format

Layered SIF, or LSIF, provides a manufacturer-independent format for specifying SFF
dicedata. Table 3.4 containsthe context-free grammar for LSIF version 2.0, with the start
symbol (part_layers) at the top of thetable. Table 3.5 containsa summary of the semantics
of the five new tokens that appear in LSIF but not SIF_SFF. A sample LSIF fileis shown
in Table 3.6.

All LSIF files must specify a layer thickness before the actual layers are specified.
For SFF processes that are capable of variable layer thicknesses, the global value can be
overwritten on alayer-by-layer basis. Thelayersarelisted sequentially from bottom to top
of the part.

The geometry of individual layersis defined by closed 2-D contours and/or Boolean
combinations of contours. We refer to the subset of LSIF without Booleans as resolved
LSIF, since it is derived from a general LSIF by resolving the Boolean operations. In a
resolved LSIF file or portion of afile, any polygon in the layer that has holes must specify
the nesting of its outer contour and inner hole contour(s) inside a“ nested” statement, listing
first the outer contour and then any inner hole contours. The outer contour’s vertices must
be specified in counter-clockwise order and the hole contours vertices in clockwise order,
as viewed from above the layer. Furthermore, if there are islands within the holes, their
nesting must be specified as well by enclosing the hole contour and its islands in another
nested statement, and so on through any additional levels of contour nesting. We require
this complete nesting information to ensure that trandation from resolved LSIF to the
layer formats used by specific manufacturerswill be trivial, because some manufacturer’s
formatsrequireit (the SSL slice format used by FDM machines, for one).

For ease of parsing, properties such as color that define the area propertiesof apolygon
can be attached to any contour, but are only semantically meaningful for the counter-
clockwise outer contours, since a hole has no area. If an area property is specified for a



Nonter minal Production Rule
(part_layers) — (L SIF version: (unsigned_int)
release: (unsigned._int) (units) (accuracy)
(thickness) (layer)+)
(units) —  (‘units (units_setting) )
(units_setting) — mm |inches
(accuracy) — [ (desired_accuracy (float) ) ]
(thickness) —  (thickness (float))
(layer) —  (layer [ (thickness) ] (contour_set)* )
(contour _set) —  (resolved_contour_set) | (boolean)
(resolved_contour_set) —  (nested) | (contour)
(nested) —  (nested (area_property)* (contour)
(resolved_contour_set)* )
(contour) —  (contour (area_property)* (vertex_list) )
(area_property) — (color (color_setting) ) | (user extension)
(vertex_list) —  (vertex)*
(vertex) —  (vx(float) y: (float) )
(boolean) —  (intersection) | (union) | (difference)
(intersection) —  (lintersection (contour_set)+ )
(union) —  (‘union (contour_set)+ )
(difference) —  (difference (contour_set)+ )
(color_setting) —  (rgb R:(float) G:(float) B:(float) )
(float) — [ -Ndigit)*[ . ](digit)+
| (emantissa: (int) exponent: (int) )
(unsigned.int) —  (digit)+
(int) — [ -{digit)+
(digit) — 0]1]2|3|4|5|/6|7]8]9

Table 3.4: The context-free grammar for LSF 2.0.

Additional tokensused for LSIF

contour A sequential set of vertices defining a closed 1-D path

layer A planar cross section of the part

LSIF Header stating that thisisan LSIF file

nested A set of contours consisting of a single outer contour
containing one or more inner contours or nested
statements with opposite contour orientation

thickness Setsthe layer thickness
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Table 3.5: Additional tokens used for LS F. Other tokens and lexical conventions are the

sameasfor SF

clockwise hole contour, it isignored, even if its container did not specify an area property.



(* file for shall ow open box *)

(LSIF 20
(units inches)
(desired.accuracy .05)
(thickness .01)

(layer
(cont our
(v 11)
(v -11)
(v -1 -1)
(v 1-1)
)
)
(layer
(nested
(cont our
(v 11
(v -11)
(v -1 -1)
(v 1-1)
)
(cont our
(v .8 -.8)
(v -.8 -.8)
(v -.8 .8)
(v .8 .8)
)
)
)
)

first layer

second layer

Table 3.6: Sample LS F file describing a very shallow open box.

36
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Chapter 4

LEDS:. A Topological Data Structurefor
L ayered Manufacturing

Weiler'sradial edge datastructure or Gursoz’'s Noodles system record afairly complete
and unambiguous description of part topol ogy, but they include overhead that isnot needed
for layered manufacturing part processing. Our goal wasto design a general data structure
that includes topological adjacency information but is also compact so that we can fit it
in memory for the biggest files possible. We continually confronted tradeoffs between
compactness on the one hand and the need for generality and supporting a wide variety
of topological queries efficiently on the other hand. We discuss the choices we made in
addressing these tradeoffs below.

4.1 ThelLoop Edge Data Structure

Wecall our variant of Weiler'sradial edge structuretheloop edgedatastructure (LEDS).
Recall that Weiler represented undirected |oopsand faces separately from directed instances
of same (the face-uses and loop-uses), alowing aface, for example, to be referenced from
both sides (i.e. in both orientations) where it forms a membrane between cells. We only
represent the actual directed face-usesand loop-uses, sinceasingle faceor loop isunlikely
to be used more than oncein SFF file descriptions; therefore, storing both the directed and
undirected versions is not worth the overhead. For ssmplicity, we will refer to directed
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face-uses and loop-uses as faces and loopsin the rest of thisthess.

The three main entities that we store explicitly in the LEDS are faces, edge-uses, and
vertices. The queries that we want to support with our data structure, and answer in
constant time or time linearly proportional to the size of the output set, include:

e What is the outer boundary of a given face (what are its edge-uses and verticesin

order)?

What are the inner holes of a given face (what are their edge-uses and verticesin

order)?

What vertices define a given edge-use?

What edge-uses are incident to a given vertex?

What faces are adjacent to a given edge (and in what order)?

e What are all of the vertices, edges, and faces of the geometry?

Eachface(seeTable4.1) isdefined by one counter-clockwise, outer loop and a(possibly
empty) list of clockwise, inner hole loops. (For triangulated input, of course, we will have
no inner holeloops.) Loops are not stored explicitly in the LEDS, however. Each edge-use
stores a pointer to the next edge-use in its loop; we follow these pointers to traverse the
loop. Inaface, we store areferenceto aloop as a pointer to an arbitrarily chosen edge-use
in that loop. The final field in a LEDS face (as well asin LEDS edge-uses and vertices)
is a void* pointer that applications using the LEDS library can use for any additional
information they need to store.

| FACE |
EDGE-USE * First Outer Loop Edge-Use
List<EDGE-USE *> | Inner Loop Edge-Use List
VOID * Extra

Table 4.1: The member data for a LEDSface.

Each edge-use in the loop points back to the face whose boundary it helps to define
(see Table 4.2). To make edge-uses compact, like Weiler we have chosen to store only one
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vertex pointer with each edge-use, a pointer to the root vertex (the vertex from which the
edge-use is directed avay). The vertex on the other end can be found by following the
pointer to the next edge-usein theloop and getting itsroot vertex. Whilewe represent each
edge-use explicitly, the abstract, undirected edges are represented implicitly by circular
lists of edge-uses sharing the same endpoints, linked by “sibling edge-use” pointers stored
with each edge-use. The circular list of siblingsisinitially constructed in arbitrary order.
(We have implemented radial sorting as a separate function so that only those applications
that use thisinformationwill incur the overhead of sorting.) To find all of the facesincident
to an edge, we can traverse the list of sibling edge-uses, each of which points to a face
incident to the edge.

| EDGE-USE |

FACE * Face

VERTEX * Root Vertex
EDGE-USE * | Next-In-Loop Edge-Use
EDGE-USE * | Sibling Edge-Use
EDGE-USE * | Next Vertex Edge-Use
VOID * Extra

Table 4.2: The member data for a LEDS edge-use. The Next Vertex Edge-Use field is
explained below.

We also want to be able to quickly find all of the edge-uses incident to a given vertex,
even at non-manifold vertices. For manifold vertices, this could be accomplished by
storing asingleincident edge-use with the vertex, and then iterating through the edge-use’s
sibling’s next-in-loop edge-uses (see Figure 4.1), since these pointers form acircular list
of al the incident edge-uses at manifold vertices. But for non-manifold vertices, we could
miss some incident edge-uses with this method. For example, at vertices with multiple
disk cycles, such as where two cones meet at their tips, we would only find the edge-uses
on one disk cycle, or for input geometry with cracks or holes, there would be gapsin the
circular list due to the missing siblings (see Figure 4.2).

We rejected several potential solutions for storing the vertex to edge-use connectivity
information for such non-manifold vertices. We could have stored a separate variable
length list of al the incident edge-uses with the vertex, but we wanted constant space
storage for each vertex (aswell asfor each edge-use). Constant space storageisimportant
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all of the incident edge-uses via sibling and next-in-loop edge-use pointers as illustrated
in Figure 4.1, because part of the chain of faces is missing.

for allocating memory efficiently; it allows us to pre-allocate storage in arrays. Another
potential solution would be to store alist of one edge-use per disk cycle (or alist of disk
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cycles) with the vertex; this representation would have variable length lists only at non-
manifold vertices. To build such astructure incrementally, however, requires separate lists
to hold the disconnected pieces until their final connectivity is determined. Furthermore,
for input data with cracks caused by round-off errors, even geometry that isintended to be
manifold will require variable length lists until after we run a clean-up application.

Instead, we allocate a Next Vertex Edge-Use field in each edge-use to chain together
all of the edge-uses rooted at a vertex into a circular linked list (see Figure 4.3). This
circular list isinitially constructed in arbitrary order. By storing one of these linked list
pointerswith each edge-use, we can pre-allocate the linked list storage within the edge-use
array. The vertex stores a pointer to any one of these adjacent edge-uses (the First Vertex
Edge-Usefieldin Table4.3). The combination of these pointersallowsusto iterate through
all of the vertex’s edge-uses efficiently, even at non-manifold vertices.

-«—Edge-Use
(visible)

Edge-Use
" (back side)

\.\ Next Vertex ‘

..., Edge—-Use

'~

\ First Vertex
“<_Edge-Use

Figure 4.3: To find all the edge-uses rooted at a vertex in the LEDS follow the vertex's
First Veertex Edge-use pointer to get the first one, and the remaining edge-uses are linked
inacircular list viatheir Next \eertex Edge-use fields.

The only place the LEDS includes variable length linked list storage is in faces with



42

| VERTEX
double X
double Y
double Z
double w
EDGE-USE * | First Vertex Edge-Use
VOID * Extra

Table 4.3: The member data for a vertex. e store a homogeneous vertex coordinate, W,
for compatibility with our matrix libraries.

holes. We considered an alternate design that would have made face storage constant size
as well by storing loops explicitly and storing with each a pointer to the next loop for
the face. But we chose to optimize for the common case of simple polygonal faces, such
as triangles. Our scheme eliminates the overhead of representing loops explicitly, while
still using constant space storage for faces without holes (which will merely record anull
pointer for thelist of inner loop edge-uses).

Although our initial allocation of the LEDS entities is in contiguous arrays, some
applications that use the structures may add or delete elements. For this reason, we also
store separate lists of pointersto al of thevertices, al of the faces, and all of the edge-uses,
for operations that need to iterate through them.

Some operations also need to iterate through all of the undirected edges; for example,
to check for 2-manifoldness we check whether each edge is used once in each direction.
Iterating through all the edge-uses to check that each has a sibling with the opposite
orientation, we would check each edge-use sibling pair twice. To support such operations
efficiently, in addition to the list of all edge-uses, we maintain a globa list of implicit
“edges,” actually pointersto one arbitrarily chosen sibling edge-use per edge.

4.2 RepresentingMixed-Dimension EntitieswiththeLEDS

While the LEDS was designed primarily to represent and support topological queries
about the boundary representations of solids, it can aso be used to represent mixed-
dimension geometry. 3-D solids are represented by the connected, oriented faces that
form their boundary. A disconnected 2-D polygon is represented in the same manner as a
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boundary face. To represent disconnected lines, or any 1-D piecewise linear path through
space, we can use the edge-use class to record each segment, but record a null face pointer
and a null sibling pointer. Although Kalay claims that “[using] the split edge model for
representing lines[is] impossible” because each split edge records only one vertex pointer,
and lines have an unequal number of vertices and edges [36], we can get around this
problem by recording the final vertex in a zero-length edge use that has a null pointer for
its next-in-loop edge-use pointer (see Figure 4.4). While thisis not the most efficient way
to represent lines, it makesit possible to represent them within the same LEDS framework.

Vix 1 Vix 2

Root Vix

Null

Next—in—Loop
Edge-Use
Next-in—Loop
Edge-Use

Root Vix

Next-in—Loop

Edge-Use
Figure 4.4: Thisfigure shows how a 1-D, two segment, directed path can be represented
in the LEDS by using three edge-uses. The final zero-length edge-use has a null pointer

for its next-in-loop edge-use.

4.3 LEDSExtensons

Several of the tradeoffs we considered while designing the LEDS, between generality
on the one hand and compactness and efficiency on the other, have been discussed above.
In some cases, rather than making a decision about whether the extra storage and/or
computation cost for some piece of informationwas justified given that not all applications
will make use of it, we have included it as an optional feature or extension. This allows
the user of the LEDS library to decide which level of enhancements are worthwhilefor a
particular application.

One such feature of the basic data structure is the option to radially order faces around
non-2-manifold edges. Since the faces are already linked by their edge-uses sibling
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pointers, sorting them and relinking the pointers does not change storage requirements, but
we want to avoid the computation cost if the application does not need this information.
The LEDS stores a flag to indicate whether this reordering has been performed for all
vertices.

Many solid modeling algorithms assume their input is 2-manifold, but will also work
on a pseudo-2-manifold representation of a non-manifold solid. The LEDS includes
an option to transform its non-manifold representation of a valid solid into a pseudo-2-
manifold representation of the same geometry. First we identify non-manifold edges and
pair up their edge-uses, then after all of the non-manifold edges have been divided into
pseudo-2-manifold edges, we duplicate any vertices that still have multiple disk cycles.
This processis described in detail in Chapter 6.

With our basic data structure, an edge-use stores a pointer to the next edge-use in its
loop, but not to the previous edge-use. Many applications do not need to look up previous
edge-uses, and for triangulated input, we only need to follow one additional pointer to
find the previous edge-use when the previous pointer is not stored explicitly. For those
applications that use previous pointers extensively, particularly on geometry with many-
sides faces, we have implemented a derived class that stores previous pointers explicitly.

The extension scheme makes ensuring adequate testing more challenging; therefore,
we have weighed adding new extensions very carefully. For example, we considered an
extension that would store pointers to both endpoints with an edge-use, not just the root
vertex. But we only need to follow one additional pointer to the next-in-loop edge-use to
get itsroot vertex to find this other endpoint, regardless of the geometry or topology of the
input. For this reason, we have chosen not to add an extension that stores both vertices
with edge-uses.
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Chapter 5

Algorithmsfor Buildingthe LEDS
Efficiently

In this chapter we describe the two agorithms that we have developed for building the
LEDS efficiently from STL input. The first is efficient when the geometry fits in main
memory but naive in regards to virtual memory usage, and the second is an out-of-core
algorithm that can build the LEDS without thrashing when the geometry is very large.

5.1 Efficient In-Memory LEDS Build

For anin-memory build, we make one pass through the data, constructing and updating
the LEDS as we go. For a one-pass agorithm, we cannot alocate the LEDS components
in the correct size arrays ahead of time, since ASCII STL contains no information about
the number of triangles, vertices, or edges in the file. We use the approach of allocating
the arraysin large constant-size buffers of components, filling these buffers, and allocating
additional buffers when the existing ones fill up. Another aternative would be to re-
allocate an array of twice the sizewhen an array filled and copy over the existing elements,
so that we would in fact end up with a contiguous array for each type of component. The
amortized cost would be three times the cost of constructing an array of the correct sizeto
begin with, and we could be using up to twice as much storage as necessary [14]. With
fixed-size buffers, the size of the buffer places a constant limit on the additional overhead.
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We experimented with several different buffer sizesto find a size that balanced the cost
savings of allocating elementsin large buffers and the cost of initializing many elements
that are not used if the final buffer istoo large. The results of these experiments, run on
an SGI Indigo 2 with a 200MHz MIPS R4400 processor running Irix 6.5, are shown in
Figure 5.1. As expected, the worst performance was for a buffer size of one. With the
largest buffer sizes, themarginal speedup fromallocating fewer, larger bufferswasminimal
and was more than canceled out by the cost of initializing unused elements. Given this
data, we chose 256 elements as our standard buffer size; the exact sizeisnot critical.
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Figure 5.1: Time, in seconds, to build the LEDS for the ring sculpture test file (pictured
in Table 5.1) using different buffer sizes. Each data point shows the mean of five trials
and a 90% confidence interval around that mean. A buffer size of one element showed
the worst performance. We chose a buffer size of 256 elements since it showed the best
performance.
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5.1.1 Hashing

The main task in building a topological data structure is to capture the connectivity
of all the surface elements explicitly, which requires matching up (ak.a. “joining” when
performed on a database) all coincident vertex coordinates and edge-uses. To accomplish
this, we use hash tables in both our algorithms. Because hashing takes up a significant
fraction of the build time, we considered severa hashing schemes and functions, and used
both theoretical analysis and performance testing to optimize our implementation.

Our in-memory agorithm builds two hash tables simultaneoudly. The first is for
looking up vertices, so that we know whether a coordinate triple in the input file refers
to a new vertex that needs to be initialized, or to an existing vertex to which an edge-use
needs to be added. For this vertex hash table, we use the x,y,z coordinate triple as the
input to the hash function, and we store these coordinates (the key) and a pointer to the
LEDS vertex (the data) in the hash table. The second is an edge-use hash table, so that
we can match up edge-uses with their coincident siblings. To match an edge-use with its
sibling(s) which may be oriented in the opposite direction, we want the hash function to
return the same value regardless of the order of the edge-use’s endpoints. We accomplish
this by ordering the endpoints lexicographically, and use this ordered pair as the input to
our hash function, which also allows us to use a standard equality check. Instead of using
the coordinate triples of the two endpoints as input, however, we use the concatenation of
their two addressesin the vertex hash table asthe key for the edge-use hash table. Sincewe
will have just hashed the endpoints coordinate triplesto ook them up in the vertex hash
table, we know their addresses there; using the addresses instead of the coordinates will
be far more efficient, since a 32 bit integer is only athird of the size of three 32 bit floats.
We save both space (in the hash table) and time (for computing the hash function, ordering
the endpoints, and doing equality checks). The time savings is particularly pronounced
on large files when the larger hash table does not fit in main memory but the smaller hash
table does. The datafor the edge hash table is a pointer to the first LEDS edge-use for the
vertex.

We have a choice of two ways to resolve collisions in a hash table [14, 41]. In a hash
table with chaining, each slot in the hash table contains a pointer to a linked list of all
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entriesthat hashed to that value. 1n ahash table with open addressing, if an entry hashesto
adot that isalready full, welook at the next dlot in some probe sequence instead. We use
open addressing, which provides more dots for the same memory when hash table entries
are small, due to the savings of not having to store the linked list pointers.

The simplest probe sequence with open addressing isto always probethe next dot after
the one we just examined. Thisiscalled linear probing. The disadvantage of this scheme
isthat runs of contiguous occupied dots (“clusters’) tend to grow; the larger the run, the
greater the probability that we will hash to adot in that run, and the greater the expected
length of the probe sequence we must follow before we find an open dot at the end of the
run (and then we insert it in the open sot, making the run even longer).

We can avoid thisclustering problem by using quadratic probing, where each additional
probe after a collision is offset from the original Slot by ¢12 + ¢»:2, an amount that grows
quadratically (carefully choosing our parameters so that we will still always examine
each dot in the hash table if we go through the entire probe sequence). With quadratic
probing, we will only get clustering for valuesthat initially hash to the same dot, so-called
“secondary clustering.”

We can get an even better probe sequence, at the cost of dightly longer computation
times, with double hashing, where we use a second hash function to determine the offset
for additional probes after a collison. Since we use this same offset for all additional
probes, the offset must be relatively prime to the size of the hash table to assure that all
dotswill be probed.

We implemented both quadratic probing and double hashing to compare their perfor-
mance on our data. For both methods, our hash function 2 () returnsa 32-bit integer much
larger than m, where m is the size of our hash table. We always choose m to be prime.
For quadratic probing, our ;" probe after a collision isto position:

(h(x)mod(m) + iz)mod(m).

For double hashing, we can derive the second hash function from the first and guarantee a
relatively prime offset by using the formula:

ho(x) = 1+ h(z)mod(m — 1).
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With this secondary hash function, our :** probe after a collision for double hashing is to
position:
(h(x)mod(m) + (1 + h(z)mod(m — 1)))mod(m).

In addition to a probe sequence, we need a hash function. To validate our choice of
hash functions experimentally, we gathered statistics on the number of probes we made
while building the hash tables. For smplicity of derivation, we compared these numbersto
the expected value for the ideal case of “uniform hashing,” where every probe sequenceis
equally likely for every input key. Of course, even if we had an ideal, completely random
hash function that was equally likely to choose any position in the hash table, we would
still not achieve uniform hashing. For uniform hashing, al m! possible probe sequences
are equally likely; with quadratic probing, the remainder of the probe sequence is fixed
given theinitial hash value, yielding only m: different probe sequences, while with double
hashing, we gtill have only m? different probe sequences.

For theideal case of uniform hashing, given ahash tablethat isalready fraction « filled,
the expected number of probesto insert a new item will be the following sum:

1 (we must always check at |east one position)
+a (probability of making a2™¢ probe because the previous position was full)
+a? (probability of making a3 probe because the previous two positions were full)
+a (probability of making a4' probe because the previous three positions were full)
+...
= = [14].

Of these probes, one will be a hit, and the remaining
1 a

—_1=

1-a 1«

will be misses. For a hash table of size m, after the :*" item isinserted, o = i therefore

the expected number of misses when inserting the ;% item will be

- ?
m
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m m
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After inserting the n'* item into the hash table, we will have had » hits and an expected

; ¢

mi Sses.

Once ahash tableis very full, its performance degrades drastically, as we must search
a longer and longer probe sequence to find an empty dlot. Evaluating the expression
computed above for various hash tables sizes m between 100 and 1,000,000, we find that
when a hash table isfilled to 80% capacity, averaging over all theinsertions that filled the
hash table, the total number of misses will be roughly equal to the total number of hits.
After reaching this capacity, we rehash in anew hash tablethat istwicethe size (*rounded”
up to the next prime number, of course) to improve the hit rate. In general, alarger hash
table will give better performance at the expense of using more memory. We feel that
rehashing at 80% full is a reasonable time/space tradeoff.

In order to evaluate our choice of hash functions, we compared this expected value for
the number of misses to the actual values we achieved building our hash tables with real
data. We used double hashing for these tests so that clustering would be less of an issue.
The test file geometries we used are shown in Table 5.1. Hash table performance has high
variance: the actual number of misses can vary significantly from the average “ expected”
number of misses; thus the number of misses while building a single hash tableis not very
meaningful. We look at the data for a number of hash tables of varying sizes built with
varying data, trying to find the point where those that underperform the expected value are
roughly balanced by those that outperform the expected value. When a hash function gives
these results, it islikely that it is a good approximation to arandom hash function.

We want to choose hash functions that are quick to compute and that minimize colli-
sons in the hash table. Integer computations are faster than floating point computations;
therefore, our hash function treats the 32 bits that represent each floating point coordinate
asa32bitinteger.! Aspart of satisfying the second goal of minimizing collisions, we use

1We cannot use astraight cast to an integer to do this, however, because that merely truncates the decimal
portion of the float, which would leave us with identical values for every single vertex in the instance of a
part less than one unit in each dimension. While thiswould make computing the hash vaue very efficient,
we would have maximized rather than minimized collisions because every vertex would get assigned the
same value by the hash function! Instead we take a pointer to the float and cast it to a pointer to an int, and
dereference that, allowing usto treat the 32 bitsthat represent the float as a 32 bit integer.
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| Model Name | Number of Triangles |

Cow 5,804

Ring Sculpture | 107,520

Dragon 869,898
Buckle 4,334
Propeller 96,040

Table 5.1: Models we used for testing the hash tables. The cow model was downloaded
from Clemson University. The ring sculpture was generated using Sequin’s sculpture
generator. The dragon model was obtained from Stanford’s 3D Scanning Repository.
The buckle and propeller models shipped with the fused deposition modeling machine's
QuickSlice 6.2 software.

all three coordinates and both endpoints as input to our hash function, so that we will not
get additional vertex collisions for files that have many vertices with the same height, for
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example, or additional edge-use collisions for files that have vertices of high valence.

We started with hash functionsthat are very simpleto compute and gradually increased
their complexity until we got collision behavior that was consistent with using random
hash functions. For the edge hash table, wefirst tried simply adding together the addresses
of the two endpoints, E1 and E2, and taking the result modulo the size of the hash table:
h(E1, E2) = (E14 E2)mod(m). We gathered statistics on the missesto hitsratio using
this hash function for building different sized hash tablesfilled to 80% for the cow and ring
sculpture input files. The resulting miss ratio was significantly higher than the expected
missratio, asshownin Figure5.2. Next, wetried h(E£1, E2) = (3% E14 7% E2)mod(m).

Hash(E1,E2) = E1+E2
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Figure5.2: With the edge hash function 2( £'1, £2) = (E1+ E2)mod(m), themissratio
for the input models was significantly higher than the expected miss ratio for many hash
table sizes, indicating that the hash function was not sufficiently random.

The missratio was much better, but still occasionally much higher than expected, as shown
in Figure 5.3. Using the hash function A(E1, £2) = (31« E1+ 17 * E2)mod(m), we
obtained miss ratios that were sometimes higher and sometimes lower than the expected
missratio, as shown in Figure 5.4. For thelargest hash table sizes, the missratio wasfairly
steady and only dightly worse than the expected miss ratio for ideal uniform hashing.
Therefore we chose this as our edge hash function.

For the simplest vertex hash function, we treated the three floating point coordinate
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Hash(E1,E2) = 3*E1+ 7*E2
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Figure5.3: With theedge hash function h( E1, £2) = (3% E14 7+ E2)mod(m ), themiss
ratio for the input models was occasionally significantly higher than the expected miss
ratio for some hash table sizes.
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Figure 5.4: With the edge hash function ~(£1, £2) = (31 * E1+ 17 « E2)mod(m), the
miss ratios were sometimes higher and sometimes lower than the expected miss ratio for
a random hash function, indicating a better approximation to random hashing.

values asintegers and added them together, modulo the size of the hash table. We obtained
miss ratios both higher and lower than the expected value with this hash function. Again,
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Figure 5.5: With the vertex hash function A(x,y,z) = « + y + z, the miss ratios were
sometimes higher and sometimes lower than the expected miss ratio for a random hash
function, indicating a good approximation to random hashing.

for thelargest hash table sizes, the missratio wasfairly steady and only dightly worse than
the expected miss ratio for ideal uniform hashing, as shown in Figure 5.5. Therefore we
used this ssmple function for vertex hashing.

Next we compared running times for quadratic probing and double hashing using these
optimized hash functions. We found that quadratic probing was actualy dlightly faster
overal with our implementation, despite the fact that it resulted in more collisions (6%
faster for the buckle part, 5% faster for the cow part, and 4% faster for the propeller
part, averaged over five trials). Thisis because it is much cheaper to compute the offsets
in the quadratic series than it is to perform the expensive “modulo” operation needed to
compute the first offset for double hashing. Therefore we used the quadratic probing
implementation.

5.1.2 Algorithm for Memory-Resident STL | nput

First, weinitialize our datastructures. We allocate three buffers, one each for theLEDS
vertices, edge-uses, and faces. When a buffer fills, we alocate a new buffer. We allocate a
small hash table for the vertices which takes a triple of floats as its key and a pointer to a
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LEDS vertex asitsdata. We also allocate a small hash table for the edge-uses which takes
a pair of vertex table addresses as its key and a pointer to a LEDS edge-use as its data.
When a hash tablefillsto 80% capacity, we rehash its contents into a new hash table twice
as big and free the old hash table.

For each triangle we read in, we take the next face in the face buffer and the next
three edge-uses in the edge-use buffer for thistriangle. We set the face to point to thefirst
edge-use, and each edge-use to point to the next around the vertex.

For each vertex-use, we look it up in the vertex hash table to see if we have already
allocated a vertex for it. If not, we take the next vertex in the vertex buffer for this vertex
and record its address in the data field of the hash table entry. We set its coordinates, and
set its first edge-use to point to the current edge-use (the edge-use in this triangle rooted
at that vertex), and set the current edge-use’s next-vertex-edge-use pointer back to itself.
If the vertex is already in the vertex hash table, we find its address there. In this case, we
look up the vertex’sfirst edge-use, and insert the current edge-use after it (by setting the
current edge-use's next-vertex-edge-use pointer to the next-vertex-edge-use pointer stored
with the first edge-use, and setting the first edge-use’s next-vertex-edge-use pointer to the
current edge-use). This will maintain a circular list of all the edge-uses for the vertex,
as shown in Figure 5.6. In either case, we aso set the edge-use rooted at the vertex to
point to the vertex. Note that even if we are reading in a vertex-use for a vertex we have
already seen many times, we only need to access or update two existing LEDS elements:
the vertex, to find its first edge-use, and that first edge-use, to insert the current edge-use
after it in the next-vertex-edge-use circular list.

Then we look up each edge-use in the triangle in the edge hash table (using the
lexicographically ordered pair of the addresses of its endpoints). If it isthe first edge-use
for the edge, we add it to the linked list of all edges and record its address in the data field
of the hash table entry. If there is aready an edge-use in the hash table for the edge, we
check if that edge-use already hasasibling. If so, we set the sibling of the current edge-use
to point to the sibling of the edge-use recorded in the hash table; otherwise the current
edge-use’s sibling is set to the edge-use in the hash table. The edge-use in the hash table
then gets its sibling set to the current edge-use in either case. This will form a circular
list of all the siblings for the edge when there are two or more edge-uses, as shown in
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After adding 1st vertex-use:

After adding 2nd vertex—use:
EUl—EU2

After adding 3rd vertex-use:

EUT—»EU3—»EU2

Figure 5.6: The circular list of next-vertex-edge-uses for the vertex shown on the left is
built up asillustrated on theright.

Figure5.7. Again, note that we limit the existing LEDS elements that must be accessed or
updated: limited to one sibling edge-use for the second edge-use on an edge, or limited to
two sibling edge-uses for additional edge-uses at non-manifold edges.

After 2nd edge-use:
EU1—EU2

V1

After 3rd edge-use:

EUT—=EU3—EU2
EU1| |EU3

i + After 4th edge-use:

/V;:\ EUL—EU4—EU3—EU2

Figure5.7: Thecircular list of edge-use siblingsis built asillustrated here.

When al of the input triangles have been read, we free both hash tables.

5.1.3 Resultsfor Memory-Resident Algorithm

For testing the effects of input size, we took a ssimple curved knot shape (Fig. 5.8)
output from Séquin’s scul pture generator [66] and varied the fineness of the tessellation
to produce STL files of different sizes. All of the triangles are organized into consecutive
triangle strips and output in the order in which they adjoin in the part. As such, they
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exhibit a great deal of topological coherence. For triangles interior to each strip, two of
the triangle’s three neighbors will be immediately adjacent to it in the file, and its third
neighbor will be in the adjacent strip. Because of this topological coherencein the input,
thrashing problems during the LEDS construction should be minimized. Thus, the results
should under-estimate the need for our more sophisticated algorithm presented in the next
section. To extract the effects of input coherency, we a'so made another version of each
input file that contained the same triangles but in random order.

Figure 5.8: Our canonical test part, the triangulated “ knot sculpture” The version
pictured here has only 4,800 triangles in order to make the organization of the triangle
strips into adjacent stories clearly visible. \ersions of the part with more triangles have
both more stories and more triangles per story.

Running on an SGI Indy with one 133 MHz MIPS R4600 processor, 32 MB of RAM,
and 540 MB of virtual memory, we were able build the LEDS for STL test files containing
10,000 to 70,000 triangles with no page faults, since both the LEDS and the hash tablesfit
entirely in RAM. Running time increased proportionately with the input size.  When we
ran the sametests on therandomly ordered input files, theresultswerevirtually identical up
to 70,000 triangles, indicating that locality in the input is not an issue when the LEDS fits
in RAM. Above this size, performance starts to ow down and the random and coherent
results start to diverge. The results of these tests are shown in Figure 5.9.

For medium sized files, we start to see the effects of the slower access timesfor virtual
memory, as shown in Figure 5.10. For files containing up to 200,000 triangles, the running
times continued to grow linearly for coherent input because there was enough room in
memory to hold both the hash tables and the active portion of the LEDS. For the randomly
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Figure 5.9: Running times (on an SGI with 32MB of RAM) for the in-memory algorithm
on STL files of the knot sculpture test part, tessellated to contain from 10,000 to 80,000
triangles. Each test was run five times, and the error bars (almost too narrow to see for
some values) show a 95% confidence interval around the mean results. The running time
increases proportionately with the input size up to 70,000 triangles, and is not affected by
the order of the input triangles at these sizes. Above 70,000 triangles, the performance
dows for the random input.

Seconds

ordered files of this size, however, the random accesses to both the LEDS and the hash
tables caused thrashing and the performance worsens considerably for the random files.

For larger test parts containing over 400,000 triangles, the active portion of the LEDS
no longer fits in memory simultaneously with the hash tables even for the coherent files,
and the resulting memory thrashing is reflected in the run times (see Figure 5.11). Run
times continue to be worse for the large randomized test files than for the large coherent
test files due to the the higher probability of page faulting on each update to the LEDS.
For 400,000 triangles, it took fifty times longer to process the random file compared to
the coherent file. We had to stop the tests on the larger random files after they had been
running for days without completing. Even with coherent input, the million triangle test
part still took almost nine hoursto process.

We also ran the same tests on afaster machine, adual processor PC with two Pentium
I11 700 MHz processors. Using Linux, we booted this machine with only 32 MB RAM so



59

\‘ Coherent - - Random Order\
25
2.0
15
2
>
o
T
1.0
05 -
0.0 ‘
50 100 150 200
1,000s of Triangles

Figure 5.10: Running times (on an SGI with 32MB of RAM) for the in-memory algorithm
on STL files of the knot sculpture test part, tessellated to contain from 50,000 to 200,000
triangles. Each test was run five times, and the error bars, largely invisible due to their
narrowness, show a 95% confidence interval around the mean results.

that we could compare performance using the same amount of memory on both platforms.
While the smallest sculpture test parts ran six times faster on this machine, the run times
for the largest parts were almost identical (see Figure 5.12). The coherent 1,000,000
triangle test part still takes amost seven hours to process, less than a 25% improvement
over the running time on the SGI Indy, and the largest randomized input file we ran on
both platforms, with 400,000 triangles, shows less than a 20% improvement on the new
machine.

We hypothesized that the reason the running times do not improve for the larger files
on the new machine may be that recent improvementsto hard drives and file systems have
focused on improving sequential access times rather than random access times. To test
this hypothesis, we allocated arrays containing 5,000,000 double precision floating point
values on both machines (40MB arrays) and timed how long it took to write 5,000,000
entries sequentially compared to how long it took to write 5,000,000 entries to random
positions. For the sequential writes, the Pentium 11 Linux machinewas approximately five
times faster, but for the random writes, it was approximately 9% dower (see Table 5.2).
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Figure 5.11: Running times (on an SGI with 32MB of RAM) for the in-memory algorithm
on STL files of the same test part, tessellated to contain up to 1,000,000 triangles. Each
test was run five times, and the error bars, largely invisible due to their narrowness, show
a 95% confidence interval around the mean results. The gap between the running time
for the coherent and randomized input continues to widen for the larger files.

| | Sequential Writes | Random Writes |

SGI MIPS Irix 0:0:11.1 8:33:35
Pentium I11 Linux || 0:0:02.3 9:17:15
Table 5.2: Timeto write 5,000,000 items to a 40MB array sequentially and randomly on
the SGI and Linux platforms with 32MB RAM.

Asdescribed in this section, we have analyzed and optimized thisin-memory algorithm
extensively, except in respect to virtual memory access patterns. In the next section, we
describe our algorithm for avoiding thrashing and the resulting exponential growthin build
time when the data (and hash tables) are too big to fit in main memory.

5.2 Out-of-Core LEDS Algorithm

When the LEDS and the hash tables are too big to fit entirely in memory, the naive,
in-memory algorithm can become prohibitively slow dueto thrashing. One problem isthat
each new face, vertex, or edge-use that we read in could be connected to elementsthat have
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Figure5.12: Running times under Linux PC compared to SGI Irix Indy (both with 32MB
of RAM) for the in-memory algorithm on the same knot sculpture test part STL files. The
running times for the largest files only improve 20 - 25% compared to the times on the
older machine.

already been written out to disk, and those elements will now need to be paged back into
be updated. With multiple updates to the same element separated in time, each of these
updates can cause a page fault. Even if the input is extremely coherent, so that updates
to the same element are closely spaced in time, we till see thrashing when the vertex and
edge hash tables become too large to co-exist in memory. Hash tables by their nature are
accessed randomly (assuming the hash function was well chosen!) with no guarantee that
the portion of the hash table we access on each look-up will still bein memory.

Our out-of-core algorithm for non-memory-resident data avoids these problemsin two
ways: by reordering and grouping random hash table accesses, so that we need to build
and access only one memory-sized partition of asingle larger hash table at atime, and by
using external merge-sorts to reorder al other operations to make them sequential reads
and writes. Our only out-of-order accesses are within the hash table partitions and during
the sorting stage.

In addition to the partitioned hash tables, we have implemented a“dynamic array” class
to store large arrays of data that we write and read sequentially but whose exact length
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we do not know before we begin writing. We allocate this array during the write phase,
doubling its size when it becomes full. Its most important member functions, which we
refer to in the detailed algorithm description below, are to support sequential accesses:
appending an entry to the end of the dynamic array during the write phase, and returning
the next entry during theread phase. The classistemplated on the array entry type, so that
we can use the same class for dynamic arrays containing many different types of objects.

Our agorithm has four stages, described in detail in the sub-sections below. In sum-
mary:

We make the only pass through the original input file during stage one. During this
stage, we assign sequential edge-use and face IDs (recall that a LEDS face is really an
oriented face-use) to each edge use and triangle in the input. We record the topological
relationships immediately available from the input, using a separate dynamic array for
each type of relationship. These relationships are recorded using the IDs just assigned.
We also record the vertex-use coordinates and other information we need to derive the
remaining topological relationships. In stage two, we build a partitioned vertex hash
table and use it to trandate vertex-use coordinates to vertex 1Ds, and to derive the vertex
topological relationships, creating new dynamic arrays to hold them. In stage three, we
build a partitioned edge hash table to match edge-uses with their siblings and record these
relationships in an additional dynamic array. In stage four, we fill in the actual LEDS
entities. First we sort each dynamic array so that the entries appear in the same order as
they will berecorded in thefinal LEDS. Then weread, in paralel, from thefront of al the
dynamic arrays containing vertex information to create the vertices. Next, the edge-uses
and then faces are constructed by reading in parallel from their corresponding arrays. This
allowsusto writeal of theinformation we need to record in each LEDS entity at once, so
that we do not need to go back and modify entities that have already been written out to
disk.

Below, we describethesefour stagesindetail. Figure5.13 showsacondensed summary
of the four stages.
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edge-use’s root vertex array partitiong

Build edge hash partitions
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distinct edges dynamic array

Sort arrays
Build LEDS

Stage 4

Figure5.13: Thefour main stagesof the out-of-corealgorithm. Thearrays of intermediate
data created at each stage are shown in boxes.

521 StageOne

Recall that the two tasks in stage one are to assign IDs and record topological rela-
tionships in dynamic arrays. We use a separate counter for assigning sequential 1Ds to
each type of LEDS entity (vertex, edge-use, and face) so that we can also use the ID as
an array index for that entity’s array. (Later, once we know the address for the start of
each array, this allows us to trandate 1Ds to pointers without any lookups using ssmple
arithmetic.) For each trianglein the input, we can immediately assign new IDsfor a face
and its three edge-uses, since each is a unique use. We cannot immediately assign new
vertex | Ds, however. We do not know if each vertex is being encountered for the first time,
in which case we need to assign it anew ID, or if it isa vertex that was aready used in a
triangle appearing earlier in thefile, in which case we should use the ID aready assigned
to it. Therefore, in stage one, while we record I Ds for faces and edge-uses, we record the
coordinate triples for the vertex-uses, waiting until we have built a vertex hash table in
stage two to assign vertex IDs.

In the general case, we record data in five different dynamic arrays during stage one.
Four of them record ID pairs, where thefirst ID isthat of a LEDS entity that will contain
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apointer to aLEDS entity with the second ID. These are the “edge-use'sface,” the “ edge-
use's next-in-loop edge-use,” the “face’s outer loop edge-use,” and the “face’s inner loop
edge-use” dynamic arrays. For triangulated input, none of the faces have inner loops,
therefore, we clearly do not need this last dynamic array for STL. But for triangul ated
input we do not need to record these other three dynamic arrays either. The information
they would contain can be derived later when we need it (as detailed in the description of
stage four below) merely from knowing the total number of triangles and that the face and
edge-use | Ds are assigned as sequential integers.

Thefinal dynamic array that we always create and fill during stage one will be used for
deriving al of the remaining topological relationships. It contains one entry per edge-use,
but unlike in the four dynamic arrays described above, each entry isnot a pair of 1Ds that
trand ate directly to a pointer in the final LEDS. Instead an entry contains three pieces of
information: the ID of the edge-use, and the coordinates of the edge-use’s two endpoints
vertex-uses. We call thisthe* untrand ated edge-use” dynamic array because the vertex-use
coordinates need to be trandated to vertex | Ds before we can interpret them as pointers.

522 Stage Two

Stage two is the vertex hash table building and trandation stage. If the input file is
large, this hash table may not fit in memory. If thisis the case, we use partitioned hash
tables. With partitioned hash tables, we only build one memory-sized piece (a* partition”)
of alarger hash table at atime. This requires estimating how many hash table partitions
we will need and dividing the input into that many data partitions before we process it.
We take the hash value of the vertex, modulo the number of partitions, as the index of the
data partition in which to store the input. This assures that all of the input corresponding
to the same entry in the hash table will be in the same input data partition. Once the data
is partitioned, we read one data partition at a time and build its corresponding hash table
partition.

We trandate the two endpoint vertices in the input in separate steps. For the first
trandation step, we partition the “ untranslated edge-use” dynamic array based on the hash
value of the edge-use's first endpoint’s coordinates. We try to predict the number of
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partitions that we will need from the size of the input file so that we can partition the
“untrandated edge-use” dynamic array appropriately at creation time in stage one; the
random hashing should make the partitions of roughly equal size, so that the hash table for
each will fit in memory. If necessary we can re-partition the array when we build the hash
tables.

Theinput to stage two consists of the “untrand ated edge-use” dynamic array partitions,
the output consists of three new arrays: the “vertex coordinate” dynamic array, containing
the vertex coordinates corresponding to each unique vertex 1D, an “edge-use’s root vertex”
array, containing each edge-use ID with the vertex ID for its corresponding root vertex,
and a“trandated edge-use” dynamic array with the same entries as the input untrandated
edge-uses but with the vertex-use coordinates replaced by vertex 1Ds.

Some of these arrays are static and some are dynamic. We output the “ edge-use's root
vertex” information in one array per input partition, thus ensuring that each resulting array
will aso fit in memory (for later sorting). These arrays will have the same number of
entriesastheinput partitions; therefore, we can allocate them statically. On the other hand,
the “trandated edge-use” information needs to be partitioned differently than the input;
therefore, we do not know its partition sizes and thus cannot all ocate stetic arraysfor them.
We also do not know how many distinct vertices we will have; therefore, we must use a
dynamic array to hold the vertex coordinates as well.

For each “ untrand ated edge-use” partition, first we allocate avertex hash table partition.
It should be dlightly over 25% bigger than the expected number of vertices so that it will
not fill beyond 80% capacity and need not be re-hashed. We already know the total number
of vertex usesthat we will be looking up when we allocate the vertex hash table partition,
unlike in the case of the naive algorithm; therefore, we can make a good guess about the
number of distinct verticesthat wewill need to store. We assume an average vertex valence
of six (i.e. that every vertex is used by six triangles)) The input key to the vertex hash
table is a coordinate triple, and the data stored in the hash table along with the key is the
corresponding vertex ID.

After we have alocated the vertex hash table partition for the “untrandated edge-use”
dynamic array partition, we perform the first translation step. We read each untransated
entry < Edge-Use ID, Endpoint 1 Coordinates, Endpoint 2 Coordinates > from the input



66

partitioninturn, and look up the coordinates of the middle element of the entry, Endpoint 1,
in the vertex hash table partition. (We use the same hash function as described above for
the naive algorithm.) If the coordinates are not found in the hash table, we assign the
next sequential vertex ID to these coordinates, record this vertex ID in the previoudy
empty hash table entry, along with the coordinates, and append the coordinate triple as the
ID-th element in the “vertex coordinate” dynamic array. (When we process subsequent
partitions, we use the same counter for assigning vertex 1Ds and output them to the same,
unpartitioned, “vertex coordinate” dynamic array.) Otherwise, we read the previousy
assigned vertex 1D from the hash table. This endpoint is the root vertex for the directed
edge-use; we combine its vertex 1D with the edge-use ID from the original entry and
append the pair < Edge-Use ID, \ertex ID > to the current “edge-use's root vertex” array
partition. Finally, wereplacethe middlee ement of the entry with the vertex I D and append
the semi-trandated triple, < Edge-Use ID, \Vertex 1D, Endpoint 2 Coordinates >, to the
appropriateintermediate“ semi-trand ated edge-use” array partition. Thistimewe partition
based on the hash value of the final field in the entry, the coordinates of Endpoint 2, since
that is the next field we will be hashing. (The input was partitioned based on the hash
value of the coordinates of Endpoint 1, which in general will be found in adifferent hash
table partition than Endpoint 2; hence the need to re-partition.) Even though we are re-
partitioning, however, we can still use static arrays, because each vertex appears the same
number of timesin both endpoint positions; therefore, the partitionswill be the same size
as last time. After processing each “untransated triple” dynamic array partition, we free
its memory, but we do not free the corresponding vertex hash table partitions yet.

In the second vertex trandation step, we trandate the second and final coordinate in
each “semi-trandated edge-use” to a vertex ID using the same hash table partitions we
built in trandation step number one. We process the partitions in the opposite order this
time, starting with the * semi-trandated edge-use” partition corresponding to the last vertex
hash table partition that we built, since this hash table partition will still be in memory.
We append the resulting trandated triple, < Edge-Use ID, \ertex ID, Vertex ID >, to the
appropriate “trandated edge-use” dynamic array partition (this time basing the partition
choice on the hash value of the pair of vertex IDs, as explained in the next section). The
two trandation steps of stage two are diagramed in Figure 5.14. We can free each vertex
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hash table partition and its corresponding “ semi-trandated edge-use” array partition after
we finish processing it.

Vertex Hash Table

partition 1
Untranslated
Edge-Use Edge-Use’s
partition 1 Root Vertex
partition 1 ranslate

Edge-Use

Semi-translated partition 1
Edge-Use
partition 1 ELEEG

Edge-Use
partition 2

vertex
Coordinates

Translated

Semi-translated Edge-Use
Edge-Use partition 3
partition 2

Translated

Edge-Use’s Edge-Use
Root Vertex Lpartition 4
Eggg anJIS(teed partition 2 !
partition 2 |
Wy - Leeeeood
Vertex Hash Table
partition 2

Stage Two
Figure 5.14: The two vertex trandation steps of stage two. We use the same hash table
partitionsfor both steps but repartition and visit the hash table partitionsin reverse order
in step two. Note that there are more partitions at the end for the edge hash table we will
build in stage three, since there are more edges than vertices.

If the entire vertex hash table fits in memory and we are not partitioning, then we can
perform trandation step two at the same time as step one, since we'll always be looking
at the same, lone hash table partition to find both vertex-use IDs for the triple. In fact,
if we have not partitioned, then we could further optimize by looking up only one time
each the three distinct vertex coordinates that appear as opposite endpoints of the three
consecutive untrand ated edge-use entries for asingle triangle. Thiswill halve the number
of vertex-use lookups compared to the partitioned case. Furthermore, the “ edge-use's root
vertex” array for the unpartitioned case would not need to record the edge-use I D explicitly
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since they will be generated sequentially. Even if we have multiple partitions, some edges
will still have both endpoints in the same partition. If we find upon hashing the second
endpoint at the end of trandation step onethat it belongsin the same partition, wetrandate
it immediately and output the fully trandated triple directly instead of going through the
semi-trandlated tables.

523 Stage Three

In stage three, we match up edge-uses that are on the same edge, outputting adynamic
array that records sibling pointer information (the “edge-use's sibling” dynamic array).
We also record the IDs of one edge-use per edge in a dynamic array; later we will build
the global linked list of distinct edges for the LEDS from this array.

For this stage we use a new partitioned hash table in which each entry records infor-
mation about a distinct edge. For valid closed solid input, each edge has at least two
edge-uses, and only occasionally more than two; therefore, we allocate an edge hash table
partition whose size is 63% of the number of edge-uses we will process for the partition
(the expected number of edges is 50% of the number of edge-uses; we divide by .80 =
62.5% and allocate dightly more, so that a few non-manifold edges will not fill more than
80% of the hash table and require allocating alarger hash table and rehashing). The input
key to this hash table is the lexicographically ordered pair of vertex 1Ds of the endpoints
of an edge-use (as with the naive algorithm, we use the lexicographic ordering to hide
the direction of the original edge-use so that we can match it with the unoriented edge).
When we partition the “trand ated edge-use” dynamic array that is our input at the end of
stage two, we base the partition choice on the hash value of thisinput key. In addition to
storing the input key, the edge hash table’'s data field entry stores up to two edge-use IDs
for the edge, in the “first edge-use” field and the “most recent edge-use” field (shown in
Table 5.3), as described below.

Key | Lesser Vertex ID | Greater Vertex ID
Data || First Edge-UseID | Most Recent Edge-Use ID

Table 5.3: An edge hash table key-data pair.
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For each partition of the “trandated edge-use” dynamic array, we look up each entry’s
lexicographically ordered vertex IDsin the corresponding edge hash table partition. If the
edge is not found, we make anew entry for it and record the edge-use ID (the first element
from the input entry) in the “first edge-use” field. We also add this edge-use ID to the end
of the dynamic array of distinct edges.

If thereis already an entry for the edge in the hash table partition, and it has the “first
edge-use” datafieldfilled but not the “most recent edge-use” field, thisis the second edge-
usefor theedge. Weread thedatafromthe”first edge-use” fieldin order to append two new
entries to the “edge-use's sibling” dynamic array: one pair of edge-use IDs representing
the pointer from the first to the most current edge-use, and one pair of edge-use IDs
representing the pointer from the current to the first edge-use. Then we record the current
triple’sedge-use ID in the “most recent edge-use” field.

For input that was guaranteed to be 2-manifold, these first two edge-uses would be al
the siblings for the edge; each edge-use of the pair would point to the other, itssole sibling.
If this was the case for al edges, we would not need to record the most recent edge-usein
the hash table. In fact, we could delete the edge’s whol e entry after processing the second
edge-use in order to free up more space in the hash table. But for non-manifold parts, we
can have more than two edge-uses per edge.

When a non-manifold edge-use hashes to an edge entry that already has both of its
data fields filled by two other edge-uses for the edge, we aso append two new entries to
the “edge-use's sibling” dynamic array: one pair of edge-use | Ds representing the pointer
from the current triple's edge-use to the “first edge-use” recorded in the hash table (as
before), and one pair of edge-use I Ds representing the pointer from the “ most recent edge-
use” recorded in the hash table to the current triple’'s edge-use. This latter sibling pointer
information will, when the actual LEDS edge-use is filled in, override the “edge-use's
sibling” pair we recorded when we processed the “most recent edge-use,” back when we
recorded that its sibling was the first edge-use. In the LEDS, the sibling pointers of the
edge-uses at each edge will thus form one circular list, though the order of the list will
depend on the input file and will not necessarily be radially sorted. (We do radial sorting
later and/or divide up the coincident edge-uses into pairs to make a pseudo-2-manifold
representation if a particular application requiresit.) Then we overwrite the “most recent
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edge-use” field in the hash table entry with the current input entry’sedge-use I D, so that we
can add additional siblingsto thefinal circular list. Later, when we processthe”edge-use's
sibling” dynamic array, we will have two entries telling us what should be recorded in the
sibling pointer field for some of these non-manifold edge-uses. We must be sure to take
the latter one. These steps areillustrated for a sample non-manifold edge in Figure 5.15.

We repesat this process for all of the input partitions. We can free the memory for
each “trandated edge-use” dynamic array partition and its corresponding edge hash table
partition after each has been processed, since they are not reused.

5.2.4 Stage Four

We wait until this final stage to actually allocate the LEDS vertices, edge-uses and
faces. Wefill in one type of LEDS entity at a time using the information in the dynamic
and static arrayswe have built, sorting them first (if necessary) by the ID of the entity with
which the relationship each describeswill be stored. The larger input arrayswill be stored
in multiple partitionswhich individually fit in memory. We sort these partitions separately
and then alternate readsto the next position in each partition to find the partition containing
the datafor the next sequentia 1D being processed, performing the final “merge” stage of
amerge-sort implicitly. We will only be making one sequential pass through each sorted
partition during the merge; therefore, we will only need one block of each sorted partition
in memory at atime.

We cannot start by filling in the edge-usesbecause wewill not haveall of theinformation
contained in them until after we have processed the vertices. We do not start with the faces
becausefor triangulated input thereis no intermediate face data that we can free after filling
them in; therefore, we want to delay allocating the faces as long as possible to minimize
the total memory requirements. Therefore, we fill in the vertices first. Vertices point to
edge-uses, and in order to derive pointer values, we need to know the location of the final
LEDS edge-use array; therefore, we must allocate it before filling in the vertices. We do
S0 now. Its address also gives us the information we need to build the global linked list of
distinct edges for the LEDS from the array constructed in stage three of one edge-use ID
per edge. We would like thislist in the same order that these edge-uses will be stored, in
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Figure 5.15: We record each edge-use that hashes to an edge in one of the data fields in

the hash entry. If the “ first edge-use” data field is full, we record it in the “ most recent
edge-use” data field and append two new entries to the edge-use' s sibling dynamic array,
asillustrated. Interpreting each new sibling array entry to over-ride any previous entries
for the same edge-use, we get the circular list shown on the right after each additional
edge-useis added.

order that later we can efficiently ook up each edge-use in the list in sequence. Therefore
we sort the array by ID (in place, if it fitsin memory, otherwise with an external merge
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sort). Then we read through the sorted array, adding to the end of the global edge list an
entry containing a pointer to each edge-use (deriving the pointer address from the address
of the start of the LEDS edge-use array and the edge-use ID). At the end, we freethe array.

Now we allocate and prepareto fill in the datain the LEDS vertex array. We can fill in
each LEDS vertex’'s coordinates field directly while reading sequentially from the “vertex
coordinate” dynamic array, which isindexed by vertex ID; therefore, we do not need to do
any additional preparation for that field. The information we need in order to fill in each
vertex's other field, the “first edge-use” field, isstored in the “edge-use’sroot vertex” array
partitions. Each of these partitionswas created with the edge-use I Dsinincreasing (though
not consecutive) order. Although we will need the information in that order later for the
edge-uses, for the vertices we sort each of these partitions by vertex 1D to bring al of the
edge-uses for asingle vertex together. (We could make a separate copy to sortin vertex ID
order, but it is actually more efficient to sort and then re-sort back to the original order.)
Since the “edge-use’s root vertex” array partition was built from a single hash partition,
partitioned based on vertex coordinates, all of the edge-usesfor asingle vertex will appear
in the same partition. Thus we can maintain the same partitions (which will again fit in
memory) and sort within each. The final “merging” step of the merge-sort, combining the
sorted partitions, is performed implicitly when we consult the next position in all these
partitions to find the partition containing the information for the current LEDS vertex we
arefilling in.

Now we have all the data ready to fill in the vertices. We find the coordinates of each
directly from the “vertex coordinate” dynamic array, and find the “vertex's edge-uses’
partition containing the entries for the current vertex’s ID. We record its first edge-use
entry inthe LEDS vertex itself, trandating it to a pointer based on its 1D and the address of
the LEDS edge-use array. The vertex’'sremaining edge-useswill be stored in the edge-uses
themselves.

Now that we have grouped the edge-uses together by root vertex, we can output entries
for the “edge-use’s next vertex edge-use” array. We read each additional sequential entry
for the current vertex from its “vertex's edge-uses’ input partition and append a pair of
edge-use IDs to the “ edge-use’'s next vertex edge-use” array: the ID of the prior edge-use
for the current vertex just read from the input, and the ID of the edge-use in the current
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entry. After processing the last entry for the current vertex, we also output apair of IDsto
link its edge-use back to the first edge-use for the vertex. (See Figure 5.16.) These pairs
will be trandated to the pointersin the LEDS edge-uses that will form a circularly linked
list of all the edge-usesrooted at the vertex. The edge-use’s next vertex edge-use we output
is partitioned based on thefirst edge-use ID in the pair.

V1

vertex neighborhood

"vertex "edge—use next
edge-use vertex edge-use" _
entries: entries: circular list:

V1EU13 [EU13EU19
V1EU19  EU19EU73
V1IEU73  EU73EU9]
V1EU91  [EU9IEU13

Figure 5.16: The * vertex edge-use” array entries for each vertex are used to fill in the
“ edge-usenext vertex edge-use” array entriesfor all of the edge-usesrooted at that vertex.

EUT

After we have filled in al of the LEDS vertices, we can free the vertex coordinate
dynamic array. We do not free the edge-use's root vertex partitions, but instead re-sort
each by edge-use ID (back to itsoriginal order).

Next, we fill in the edge-uses. This requires some additional sorting before we begin.
We must sort the“edge-use’s sibling” dynamic array partitions. Recall that if the input was
non-manifold, we need to maintain the order of multiple siblingslisted for the same edge-
use and only record the last one listed. The edge-use’s siblingswill be partitioned based on
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edges, therefore, al of the information for a single edge-use will be in the same partition,
and we can maintain the partitions for sorting. We aso need to sort the “edge-use's next
vertex edge-use” array that we just created whilefilling in the LEDS vertex array, sorting
it by the ID of thefirst field in each edge-use pair. Thisis another large array; therefore,
when we create it, we write it out in partitions, using the same partitions the input wasiin,
and now we sort within these partitions.

The IDs for the other two fields we need to fill in for the LEDS edge-use entities, the
“edge-use’s face” and the “edge-use’s next-in-loop edge-use,” are derived from the ID of
the edge-use we will store them in. The edge-use with ID » will point to a face with ID
|n/3] and it will point to a next-in-loop edge-use with ID n — 2 if (n)mod 3 = 0, and ID
n + 1 otherwise.

The only other information we need to fill the five edge-use pointer fieldsisthe address
of the LEDS face array; therefore, we allocate it now. Then we go ahead and fill in
the LEDS edge-use entities sequentially, finding the appropriate partition containing this
edge-use’s ID for each of the three partitioned dynamic arrays, as described above for
vertices. We can actually avoid having to look at multiple “edge-use’s next vertex edge-
use” partitions to find the one containing the current edge-use 1D, because we created
these partitions from the “edge-use’s root vertex” array partitions without re-partitioning.
Therefore, once we have found the partition index of the * edge-use'sroot vertex” partition
containing the current edge-use 1D, we know we will find the identical edge-use ID as
the next item in the “edge-use’s next vertex edge-use” partition with the same index. We
trandate the edge-use, face, and vertex 1Ds to pointers based on their 1D value and the
address of the start of the respective LEDS array. After al the edge-uses arefilled in, we
free the partitions for these three remaining dynamic arrays.

Finally, wefill in the LEDS face array’s outer loop edge-usefield. Thisedge-useID is
derived from the face ID: the outer loop edge-use for face with ID n will have ID 3 * n.
The pointer address is computed from the address of the edge-use array and the edge-use
ID. Theinner loop list pointer for each faceis null for triangulated input.
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5.3 Memory Management

For the out-of-core algorithm, the majority of reads and writes are sequential, so that
al of the data on a page can be read or written while it is still in memory.  For the
non-sequential accesses to the hash tables, we divide the hash tablesinto partitionsthat fit
in the available memory and group all reads and writes by partition. For Unix operating
systems that support the ml ock() function (including Irix and Linux, running on the
machines we used for the results reported here), we use it to lock the partitionsin memory
while we are accessing them. If ml ock() isnot available, as an alternative we use hash
tables half the size of available memory. With thisratio of hash table pagesto input pages,
the random nature of the hash lookups will usually mean that the hash table pages have all
been accessed more recently than the oldest in-memory pages of the sequentially accessed
input array, minimizing page faultsin the hash table with LRU page replacement. We also
tried using nmap() and madvi se() totell the operating system that the dynamic arrays
would always be accessed sequentially. Unfortunately, mmap( ) requires creating a file
on disk for each uninitialized array; this overhead far outweighed the savings during real
accesses, since we only write and read each array onetime.

54 Resaults

For comparison with the naive in-memory algorithm, we ran the out-of-coreagorithm
on the same knot scul pturefiles on the same two platforms(an SGI Indy with one 133 MHz
MIPS R4600 processor and 32 MB of RAM, and a Linux PC with two Pentium 111 700
MHz processors and 32 MB of RAM). These resultsare graphed in Figures5.17 and 5.18.

For smaller files where some but not all data fits in memory, the out-of-core a gorithm
can take up to three times longer to build the LEDS than the naive algorithm, due to the
time required to write the intermediate data. For our coherent input files, the break-even
point comes at approximately 400,000 triangles on both platforms. For the randomized
input files, the break-even point comes after 70,000 triangles on the Linux PC and after
100,000 triangles on the SGI Indy. With the million triangle test part, we more than make
up for the overhead of the intermediate data with drastically reduced thrashing. For the
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Figure 5.17: Comparison of naive and out-of-core algorithm LEDS build times on large
knot scul pture files on the SGI Indy with 32 MB RAM. The out-of-core algorithm performs
equally well on the coherent and non-coherent input. On the coherent million triangle
input, the naive algorithm takes 7 times as long as the out-of-core algorithm.

coherent milliontriangletest part, we get a7 times speedup on the SGI Indy and an 82 times
speedup on the Linux PC, compared to the naive algorithm. For the randomized million
triangle test part, the naive algorithm was so slow that we had to terminateit after running
afew days, but the out-of-core algorithm performs almost identically on the coherent and
randomized million triangle inputs: about an hour on the SGI Indy and about five minutes
on the Linux PC. For the largest randomized file on which we successfully ran the naive
algorithm, the 600,000 triangle test part, the naive algorithm took over 500 times as long
as the out-of-core algorithm on the Linux PC.

As mentioned above, the coherent knot test parts were designed to have optimum
gpatial coherency in the ordering of their triangles, while the randomized versions have
no coherency. Most real-world input will fall somewhere between these two extremes,
with our algorithm showing speedups somewhere between 82 and 500 on similarly sized
files when run on the Linux PC. As another test case, we ran the naive and out-of-core
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Figure 5.18: Comparison of naive and out-of-core algorithm LEDS build times on large
knot sculpture files on the Linux PC with 32 MB RAM. On the coherent million triangle
input, the naive algorithm takes over 80 times as long as the out-of-core algorithm; on
the 600,000 triangle random part, the naive algorithm takes over 500 times as long.

algorithms on an STL file of the dragon model from Stanford’s 3D Scanning Repository,
an 870,000 triangle model reconstructed from data scanned with alaser range finder. We
would expect model sreconstructed from scanned datato befairly coherent sincethedatais
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gathered inwell organized blocksthat cover acontiguous portion of the surface. Averaging
over five trials, constructing the LEDS for the dragon took 9 hours, 15 minutes with the
naive algorithm, but only 4 minutes, 11 seconds with the out-of-core a gorithm, a speed-up
of over 130 times.

We also measured the performance of the out-of-core algorithm on thisand other large
filesusing 128 MB of RAM. For these tests, we used an SGI Onyx Reality Engine with
two 150 MHz M1PS R4400 processors and 128 MB of RAM, aswell asthe same Linux PC
with two 700 MHz Pentium |11 processors, this time booted with 128 MB of RAM. These
results are shown in Table 5.4. We tested different types of input files: the procedurally
generated knot sculpture; a subdivision surface generated by applying nine iterations of
Catmull-Clark subdivision to a single tetrahedron, followed by triangulating the resulting
quadrilateral mesh; the dragon model from Stanford’s 3D Scanning Repository; and the
model of the head of Michelangelo’'s David provided by Stanford's Digital Michelangelo
project, aso reconstructed from laser range finder data.

Number of | Linux Build | Onyx Build
Model Name Triangles | (H:MM:SS) (H}IIVIM:SS) Memory Usage
Dragon 869,898 0:02:48 0:17:55 287 MB
Knot Sculpture 1,000,000 | 0:03:12 0:23:05 279 MB
Smooth Tetrahedron | 1,572,864 0:05:47 0:33:13 544 MB
David's Head 4,000,885 | 0:19:44 1:20:32 1,119 MB

Table 5.4: LEDS build times (mean of five trials) with the out-of-core algorithm on the
Onyx Reality Engine and Linux PC, both with 128 MB RAM.

5.5 Memory Usage

If the out-of-core algorithmis not implemented carefully, it can requirefar morevirtual
memory than thein-memory algorithm, in order to storeitsintermediate data. To minimize
its virtual memory requirements, we free each intermediate dynamic array and hash table
partition as soon as we have finished processing it, so that we can re-use the memory. With
this careful memory management, our out-of-core implementation uses almost exactly
the same amount of memory as the in-memory algorithm (see Figure 5.19). For the in-
memory algorithm, both hash tables are built ssimultaneously, and we cannot free them
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Figure 5.19: Comparison of memory usage under Irix for the out-of-core and naive
in-memory algorithms on different sized knot scul pture files.

until the entire LEDS is built. For the out-of-core agorithm, we build the hash table
partitions sequentially, freeing the vertex hash table before alocating the edge hash table,
and freeing them both before alocating the LEDS. We also allocate the LEDS vertices,
edge-uses, and faces in stages, allowing us to free al of the remaining intermediate data
before finally alocating the LEDS faces (which are filled without intermediate data for
triangulated input). An additional advantage of the out-of-core algorithm is that most of
the intermediate and all of the final arraysarrays can be allocated in the exact size needed,
S0 that less memory iswasted.

5.6 Variantsof the Out-of-Core Algorithm

The general out-of-coreal gorithm described, whileit buildsatopological datastructure
very efficiently, may not be optimal when considered together with the running time of the
application that uses the LEDS. This is because it may not organize the data within the
LEDS optimally, depending on the access patterns of the particular application that will
be using the data. An application can alwaysre-sort the arrays of vertices, edge-uses, and
faces after they have been constructed, but if we aready know what application will be
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using the data structure, we might be able to build it so that its order is better tuned to the
access patternsof that applicationinthefirst place. Often, aspatially coherent organization
isdesirable.

With the basic build algorithm, faces and edge-uses are stored in the same order that
they appear in the input. If thereis spatial coherence in the input, it will be preserved in
the LEDS. For triangulated input, we exploit the s mple numeric relationships between the
face | Dsand edge-use | Dsto avoid having to record thisinformationin intermediate arrays.
Thus any advantagesfrom changing the | Dsat the start to induce adifferent ordering, rather
than re-sorting at the end, would be offset by the added overhead of these new intermediate
arrays. Therefore, there would be little advantage to changing the order of the faces and
edge-uses during the initial build, unless the input was known to be non-coherent.

The basic build algorithm can destroy any input coherence in the case of the vertices,
however. The vertex uses are randomly assigned to partitions during the initial read of the
data; if there are many partitions, thiswill effectively shuffle them when the vertex IDs are
assigned sequentially within each partition. Therefore, it might be worthwhileto wait until
after the first pass through the data to partition for vertex hashing. Thiswould allow usto
gather statistics on the distribution of the vertices during the initia read, so that we could
divide the vertex-uses into partitions that were spatially coherent and still had roughly
equal sizes. It seems most useful to aso divide our partitions with an eye on specific
downstream processing needs. For example, if we were subsequently planning to run a
sweep-plane dicer that looked at verticesin increasing ~-coordinate order, as described in
Chapter 7, we could divide the vertices into partitions based on increasing z-coordinate.

We could further sort by z-coordinate within each untranslated partition, though this
overhead is unlikely to be worthwhile for dicing. During dicing, processing vertices
requires one z-order read, alternating with reading the upper endpoint vertices of all active
edges. With z-coordinate based partitioning, the next vertex to process would be in the
same partition anyhow, and thus would likely already be in memory when accessed during
dicing. Themarginal gain from secondary caching from having it adjacent would be offset
by the costs of sorting. A complete z-ordering might help arrange the upper endpoint
vertices closer to the order in which they are accessed, but they still would not be accessed
in exact z-order; therefore, the sort’s effect on their access times would not be significant.



81

For a different application that was going to access the vertices in the same order several
times, on the other hand, a complete sort at the start would make sense.

Looking ahead to the task of identifying non-manifold edges, we could combineit with
the task of building the LEDS by adding a “uses’ field to the edge hash table entries that
recorded the number of edge-usesin each direction. After filling in each edge hash table
partition and before freeing it, we would sequentially read through the entire partition to
find al edges that were not used exactly twicein opposite directions. Then we would only
need to look at thislist to identify the non-manifold edges, rather than checking each edge
inthelist of all edges.

Of these possible variants, the one we have implemented is z-coordinate based vertex
partitioning. We do not know the z-extents or distribution of the data before we begin,
which prevents usfrom knowing where to place the partition boundariesfor even partition
sizes a priori. During the first pass through the triangle input data, we merely record a
single dynamic array of the vertex coordinates of each sequential input triangle and find
the minimum and maximum = value for thefile. We still do not know the distributionin z;
thereforewefirst evenly divide the range of input = valuesinto small intervals, many more
than the final number of partitions we need, and later combine consecutive intervalsinto
partitions of even sizes. (Our intervals are not unlike the buckets used by Kitsuregawa et
al. to tune partition sizes during hash joins [40], but we smultaneoudly sort and tune with
our intervals, optimizing for processing that will occur after the initial spatial hash join as
well.) We allocate abin for each sequential interval, with thefirst bin corresponding to the
lowest interval. Then we read through the array of vertex coordinates, transforming each
set of three vertices defining a triangle into three “ untrandated edge-use” entries, storing
each entry in the bin corresponding to the interval containing the z-coordinate of its first
endpoint. We also update an array that recordsthe number of entriesthat have been placed
in each bin.

Then welook at the bin sizes and contentsto assign partition boundariesto get partitions
of roughly equal sizes. Theideal partitionsizeisequal to thetotal number of entriesdivided
by the total number of partitions. For the first partition, we add up the number of entries
in the first < bins until the total first reaches a number greater than or equal to the ideal
partition size. If thetotal islessthan or equal to 10% over theideal size, bins1to: will be
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the partition. Otherwise, we subtract the number of entriesin the :** bin, and if thistotal
is greater than or equal to 10% under the ideal size, bins 1 to : — 1 will be the partition.
In either case, the z-boundary of the partition is calculated and recorded (the highest bin
number times the constant bin z-height for the first partition). Otherwise, we will have to
dividethe:"" bin between thefirst and second partitions (thiswill only occur if we allocated
too few bins or if the vertex data is very unevenly distributed in z). Our implementation
performs a quicksort on the whole bin and then finds the entry at the position for an ideal
partition size; werecord the = coordinate of this edge-use' sfirst endpoint asthe z-boundary
of the partition. For better performance, we could modify the quicksort to terminate once
we had an acceptable number of entries|ess than the pivot point and use the pivot point for
the z-boundary. Since werarely need to split bins, the additional complexity of modifying
quicksort does not seem worthwhile.

We continue in this manner to find the z-boundaries of the remaining partitions, but
rather than trying to get the size of each individual partition within 10% of the ideal size,
we aim for the sum of the sizes of the partitions so far plus the current one to be within
10% of the sum of theideal sizes. Thispreventserrorsfrom building up, which could leave
thefinal partition, consisting of al remaining entries, constrained to be much too small or
large. With our scheme, individual partition sizes will, in the worst case, still be no more
than 20% larger or smaller than the ideal size.

Recall that we partition vertices twice: once to trandate the first endpoint in the
untrandated edge-uses, then again to trandate the second endpoint in the semi-trandated
edge-uses. For the first partitioning step, we build our hash tables and trandate directly
from the bins that the z-boundary table indicates belong entirely to the current partition
(along with possibly afraction of the end bin(s), if they were split). When we repartition
the output of thisfirst trand ation step, we actually allocate partitions, using the z-boundary
table to place the output in the correct partition. The rest of the build proceeds as before.

The bins, in addition to aiding in partitioning evenly, also roughly sort the vertices
within the partitions. During the first trandation step, we process the bins in order; recall
that it isalso in thefirst trandation step that we assign IDsto the verticesin the order that
we process them. Therefore, the final vertex table will be sorted to the same granularity as
the bin boundaries. More binswill result in afiner sort.
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Of course, the bin partitioning scheme takes longer than random partitioning. In
Figure 5.20, we compare the total times to build the LEDS followed by dicing with the
sweep plane dicer described in Chapter 7 under Linux with 32 MB RAM. Our input is

|ELEDS build time M Slice time|
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Figure 5.20: Build times versus dice times for random partitioning and z-coordinate
based vertex partitioning on the 200,000 triangle knot scul pture.

the 200,000 triangle knot sculpture, we make a total of 402 dlices through it, and we use
10 partitions. Allocating 250 bins total (25 bins per partition), the total build plus dice
timewasabit faster than with random partitioning, even though the build time was longer.
Using 1,000 bins (100 bins per partition), the build time increased even more, and the
savingsin analyzing and dicing no longer offset the increased build time,



Chapter 6
Input Analysis, Verification & Clean-up

After we have built the LEDS, we can use it to anayze the input topology and geom-
etry of adesign or part to be fabricated. If we want to manufacture the part using layered
manufacturing, we must verify that the input indeed describes a closed, water-tight bound-
ary. If there are small cracks in the boundary, we attempt ssmple clean-up by merging
vertices. This is sufficient for repairing files whose only problems are round-off errors.
For more serioudly flawed input, more sophisticated techniques, such asthose described in
the related work chapter, can be used to fix the input file.

Even once we have assured that the LEDS describes a closed boundary, the boundary
may still contain non-manifold edge-uses or verticeswhere different pieces of the part just
touch each other. At thispointin processing we may choose to transform thisnon-manifold
representation into a pseudo-2-manifold representation of the same geometry. Algorithms
that can rely on 2-manifold connectivity are generally simpler, cleaner, and more elegant
than algorithms for general b-reps. By transforming a b-rep of non-manifold solid into a
pseudo-2-manifold, we can still take advantage of the former class of algorithms.

6.1 Analyss

Our anaysis module uses the LEDS to report basic topological and geometric infor-
mation about the part. We report the total number of vertices, edges, and faces for each
shell, assuming that the input file correctly separated the shells. We iterate through the
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list of vertices and find the valence of each (equivalent to the number of edge-uses rooted
at the vertex) and report the total number of vertices of each valence. We iterate through
the list of edges and count the number of edge-uses in each direction along each edge,
reporting the locations of al problem edgesthat do not have an equal number of edge-uses
in both directions. We also report the total number of edges with one incident face, two
incident faces, etc. If the shell is 2-manifold, we aso report its genus, calculated using
a generaization of Euler's formula[20], where #Holes is the total number of inner hole
contours in al faces, and #Faces, #Edges, and #Vertices are the total number of faces,
edges, and vertices respectively:

Genus = (2 + #Holes - #Faces + #Edges - #Vertices)/2

We also calculate the bounding box of the part while iterating through the vertices, and
find the shortest edge length while iterating through the edges. Table 6.1 shows the output
from the analyzer for a sample part.

If we find problem edges with unmatched edge-uses during analysis, we also record the
vertices at both their endpointsin an array of “incomplete vertex” candidates for “epsilon
vertex merging.”

6.2 Epsilon Vertex Merging

Because we have found that the cracks in our local, procedurally generated parts are
al caused by round-off errors, we have implemented a ssmple routine that merges the
representations of incomplete vertices located within some epsilon distance of each other
as afirst pass attempt to close cracks. Cracks that remain after this step must be closed
using more sophisticated techniques such as described in the related work chapter; our
focusison cleaning up fileswith errors caused by precision limitations.
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Part is 2-manifold.
Shell is 2-manifold with genus
37.
Boundi ng Box | nfo:
Mn X = -6.9006, Max X =

7. 0833
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Mn Z = -7.0684, Max Z =
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53688 vertices.
192 vertices have val ence 5.
53184 vertices have val ence 6.
192 vertices have val ence 7.
96 vertices have val ence 8.
24 vertices have val ence 16.
161280 edges.
161280 edges have 2 faces
adj acent.
107520 faces.
Figure 6.1: Analyzer output for sample part pictured at right.

6.2.1 A Comparison of Different Strategies

There are a number of schemes we could use for epsilon vertex merging. We could
snap al the incomplete vertices to coordinates on an epsilon resolution grid and merge
those that ended up on the same grid coordinates. The drawbacks to this scheme are
that two vertices that were arbitrarily close to each other could still snap to different grid
coordinates, and the merge choices are sensitive to trandation or rotation of the input (see
Figure 6.2). Alternately, we could process the vertices sequentially and whenever a new
vertex fell within epsilon of a previoudy stored vertex, merge them into a new vertex at
their average position. The drawbacks to this scheme are that the merge decisions and final
vertex positions could vary depending on the valence of the input vertices (see Figure 6.3),
and in degenerate cases vertices could drift arbitrarily far from their original positions (see
Figure 6.4).

Using aweighted average, thefinal vertex position would be order-independent, but the
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Figure 6.2: Epsilon grid scheme, with trandated grid. With the epsilon resolution grid
positioned as on the left, the two vertices v1 and v2 would merge into one merged vertex,
m12. If the grid was trandated as shown with the finely dotted squares on the right,
however, the vertices would continue to be seen as separate after the epsilon vertex
merging step.
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Figure 6.3: Averaging scheme, two different input orders. Wth the vertices input in the
order shown on the left, we would first average v1 and v2 to get m12, and then average
m12 and v3 to get m123. With the vertices input in the order shown on the right, however,
m12 and m123 would both be in the same position as v3.
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Figure6.4: Averaging scheme. With the verticesinput in the order shown, thefinal merged
average position is more than epsilon away from some of the merged input vertices.

scheme would still be subject to arbitrary vertex drift and input order-dependent merging
decisions. We could mergeif any of the original verticesfrom amerged vertex werewithin
epsilon of our new vertex; this would be input order-independent, but it would still be
subject to arbitrary vertex drift. For example, if closely spaced vertices around a circle
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are merged in sequence (see Figure 6.5), the final result will lie at their centroid. If they
areexamined in alessregular order, thefinal result ismorelikely to be several irregularly
placed merged vertices from clusters of original vertices.
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Figure6.5: Weighted average/any neighbor scheme. With the 32 verticesinput in clockwise
order asindicated, the final merged vertex isnot within epsilon of any of the merged input
vertices.

6.2.2 Our Approach

The scheme we chose to implement mergesanew vertex with thefirst previoudy stored
vertex within epsilon, keeping the position of the old vertex. This scheme hasthe drawback
of being input order dependent (see Figure 6.6), but it is trandation invariant, the vertex
drift is bounded by epsilon, and the computation and storage costs are |ow.

With an appropriate choice of epsilon, only the positions of the final merged vertices
will be input order dependent, not the choice of which vertices to merge (see Figure 6.7).
We chooseaninitial epsilonthat is 10% of the shortest edge length unless the user specifies
adifferent value. Using an epsilon lessthan the shortest edge length assuresthat we will not
collapse edges, potentially losing details or introducing zero-area faces (see Figure 6.8).

We also want to avoid inadvertently merging two vertices that should in fact remain
distinct, as shown in Figure 6.9. In most cases, nearby vertices that should not be merged
with an existing vertex are connected via edges to other, nearer vertices that should be
merged with it. Using an epsilon less than 50% of the shortest edge length will eliminate
erroneous merges in these cases. We still might merge with the wrong vertex if the part
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Figure 6.6: Epsilon snapping scheme. This scheme is order dependent, as shown by the
different merging results for the same data input in different order on the left and right.
Final merged vertices, however, will never be more than epsilon from any of the merged
input vertices.
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Figure 6.7: Epsilon snapping scheme with the same vertices in the same two input orders

asabove, but a better choice of epsilon. Only the position of the final merged vertices, not
the choice of which vertices to merge, isinput order dependent.

Figure 6.8: If epsilon is too large, we could merge vertices that should be distinct,
potentially collapsing edges and faces.

had a thin neck or gap that was narrower than epsilon, as shown in Figure 6.10, but it is
unlikely that apart with such afinefeaturewill betessellated with triangles morethan, say,
ten times as large (corresponding to a 10% edge length choice for epsilon), and even more
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Figure6.9: Thisinput should really only have eight distinct vertices, at the eight corners
of the box. Inthelower right corner, if we merged the verticesin the order listed, using an
epsilon equal to the radius of the circle, we might mistakenly merge 1 with 2 and 3 with 4,
instead of merging 1 with 3 and 2 with 4.

unlikely that there will aso be incomplete vertices on both sides of the narrow feature. By
restricting our vertex merging to incomplete vertices, we minimize the risk of corrupting
the clean portion of thefile.

Figure 6.10: The part shown on the left has the cross section shown on the right. Even
with an epsilon smaller than the shortest edge length, we could still mistakenly merge
vertex 1 with 3 instead of 2.

Since the number of incomplete vertices is expected to be small (generally less than
1% of the total vertices), we use a smple in-memory spatial data structure, an octree, to
speed the epsilon-merging operation. If the set of incomplete verticesisvery small, we do
not even need to bother with the octree (which essentially transforms the epsilon-merge
into an Index Nested Loop join [24]). For a small number of incomplete vertices n less
than about 10, the O(n?) comparisons are just as fast as building and traversing the octree.

An octree will not be a good indexing structure if it does not fit in memory, however,
since the low 8-way fan-out will produce a deep index tree that will require a separate
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disk access at each level for each look-up, with little opportunity for caching. For avery
large data set, it might be worthwhileto sort the vertices to achieve greater locality in the
search for vertices within epsilon. The best global ordering is probably distance along a
“gpace-filling” 3-D Hilbert curve (see Figure 6.11), which provides excellent locality for
spatial range searches in arbitrary directions [34]. We can pack the vertices in Hilbert-
sorted order into the leaf nodes of an R-tree built up on top of them, as described by Kamel
and Faloutsos [38], so that theindex tree will be shallow with optimal fan-out to minimize
disk accesses.

Figure 6.11: A space-filling 3-D Hilbert curve

In practice, however, we never expect to have more incomplete vertices than fit in
physical memory from a LEDS constructed on the same machine. On today’s graphics
workstationsfrom SGlI, the standard shipping configurationstypically have RAM that is at
least .63% of thedisk size (e.g. 128 MB RAM with a20 GB hard drive); the most powerful
desktop system available from Dell Computer in June 2000 has RAM that is .67% of the
disk size. For an object with average vertex valence six, the memory required to store an
octree containing all the vertices (assuming imbalanced data makes the octree no more
than two times larger than abalanced one), will be approximately 3.6% of thetotal virtual
memory required for the build. * We only need to store asmall fraction of these vertices,

1The number of pointersin a balanced octree with L leavesis I+ Yo% 1¥ <« 1o 3022 (18 — 81 —
1.14L. If imbalanced data makes the octree twice as big, the total storage for the four-byte octree pointers
will be 9.12 bytes/vertex. For each vertex, we store its three coordinates and a pointer to the LEDS vertex,
an additional 16 bytes/vertex, for atotal of 25.12 bytes/vertex. The total amount of memory we use during

aLEDS build is approximately 700 bytes/vertex, depending on thefile; 25.12/700 = 3.6%.
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however —the “incomplete” vertices. If thisfractionislessthan 5% (and it'stypically less
than 1%), then the octree will take less than .18% of the virtual memory required for the
build. Thus it should fit in physical memory, even on desktop machines with high virtual
to physical memory ratios. Therefore, we have not implemented Hilbert sorting for vertex
merging.

We perform epsilon vertex merging to close cracks after building the topological data
structure but before dicing. Others have incorporated similar techniques into the data
structure building or dicing phases of processing. The QuickSlice 6.2 software [70] that
ships with the fused deposition modeling (FDM) machine waits until after dicing to try to
closecracksonadiceby dicebasis. Thismay lead to inconsi stencies between dices, since
no underlying consistent solid is ever formed, and acrack that could have been fixed with a
single vertex mergein 3-D will require as many merges as slices through all of itsincident
edges. Rock and Wozny’s software [61] merges all vertices within a round-off tolerance
as they areread in, using a balanced binary AVL tree [41] for neighbor searching. This
technique relies on choosing an appropriate epsilon before reading the data, with all of the
associated pitfalls discussed above. Furthermore, they store al the vertices, not just the
incompl ete vertices; thus, the tree will not fit in core memory for very large files, causing
the performance to degrade dramatically, since binary trees are inefficient for caching due
to their low fan-out.

6.3 Makingthe Representation Pseudo-2-M anifold

After analysis and vertex merging, we may find that the boundary is closed but that the
partisstill not 2-manifold (such astheexamplesshownin Figure2.6). Insuch cases, wecan
separate the non-manifold edges and vertices into multiple coincident edges and vertices
in order to make a pseudo-2-manifold representation whose connectivity corresponds to
that of a2-manifold. Many agorithms that operate on topological data structures assume
their input is 2-manifold or pseudo-2-manifold. Our dlicer, for example, requires that all
non-manifold edges be separated into pseudo-2-manifold edges.
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6.3.1 Separating Non-2-Manifold Edges

First we separate non-2-manifold edges identified during the analysis stage. The goal
is to transform them into coincident 2-manifold edges connected such that the boundary
surface touches but does not intersect at the edge. We do this by matching the edge-uses
into pairswith mutually referring sibling pointers, based on theradial ordering of the faces.

Figure6.12: Geometry with a non-2-manifold edge (the bold edgein the center) that must
be separated into two pseudo-2-manifold edges. (The lightest lines indicate boundaries
between coplanar triangles.)

We perform the radial sort of the faces incident to the non-manifold edge, for example
the one pictured in Figure 6.12, asfollows. First we transform the faces into unit vectors
on a projection plane perpendicular to the non-manifold edge, each vector radiating out
from the point to which the edge projects. We call these “face vectors” We calculate
each by taking a vector on the face pointing away from the non-manifold edge. This can
be found by taking the vector of the next-in-loop edge-use after the edge-use along the
non-manifold edge (continuing along the loop if it happensto be colinear), projecting it to
the perpendicular plane, and normalizing it (see Figure 6.13).

Now we can radially sort the normalized face vectors. We choose one as our reference
face vector, then calculate the dot product of each other face vector with the reference.
The smaller the dot product, the larger the angle with the reference, ranging from a dot
product of +1 for aface directly on the referenceto -1 for aface directly opposite. These
dot products, however, will not differentiate between vectors at 3 0’ clock and at 9 o’ clock
with respect to the reference 12 o’ clock vector. Therefore, we separate the non-reference
face vectors into two lists that we sort separately, one list for those in the right hemi-circle
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Figure 6.13: The faces incident to the non-2-manifold edge, the vector on each face
pointing away from the edge, and the projection plane for the edge.

relativeto thereferencefacevector, onelist for thoseintheleft hemi-circle. Theappropriate
list in which to place each face vector is chosen by calculating its cross product with the
reference face vector. The cross productswith those in the right hemi-circlerelative to the
reference face vector (from the point of view of an observer above the plane) will point
down into the plane, while those in the left hemi-circle will point up out of the plane (see
Figure 6.14). A face vector directly opposite the reference may be placed in either list.
We actually do not care which is the right hemi-circle and which is the left; we just need
to divide the face vectors into two lists according to which hemi-circle they fall in. Then
we sort the list of vectors in one hemi-circle by increasing angle with the reference face
vector and sort the list of vectors in the other hemi-circle by decreasing angle. For the
complete radial ordering of all the incident faces, we order the face vectors with first the
reference face vector (A in the example), followed secondly by the hemi-circle list sorted
by increasing angle (C in the example), followed finally by the hemi-circle list sorted by
decreasing angle (D,B in the example).

Next we look at the projected face normals that correspond to the face vectorsin this
radial ordering (shown in Figure 6.15). The normals point to the side of the face that is
empty space, avay from the side that contains material (the interior of the part). These
projected face normals should alternate between being directed clockwise and counter-
clockwise around the edge. If they do not, asin Figure 6.16, it indicates that the geometry
was self-intersecting or that an entire shell wasoriented incorrectly, and wereject theinpui.

We need to choose pairs of faces whose edge-uses along the edge in question are
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Figure6.14: Here we see the projected face vectors, with A asthe reference vector. A x C'
points down into the plane; therefore, C is in the right hemi-circle (shaded) relative to
A. A x B and A x D have the opposite orientation; therefore, B and D are in the |eft
hemi-circle.

Figure6.15: Ontheleft, thefacesare shown (thegray ones are back-facing). Ontheright,
the projected faces with the projected face normals are shown. A and D have clockwise
normals; B and C have counterclockwise normals.

in opposite directions (corresponding to clockwise or counter-clockwise face normals) in
order to make separate 2-manifold edges. If wearbitrarily pair them up werisk introducing
intersections in the boundary if there are more than four faces adjacent to the edge, as
shownin Figure6.17. There are two obvious choicesthat will not formintersectionsin the
boundary: either we could pair faces adjacent in the radial ordering whose normals point
away from each other (e.g. A & B, C & D inFigure6.15), or adjacent faceswhose normals
point toward each other (e.g. B & D, A & Cin Figure 6.15). The first alternative means
that in adice through the separated edges, the surrounding contour(s) will bound separate
regions of material that happen to touch at this edge (see Figure 6.18), and the second
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A&C B&D ! A&D
Figure 6.16: example of projected face normals whose orientations do not alternate.

If A was matched with C, and B with D, the faces would bound two solid regions, one
inside the other, as shown on the left. If A was matched with D, and B with C, the faces
would bound two solid regions that overlapped as shown on the right. Neither choiceis
a legal configuration.

Figure 6.17: An arbitrary matching of face normals whose orientations do alternate can
also introduce intersections in the boundary, eg. matchingB & E,D & A, F & C. (Even
though pairing F & E, A& D, B & Cwill not introduce intersections, it issimpler to pair
up facesthat are adjacent in theradial ordering than to check for intersections explicitly.)

aternative meansthat in a dice through the separated edges, the surrounding contour will
bound the same region of material that just happens to pinch down to zero thickness at this
edge (see Figure 6.19). If more than four edge-uses are coincident, combinations of these
two choices are also possible.

We have chosen to match the faces into pairs of adjacent faces with normals pointing
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Figure 6.18: Matching facesA & B, C & D, whose normals point away from each other
istopologically equivalent to the geometry pictured here.

2-D slice

Figure 6.19: Matching facesB & D, A & C, whose normals point toward each other IS
topologically equivalent to the geometry pictured here.

away from each other, but this choice is somewhat arbitrary. We have chosen it to make
the dicer output more consistent in the event that the input contains non-manifold vertices
that abut the middles of edges or faces in addition to the pseudo-2-manifold edges. Our
algorithmis not affected when a non-manifold vertex touchesthe middle of another face or
edge; our data structure does not capture this adjacency and so adlice through such avertex
will yield a vertex coincident with the boundary of a separate region (see Figure 6.20).
Similarly, we arrange it so that a dice through a pseudo-2-manifold edge will also result
in coincident points on the boundary of separate regions (asin Figure 6.18).

The end result from the point of view of the edge-uses is separate but coincident 2-
manifold edges that have the same vertices as endpoints, each with exactly two edge-uses
in opposite directions with mutually referencing sibling pointers. While this matching
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2-D slice
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touches the cube, but we never capture this adjacency information in the LEDS. A dice
through this vertex will yield the two separate contours shown on the right.

scheme does not give us full symmetry between full and empty regions, it does give us a
globally consistent boundary. For example, if the two touching cubes were attached by a
solid pedestal underneath, then after the pseudo-2-manifold edge separation the vertex at
the top of the edge would have two separate disk cycles around the two cubes, while the
vertex at the bottom would have a single disk cycle connected by the faces of the pedestal
(see Figure 6.21). This configuration is still consistent even though it is not symmetric.
(Conceptualy, we assume that all such infinitely thin regionswill crack and separate.)

2 disk cycles

1 disk cycl

Figure 6.21: If the two touching cubes are Sitting on a solid pedestal, then after we
separate the non-manifold edge there will be two disk cycles at its top vertex but only one
disk cycle at its bottom vertex.
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Separ ating Non-2-M anifold Vertices

The second and final step in making our representation pseudo-2-manifoldisto locate
and separate any remaining non-2-manifold vertices whose edge-uses form multiple disk
cycles, such as the middle vertex in Figure 6.22. Unlike edges, vertices are represented
explicitly; therefore, we must actually make a duplicate vertex for each additional disk
cycle. Wewait until after we have separated non-manifold edges because their separation
can make duplicating some of their endpoints unnecessary, as is the case with the lower
vertex on the pseudo-manifold edge in Figure 6.21, which hasonly asingle disk cycle after
the edge has been split.

N
F Disk Cycle H

N
D/E\A

\ Disk Cycle )

C B

Vertex ¥

Figure 6.22: A non-manifold vertex with two disk cycles. The edge-uses are shown as
arrows on the visible faces; those that appear in the disk cycles for the center vertex are
solid and those that do not are dotted. The disk cycles are pictured on the right.

In addition to duplicating the non-2-manifold vertices, we need to divide up their edge-
uses into disk cycles, updating the edge-uses vertex pointers to point to the appropriate
copy of the vertex and relinking their next vertex edge-use pointers so that they connect
edge-uses in the same disk cycle. The agorithm we have developed to identify the non-
2-manifold vertices and their disk cycles simultaneoudly relinks the next vertex edge-use
pointers to put them in the order in which the edge-uses appear around the disk cycles,
even for manifold verticesthat do not need to be duplicated. Unlikethe Noodlesdisk cycle
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shown in Figure 2.10, we orient our disk cycles clockwise as seen from the exterior of the
part for compatibility with our dlice data structure.

We begin by marking the edges in the first disk cycle for the vertex. We start with
the vertex'sfirst edge-use (B in the example shown in Figure 6.23), mark it and follow its
sibling’snext-in-loop pointer to find the next edge-useinthedisk cycle (C inthisexample),
and so on around the disk cycle. When we are back to the first edge-use we marked, we
have traversed a complete disk cycle.

e\ /R

P ;

o H
-

NextVix .~
Edge-Use ,*
7

. Edge—Usé s
/\.\ : ’,

Next Vtx /
Edge-Use’

Figure 6.23: Following LEDS pointersto |ocate multiple disk cycles.

Next, we check if there are more disk cycles around the vertex, again starting with
its first edge-use (B), but this time iterating through the next vertex edge-use pointers.
If the edge-use is already marked (as B is), we follow its next vertex edge-use pointer
to another edge-use for the vertex (D in this example), then overwrite the pointer we
just followed to point to the next edge-use in the disk cycle instead (e.g. we overwrite
B’s next in vertex edge-use pointer to point to its sibling’s next in loop pointer, C). This
overwriting will eventually divide the original unordered next vertex edge-use circular list
of all edge-uses for the vertex into separated ordered circular lists for each disk cycle. In
this example, since D is also already marked, we repeat the same step, following its next
vertex edge-use pointer to H and then overwriting the pointer to point to E instead. If we
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come to an unmarked edge-use that has not yet been included in adisk cycle (suchasH in
Figure 6.23), then we know that thisisanon-manifold vertex that must be duplicated. We
make a copy of the vertex for thisnext disk cycle that pointsto this edge-use (H) asitsfirst
edge-use. Then we traverse and mark thisdisk cyclein the same manner asthefirst one, as
described in the previous paragraph, starting fromitsfirst unmarked edge-use (H). During
the traversal, we a so update the edge-uses in this new disk cycle to point to the new copy
of the vertex. When we have marked all of this new disk cycle's edge-uses, we go back to
traversing and updating the original next vertex edge-use ordering where we | eft off (at H,
in this example), until we return to the first edge-use from the original vertex (B). At this
point all of the edge-uses rooted at the vertex will have been marked asincluded in a disk
cycle and their next vertex edge-use pointerswill all have been updated to point to the next
vertex use in thelir disk cycle.
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Chapter 7
Slicing

In this chapter we describe the design and implementation of a coherent sweep plane
dicer which “dlices’” atessellated 3-D CAD model into horizontal, 2.5-D layers of uniform
thickness for input to layered manufacturing processes.

Previousalgorithmsfor dicing a3-D b-rep into the layersthat form the process plan for
these machines have treated each dlice operation as an individual intersection with aplane.
But for a typical stereolithography build with .005" layers, a 5" high part will be made
from one thousand parallel slices with significant coherence between slices, which can be
used to calculate neighboring slices more efficiently. An additional shortcoming of many
existing dlicers that we address is a lack of robustness when dealing with non-manifold
geometry.

Our algorithm exploits both geometric and topological inter-dice coherence to output
clean dices with explicit nesting of contours. The algorithm relies on the LEDS for the
initial topological information. If the solid contains non-manifold edges, we preprocess
the LEDS to logically separate them into coincident manifold edges as described in the
previous chapter. The main body of the agorithm uses a sweep plane approach, using
the connectivity information for the 3-D solid to derive and update the connectivity of the
2-D dlices. Theresulting dlice descriptions are topologically consistent, connected, nested
contours, rather than simply unordered collections of edges.
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7.1 Sweep Plane Algorithms. Background

The general approach in a sweep plane agorithm involves moving a virtual plane
through the input. (For 2-D problems, a sweep line is used in place of a sweep plane.)
Whilethe plane moves aong, thea gorithm maintainsadynamic status structure, generally
a parameterized representation of the intersection of the input with the current position of
the sweep plane. This status information only changes at certain points called event points,
which are maintained in an event queue. Whenever the sweep planereaches an event point,
the point is processed to update the status structure, and additional calculations, depending
on the particular problem to be solved, are performed. Most sweep algorithms are output
senditive; that is, the running time increases (ideally linearly) with the amount of output
produced, even though the worst case performance may be quadratic in the input size.

For example, a smple sweep line agorithm can be used to find all intersections of
a group of line segments in the plane in time O((n + k)logn), where & is the number
of intersections discovered, without checking all »? possible intersections [17]. In this
example, the status structure contains the | eft to right ordering of the segments intersecting
the current position of ahorizontal sweep linethat movesfrom bottom to top over theinput,
and the event points are the segment endpoints and the intersections, which we compute
as we go. We insert segments into the status structure (in the appropriate position) when
we encounter their bottom vertices and delete them when we reach their top vertices.
The additional calculation at all event pointsis to check for intersections between each
pair of segments that have newly become neighborsin the current status structure. These
intersection points get inserted in the event queue to be processed when the sweep line
reaches them, since the two segments that intersect will switch positions in the status
structure as they intersect, giving us new pairs of neighborsto check.

In our dicer, the event points are the vertices of theinput polyhedron and the ~-heights
of the dlices, and the status structure contains all of the edges currently intersected by the
sweep plane, stored in circular linked lists according to their connection order in the dlice
intersection contours.
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7.2 Slicing Algorithm: Overview

Asinitialization for our dicer, we build the LEDS for the input, verify that it describes
a closad solid, and make it pseudo-2-manifold, as described in the previous chapters. If
necessary, we also rotate the part (by applying a rotation transformation to each of its
vertices) in order to align the desired build direction with the positive =~ axis. In our
algorithm, we will move a virtua horizontal sweep plane from the bottom to the top of
the input, the direction in which SFF machines typically build parts; therefore, we sort the
vertices from least to greatest z-coordinate at the start. The algorithm’'s“z-events’ occur
each time the sweep plane hits a vertex (an event that changes the topology of the current
dice) and each time the sweep plane hits a height at which we wish to output a dlice (an
event where we wish to derive the geometry of the current dice).

For agiven position of the sweep plane, after we have processed any new vertices that
intersect that plane, our status structure will reflect thetopology of adlice—the connectivity
of its vertices— at the current height, recorded in alist of contours. For each slice contour
in the list, the data structure will contain a circular, ordered, doubly-linked list of the
edges of the solid intersected by the current sweep plane that determines this contour (see
Figure 7.1). An outer contour also pointsto alist of any inner hole contours nested within
it, and an inner hole contour points to the outer contour that containsit.
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Figure 7.1: The dice contour data structure at the given position of the sweep plane will
consist of the two circular linked lists pictured at right. Their orientation and nesting
indicate that the slice contains a single polygon with a hole.

Each of the currently intersected edges of the solid determines a vertex in the 2-D
dice, with the same connectivity as in the contour’s circular list of edges. The geometric
position of each intersection vertex isderived by finding the point at the current z-height on



105

each edgein the circular list. Each contour’s clockwise or counter-clockwise orientation
(from the point of view of looking down on the slices) determines whether it is an inner
hole contour or an outer contour, respectively. Because we do not need this orientation
classification until we output a dice, we wait until the first dice that occurs after the
contour isformed to classify it, since we will be cal culating intersection point coordinates
then anyhow, and those coordinates are needed for deriving the orientation. In addition
to contour orientation, we also derive the nesting of contours inside one another at the
first dice after their creation. The contour orientations as well astheir nesting will remain
unchanged until we hit a saddle point (assuming that the input is not self-intersecting), at
which point we mark the orientation and nesting invalid and re-derive them at the next
dice (see section 7.4).

The agorithm proceeds by moving the plane up to the next z-event. If there are any
new vertices at this height, we process themin arbitrary order, using information about the
incident edges to modify the appropriate contours, as explained in detail below. If we want
to output a dice at this height, then (after first processing any new vertices) we calculate
the (x,y) coordinates of the intersections with the edges, derive orientation and nesting for
any new or changed contours, and then output the geometry as well as the topology of the
dice.

7.3 Vertex Processing

Our first step in processing a vertex is to build an explicit disk cycle for it consisting
of acircular, doubly-linked list of pointersto its edge-uses. Pieces of thisdisk cycle will
be incorporated directly into the status structure’s dlice contour lists, also doubly linked
(though al figures show only the “next” arrows of these doubly linked lists).

Next we process the disk cycle we have constructed for the vertex. Each edge-use
in the disk cycle is classified as one of two types. Either we have already processed its
sibling (and its sibling is in one of the existing dice contours in our status structure), in
which case this vertex is the top of an edge-use which will not appear in future dlices,
and we refer to it as an ending edge-use; or it is an edge-use whose sibling we have not
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seen before, in which case this vertex is the bottom of a new edge-use, and we refer to it
as a beginning edge-use. For a horizontal edge, the disk cycle for the first endpoint we
process will treat the horizontal edge-use as a beginning edge-use, and the disk cycle at
the other endpoint will treat its sibling as an ending edge-use. No special case is required
for horizontal edges, nor does the order in which we process their endpoints affect the
output. Similarly, the order in which we process the disk cycles around vertices that were
originally non-2-manifold does not affect the output of the algorithm.

For the first vertex we process, and again at local minima on the part, the disk cycle
will consist entirely of beginning edge-uses. For the fina vertex and at local maxima,
the disk cycle will consist entirely of ending edge-uses. The majority of disk cycles will
consist of amix of beginning and ending edge-uses. We consider each of these three cases

Separately.

7.3.1 Beginning Vertices

A disk cyclelinking all beginning edge-usesis converted directly to anew contour that
will appear in slices above the vertex. For the first vertex processed, i.e., the vertex at
the bottom-most point on the part, its disk cycle, with its clockwise ordering of edge-uses
around the vertex as seen from the outside of the part, gives acounter-clockwise ordering of
the edge-uses in the dice contour viewed from the top of the part. This counter-clockwise
ordering indicates an outer contour in the dice (see Figure 7.2). This same sSituation is
encountered at any local minimum for geometry with only convex faces. For the case
shown in Figure 7.3, the clockwise ordering of edge-usesin the disk cycle corresponds to
a clockwise ordering in the corresponding slice contour viewed from the top of the part,
indicating a hole in the dice. In either case, the disk cycle becomes a dice contour; we
add it to thelist of contoursand update all of its edge-usesto point to the dlice contour that
they now belong to (making use of the LEDS edge-use's Extra pointer). The slice contour
pointer also servesto flag whether an edge has been seen before: totell if anedge-useisan
ending edge-use we check to see if its sibling’s dlice contour pointer is set. We do not try
to determineif our new dlice contour isan outer contour or a hole contour until we reach a
height where we need to output an actual dice.
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Figure7.2: Thedisk cyclearound theindicated vertex containsall beginning edge-uses; it
starts a new counter clockwise outer contour in the dlice data structure (seen from above).
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Figure7.3: Thedisk cycle around the indicated vertex has the opposite orientation as the
previous example; it starts a new clockwise inner hole contour in the dice data structure
(seen from above).

7.3.2 Ending Vertices

A vertex with all ending edge-uses (we will use a prime (') on edge-use labels in
subsequent figures to indicate ending edge-uses) is the analogue of the beginning vertex
case. It arises when an existing dlice contour in the status structure will disappear from all
dices above this vertex. We find the existing dlice contour that it matches, which could
be either an outer contour or a hole (see Figures 7.4 and 7.5), and delete it from the list
of contours. To find the matching existing contour, we look at the slice contour pointer
of the sibling of any of the ending edge-uses in the disk cycle; this existing contour will
contain the siblings of these ending edge-uses ordered in the opposite sense (clockwise or
counterclockwise).

When we delete a contour, it has shrunk to zero area; thus there should be no other
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contours contained in it, except for the case of a pseudo-2-manifold vertex where any
contained contours should disappear at the same vertex when we process their disk cycles.
Therefore, we do not need to look at contained contours when we delete a contour. A
deleted contour at any vertex may, however, have been contained in another contour; if so,
we deleteit from that contour’slist of contained contours.
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Figure 7.5: An inner hole contour is deleted at this vertex where all the edge-uses are
ending edge-uses.

7.3.3 Mixed Vertices

When we have both beginning and ending edge-usesin adisk cycle, we use the ending
edge-usesto determinewhere to add the beginning edge-uses to the existing dlice contours.
First let’s consider the simple case illustrated in Figure 7.6, where we start with the dlice
contour shown at the bottom right, and end up with the contour shown at the top right.
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Figure7.6: We look at how processing the disk cycle at the center vertex changesthe dlice
contours pictured at right.
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Figure7.7: Afront view of the same geometry showing the connectivity of the disk cycle
in the center (solid black arrows between E, F, C' and D’) and the relevant connectivity
of the dlice contour (dotted arrows) before (below) and after (above) processing the disk
cycle. Ending edge-uses are denoted with a prime (*); their beginning edge-use siblings
have the same label without the prime. The ending edge-use run (C’, B’) and beginning
edge-userun (E, F) within the disk cycle are demarcated with dashed ovals.

Below the center vertex, we have the existing slice contour (A=B=-C=D=-G=-). At
the center vertex, we processthedisk cycle (C'=B’=E=F=-) (seeFigure7.7). Thisdisk
cycle contains one ending run, C'=-B’, which is a run of consecutive ending edge-uses
whose siblings match up with arun of consecutive edge-uses in the existing slice contour
(the matching siblings will be in the opposite order, B=-C). The remaining edge-usesin
thedisk cycle, E=-F, will bereplacing the matching siblingsto form the new slice contour.

Pointers from the first edge-use in the ending run, C’, provide us with the information
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needed to splice between D inthe existing dice contour and F inthe disk cycle. Wetakethe
predecessor of C’ in the disk cycle, F, and have it point to D, the edge-use following C’s
sibling in the existing dice contour. The pseudo-code for this operation follows, where
FirstEnd refersto the first ending edge-use in the ending run in the disk cycle:

Fi r st End- >Pr evi ous- >Next = FirstEnd- >Si bl i ng- >Next;

Similarly, we follow pointers from the last edge-use in the ending run, B’, to splice
between A in the existing sice contour and E in the disk cycle. We take B’’s sibling's
predecessor in the existing dice contour, A, and have it point to E instead, the edge-use
following B’ inthedisk cycle. The pseudo-codefor this operation follows, where LastEnd
refersto the last ending edge-use in the ending run in the disk cycle:

Last End- >Si bl i ng- >Pr evi ous- >Next = Last End- >Next;

The piece of the linked list between the first and last edge-uses in the beginning
edge-use run, E=-F in this casg, is retained from the disk cycle and incorporated directly
into the updated dice contour. In addition, we make the complementary changes to the
corresponding “previous’ pointers to maintain the doubly linked lists:

Fi r st End- >Si bl i ng- >Next - >Previ ous = First End- >Previ ous;
Last End- >Next - >Previ ous = Last End- >Si bl i ng- >Pr evi ous;

The final step is to traverse the beginning edge-use run from the disk cycle, E=F,
and store with each beginning edge-use a pointer to the slice contour to which it has been
added.
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Saddle Vertices

For the smple case of a convex part, there is only a single ending run (a run that
matches up with asingle connected run, in the opposite order, in an existing slice contour);
we merely need to replace the corresponding run in the slice contour with a new run of
beginning edge-uses from the disk cycle. The beginning edge-uses all get added to the
same contour that the ending run was in, and no other edge-uses or contours are affected.
For more complicated geometry such as the three-pronged part shown in Figure 7.8, we
may encounter multipleending runsinasingledisk cycle (see Figures7.9 and 7.10). When
this occurs, we process the ending runs separately. The splicing code for each isidentical
to the code for asingle end run, but instead of just substituting new edge-usesinto asingle
spot in an existing sice contour, the splices may split apart or merge together existing sice
contours; thus the updating of the contour pointers of all the edges in the affected contours
will be necessary.

Figure7.8: Thisside view of a three-pronged part illustrates that thereis a single contour
per dice below the center vertex, as for the lower dice indicated by the lower dotted
line, and there are three contours per dice above the center vertex, asfor the upper dice
indicated by the upper dashed lines.

In the example shown, a single contour splitsinto three contours after the three ending
runs are processed for the vertex at the center saddle point. If the same part was upside
down, we would have three dice contours merging into one at this vertex.

When such splitting or merging occurs, we need to identify which contours have
changed, update their edge-uses to point to the contour they now belong to, and update
the list of dice contours. We determine if a splicing operation has caused a split or a
merge by comparing the old contour pointers of either pair of edge-usesthat we've spliced
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K C
Figure 7.9: Looking down on this same part, we see the center vertex whose disk cycle
hasthree ending edge-uses (I’, E’, and A', with black circles around their primed labels).
Each of theending “ runs’ isone of these edge-uses.

2nd Ending Run
Figure7.10: Thedisk cycle and existing slice contour before we process the center vertex.
Ending edge-uses are denoted with a prime ().

together. If they had different contour pointers beforewe connected them, then the splicing
operation merges these two contours together (e.g. J and R, the pair spliced around the
first edge-use in the first ending run in this example have different contour pointers, as
shown in Figure 7.11). If they had the same contour pointer before we connected them,
then the splicing operation splits that contour (see Figure 7.12). In either case, in one of
the two contours that merged or that resulted from the split, we need to reset the pointer
from each edge-use to its new dlice contour. We process each ending run, performing its
corresponding splicing operation and updating all the edge-uses contour pointers, based
on the connectivity that resulted from the previous splicing operation, before processing
the next ending run.
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Figure 7.11: After splicing around the first ending run, I’, the disk cycle is merged with
the existing dlice contour.

Figure 7.12: After splicing around the second ending run, A', the dice contour splitsinto
two pieces.

Figure 7.13: After splicing around the third ending run, E’, dice contour 1 splitsagain.

The splicing operation for the first ending run in a disk cycle always merges the new
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disk cycle with an existing dice contour; al of the remaining unprocessed edge-uses of
the disk cycle have their contour pointers set to this dlice contour (asin Figure 7.11). For
the smple case of a single ending run described in the previous section, this is the end
of processing. After the first splicing operation, subsequent splicing operations generated
by the same disk cycle may cause splits, if other ending runs in the disk cycle match up
with edge-uses in this same dlice contour (asin Figures 7.12 and 7.13), or they may cause
further merges, such as would happen at thisvertex if the same part were upside down.

With the upward facing three prong part, an outer contour splitsinto contoursthat are
themselves outer contours, but a split can also result in a change of contour orientation,
as in the part shown in Figure 7.14, where an outer contour splits into one inner and one
outer contour. All of these topological changes must bereflected in the dice contour status
structure.

Figure7.14: When this part isdiced, an outer contour (bottomright) splitsinto oneinner
and one outer contour (middle and top right).

7.4 Contour Classification and Nesting

7.4.1 Orientation Classification

Before we determine how contours are nested, we determine whether they are outer
contours or inner hole contours. This classification is based on whether they are oriented
counterclockwise or clockwise as viewed from above. As mentioned previously, we wait
until we get to thefirst dice after the contour isformed to classify it, since at that timewe' |l
be making intersection point calculations anyhow. This classification will remain valid for
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the contour until it splits or merges, through any number of inserted or deleted edge-uses
that do not change its topol ogy.

We cannot determine a contour’s orientation by looking merely at the local geometry
around one point on the boundary, asthelocal geometry could beidentical for an outer and
an inner contour, as shown in Figure 7.15. We can, however, find the contour’s orientation

Figure 7.15: If we just look e two bold edges adjacefit to the indicated points on
these two contours, the local geometry isidentical. Yet the contour on the left is oriented
counter-clockwise while the contour on the right is clockwise.

using asingle cross product if wefirst find an extreme point on the contour. For example,
if we take the right-most point, then we know that the region to its right is outside of the
contour; therefore, if we cross the contour to the adjacent region between the two edges
that meet at this point, we know that thisregion isinside of the contour. Then we can take
the cross product of these two directed edgesto get anormal. By theright-hand orientation
rule, if thisnormal points up out of the plane, then the region inside of the contour contains
material and thus the contour is an outer contour; conversely, if the normal points down
into the plane, then it is an inner contour.

Occasionally, when there are multiple pointsin the contour with the same x-coordinate
at the right-most extreme of the part, we will have to be judicious about which right-most
point we use. We cannot find a plane normal if the adjacent edges are colinear; therefore,
if our initial right-most point candidate was between two vertical edges we pick another
right-most point. The other problematic case iswhen the right-most point is non-manifold
(see Figure 7.16). In this case, depending on which instance of the right-most point we
choose, the zone between its edges may not be adjacent to the region to the right of this
right-most point, the region that we knew was outside of the contour. If these regions are
not adjacent, then we cannot tell whether the zone between the edges is inside or outside
the contour. In this case, we must be sure to pick an instance of the point with at least one
of itsadjacent edges adjacent to theregion to theright of the right-most point (for example,
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Figure7.16: Each of the three contour geometriespictured hasa non-manifold point asits
right-most point, with identical adjacent edges. (Each example shows a single contour.)
If we chose the instance of this point with the adjacent edges indicated by bold linesin the
figure on theleft, their cross product would tell us whether there was material in the cross
hatched region. The cross hatched region is not adjacent to the striped region outside
the contour that is to the right of the point; therefore, we do not know if this region is
inside the contour (and in fact it is not). Therefore, this cross product does not tell us the
orientation of the contour. WWe must choose the instance of the non-manifold point with
the adjacent edges indicated by bold linesin the figure in the middle, since here the cross
hatched region between the edges is adjacent to the striped region to theright of the point.
Alternately, the edges might be connected so that instead of one region pinching down to
zero width at the non-manifold point, two separate pointy regions come together and just
touch, as shown in the figure on the right (again showing a single contour). In this case,
we could choose either instance of the point, since both of the pointy regions are adjacent
to the striped region to the right of the point. The figure illustrates the interior region
between the two lower bold adjacent edges.

by picking the instance with an adjacent edge that is closest to vertical).

If we determine that we have an inner hole contour, we must find the outer contour that
containsit (thecontour withinwhichit subtractsahole). If wehaveany inner hole contours,
then we must also determineif any of our outer contours are islands within the holes, and
nest them appropriately as well. We derive full nesting by finding the container of each
contour whose container is unknown (the query contour), considering each contour with
opposite orientation a candidate container. (Other algorithms derive the mutual nesting
of an entire collection of contours at once using a sweep line approach [17], but thisis
inefficient for our application since the majority of our nesting information remains valid
across dices, asexplained below in Section 7.4.4.)

7.4.2 Bounding Box Containment Test

We use bounding boxes to reduce the problem size for the case of many complex
candidate contours. To find the container of an inner hole contour, for example, the first
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pass of our algorithm compares its bounding box with the bounding boxes of all outer
contours. If it is contained in the bounding box of only a single outer contour, then that
is its containing contour, shown in Figure 7.17. If it is contained in the bounding boxes

Figure 7.17: For the inner hole contour on the left, 1ts bounding box (bounding boxes
are shown with dotted lines) is contained in the bounding box of a single outer contour,
its container. For the inner hole contour on the right, its bounding box is contained in
the bounding boxes of two outer contours; thus further tests are needed to find its actual
container.

of multiple outer contours, we use aray test to determine which of these is the containing
contour, as explained below in Section 7.4.3. If the query contour whose container we
sought was an outer contour, on the other hand, and only asingleinner contour’s bounding
box contained it, this does not mean that it is contained in this inner contour, because an
outer contour may have no container. We still use the bounding box test to narrow down
the possible containers for an outer contour that we will then have to test with the ray test,
even if thereis only one candidate.

If the bounding box of a candidate containing contour is coincident with the bounding
box of our query contour, it is a possible container, but first we check if the two contours
are completely coincident. A pair of coincident contours in aternate orientations cancel
each other out; therefore, we do not need to output them (see Figure 7.18). But avalid solid
could contain one more coincident contour in one orientation than the other, and in this
case we do want to output a contour in the dominant orientation (see Figure 7.19). Multiple
coincident contours is the one case where we cannot reliably derive nesting information
that will be consistent with the nesting in the next dlice, even if no splits or merges occur
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Figure 7.18: For this 2-manifold, genus 1 part, a slice near the top parallel with the top
face will consist of two separate nested contours. But if we dice through exactly at the
bottom, the inner and outer contours will be coincident; the hole extends to fill its outer
contour. e do not output this zero-area dice. (Alternately, if this shape were subtracted
from a larger block, at the bottom we would have an island extending to fill a hole, and

again we would not output the hole or island.)

Figure 7.19: For this pseudo-2-manifold part (a pyramid inside a toroidal frame), a dice
through the very bottomwill consist of three coincident contours: two outer contoursand
oneinner hole contour. Here we do have material; we output an outer contour.

during splice operations in between the two dlices. Therefore we must mark the nesting
information invalid for coincident contours and derive the correct nesting at the next dice.

In the examples pictured here, the contours that are coincident are coincident when
they are first created. We can check them for coincidence as part of determining their
nesting when we find that their bounding boxes are coincident; the only overhead will be
checking for coincidence of other contours when they have coincident bounding boxes.
This overhead is necessary because we must rederive the nesting of coincident contoursin

the next dice.
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Coincident contours can also arise, due to floating point roundoff, just below where
two contours are about to collapse together and disappear (as might happen in these same
parts if they were upside down). We do not check for coincident contours in such cases
wherethetopology hasnot changed. To do so would require checking every single contour
in every single dlice, even when there was no need to rederive nesting. If coincident
contours arise due to roundoff, the existing nesting is still valid — in fact, it is more
correct than the geometry, since if the contours had become truly identical they would
have disappeared from the topol ogical slice. Therefore, our output will sometimes contain
coincident contours.

7.4.3 Ray Test for Containment

If the bounding box test finds any candidate containing contours for an outer query
contour or finds multiple candidate containing contours for an inner query contour, we
perform aray test to find which of these is the query contour’simmediate container. We
take a vertex of the query contour and use it as the base of a horizontal ray shooting
right. We perform an intersection test between this ray and each of the edges in the
candidate container contours (the contours with the opposite orientation whose bounding
boxes completely enclosed the bounding box of the query contour).

No Vertex on the Ray

Consider first the simple case where the ray does not intersect any edge endpoints. In
thiscase, thefirst contour that the ray intersects, and which it also intersects an odd number
of times, isits container, as shown in Figure 7.20.

Each time the ray intersects a contour, it is transitioning between the inside and the
outside of that contour. At infinity, the ray is outside the contour, o if it transitioned an
even number of times overall, then it started outside the contour, and if it transitioned an
odd number of times overall, then it started inside the contour (see Figure 7.21). If there
aremultiplecontoursthat it started inside (i.e. that it crossed an odd number of times), then
these contours are mutually nested; the first one that the ray intersected is its immediate
container (see Figure 7.22)
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Figure 7.20: We shoot the ray shown from the small rectangular inner hole contour.
It has the six intersections shown with edges of outer contours (note that we do not
calculateintersectionswith other inner hole contours, because they cannot be containers).
Intersections 1-4 are with contours that the ray intersects an even number of times; thus
they are not containers. Intersections 5 and 6 are with contours that the ray intersects an
odd number of times; thusthey contain our query contour. Intersection 5 comesfirst; thus
its contour is the immediate container.

Figure7.21: Inthefigure ontheleft, the ray intersectsthe contour an even number of times
because its base point was outside the contour. Inthefigure ontheright, theray intersects
the contour an odd number of times because its base point was inside the contour.

We could shoot our ray in any direction, but for faster tests, we always shoot our ray in
the positive x direction. This makestesting whether avertex ison, above, or below theray
asimple matter of comparing coordinate values. We can use these sidedness tests to avoid
therelatively expensive edge intersection calculation in many cases: a) if one of the edge’s
endpointsison theray (in which case it definestheintersection), or b) if both endpointsare
above or both below theray, or c) if both endpoints areto the left of the ray’sbase point. In
cases b and c, there is no intersection, as shown in Figure 7.23. These sidedness tests are
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Figure7.22: Thisray intersects two outer contours an odd number of times. Thefirst one
it intersects is the immediate container of the innermost hole contour from which the ray
originates.
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Figure7.23: Edgesfor whichwe can avoid performing anintersection cal cul ation between
the edge and the ray are indicated by dashed and dotted lines.

also used for determining whether to count an intersection (for determining whether there
are an odd or even number) when an edge’s endpoint is on the ray, as described below.

In the examples above, none of the vertices of the candidate contour were on the ray.
How do we count intersections when they are? If we just looked at individual edges in
isolation, we would count an intersection with both the edges that shared the endpoint on
the ray. But we only want to count one intersection at this point between the two edges if
one is above and the other below the ray. We cannot merely consider the vertex to be part
of one of the edges adjacent to it and not the other edge, since we do not want to count any
intersections in the case where both edges were below or both above and just touching the
ray at this point. Similarly, horizontal edges that lie on the ray should not directly affect

the intersection count.
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Vertex on the Ray But Not on Ray Base Point

In this section, we describe how to determineintersectionsin the case where acandidate
contour vertex is on the ray, but not on the starting point of the ray (call its coordinates
R,, R,). The technique described here also assumes that if there are any number of
horizontal edges adjacent to this vertex in the candidate contour, that they do not intersect
the ray base point either. (Both of these exceptions will be addressed by a different test
described in the next section.)

We take into account the direction of each edge of the oriented candidate contour. If
an edge's first endpoint has y = R, (this includes horizontal edges), we do not count it
as intersecting the ray, in order to avoid double counting intersections. Otherwise, if an
edge’s second endpoint hasy = R,,, we take the edge as thefirst in apair of edges that we
will test to determine whether to count an intersection with the contour at this spot. We
take the next non-horizontal edge in the contour as the second edge in the pair. Both edges
in this pair will have exactly one endpoint withy = R, (in fact, it will be the same exact
point if there were no horizontal edges between them).

If the second edge's R,-height endpoint has = < R,, or if one R,-height endpoint
has © > R, and the other R,-height endpoint has + < R,, then thisis a case where a
neighboring edge does intersect the ray base and we must use the test described in the next
subsection instead. If both are strictly to the right of the base of the ray, and the edge pair’s
other two endpoints are on opposite sides of the ray, then we count one intersection for the
pair. However, if boththe edges’ yz-height endpoints are strictly to the right of the base of
the ray, and the other two endpoints are both above or both below the ray, then we do not
count this as an intersection (see Figure 7.24). If both of the edges yr-height endpoints
are strictly to the left of the base of the ray, then neither is on the ray and we count no
intersection, regardless of the position of their other endpoints.

Theideaisthat if the contour iscrossing over the ray, we want to count an intersection,
but if it merely glances the ray and then turns back around, we do not want to count an
intersection (or aternately, we could count this second case as two intersections, since
ultimately we just look at whether the total number of intersectionsis odd or even).

There is a potential ambiguity with our algorithm as described above: there may be
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Figure 7.24: Several pairs of edges with endpoints at the same y-coordinate as the ray,
yr, are indicated by dotted and dashed bold lines with crosses on the endpoints at that
y-coordinate. The leftmost pair’s y-height endpoints are both to the left of the base of
theray; thusthey do not intersect it. The other pairs have both y z-height endpointsto the
right of the base of the ray; thuswe look at the positions of their other endpoints. For the
second and fourth pair (counting from the left), the other endpoints are on the same side
of the ray; thus we do not record an intersection for these pairs. For the third pair, the
other endpoints are on opposite sides of the ray; thus we record an intersection. Thereis
one intersection for the contour, an odd number; thus the contour is a container.

multiple “closest” intersections if multiple contours with an odd number of intersections
intersect the ray at the same spot, asillustrated in Figure 7.25.
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Figure 7.25: Here the ray intersect two outer contours, one time each, in the same spot.
There isno way to tell which isthe innermost container from their intersections with this
ray; therefore, we compare their areas.

In the case where these multiple coincident intersections are not on the ray base, all of
these multiple contourswith odd intersections are containers, and wejust need to determine
which is the immediate container. For valid input, slice contours cannot actually intersect
(only coincide at some or all points). Therefore, if our query contour isinside all of these
candidate containers, they must be mutually nested, and it is the innermost that is the
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immediate container. The innermost can be determined s mply by finding the one with the
smallest area. (An analysis of the relative ordering of the edges emerging from this joint
intersection point would lead to many special cases.)

I nter section Calculation for Edgeson Ray Base

Theintersection counting technique described in the previous section (checking whether
the other endpointsof a(non-horizontal) edge pair with endpointsontheray are on opposite
sides of it) will not work if either of the edge's yz-height endpoints are on the ray base,
or if one is to the left of and the other to the right of the ray base, or for any edge that
intersects the ray base exactly, asillustrated in Figure 7.26.

a) b) C)

Figure 7.26: This figure shows three separate cases of a triangular inner query contour
inside of one triangular outer contour and adjacent to another triangular outer contour.
In &), we should not count the ray as intersecting either of the outer contours at the ray
base (even though for each candidate, their pair of adjacent edges are on opposite sides
of theray). In b), however, we should count the ray as intersecting both outer contours at
the ray base (a different result even though again each candidate’s pair of adjacent edges
are on opposite sides of the ray). In c), we should count the ray as intersecting the left
outer contour but not the right outer contour at the ray base.

To determineif we should count an intersection with acandidate contour at theray base,
we need to look not only at the geometry of the candidate contour but also the geometry
of the query contour. We need to examine the radial sequence of the pair of candidate
contour edges and the pair of query contour edges with the ray base as an endpoint. |f
we have an edge of a candidate contour (including horizontal edges) that intersects the ray
base somewhere other than at its endpoint, wetreat it asif there were another vertex at the
intersection point, dividing the edge into two edges with endpoints at the ray base. Note
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that if the ray base is on a horizontal edge in the candidate contour, we will not be looking
at the same pair of candidate contour edges that we tested above.

For this test, we choose the ray base to be the rightmost point on the query contour
to ensure that this ray points to the outside of the contour. We imagine sweeping the ray
radially around its base, starting from the 4 direction and proceeding counterclockwise.
If, and only if, the radially sweeping ray crossesfirst a candidate container edge, followed
by the two query contour edges, and finally the other candidate contour edge, then we
count the ray as intersecting the candidate contour. This order of edges demonstrates
that the candidate contour is outside of the query contour and contains it at the ray base;
therefore, the ray from the query contour intersects the candidate contour. If the radially
sweeping ray crosses both the candidate contour edges before either query contour edge,
or both candidate contour edges after both query contour edges, then thisis the same case
we saw above of the candidate contour just glancing the ray, and there is no intersection.
If the radially sweeping ray crosses first a query contour edge, followed by both candidate
contour edges, followed finally by the other query contour edge, then the candidate contour
isinside of the query contour; thus the ray from the query contour does not intersect it.
(And if the sweeping ray alternates between crossing the candidate and query contour
edges, that means that the two contoursintersect and the input was invalid.)

To implement the radial ordering test, we calculate the angles that both candidate
contour edges and both query contour edges make with theray. We take the two edges
from the candidate contour that meet at the ray base, and treating them as vectorswith their
bases at the ray base, find the angle «, 0 < o < 360 degrees that each makes with the ray.
Similarly, treating the two edges of the query contour that meet at the ray base as vectors
withtheir bases at theray base, wefind theangle 5,0 < 3 < 360 degreesthat each of them
makeswith theray. Taking the smaller of thetwo 5 angles from the query contour, 3., we
look to see if there were any vectors from the candidate contour between it and the ray. If
botha. < G- and as < ., then we count no intersection (asshownin Figure 7.27 a). If
thereisno a < ., then we count no intersection (as shown in Figure 7.27 b). Otherwise,
if a. < . andas > 35, then we count an intersection (as shown in Figure 7.28 a and
b).

Notethat if a. = . and o~ = (§~, we count an intersection; if this candidate contour
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b)

Figure 7.27: Two cases when the ray base is on the candidate contour (the query
contour is the hole contour denoted with dashed lines). In a) both o < . and
as < fo; therefore, there is no intersection at the ray base. In b) there is no
a < [ therefore, there isno intersection at the ray base.

)

> O

Figure 7.28: Two more cases when the ray base is on the candidate contour (the
query contour is the hole contour denoted with dashed lines). In a) there is exactly
onea < f3.; therefore, the ray intersects the candidate contour at the ray base. In
b) there isone o« = f.; again the ray intersects the candidate contour at the ray
base.

has an odd total number of intersections, then the candidate could be either a container
of the query contour, or it could be contained inside of the query contour, as shown
in Figure 7.29. Using the technique described above to differentiate coincident closest
intersections with contours, we calculate the areas of the contours to differentiate these
two cases. If the candidate contour’sareais smaller than the query contour’s area, then we
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remove the candidate from consideration as a container.

a) b)

TR 2N

. v : <t
Figure7.29: Ina) a. = 3. and o~ = /3~ and the candidate contour contains the query
contour. Inb) a. = . and o = -, but the innermost candidate contour being tested
isinside of the query contour.

In addition to this ambiguity as to which of two coincident contour and query edgesthe
radially sweeping ray encountersfirst (resolved with the areatest), it is ambiguous whether
an edge exactly on the ray is the first or the last edge that the sweeping ray encounters.
We resolve this ambiguity by looking at the next (in the direction away from the ray base,
regardless of the contour’s orientation) non-horizontal edge in the contour. If this next
edge is above the ray, we treat the horizontal edge as the first edge the ray encounters on
its counter-clockwise sweep, at an angle of 0. But if the next edge is below the ray, then
we treat the horizontal edge as the last edge that the ray encounters (assigning it the angle
360 instead of 0). Two examples areillustrated in Figure 7.30.

Non-Manifold Query Contour Containment

The remaining case to consider is that of dlice contours that are themselves non-
manifold. In a non-manifold potential container, the different pairs of edges adjacent to
the non-manifold point will be considered separately; the non-manifoldnesswill not affect
the calculations. For a non-manifold query contour, our nesting algorithm will still find
the correct container, but some of the intermediate results could change if the ray base is
on a non-manifold point in the query contour. If none of the candidate contours touch
at the non-manifold point, the intersection calculations will not be affected. If candidate
contours touch at this point, the angle test may return a different number of intersections
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Figure7.30: Two examplesof query holecontours(dashed lines) and candidate containers
with horizontal edges at the ray base. In a), the next edge after the edge of the candidate
contour on theray is above theray; therefore, the angleis 0 and we count an intersection.
In b), the next edge after the edge of the candidate contour on the ray is below the ray;

thus the angleis 360 and there is no intersection.

depending on which instance of the non-manifold point was chosen for the ray base, as
shown in Figure 7.31. (If we are not using the angle test, the intersection test will be
unaffected since the neighborsof the ray base in the query contour are never examined.) In

Figure 7.31: Consider snooting a ray to determine the container of the dashed hole
contour in these two instances of nested, non-manifold contours. In the instance on the
left, we calculate a single intersection, whether our ray base is the vertex instance on the
hole contour’s upper part or lower part. In instance on the right, we calculate either
one intersection or three intersections, depending on whether our ray base is the vertex
instance on the hole contour’s upper part or lower part.

this example, the non-manifold point appears twice in the query contour; we may be using
either of these instances (and their adjacent edge vectors) to calculate the /3s. For certain
geometrieswe will get adifferent answer for the number of intersections with a candidate
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contour depending on which instance of the non-manifold point in the query contour is
chosen, but whether the number of intersectionsis odd or even does not change (as shown
in Figure 7.32).

a) b)

)

d)

Figure 7.32: A detailed look at the angle test for the contours pictured at right in
Figure 7.31. If the ray base is the instance on the hole contour’s upper part as pictured
in @) and b), then 5. isless than both o and «-. for both the pieces of the candidate
contour that intersect it at theray base. The angletest gives us no intersections (and there
is one additional intersection not at the ray base). If the ray base is the instance on the
hole contour’slower part as pictured in c) and d), then 5. is between o and o, for both
the pieces of the candidate contour that intersect it at the ray base. The angle test gives
us two intersections (and again there is one additional intersection not at the ray base).
In both cases, the number of intersections at the ray base is even and the total number of
intersectionsis odd, because the outer contour containstheinner hole contour.

Note that depending on which instance of the non-manifold point in the query contour
we choose as the ray base, the position of the first intersection with an odd-intersections
candidate contour may also change (as it does between Figure 7.32 ¢ and d). But the
immediate container will always be intersected before or at the same time as any other
odd-intersecting candidate contours (it could only be otherwise if the odd-intersecting



130

candidate contours, and hence the original input polygons, intersected).

Alternate Ray Shooting Strategies

We could have avoided using the angle test entirely if we could guarantee that our ray
base did not lie on any other contours. Two alternate approaches that try to guarantee this
are described below.

The first aternate approach is to try to find a point on the boundary of the query
contour that does not touch any other contour. Note that there may not be any vertex that
satisfies this property (see Figure 7.33a). Furthermore, there may not be any point on
the boundary that is not touching some other contour (see Figure 7.33b). But for each
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Figure 7.33. In a), a quadrilateral inner hole contour (dashed line) sitsinside a square
outer contour (solid line). All of the vertices of the inner hole contour are coincident
with the outer contour. In b), three sides of a square inner hole contour are coincident
with three sides of a containing pentagonal outer contour, and the square’s fourth side
is coincident with the side of a triangular outer contour which is an isand within it.
Every point on the edges of the inner hole contour is coincident with one of the two outer
contours.

individual candidate container, there will amost always be some point on the boundary of
the query contour that does not touch that candidate contour, though it may be a different
point for each candidate. We could test whether a given candidate is a container of the
query contour by counting intersectionswith aray shot from the point that is non-coincident
with that candidate, and then would not need to use the angle test. Repeating for all of the
candidate contours using a different ray for each, from a boundary point non-coincident
with respect to the contour being tested, we would find which were containers. We cannot
find the immediate contai ner based on the closest intersection point since the intersections
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are with different rays, but we can use the area test comparison to find which of these
containers has the smallest area and thus will be the immediate container.

One disadvantage of this approach isthe complexity of finding an appropriate ray base
for each of the candidate contours. In the worst case this will require comparing each of
the query contour edges against all edges of candidate contours looking for intersections.
It will also requiretherelatively expensive areatest for multiple containing contoursin all
cases, not just when the containing contours touch each other at their first intersection with
theray. And finally, for certain degenerate cases, as shown in Figure 7.34, there will be no
point on the boundary of the query contour that is not also on the candidate contour.

KEY

- OUtEr contour

=== iNNner hole contouy

Figure 7.34: This quadrilateral inner hole contour (dashed line) contains no points that
are not coincident with its non-manifold containing contour (solid line).

This suggests a second alternate approach of avoiding angle tests by shooting the ray
from a point inside of the query contour. Then we could use the sameray for all candidate
contours, and the complexity of finding this ray would be independent of the number or
size of the candidate contours. We would still need the areatest to resolve situationswhere
the ray’s closest intersection point with a container was on more than one container. A
smple approach to finding the necessary interior point is to triangulate the contour and
take the centroid of one of the triangles. We do not need to fully triangul ate the contour, of
course; we could modify the standard y-monotoning polygon triangulation algorithm [55]
to just find thefirst triangle.

Of course, if the query contour had oppositely oriented contoursinside of it (which we
may not yet know about), then thisray might intersect them; therefore, we must usethe area
comparison test to determine which contours are containers and which areinside. A more
serious shortcoming is that the interior point might be on the boundary of an oppositely
oriented contour. For atrueinterior point, this would indicate that the candidate contour
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was inside and thus we could ignore it for the purpose of finding the query contour’s
container. But for an input contour that had barely any area, there might not be any truly
interior point that is representable with the precision available (see Figure 7.35). Then the
“interior” point we chose, rounded off, could lie on an oppositely oriented exterior contour.
In this case, we would be obliged to shoot our ray from a vertex point on the query contour
after all.

r~
/

!

|
Figure 7.35: If the grid shows the underlying precision of the representation, then this

contour has no interior point that can be represented at this precision.

The advantages of both of these approaches is that they are less sensitive to roundoff
errors in floating point calculations than the angle test. The second aternate algorithm
will be faster than the first alternate algorithm, but in some cases neither will work, so we
would still need to implement a third algorithm such as the angle test to handl e those cases,
adding unwel come and unnecessary complexity to our code. For these reasons, we use the
ray shooting algorithm originally presented, combined with the angle test and the area test
when necessary, to determine the container when bounding boxes alone do not suffice.

7.4.4 The Persistence of Nesting

The nesting of contours, liketheir orientations, remains unchanged during the process-
ing of the disk cycles of most of the vertices of the origina solid. Merely inserting or
deleting asingle run of edge-uses from a dlice contour will not affect its nesting. Itisonly
when existing dlice contours split or merge that their nesting can change (given that our
input is non-self-intersecting). For this reason, when we have multiple ending runsin a
vertex disk cycle (indicating splitting or merging will occur), we delete all of the nesting
information associated with the existing contours that match up with the disk cycle. Not
only must we del ete the nesting data stored with the contours themselves, but we must also
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eliminate references to them in the nesting data of any other contoursthat contain them or
are contained in them.

The nesting is then re-derived at the next physical dice. An inner contour’s nesting
will only have changed if its containing contour has been split or merged. We can identify
such inner contours because their container pointer will be empty (as described in the
last paragraph, the container’s split or merge would cause the contained inner contour’s
container pointer to be zeroed). Inthe example shown in Figure 7.36, when the rectangul ar
outer contour intheleft dice splitsinto thetwo rectangular outer contoursintheright dice,
only its (rectangular) inner contours need to re-derive their nesting. None of the circular
inner contours' nestings are affected.

.....................................................................................................

Figlire 7.367 Tiwo dices throligh 'a part, before and aftér the rectangular outer contour
in the left dlice splits into the two rectangular outer contours in the right dice. Only the
rectangular inner contours, which were inside the contour that split, need to re-derive
their nesting. The circular inner contours, whose outer contours topology is unchanged,
will have their nesting unchanged.

On the other hand, if an outer contours splitsinto anew inner contour nested within an
outer contour, then the nesting of all outer contours must be re-derived. This is because
any outer contour could now be an island within the new inner hole contour, as shown in
Figure 7.37.

As mentioned above, the persistence of much of the nesting information across slices
affects our approach to deriving the nesting. If the nesting changed completely between
each dice so that we had no prior relevant information about it, then we might be better
off using a global agorithm that found the mutual nesting information for all contours at
the same time. But since the nesting can change incrementally, we use an algorithm that
finds the container of each individual contour using a separate cal culation.



contour in the left dice splits into an outer and inner rectangular contour in the right
dice. Although only the small rectangl€’ snesting is affected, we must re-derive the nesting
of all the circular outer contours as well to see if they are also islands in the new hole.
(For the example pictured here, this rederivation can be accomplished using the simple
bounding box test.)

7.5 Geometric Slicing

When our sweep plane reaches a height at which we want a physical dlice, we need to
calculate intersection points for each of the edge-uses in the current slice contour(s). If
thisisthefirst intersection with the edge-use, we calculate the deltasin «, y, and = between
the top and bottom vertices of the edge and store them with the edge. For subsequent
dicing planesthat intersect the same edge-use, we can re-use these values. Inthisway, we
exploit the geometric as well as the topological coherence between adjacent dices.

One calculation that we do perform on a point by point basis on every dlice is to
eliminate consecutive matching points and hence zero-length edges in the geometric dlice
contours as we output them. These occur when a dlice plane exactly intersectsavertex and
we get coincident intersection vertices for each of the beginning edge-uses at this vertex.
We aso eliminate zero-area intersection contours from the output if there are only one or
two distinct intersection verticesin the contour.

An additional output optimization that is particularly useful for triangulated input is
to omit redundant output points that are colinear with their two neighboring points. For
example, a dice through the middle of a triangulated cube will have eight vertices by
default, but only four of these are needed to define the geometry. We do not want to output
points for the intersections with the edges that are not at the cube corners. For this reason,
aswe iterate through our contour list of edges, finding the intersection for each, we do not
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output an intersection point until we have calculated the subsequent intersection point and
found that the middle intersection point is not colinear with the ones before and after it.

We also exploit inter-glice coherence to speed the elimination of the colinear middle
points. Such points are colinear because the two triangles that join along the edge that
produced them are coplanar. Therefore, once we have determined that such a point does
not need to be output for one dice, al subsequent dlices that intersect the same edge can
also omit calculating and outputting the intersection with that edge. In practice, since the
first intersection with an edge between two triangles can be very near to the tips of those
triangles, the intersection edges on those triangles may be extremely short and appear to be
colinear due to resolution limitations when the triangles are close to being, but not exactly,
coplanar. If either of the intersection edges is too short to meaningfully test for colinearity
given precision limitations, we do not mark the edge to have itsfutureintersectionsignored
just yet.

7.6 Floating Point Issues

We use floating point arithmetic for all of the calculations described, and hence all are
subject to roundoff error. This affects some of the details of our algorithms.

We cannot eliminate expensive division operationsfrom any of our intersection calcula
tionsduring thegeometric dicing theway astandard scan-linevisible surface determination
algorithm[21] isableto. Using the scan line algorithm approach, with thefirst intersection
with an edge we would calculate the deltain = and y between intersections a dice height
apart. For subsequent intersectionswith the same edge, we would just add these quantities
to the coordinates of the intersection with the dice below. The problem with this approach
isthat the deltas are only represented to a certain precision, and with each addition we can
drift further and further from the true intersection point. In scan conversion, with 32-bit
floating point numbers, the drift will typically at worst result in a one pixel wide shading
error, so it will not be noticeable. While the drift for dicing will likewise be small in
absoluteterms, it can grow relatively large for edges that span many dlices, leading to self-
intersectionsin the output, asillustrated in Figure 7.38. Thistype of dice self-intersection
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occurred fairly often with an earlier version of our dicer that optimized intersection cal-
culations in this manner (by using consecutive additions). These topological changes are

Figure 7.38: On theleft, a dice through this 3-D pt is pictured. On theright, the drift
for the active edges below the dice is represented by the dotted lines, and the resulting
self-intersecting dliceis pictured.

unacceptable, since they can cause the tool path generationin QuickSlice, the fused depo-
sition modeling (FDM) machine's software, to fail catastrophically (though software that
cleaned up contours using the positive winding number rule, implemented in the readily
available OpenGL tessellator [81], before performing offsets would not suffer from this
limitation). Topological changes can also cause problems with our nesting calculations,
which al rely on the assumption that separate contours do not intersect.

One approach to eliminating local self-intersections would be to merge successive
vertices in a dice contour that were less than some epsilon distance apart (basing the
epsilon on the worst possible drift). We would want to wait until after eliminating colinear
vertices to do so, because we would not want the presence or absence of such a vertex
to affect the shape of the output. However, this approach could only eliminate local
intersections, but not “global” ones, which could occur far from any other vertices (see
Figure 7.39). Another disadvantage is that ray shooting and area testing would be less
accurate, since wewould have much greater variability in the accuracy of theinput to these
operations. Therefore, we use division to calculate each new intersection with the same
edge during geometric slicing for more accurate cal culations than successive addition will
produce.

The ray shooting nesting calculations themselves are also subject to roundoff errors.
For most slice edges, we can determine if they intersect the horizontal ray without using
floating point arithmetic; only for edges that have one end point above and to one side
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Figure 7.39: In the lower left corner of this contour, thereisalocal intersection that can
be eliminating by merging two adjacent vertices. The other “ global” intersection cannot
be fixed via vertex merging.

of the ray base and the other end point below and to the other side of the ray base will
we need to use floating point arithmetic to determine if they intersect the ray. If such a
dice edge comes very close to or touches the ray base, then ideally we would repeat the
intersection calculation using exact arithmetic to guarantee the correct answer. But that
would only be as correct as the vertices in the dice, which were themselves cal culated by
floating point intersections with edges in the origina part; therefore, these intersections
would need to be recal culated using exact arithmeticfirst. To determinethe correct epsilon
to use to decide whether to redo the calculations with exact arithmetic, we would need
to calculate the maximum possible error during each calculation and pass it on with the
results to subsequent calculations.

In order to gauge whether thisoverhead isworthwhile, weimplemented the test withthe
relatively large epsilon of .0001 and printed out a warning message when it was viol ated.
Since we virtually never saw the warning during several months of testing, we did not
feel it was worthwhile to implement the error calculation and exact arithmetic. (We were
ableto trigger the warning by taking the dragon part containing almost amillion triangles,
scaled to a height of .1", and making 1000 dlices through it, giving us a dice thickness
equal to our epsilon of .0001". Thistest wasat afar finer scale than current SFF machines
operate.)

Note that roundoff errors may also change whether a given edge of a contour intersects
the ray for an edge not near theray base. Thiswould occur if the roundoff caused a vertex
to move to the other side of the ray, but this will not affect whether the total number of
intersections between the ray and the contour is odd or even, because the intersection with
the other edge that shares the vertex (or another nearby edge in the contour in the case of
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multiple vertices switching sides) will compensate, asillustrated in Figure 7.40.

AR AY

Figure 7.40: When a vertex not at the ray base moves to the other side of the ray, it does
not affect the inter section odd/even parity count for the contour. If only one of the vertex's
edges crossed the ray before, generally the other will cross afterwards, asillustrated in
a), leaving the intersection count unchanged. If neither edge crossed before, generally
both will cross afterwards, and vice versa, asillustrated in b), changing the intersection
count by two.

In addition to affecting the test of whether a contour edge intersects the ray, roundoff
errors will be present in the intersection point calculated. If we find multiple containers
whose first intersection points are very close together, we use the area test as an additional
check.

The standard formulafor finding the area of a polygon does so by adding up the signed
areas of the triangles formed between the origin and each directed edge of the polygon
[20]. However, the floating point error in the triangle area calculations will be magnified
proportional to the distance between the origin and the polygon edges. To minimize the
effect that thiswill have on the areatest, we find the average of al of the polygon’svertices
and apply a trandation that moves this average point to the origin before calculating the
polygon’s area. This reducesthe error, though it does not eliminate it entirely. Idedly, we
should still calculate the size of the possible error and take it into account when ranking
the relative sizes of the areas. If thereistoo big aregion of uncertainty to do a reliable
total ordering of container areas during the area test, the origina intersection and area
calculations should be redone using exact arithmetic.

7.7 Complexity Analysis of the Slicing Algorithm

Call the number of faces in the triangulated, pseudo-manifold input n. Each face has
three edges, and each edge is used twice, so the total number of edges is 3/2n (or 3n
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edge-uses). Each vertex is used by at least three edges and each edge is defined by two
vertices, so the total number of vertices will be less than or equal to 2/3 of the number of
edges, in other words < n vertices. Therefore, the number of vertices will be O(n).

If there are n facesin the input and the total number of verticesin the output is %, then
the total time for calculating intersections and outputting the geometric dlices from dice
contourswill be O(k+n). Wemay remove up to O(n) redundant vertices from the output,
but inthe worst case we will still need to calculate all these intersectionsto discover which
ones to remove. In the worst case, we'll aso need to recal cul ate orientation and nesting
for each dice, again O(k + n). (Of course, in the common case, we will be exploiting
the coherence between slices to avoid many of these calculations. |f we expected the
worst case to be common, there would be no advantage to our entire approach of using a
sweep-plane.)

The majority of the steps of the algorithm for building the slice contours are O(n) or
O(nlogn). Building the topological data structure is dominated by the time to build hash
tables for the edge-uses (to set sibling pointers) and their vertex-uses (to find if a vertex
has been seen before and set the appropriate next vertex edge-use pointer); thistakestime
O(nlogn). Dividing up pseudo-2-manifold edgesis linear except for the sort; in the worst
case, where virtually all the edge-uses are coincident, thiswill be O(nlogn). Sorting the
vertices to get the correct processing order isagain O(nlogn).

Building disk cycles takestime linear in the number of edge-uses to find their connec-
tivity and to construct the linked lists, as well astime linear in the number of edge-usesto
follow the next vertex edge-use pointers to find the starting edge-uses for additional disk
cycles at non-manifold vertices. Identifying all runs of ending edge-usesjust requiresiter-
ating through each disk cycle; therefore this step is also linear in the number of edge-uses.
The total number of splicesislimited to one pair of splices per ending edge-use; therefore,
this step isalso linear in the number of edge-uses. Checking for splitting or merging also
occurs at most once per ending edge-use. All of these steps are O(n).

The only part of the algorithm that has the potential to be quadratic in » is resetting
the edge-uses’ contour membership pointers after splitting or merging. An example worst
caseisapart of very high genus, with itsthrough-holeslined up vertically over each other,
with as many as possible of the other edge-uses that do not define the holes extending
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from below the lowest hole to above the highest hole, half on each side of the line of
holes. With such a geometry, half of the long edge-uses will need to change their contour
membership at the bottom of each hole as a single contour splits, and then again at the
top of each hole when the two contours merge. Since such a part can be defined with n /¢
holes and n /¢ long edge-uses for a small constant ¢, updating the contour pointers could
take total time O(n?). To accurately prototype such a part, however, we would want to
output at least one dice through each hole and one dice between each pair of holes, in
which case the update time for the contour pointers would be no more than the O(k + n)
time for outputting dices.  Parts of such high genus relative to the number of triangles
in their boundaries are vanishingly rare; for example, the genus 37 sculpture part pictured
in Table 6.1 had 107,520 input triangles. Thus the total running time for reasonable input
will be O(k + nlogn), though the worst case running time will be O(k? + n?).

7.8 Slicing Booleans

If our input is a SIF file (see Chapter 3) that contains Booleans, we will slice without
resolving the Booleans and output an L SIF file that containsthe same Booleans, as pictured
in Figures 7.41 and 7.42.

As with a non-hierarchical STL file, the first step in dicing a SIF file containing
Booleansisto verify that theinput isvalid. The parser checksthat theinput issyntactically
valid and builds a hierarchical representation of the Boolean tree with aseparate LEDS for
each shell; the shells do not share geometric information. Then we iterate through all of
the shells, and for each, check that it is avalid closed solid, and separate any coincident
2-manifold edges, exactly asfor the STL input.

When we dlice, we will maintain aseparate dlice contour status structurefor each LEDS
shell, but share one event queue containing all of the vertices from all of the LEDS shells.
Thus, we start by sorting an array of all of the verticesin all of the LEDS geometries by
z-coordinate. Each vertex will have adisk cycle composed only of edge-uses connected to
it initsown LEDS; therefore, processing a vertex will only affect the status structure for
that LEDS. We can process the vertices exactly as described above, accessing the status
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Figure 7.41: The object pictured on the right could be represented in SF as a Boolean
tree with three leaf nodes, as pictured on the left. Each leaf nodeis a solid with a single

shell.
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Figure 7.42: For the dice indicated by the dotted line on the object on the left, our LSF

filewill contain a Boolean tree identical in structure to the Boolean tree in the SF input
file. Each leaf node contains a contour or contours nested relative to other contoursin

\ -

that node.

structure (the dice contour list) through a pointer stored with the LEDS.
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Contour classification and nesting is done on a per-LEDS basis. (Since we will not be
resolving the Booleans during dicing, we only nest contours at the same | eaf of the Boolean
tree). Although different LEDS shells in the Boolean tree will often intersect, within a
single LEDS shell the dlice contours will not intersect for valid input. Therefore, we can
use the same agorithm described above in Section 7.4 to calculate nesting. Invalidating
and rederiving nesting also takes into account only contourswithin the local LEDS.

When we perform geometric slicing, we proceed one LEDS at atime. For each of
the contours, we cal cul ate the edge intersections as before. Unlike non-hierarchical input,
with Booleans atypical |eaf node will not beastall asthefull z-extent of all theleaf nodes;
thus for some dices there may be no contours for a given LEDS leaf. In this case, we
do not want an empty leaf in the LSIF output for this dlice. Similarly, we do not want
the LSIF output to include a union or intersection operator with only empty operands, or
a difference operator whose first operand is empty, since al these operations produce the
empty set. (While empty leaves or empty operands can be legal LSIF, we prefer to omit
them from the output in order to makeit more compact and simpler to process.) For aunion
or intersection operator with only one non-empty operand, or a difference operator whose
only non-empty operand isitsfirst operand, the Boolean does not modify the operand, so
we just want to output the operand.

Therefore, when we do the intersection cal cul ations that determine the slice geometry,
wekeep track of whether each LED S| eaf hasany non-zero areacontoursto be output for the
current level. After performing the intersection cal cul ations and any contour classification
and nesting updates, we are ready to output the L SIF Boolean tree (or trees) for the dice.
Starting from the top of each Boolean tree, we query its operators to see which ones are
empty, and only output the Boolean operator if it ismeaningful, as described in the previous
paragraph. Thenwe sequentially output each of its non-empty operands, invoking the same
output function recursively on Boolean operands.
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7.9 Resaults

We have implemented our algorithmin C++ and tested it on avariety of topologiesand
geometries. The running times reported are on an SGI Onyx Reality Engine with two 150
MHz MIPS R4400 processors and 128 MB of RAM.

The first series of tests we ran was for dlicing the 107,520 triangle ring scul pture STL
file (see Figure 7.43). We dliced it using several different dlice thicknesses, both with our
dicer and the commercial QuickSlice 6.2 software that shipswith the FDM machine[70].
The preprocessing time (for reading the STL fileand building theinternal datastructure) is
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Figure 7.43: Comparison of dicing performance for the ring sculpture pictured at |eft

(107,520 input triangles) using our algorithmand using the commercial FDM QuickSice
6.2 software.
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broken out for both dicers. With our dicer, the preprocessing takes longer than the actual
dicing for typical dice thicknesses for this part. Of this preprocessing time, 75% is spent
just parsing the STL file; only 25% of the preprocessing time is actually spent building
the topological data structure. The preprocessing time for QuickSlice is longer than our
preprocessing time, and also longer than our total dicing time for slices .01” thick and
larger. (For FDM, .01" is the default slice thickness.) Furthermore, the slicing portion of
the QuickSlice implementation is dower than ours and its time grows more rapidly than
our dicing time as the number of slicesincreases. QuickSlice takes over twice as long for
.01 thick dlices through this part, and three times aslong for .005” thick dlices.

Our agorithm outperforms the commercial algorithm most dramatically when more
dices are calculated. The time our algorithm spends determining connectivity is indepen-
dent of the number of dices; if we can re-usethe same connectivity informationin multiple
adjacent dlices, our performance will be that much more efficient. We are aso able to
calculate more intersections incrementally with the more closely spaced slices, as shown
in Figure 7.44.
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Figure 7.44: The percentage of intersections cal culated incrementally for the ring sculp-
ture.

We aso compared the performance of our slicer and QuickSlice on a much less
complicated file with large triangles, the cow (see Figures 7.45 and 7.48), and a much
more complicated file with small triangles, the dragon (see Figures 7.46 and 7.47). With
the 5,804 triangle cow file, there was much more coherence between dlices; therefore, our
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performance was even better compared to QuickSlice (as much as six times faster). With
the 869,898 triangledragon file, on the other hand, we were not abl e re-use the connectivity
information or calculate intersection incrementally nearly as often, and our preprocessing
time grew because of the need to use an out-of-core algorithm to build our data structure;
therefore, our performance was not much better than for QuickSlice (only 25% better).
Currently, typical STL filesare on the order of 100,000 trianglesor less (the largest sample
file that ships with QuickSlice contains 96,040 triangles), close to the size of the sculpture
part; therefore, the results for the sculpture are probably the most representative.
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Flgure 7.45: Comparlson of dicing performance for the cow file at left (5,804 input
triangles) using our algorithm and using the commercial FDM QuickSice 6.2 software.
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Figure 7.46: Comparison of dicing performance for the dragon file pictured at left
(869,898 input triangles) using our algorithmand using the commercial FDM QuickSice
6.2 software.

7.10 Discussion

Our algorithm is more efficient because it exploits coherence between consecutive
dices. Such an approach only makes sense, of course, in the case where such coherence
actually exists. With most SFF processes, sices must be quite thin, and the number of
vertices to be processed between dlices is only a small percentage of the total number of
edges that intersect a dice. For an application where only afew dices need to be made
relative to the number of edges, it would make more sense to use an algorithm that only
considered those faces actually cut by the dicing plane, and to do the connectivity analysis
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Figure 7.47: Msualization of the inb% through the dragon part. Only a subset of the
dices are pictured so that the individual slice contours can be seen clearly.

and matching of edges into contours in two dimensions. In general, our sweep plane
approach will be most efficient when every polyhedron edge is sliced multiple times.

The proper nesting of islandsin holesis probably not important for most applications.
While QuickSlice's SSL format for specifying 2-D dices includes this information, an
incorrectly nested isand does not seem to cause any problems. An incorrectly nested
hole, on the other hand, can cause afatal internal error that aborts the entire QuickSlice
application. With our incremental nesting algorithm, we could further reduce nesting
calculations by only finding containers for hole contours.
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Figure 7.48: \Visualization of the dices through the cow part. Only a subset of the dices
are pictured so that the individual slice contours can be seen clearly.

The sweep plane topology updates in our slicing algorithm are not complicated to im-
plement. There are no specia casesfor horizontal edges and we useidentical splicing code
for all vertex configurations, including saddle points. Theincremental nesting cal culations,
on the other hand, can grow extremely complex for certain configurations. From an imple-
mentation point of view, it would be easier to use a sweep line algorithm to determine the
mutual nesting of all the contours for each slice where nesting might have changed, since
such an algorithm does not have nearly as many special cases to contend with. Our nesting
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algorithm is more efficient because it better exploits inter-slice coherence, but in practice
nesting calculations take up so little of the dicing time that this increased efficiency is
probably not worth the increased coding compl exity.
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Chapter 8
Summary

We have presented a new Solid Interchange Format, SIF, a neutral interchange format
for exchanging SFF part geometries unambiguously. Unlike STL, SIF files share vertices
between triangles, have no redundant surface normals, specify their units and version, and
can include information about surface and volume properties. We have aso introduced
the concept of constellations. Despite these additional features, the specification of SIF is
short and smple in order to limit the complexity of generating and interpreting SIF files,
SIF puts the burden of determining the connectivity of shells on the design side, where
it belongs, so that problems in the description of the geometry are caught and corrected
beforeadesign is transmitted to a manufacturer. While outputting SIF requires more work
than STL for a part whose connectivity is not already known, outputting SIF for a part
described with CSG operations requires less work, since the unevaluated CSG tree can
be output directly. This puts the burden of resolving the Booleans on the manufacturing
side, but it can then be postponed until after dicing, so that only 2-D Booleans need to be
resolved, which can be implemented using off-the-shelf OpenGL software and hardware.
SIF represents a significant improvement over STL in reducing ambiguity in the exchange
of SFF parts, without favoring a particular CAD or SFF vendor, and without requiring a
substantially increased investment in software infrastructure from either the designer or
the manufacturer.

We have developed a new topological data structure, the loop edge data structure
(LEDS), optimized for SFF applications. The LEDS can answer most adjacency queriesin
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time linear in the number of responses, independent of the input size. The LEDS captures
connectivity for al valid solids, including non-2-manifold solids. In addition, we have
demonstrated how to capture mixed-dimension geometry in the unified framework of the
same LEDS representation.

We have implemented a smple in-memory agorithm for efficiently building aLEDS
from unorganized triangul ated input for small and medium sized files. We have experimen-
tally verified that we have chosen hash functionsfor our implementation that are suitably
random and yet do not require lengthy computations. We have aso developed the first
out-of-core algorithm for building a LEDS or any similar topological data structure for
large files that do not fit in memory. With this algorithm we achieved running times that
were two orders of magnitude faster than the optimized in-memory agorithm on typical
STL input. We achieved these speed-ups while actually using dightly less memory for the
larger files.

Our analysis modul e identifies non-closed boundariesand cleans up round-off errorsin
the input using a straightforward epsilon vertex merging approach. We also describe how
to transform non-2-manifold LEDS geometry into a pseudo-2-manifold representation in
order to simplify downstream processing.

We have designed and implemented a new coherent sweep plane dicing agorithm
for faster generation of parallel dices for SFF process planning. Our dicer accepts input
in STL or SIF containing unevaluated Booleans, correctly processing arbitrary topology
including non-2-manifold solids. Our dlicer aso uses anew algorithmfor determining 2-D
contour nesting which is designed for incremental updates and robust for non-manifold
dices. With our dicer implementation, on typical parts we achieved speed-ups of two or
three times compared to a comparison commercial dicer.
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sif2ssl(1) sif2ssi(1)
USER GUIDE

NAME
sif2sd - slicesa SIF fileinto .01 thick slices, output in SSL

SYNOPSIS
sf2sd file.sif file.ssl

DESCRIPTION
Script to read in a SIF file, diceit into .01 thick dlices, and then resolve the
booleans, trand ate the geometry to the positive quadrant, and convert it into
an SSL file compatible with QuickSlice 6.2.

EXAMPLES
sif2sd cheese.sif cheese.sdl

FILES
/project/cs/sequin/caffe/sif/bin/sif2sd
/project/cs/sequin/caffe/sif/bin/SY STEM/IRIX/dslicer
/project/cs/sequin/caffe/sif/bin/SY STEM/IRIX/glsif

AUTHOR
SaraMcMains

USER GUIDE June 2000
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dicer(l) dicer(1)
USER GUIDE

NAME
dlicer - analysis, cleanup, and slicing for Solid Freeform Fabrication (SFF)

SYNOPSIS
dicer [-a[-en][-stl file2]] file
dicer [-m [n][-b n]][-a[-e n][-stl file2]] file
dicer [-tn[-un] [-v xYy Z] [-of file2] file
dicer [optiong] file

DESCRIPTION
In thefirst two forms, the dlicer program analyzes and cleans up the input
STL or SIFfile, optionally writing out the cleaned up input file, but does not
actually diceit. With thefirst form, an in-core algorithm is used to build the
internal Loop Edge Data Structure (LEDS). In the second form, an out-of-
core algorithm is used to build the LEDS. In the third form, the slicer builds
the LEDS from the input file, confirms that it describes avalid part, and slices
it with the specified thickness. An LSIF file describing the slicesis output.
The analysis and cleanup and out-of-core algorithm options in the first and
second form can also be combined with the slicing options in the third form.

The dlicer recognizes the following options and command-line arguments:

-a Run the analyzer/clean up portion of the slicer program. Checks
whether the input part is 2-manifold or potentially pseudo-2-
manifold, calculates its bounding box, and prints number of faces,
edges and their uses, vertices and their order. If the part is not 2-
manifold or potentially pseudo-2-manifold, it tries to make it so by
merging non-manifold vertices within epsilon and then re-analyzes
the part to determine if thisfixed the problem. The default epsilon
is 10% of the shortest edge length.

-bn Invoke the vertex bin sorting option in the out-of-core algorithm
for building the internal data structure, using n bins.

-en Use n as epsilon for vertex merging in the analyzer. We only try to
merge vertices that are endpoints of unmatched edges. If epsilonis
not specified with this option, 10% of the shortest edge length is
used as epsilon.

USER GUIDE June 2000
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dicer(l) dicer(1)
USER GUIDE

-m [n] Use the multi-stage, out-of-core algorithm for building the internal
topological data structure. If nis specified, it controls the number
of partitions allocated: n vertex hash table partitions, and 2 * n
edge hash table partitions. This option is only implemented for
STL input.

-of file  Specifies the name for the output L SIF file generated by the dlicer.

-un Scale the entire part before slicing by a uniform scale factor n.

-tn If the input is valid, make consecutive horizontal slices through the
part, starting at the lowest point and using a slice thickness of n.

Outputs an LSIF file (to stdout, unless -of option is used).

-vXxyz  Changesthe up vector for slicing to be ( %, y, z) from adefault up
vector of the positive z-axis, (0, O, 1).

EXAMPLES
Analyze and clean up the STL file complex.stl, using the out-of-core
algorithm with 10 partitions for the vertex hash table. Use an epsilon of .001
for the vertex merging, and write the cleaned up version of the stl fileto
clean.stl:

dlicer -m 10 -a-e .001 -stl clean.stl complex.stl

Slice the SIF file cube.sif, scaled down 50%, with slice axis perpendicular to
the y-axis and dlice thickness .01, and write the output file to cube.lsif:

dlicer -t .01 -u.5-v 010 -of cube.lsf cube.sf

FILES
/project/cs/sequin/caffe/sif/bin/SY STEM/IRIX/dlicer

AUTHOR
SaraMcMains

USER GUIDE June 2000



