
� � �������	��

����������� ���
� ��������������� ��� !#" �$��� % �&�('*)+!�,�!#���-�.!#����
/���102
3��� �4�

�5� 6 ���7�8'9%

":!#� ; �<�>=��7
/� "

?A@CBEDGF HJICKMLON

P4QSR�TVU5W�X�T(Y�Z\[J]4^V^V[A_a`4bMcGcdb5eGegfih
jlk$monik$prq-sutvtiw

xzy|{�} nd~���p��o�	����m��	�������g����� y m������ x ���
��m����l�	p�����~�q y|�<x k|��� ��y p�m���k
�7��p��v�����1qv� x k|��� ��y p�m���k
 $¡o¢|s$t
_¤£¥R¥R<TGU5W5Q§¦©¨*ª�«
¬i­G®G¯°­ ±³²r´r´¶µ�²¸·�²r¹�º¶»�º¼·�½r½r·�¾G·�¿C¬9À�ÁdÂÄÃ�Å
ÁgÆrÇÉÈËÊÍÌrÎ�Ï1ÈÉÆ(ÐÒÑÓÁg®iÔÕ±�Ö×»r»¶µ�º¼·�²r¹�º¶»�º¼·�½r½¶·�¾C·�¿C¬ØÀ�ÁdÂÄÃ�Å
¾CÈÉÇÙÈÉÏ&Ú°Å�Ñ�Ï1Û¶ÜËÅ
ÝVÞEßVÇÉÞEàáài¯|ÆrÛ�â�Æ¶Î�ãäÅ	Ñ�Ï1Û¶Ü

Abstract

A majority of programs in use today are written for word-based computing ar-

chitectures, such as the microprocessor, using word-based programming languages.

The word model, while convenient, typically provides quantized word widths that

are a mismatch for many applications. Consequently, many bits of a word may go

unused and contribute no useful information to the computation. Removing these

bits from the computation, e.g. using specialized hardware data-paths, may pro-

vide the implementation with significant savings in run-time, area, and/or power.

In this project, we analyze and quantify this bit-level waste using a model of bit

constancy and binding-time. Applying the model to the UCLA MediaBench suite

[29] of C programs, we find that some 70% of bit-level read operations are to eas-

ily identified constant data, much of it in unused, high-order bits. These findings

suggest that there is significant opportunity for bit-level specialization of these

programs by relatively simple means such as narrower data-paths.

1

Contents

1 Introduction 1

1.1 Project Overview . 3

1.2 Constancy in the Word Model . 7

1.2.1 Word-Level Constancy . 8

1.2.2 Narrow-Width Computation 9

1.2.3 Address Computation . 12

1.3 Profiling to Discover Constancy 13

1.3.1 Capturing Dynamic Behavior 13

1.3.2 Source-level Profiling in C 13

1.3.3 Storage-based Profiling . 14

1.4 Model of Bit-Level Constancy . 16

2 Methodology 23

2.1 Overview . 23

2.2 Instrumentation . 25

2.2.1 Program Transformations 25

2.2.2 Instrumented Events . 27

2.3 Run-Time Data Collection . 30

2.3.1 Data Structures . 30

2.3.2 Profiler Actions . 34

i

2.3.3 Cost of Profiling . 37

2.4 Run-Time Result Report . 38

2.5 Call Chain Disambiguation . 40

3 Results 43

3.1 Profiled Applications . 43

3.2 Ninety-Ten Rule for Bit Storage 45

3.3 Bit Constancy on the Heap . 48

3.4 Bit Constancy in Variables . 51

3.5 Constancy in Bit Regions of Variables 55

3.6 Effects of Call Chain Disambiguation 57

3.7 Constancy In Some Lifetimes . 61

3.8 Sensitivity to Inputs . 64

3.9 Summary and Conclusions . 67

4 Discussion 71

4.1 Problems and Limitations . 71

4.1.1 Problems with SUIF . 74

4.2 Reducing Memory Usage . 76

4.3 Further Analyses . 77

4.3.1 Collapsing Array Information 78

4.3.2 Pushing Variable Declarations to Point of Use 79

4.3.3 Bitwise Reads-Per-Write, Reads-Per-Change 80

4.4 Exploiting Bit Constancy . 81

4.4.1 Language Features . 82

4.4.2 Exploitation in Hardware 83

4.4.3 Probabilistic Specialization 84

4.4.4 Online vs. Offline . 85

ii

4.5 Application: Specializing Multipliers 86

4.5.1 A Simpler Constancy Model: Bit Regions 87

4.5.2 Profiling Multiplies . 89

4.5.3 Specialization models . 89

A SUIF Optimizations 101

B The Compilation Sequence 105

iii

List of Figures

1.1 Tallying bit-reads in a sample function invocation 14

1.2 The bit binding-time domain B. 18

2.1 Exposing intermediate values as temporary variables 27

3.1 Ninety-Ten Rule: Cumulative distribution of variables responsible

for word reads . 47

3.2 Ninety-Ten Rule: Cumulative distribution of variable bits respon-

sible for bit-reads . 47

3.3 Cumulative distribution of variable bits by bit binding-time 52

3.4 Cumulative distribution of variable bit-reads by bit binding-time . 53

3.5 Variable bit-reads to constant, contiguous bit regions 56

3.6 Call chain disambiguation: Cumulative distribution of variable bits

by bit binding-time . 58

3.7 Call chain disambiguation: Cumulative distribution of variable bit-

reads by bit binding-time . 59

3.8 Variable bit-reads to bits constant in some lifetimes 63

3.9 Bit binding-times for gzip bit-reads using different inputs 66

4.1 Pushing a variable declaration to the point of use 79

4.2 Decomposition of a word into bit ranges, (a) SVC model, (b) SCVC

model. 86

iv

List of Tables

2.1 Components of a memory image 32

2.2 Components of a variable image 33

3.1 Breakdown of bit-read operations among variables, heap, and un-

known objects . 50

3.2 Bit binding-times on the heap . 50

3.3 Breakdown of variable bits by bit binding-time 52

3.4 Breakdown of variable bit-reads by bit binding-time 53

3.5 Variable bit-reads to constant, contiguous bit regions 56

3.6 Call chain disambiguation: Breakdown of variable bits by bit binding-

time . 58

3.7 Call chain disambiguation: Breakdown of variable bit-reads by bit

binding-time . 59

3.8 Call chain disambiguation: Change in size and performance of Me-

diaBench applications . 61

3.9 Variable bit-reads to bits constant in some lifetimes 63

3.10 Data files for gzip input sensitivity experiment 65

3.11 Bit binding-times for gzip bit-reads using different inputs 66

B.1 Sequence of steps for compiling a self-profiling application 106

v

Acknowledgements

Many thanks to all the people who helped and encouraged me along this project.

Thanks to my advisor, John Wawrzynek, for your wisdom in telling me where to

start and where to finish. Thanks to André DeHon for your intimate participation

in this project and for being like a second advisor to me. Thanks to professor

Kurt Keutzer for helping me to see the bigger picture and to place this project

in context. Thanks to the office crew (Nick, Randy, Michael, Joe, and all the

rest who have come and gone) for pushing me along with reverse psychology. It

worked! Special thanks to Denise, my one and only, for patience on the many

late nights and weekends. Thanks to my kids, Josh and Ross, for giving me

perspective. Thanks to my parents for helping me get to Cal. And thanks to

everyone at Cal who has made this one of the greatest adventures of my life.

vi

Chapter 1

Introduction

A large fraction of computation in use today is oriented for word-based languages

and architectures that use bit-parallel, SIMD ALUs. The word model is especially

convenient for arithmetic and bit-parallel logic, where a single word operation can

represents 32 or 64 parallel bit operations. However, the fixed-width nature of the

word model is a mismatch for certain computations, e.g. boolean logic decisions

and arithmetic with small numbers. In such cases, a substantial number of bits

in a word contribute no useful information to the computation. In addition,

there is evidence [42] [45] [13] [6] that a significant fraction of word operations on

traditional word-based architectures are continually repeated with previously-seen

inputs, contributing no useful work in steady state. These observations suggest

that the traditional word model, despite its convenience, lends itself to significant

computational waste, and consequently to degraded run-time, area, and/or power

in any implementation.

Existing architectures have sought to overcome wasteful behavior of the word

model in several ways. In microprocessors, wasteful word operations can be re-

duced by value prediction hardware [32] [42] [13] [45], as well as by value-specific

optimizations (VSO) using run-time partial evaluation and specialization [26] [10]

1

[30] [19]. Wasteful bit operations can be reduced in part by going to finer-grained

architectures. Recent multimedia instruction sets (e.g. Vis [28], MMX [36], Al-

tiVec [35]) have done so using narrow-word, word-parallel ALUs. At the finest

grain, custom logic (e.g. ASIC) would allow bit-level specialization and optimiza-

tion. Reconfigurable logic devices (e.g. FPGA) would further allow dynamic

bit-level specialization, i.e. adapting the implementation over time. However,

the programming tools available for exploiting such fine-grained architectures are

presently limited, and the body of programmers comfortable with fine-grained

programming (e.g. MMX assembly, hardware description languages (HDL), logic

schematic capture) is relatively small. Thus, there is continued interest in using

high-level, word-model programming even for custom logic. Recent examples for

reconfigurable hardware include PRISC [39], Transmogrifier C [14], NAPA C [15]

[16], and C for Garp [7].

This project seeks to quantify the bit-level computational waste inherent in

word-based architectures. We propose models of bit-level constancy and lexical

binding-times that can be used to gauge the overall opportunity for bit-level spe-

cialization of word-based programs. We describe an experimental framework to

apply these models empirically to dynamic executions of C programs. Applying

this methodology to the UCLA MediaBench suite [29], we find that some 70%

of bit-read operations are to easily identified constant data, residing primarily in

high-order bits of words.

This report is organized as follows. This chapter (Introduction) begins with an

overview and summary of the project. The chapter goes on to recount evidence

from the literature of computational waste in the word model and introduces

our model for quantifying that waste. Chapter 2 (Methodology) describes an

experimental methodology to study that waste in existing C programs. Chapter

3 (Results) describes our findings for the UCLA MediaBench suite [29]. Chapter

2

4 (Discussion) discusses problems and possible extensions to the methodology as

well as ideas for exploiting bit-level waste by logic-level specialization. Several

appendices are included as a reference for certain details of the experimental

implementation.

1.1 Project Overview

One of the benefits of reconfigurable computing devices is the ability to implement

data-paths that are highly specialized to an application or to its input data. In

particular, because they are programmable, reconfigurable devices have the poten-

tial to instantiate and execute only the minimum hardware actually required for

each application. For instance, in a fine-grained device (e.g. FPGA), it is possible

to implement ALU operations (add, subtract, etc.) of arbitrary bit widths. Con-

trast this with microprocessors, where all operations are done in large, fixed-width

ALUs. The computation of unused high-order bits in ALUs is wasteful.

It is also possible with reconfigurable devices to specialize a data-path around

known data values and to create a partially-evaluated, hence smaller, data-path.

For instance, a multiplier circuit with one constant input can be made substan-

tially smaller and faster than a general multiplier where both inputs are variable

[33] [9]. Similarly, random logic can be partially-evaluated using bit-level constant

folding (e.g. “x AND 1” simplifies to x). This has been demonstrated in a number

of applications implemented on FPGAs (e.g. SAT solving [47] [38], string match-

ing [20]), where specializing a circuit for particular, known data values made for a

substantially smaller and faster implementation (e.g. specializing for a particular

boolean formula for SAT or a particular character sequence for string matching).

The performance benefit of specialization can be attributed to two effects:

smaller computational delay and smaller circuit area. Smaller delay should in

3

general reduce total run-time. In a programmable device with limited size, using a

specialized circuit of smaller area frees up resources to execute additional, parallel

operations. Thus, specializing for smaller area can also contribute to smaller

overall run-time.

The question posed in this master’s project is how much raw opportunity

is there for specializing computations? Can one always expect to speed up an

application by some factor using data-path specialization? The answer to this

question clearly depends on the application– some applications use more constant

data than others. The answer also depends on the representation of an application.

For example, an application written in a high-level language such as C is forced

to use particular data representations, e.g. 16 or 32 bit integers, potentially much

wider than the application requires. In contrast, an application written in a

hardware description language such as Verilog can use arbitrary bit widths.

This study focuses on applications written in C. C is a popular, high-level

language that represents a large body of computation in use today. Its word-

based, imperative, sequential style of programming represents the way that a

majority of designers think about and code applications. Thus it is a reasonable

base representation for analysis and comparison in asking how much opportunity

for specialization exists. Furthermore, there is a large base of existing code and

benchmarks written in C, available for analysis.

Our analysis of opportunity for specialization will necessarily be specific to the

program representation considered herein, namely C. Thus we must define what

is a “wasteful” operation in this context, and how it can be improved or avoided

by specialization. We can define a “wasteful” computation as one whose result

produces no new information. This typically happens when the input values of

the computation are known, i.e. are constant, or have been seen before. Such

a computation could be specialized by pre-computing or memoizing the result,

4

thus avoiding the run-time computation. Because in C the inputs and outputs

of computations are represented by named variables and memory locations, this

study will concentrate on identifying constant values in variables and memory

locations.

At the word level, an example of a wasteful operation with known inputs is

multiplication by a constant such as one. The answer is trivially known to be

the multiplicand and does not actually need to be multiplied. More generally, the

actual value of the multiplicand may not be known until run-time, even though it is

known that the value will be constant. This is an example of a dynamic constant,

in which case it may be profitable to replace the multiplier by a constant multiplier

as soon as the multiplicand value is encountered at run-time. More generally, in

a hardware implementation, we must consider operations at the bit-level. That

multiplicand may not have a strictly constant value, but it may have certain

constant bits. For example, it may always be even (least significant bit is zero), or

it may always be smaller than 256 (i.e. it has only 8 dynamic, low-order bits). An

operation with certain known input bits might be specialized at the bit level, for

instance by removing some partial products of the multiplier, or more generally

in a hardware implementation, by partially-evaluating arbitrary bit operations

(AND, OR, etc.). Hence, in our analysis of variables and memory locations in C,

we will identify not only constant words, but constant bits within words.

In searching to expose the total, actual opportunity to specialize around con-

stant values, our analysis must be able to get around those artifacts of the C

language that occlude constancy and opportunity. Analyzing the flow of data

values is particularly difficult in C, thanks to sequentialization (the fact that a

value can be stored in memory and used later in the program) and thanks to

pointers (which make it difficult to know where a value is stored in memory and

which value is subsequently read from memory). In addition, we wish to account

5

for data-dependent behavior, i.e. for constancy of values that are not known at

compile time. Thus, our analysis must be a dynamic, run-time analysis that looks

at actual program values and execution paths. A static, compile-time analysis is

insufficient.

The hypothesis being explored here is that programs written in C exhibit

a significant amount of dynamic constancy, at the bit level. An experimental

methodology will be developed to discover those constant bits and to relate them

directly to the C source. That is, the methodology will discover constant and

unchanging bits in named variables. Furthermore, the methodology will discover

how often those bits change with respect to the block-structure of the C program.

A corollary to our hypothesis of the existence of bit-level constancy is that this

constancy can be exploited by data-path specialization. Hence, if a C program

were to be implemented in hardware, our methodology could pinpoint which C

constructs, and in particular, which bits, are candidate for specialization. Be-

cause our methodology is based on dynamic, data-dependent program behavior,

its results are not necessarily correct for every data set. Hence, its results cannot

be used directly to specialize a program without the use of guards, i.e. additional

error-checking expressions or hardware to signal when an input bit’s value is other

than the expected constant. Alternatively, the results of analysis can be used to

guide a subsequent, static, compiler analysis which would prove, for all possible

input data, the veracity of some of the dynamically-discovered constancy.

Finally, we choose the MediaBench suite of programs as an initial target for

analysis. The suite is comprised of various media processing tasks, including

signal-processing, data compression, and protocol/file processing. One common

element in all these programs is that they process large streams of data (e.g. audio,

input images) using fairly simple-structured, unchanging data-paths (e.g. DCT,

ADPCM). Because of the mostly static nature of the data-paths, we expect a cer-

6

tain amount of constancy or repeated work in the computation (e.g. multiplication

by a fixed DCT coefficient). Furthermore, the data-paths are often parameterized

by command-line options (e.g. the level of compression in JPEG encoding). These

options determine constants and operating modes that remain fixed for the entire

duration of program execution. Such behavior is a prime candidate for specializa-

tion, wherein it would be necessary to specialize a data-path only once, near the

beginning of execution, around constants derived from command-line options.

1.2 Constancy in the Word Model

At the heart of this project is the premise that computation on known inputs

produces no useful new information. The results of such a computation could be

cached or hard-wired, removing the need to perform the computation at run-time.

This notion is by no means new. It is commonly used in modern optimizing com-

pilers, run-time specialization systems, and microprocessor hardware (in various

forms of caching and prediction). We are particularly interested in extending this

premise to the bit level, i.e. that a bit operation with known bit inputs produces

no useful new information. Since word operations are implemented by bit op-

erations (ultimately by boolean logic), any word operation on inputs containing

known bits will exhibit computational waste in the bit-level implementation.

In this section, we recount evidence of constancy and trivial computation in

word-based architectures. We first discuss instances of word-level constancy, e.g.

computation on known, repeated, or slowly-varying word values. We then discuss

instances of bit-level constancy in word-based computation, e.g. range-limited

arithmetic (where high-order bits are zero) and strided arithmetic (where low-

order bits are fixed).

7

1.2.1 Word-Level Constancy

Traditional compile-time constant propagation and constant folding are useful

when the value of constant operands is known to the compiler. The compiler

simply replaces the computation by its result, e.g. 1+1 becomes 2, and x*1.0

becomes x. Other traditional techniques, such as hoisting invariants out of loops,

can be applied even to dynamically valued constants (DVC) whose exact value is

not known at compile-time. Run-time partial evaluation [26] [10] [30] can use all

these techniques once a DVC value is known, to create a value-specific, specialized

implementation.

Compiler techniques to deal with constancy are complicated by the typical lack

or under-use of mechanisms to declare constant and dynamically-constant vari-

ables. For instance, Schilling [43] analyzes a collection of scientific and compiler-

related C++ programs to find that less than 1% of all variables were declared

DVC (using const), even though 30-50% of local, non-class variables behaved as

DVCs. Perkins [37] finds similarly for 2 million lines of defense-related ADA code,

with up to 50% of variables being DVC candidates. A number of program analy-

ses exist to automatically discover DVCs and slowly-varying quantities, including

binding-time analysis [25] and staging analysis [27] [1]. Nevertheless, there remain

run-time constants that cannot be discovered by practical analysis, for instance

due to heavy aliasing through pointers or files.

A weaker form of constancy exists when a word quantity takes on more than

one value, but there are very few values, and/or the values change very infre-

quently. Evidence of this is abundant for microprocessors. Lipasti and Shen [31]

report that, across a collection of SPEC and multimedia-oriented C programs com-

piled for a PowerPC 620, 49% of dynamic instruction executions repeat operands

from their previous execution; 61% repeat operands from one of the previous 4

executions. Similarly, Wang and Franklin [45] report that, across a subset of

8

SPECint92, 39%–79% of dynamic instruction executions repeat one of the pre-

vious 16 executions. Sazeides and Smith [42] report that over 50% of dynamic

instruction executions generate fewer than 64 values, and over 50% of static in-

structions generate only 1 value. Calder et al. [6] reports that among integer

instructions, up to 54% of dynamic instruction executions repeat a single, most

frequent value. These cases of operations with previously-seen inputs can be ex-

ploited by data value prediction hardware [32] [42] [13] [45] which caches and

reuses results instead of recomputing them.

Alternatively, operations with particularly simple inputs (e.g. arithmetic with

a 0 or 1 operand) could be special-cased in logic rather than have their results

cached. Richardson [41] reports that up to 6% of dynamic instruction executions

in SPEC and up to 7% in the PERFECT Club are arithmetically trivial, e.g.

multiplication by 0 or 1 and division by self. The latency of a trivialized operation

can be improved by specializing the operation to recognize and handle special-case

inputs, e.g. to directly emit 0 for the multiplication x×0. This latency advantage

can be had even if the special-case inputs are not frequent. Nevertheless, there is

an area cost for this approach, since it augments rather than replaces the original

implementation with a specialized one.

1.2.2 Narrow-Width Computation

Recent microprocessors have moved to wide ALUs, typically 32 or 64 bits, pri-

marily to handle growing address spaces. Typical integer data values, however,

have not grown substantially and do not use the full width of these ALUs. The

high-order bits of data quantities often remain zero or act merely as sign exten-

sion bits. These high-order bits carry no useful information (at most, one bit’s

worth for a sign), and the ALU bit operations associated with them are effec-

tively wasted. For instance, many signal processing programs use 16- or 24-bit

9

arithmetic to implement prevailing standards. Also, boolean logic for control-flow

decisions typically operates on single-bit quantities. When run on a 32-bit or

64-bit ALU, these cases invoke many wasted bit operations.

Brooks and Martonosi [4] report that, in a 64-bit processor implementation

of the SPECint95 and MediaBench suites, some 50% of all dynamic instructions

have all their operands no wider than 16 bits. An additional 30%–40% of dy-

namic instructions use precisely 33 bits for heap and stack addressing. Nearly no

instructions use the full 64 bits.

The recent trend in microprocessors to SIMD multimedia operations (e.g. Vis

[28], MMX [36], AltiVec [35]) represents one solution for using narrow arithmetic

efficiently. These architectures segment a wide ALU (typically 128 or 256 bits)

into a vector of parallel, narrow operations (typically 8, 16, or 32 bits). Using such

architectures efficiently requires vectorizing an algorithm. Furthermore, the bit-

width of all operations must be known statically, and for peak efficiency, must be a

power of 2. Thus, these architectures can still waste up to 50% of bit operations,

for instance in the case of 16-bit arithmetic implemented in 17 bits to handle

overflow.

Brooks and Martonosi [4] describe a SIMD processor architecture that allevi-

ates the need for static knowledge of bit-widths by dynamically recognizing 16-bit

operands. Selectively gating the clock to the unneeded, upper 48 bits of a 64-bit

ALU produced a power reduction in the ALU of just over 50%. Dynamically vec-

torizing 16-bit operations by packing them 4-wide into the 64-bit ALU produced

a 4% speedup for SPECint95 and 8% speedup for MediaBench.

Determining a precise, minimum bit-width for word operations can be difficult

or impossible. Conservative lower bounds for data widths can be found using

value range analysis [22] [2]. Value range analysis is a program analysis that

uses abstract interpretation to estimate the value range of word quantities. For

10

instance, the sum of x ∈ [0, 10] plus y ∈ [0, 10] is (x+ y) ∈ [0, 20]. Range-limited

quantities typically have many high-order bits being zero, signed, or otherwise

constant. There also exist a number of analyses that estimate data widths directly

at the bit level [39] [8] [5]. These analyses typically use abstract interpretation

based on the logic implementation of a computation rather than on its arithmetic

properties. For instance, the sum of two 8-bit values is a 9-bit value. These

analyses are conservative and may overestimate the minimum required width of

a computation. Furthermore, because they are static and performed at compile

time, these analyses cannot discover cases where word values are dynamically

narrow at run-time. To find tight bounds on data widths, the approach of this

project is bit-level and uses dynamic profiling rather than compile-time analysis.

Finding the most efficient bit-width for a hardware implementation is more

complicated than just finding data widths. One approach for improving the com-

putational efficiency of a word ALU (as measured by some metric such as bit-

operations per area-time) is to implement narrower ALU slices and to chain them

to perform wide operations. Chaining may be performed sequentially on one slice

or spatially using multiple parallel slices. This approach still suffers from some

fragmentation, since in any operation whose width is not a multiple of the slice

width, one ALU slice will not use all of its bits. Recent examples include the recon-

figurable arithmetic array of Haynes and Cheung [24], comprised of programmable

k × k multiply-add blocks (Flexible Array Blocks, or FABs). Under the assump-

tion that the frequency of n× n multiplies in designs falls off as 1/n, Haynes and

Cheung find the most area-efficient FAB size to be 8×8. Other sliced, ALU-based,

reconfigurable systems include CHESS [34] based on 4 × 4 ALU elements, or at

a finer level, Garp [23] based on 2-bit LUT/ALU elements. The most efficient

slice width is dependent not only on the statistics of target applications but on

the architectural overheads of the implementation. In some cases, single-bit slices

11

may not be the most efficient.

Bondalapati and Prasanna [3] consider the more sophisticated case of bit

widths that grow with time. They describe a dynamic precision management

scheme where a data-path is periodically reconfigured to the precise width re-

quired at that time. Although they target a reconfigurable fabric of single-bit

elements, there is nothing in principle that prevents their technique from being

applied to fabrics with wider ALU slices.

1.2.3 Address Computation

Address arithmetic is one kind of computation that seems highly prone to bit-level

constancy. For one thing, 64-bit pointers in a small or under-used address space

will clearly have many zero high-order bits. Brooks and Martonosi [4] also note

that adding small offsets to large base addresses is not likely to overflow to the

full width of the base address. Thus small offset operations can be implemented

using narrow arithmetic, so long as a mechanism exists to detect and handle the

overflow case. This speculative approach added a 4% speedup for SPEC in their

dynamic vectorization approach.

The alignment of memory structures on word boundaries suggests that there

is some constancy in the lower bits of addresses. For instance, stepping through

an array of 32-bit words in a byte-addressable memory requires a strided pointer

whose lowest 2 bits are always zero. More generally, stepping through an array of

2n-byte objects, even if every access is offset within the object, will use a strided

pointer with n constant least-significant bits. This phenomenon is a special case

of strided data patterns, whose redundancy can be alleviated in microprocessor

systems by strided value prediction hardware [42] [13]. The project described in

this paper finds that the waste due to constant low-order address bits is small in

the MediaBench suite.

12

1.3 Profiling to Discover Constancy

This project uses program profiling to study bit-level waste in word-based ar-

chitectures. Here we introduce and motivate the salient features of our profiling

approach. Details of the experimental methodology are deferred until Chapter 2

(Methodology).

1.3.1 Capturing Dynamic Behavior

To accurately quantify the bit-level waste of a computation, we use a technique

of profiling. Profiling collects dynamic information from an actual execution of

a program. Hence, unlike static program analyses, profiling reveals the actual,

data-dependent statistics of a program.

1.3.2 Source-level Profiling in C

We choose to study programs in the C language as representative of word-based

architectures. C is a popular, word-based programming language that is rela-

tively low-level. That is, the language directly represents many features of exist-

ing, word-based processing architectures, particularly features of microprocessors,

including: quantized word widths (e.g. 8, 16, 32 bits); scalar data types with

known bit-level representation (e.g. signed is two’s complement); and pointer-

based memory access. The popularity of C and of its typical target architecture,

the microprocessor, suggest that a judicious collection of C programs can be taken

as representative of modern, word-based computing. The popularity of C also

means that a variety of accepted benchmarks, compilers, and analysis tools are

readily available. We concentrate on the UCLA MediaBench suite [29], a collec-

tion of multimedia-oriented benchmarks. We use the SUIF C compiler [46] to

modify applications for run-time profiling.

13

void add (short a,
short b, short *p) {

*p=a+b;
}

Bit operations per call:
• read a: 16 bit-reads
• read b: 16 bit-reads
• read p: 32 bit-reads
• write at p: 16 bit-writes

Figure 1.1: Tallying bit-reads in a sample function invocation

Our profiling methodology collects statistics at the source level, i.e. on quan-

tities such as named variables that can be related directly back to the program

source. This makes the results largely independent of any particular hardware

implementation. In tallying bit operations, the profiler considers each word op-

eration to have the minimum bit width mandated by the original program’s data

types, not the fixed width of any particular ALU implementation. This makes our

profiling results more conservative (i.e. they report less constancy) than typical

microprocessor-oriented profilers that count all 32 or 64 bits of the ALU as active

in every operation.

Profiling a program at the source level yields results that reflect bit-level waste

in the original, source description of the computation. Normally, this is not the

computation that would be executed in hardware. Rather, a program typically un-

dergoes extensive compiler optimizations before execution. Hence, it is preferable

to profile program source after it is modified by conventional compiler optimiza-

tions. This is possible with the SUIF compiler, which applies optimizations at the

source level.1

1.3.3 Storage-based Profiling

The profiling methodology presented here targets a program’s data storage. It

collects statistics on access and modification of variables and heap memory. These

1SUIF operates on an internal form that is translatable one-to-one with C source.

14

storage elements represent the inputs and outputs of primitive operations such as

arithmetic and data movement. We use dynamic read accesses as a measure of

computational activity, since each read access (e.g. of a named variable) is an

input to some operation. Moreover, this measure is independent of the particular

operation being used. Counting each word read as a collection of bit-reads allows

us to represent generic ALU bit operations. An example of tallying bit-reads is

shown in Figure 1.1. Note that the addition operation a+b is accounted for in the

reading of its two 16-bit inputs.

A bit of storage is an interesting constant if its value does not change for some

duration of time. The storage location may actually be rewritten many times

without changing the value of an individual bit. If the bit is read and used many

times without changing value, then it may be profitable to specialize around it as

a constant. Profiling named variables at the source level allows us to relate the

frequency of change of a storage bit to the program structure. For instance, it is

possible to determine that a bit of a variable is constant in a particular code block

such as the body of a loop. In this way, storage profiling can empirically discover

the binding-time of variable bit and identify it as a DVC.

Rather than profile storage, an alternative approach is to profile instruction

operands directly. This approach is popular with microprocessors, where exe-

cution of instructions with previously-seen operands can be sped up by value

prediction hardware [31] [42] [13] [45] [6]. Unlike storage profiling, instruction

profiling easily differentiates the constancy behavior of different kinds of oper-

ations. However, instruction-centric results are necessarily architecture-specific,

tied to a particular processor ISA or a compiler’s intermediate form (e.g. low-SUIF

in the SUIF compiler). Also, instruction-centric results are difficult to relate back

to the original program source.

15

1.4 Model of Bit-Level Constancy

Section 1.2 described a number of different forms of constancy that lead to compu-

tational waste in word-based architectures. Word-level constancy includes purely

constant words, slowly-varying words, and words that take on a small set of values.

Sub-word constancy includes range-limited words with constant high-order bits,

strided words with constant low-order bits, and words with an evolving precision

requirement.

We now develop a model of constancy that captures most of the above forms

of constancy at the bit-level. Our model works on the binary representation level

rather than focusing on arithmetic word properties such as value range or ad-

ditive stride. This bit-level approach is oriented for evaluating hardware costs,

since it identifies bits in a data-path which are wasteful and might be special-

ized. Applying the model to a program gauges its overall opportunity for bit-level

specialization by such means as narrower data-paths and logic optimization.

Our constancy model uses a notion of bit-level binding-times. This idea is

based on conventional, word-level binding-time analysis [25], a static analysis

that assigns to each program quantity a label from the domain: U @ S @ D

(U=undefined, S=static, D=dynamic). Our model extends this domain in two

ways. First, our domain describes individual bits of words, differentiating between

sign-extension and non-sign bits. Sign-extension bits represent a particular kind

of bit-level waste, since they comprise a sub-word region where all bits carry the

same value (all zeros or all ones). Sign-extension bits need not be constant, but

they are perfectly correlated and can generally be replaced in hardware by a single

representative bit.

Second, our domain fills the gap between the pure static (S) and dynamic

(D) classes with additional labels to denote frequency of change. This notion of

frequency is related to a program’s lexical structure. A bit value may be constant

16

across all executions of the program, constant only during individual executions

of the program, or constant only inside some lexical block. In particular, there is

a class for bits of a local variable that are constant in any dynamic entry into the

variable’s scope of definition. Our model does not identify constancy on any finer

time scale, for example within smaller nested blocks. Thus this lexical notion

of frequency of change is distinctly weaker than flow-sensitive formulations of

classic binding-time analysis, which label a variable with a different binding-time

at each point in the program. Also, this lexical notion of frequency is applicable

to variables but not to the heap, since heap objects do not have a lexical scope of

definition. Thus heap objects are analyzed with only a subset of the bit binding-

time domain.

Whereas conventional binding-time analysis gauges constancy statically from

definitions (writes) in source code, our bit binding-time model is meant to capture

constancy from dynamic execution. Dynamic constancy is concerned only with

retention or change of a bit’s value. A bit of storage may be rewritten many

times during execution yet always retain its same value. An example of this is the

unused high-order bits of a range-limited variable, which are always zero as new

variable values are written. Such bits are effectively constant, but this property

is evident only dynamically, not statically. Our run-time analysis ignores write

operations that retain a bit’s previous value. In the remainder of this report, the

terms bit binding-time and bit constancy may be used interchangeably.

Figure 1.2 shows the domain of bit binding-times B. The domain is a lattice

with bottom element Undefined and top element Per-Def (equivalent to the bottom

U and topD of conventional binding-time analysis). Elements closer to the bottom

are more static, whereas elements closer to the top are more dynamic. Strictly

speaking, our model does not use this bit domain but rather a word domain

built from it. The binding-time domain Dn for an n-bit word is formed as the

17

Per-Def

Sometimes-Per-Block

Per-Block

Per-Exec

Per-Compile

const

Undefined

Per-Def, Sign

Sometimes-Per-Block, Sign

Per-Block, Sign

Per-Exec, Sign

Per-Compile, Sign

Figure 1.2: The bit binding-time domain B.

direct product of n instances of B, with point-wise (bit-wise) least-upper-bound

(LUB), and with the additional restriction that sign extension bits must appear

in a contiguous region of high-order bit positions.

The non-sign elements of the bit binding-time domain (shown on the right side

of Figure 1.2) are:

Undefined (⊥ bottom element) An “undefined” bit is a bit of allocated storage

whose value is never defined by a write operation. In practice, we find

that read activity to undefined storage is negligible, so we do not report

information on undefined bits.

const A “const” bit is a bit from a variable that is defined const in the program

source.

Per-Compile A bit bound “once per compile” is one that takes only one unique

value across all executions of the compiled program.

Per-Exec A bit bound “once per execution” is one that takes only one unique

value during an execution of the program. That value may be different in

different executions.

18

Per-Block A bit bound “once per block” takes only one unique value during

any entry into its variable’s scope of definition. This class applies to local

variables that are instantiated anew every time control enters their scope

of definition. A bit bound “once per block” is a DVC in that its value is

constant during any scope instantiation of its variable, but the value may

be different in different instantiations.

Sometimes-Per-Block A bit bound “sometimes per block” takes only one unique

value during some scope instantiations of its variable. The bit takes multiple

values in at least one scope instantiation.

Per-Def (> top element) A bit bound “once per definition” is a dynamic bit

whose pattern of change is not simply related to its variable’s scope of def-

inition.2 This is a catch-all class and is necessarily imprecise. The name

“once per definition” is taken for symmetry with other binding-times and

does not necessarily imply a new unique value at every definition point.

The sign-extension elements of the bit binding-time domain (shown on the left

side of Figure 1.2) designate bits that serve as sign extensions in their respective

words. Sign extension bits always appear in a contiguous region of identically-

valued bits (all zeros or all ones) in the high-order positions. If these bits change,

they change together. The sign-extension elements of the bit binding-time do-

main correspond to the non-sign elements in frequency of change. These elements

include:

Per-Compile, Signed Sometimes-Per-Block, Signed

Per-Exec, Signed Per-Def, Signed

Per-Block, Signed

2A bit in the Per-Def class may be slowly varying in a way that does not match the model. It
is possible for a dynamically constant bit to be labeled Per-Def instead of Per-Block if its scope
of definition is much larger than its scope of use. A solution to this is described in Section 4.3.2.

19

The bit binding-time domain is restricted for bits on the heap, since heap

objects have no lexically-oriented lifetimes. The domain is restricted to the ele-

ments: undefined, Per-Exec (i.e. static), Per-Def (i.e. dynamic), and their signed

counterparts. This essentially reverts the domain into a bit-level version of the

classical binding-time domain: U @ S @ D, with no continuum between the static

and dynamic extremes.

The domain described herein captures all the forms of constancy described at

the beginning of this section except for one. It cannot represent a dynamic word

that takes on a small set of arbitrary values. It can, nevertheless, represent a

small value set that is range-limited, i.e. has constant or sign bits in the high-

order positions. More generally, the domain can conservatively represent a small

value set whose values differ in only a few bits. The like bits would be designated

constant, while differing bits would be designated dynamic.

A bit’s binding-time is discovered in profiling by a method of progressive re-

finement. Each bit of allocated storage begins with the conservative designation

undefined. During execution, as the bit value is defined and redefined by write op-

erations, its binding-time designation moves up the domain lattice via least-upper-

bound (LUB) operations. The mechanism is detailed in Chapter 2 (Methodology)

and described only briefly here.

The profiling system maintains at run-time a global, incremental binding-time

for each bit of allocated storage. For bits of variables, each scope instantiation

of the variable yields a local binding-time based on whether the bit was changed

during that instantiation. At the exit from each instantiation, the profiling system

updates the global binding-time for the bit by LUBing it with the local binding-

time. Bits of heap objects have only a global, incremental binding-time, since

they are not associated with lexical blocks. That binding-time is updated by

LUB every time the heap bit is written. The actual binding-time of a bit is

20

taken as its global, incremental binding-time at program exit. Bits of storage that

are never written simply retain their undefined designation throughout execution.

Such bits are intentionally omitted from the result report.

21

Chapter 2

Methodology

To study bit constancy in a particular C program, we modify the program into a

self-profiling version. At run-time, the profiling code processes all read and write

accesses to variables and heap storage. The profiling code computes bit binding-

times incrementally, as the program runs, and emits a result report at program

exit. This methodology does not emit memory traces and does not require any

post-processing after program termination.

This chapter describes each phase of the self-profiling methodology: instru-

menting a program’s source code, compiling, processing statistics at run-time, and

forming the result report. In addition, this chapter describes call chain disam-

biguation, a program transformation that can be applied before instrumentation

to make the analysis context-sensitive (i.e. to yield separate results for a variable

depending on how its scope is reached in the call chain).

2.1 Overview

To profile a program, we instrument (modify) it at the source level to profile every

read and write access to variables and heap storage. The instrumentation process

involves enumerating all named variables and all lexical blocks, then inserting

23

library calls into the code at every event of interest. The calls are to profiling

routines that collect and compute statistics as the program runs. The instrumen-

tation process is described in Section 2.2. The actions of the profiling routines are

described in Section 2.3.

The binding-time of each storage bit is computed incrementally as the pro-

gram runs. For each bit of storage, the profiling code maintains a memory image

of the bit’s most recent value, along with an incremental binding-time, access

counters, and other information. Value changes are detected at write operations

by comparing the written value with the most recent value.

For local variables, which are instantiated anew at each entry into the variable’s

scope, the profiling code maintain a separate, local memory image for each scope

instantiation. This local information is merged into the variable’s global memory

image upon exit from the variable’s scope block. Local memory images are kept

in a stack to support recursion. In this manner, the binding-time of a variable bit

can incorporate information from all local instances of the variable. Note that the

management of local information requires instrumenting the entry and exit into

each program block, with special handling for abnormal entry and exit via goto

or return.

We make no attempt to associate heap storage with any lexical scope. There

are no local memory images and no assessment of the frequency of change. In

effect, heap bits are analyzed with only a subset of the bit binding-time domain

(Undefined, Per-Exec, Per-Def, and the signed variants thereof).

The present implementation does not identify Per-Compile bits. Determining

that a bit is bound Per-Compile would require comparing its value across multi-

ple executions of the program. Values would have to be stored in a file between

executions and read-in for comparison in each new execution. For the sake of sim-

plicity, we avoid these mechanisms altogether and concentrate only on individual

24

executions. The strongest binding-time that the implementation can identify in a

single execution is Per-Exec.

2.2 Instrumentation

Instrumentation of programs is done using the Stanford SUIF C compiler1 [46].

SUIF is a freely available, extensible, optimizing, ANSI C compiler.2 Though

SUIF has few processor-specific back-ends, its internal program representation

can be readily converted back into C for compilation on any target processor. We

use SUIF in this way as a source-level transformation engine.

There are a number of program transformations that can be performed prior

to instrumentation to enhance the profiling results, including a variety of tradi-

tional compiler optimizations. In this section we discuss the transformations and

instrumentation that convert a program into a self-profiling version.

2.2.1 Program Transformations

There is just concern that profiling a program at the source level may not re-

flect the operations actually performed in hardware. Hence, we apply a number

of program transformations prior to instrumentation to help expose the actual

operations of a hardware implementation.

Profiling an unoptimized program may discover unrealistically plentiful con-

stancy that is normally reduced by compiler optimizations. Hence, we apply

traditional compiler optimizations in SUIF before instrumenting a program. Tra-

ditional optimizations such as constant propagation and folding, common sub-

expression elimination, and hoisting loop invariants, can reduce word-level waste

1We use SUIF version 1 and the Harvard MACHSUIF extensions [44] for bug fixes.
2Following ANSI C, SUIF considers int integers to be 32-bits. Hence, our results on bit

utilization are less aggressive than studies that consider large, 64-bit ALUs.

25

by removing ALU and memory operations and possibly by removing variables

altogether.

The compiler optimizations performed using SUIF (porky) are listed below.

Appendix A gives more details on each optimization from the porky man page.

• -forward-prop — forward-propagate calculation of

variable definitions to the point of

use

• -const-prop — constant propagation

• -dead-code — dead code elimination

• -privatize, -glob-priv — privatize global variables into locals

• -cse — common subexpression elimination

• -loop-invariants, -loop-cond — hoist invariants out of a loop

• -iterate — iterate optimizations until they

converge

Several other useful optimizations offered by SUIF were not used because they

proved to be too buggy:

• -fold — constant folding

• -reduction — reduction to move summation out of a loop

• -ivar — induction variable detection and reduction

These and other optimizations may become available and reliable in future versions

of SUIF, for instance in SUIF2 (in beta November 1999).

Profiling read accesses to variables and heap objects may not fully capture

the computational complexity of deep, nested expressions. Since storage-based

profiling ignores operations that do not access storage, it would ignore many in-

termediate operations in a deep expression tree. For instance, profiling the code

of Figure 2.1(a) would capture the two additions, since their inputs read variables,

26

v=(a+b)*(c+d); int t1=a+b;
int t2=c+d;
v=t1*t2;

(a) (b)

Figure 2.1: Exposing intermediate values as temporary variables

but not the multiplication. In effect, storage profiling captures only the dynamic

inputs and outputs of an expression tree. One way to better capture the com-

plexity of a deep expression tree is to flatten it and to expose all intermediate

quantities as temporary variables. For instance, profiling the transformed code of

Figure 2.1(b) would capture the multiplication, since its inputs now read tempo-

rary variables. Unfortunately, such a flattening transformation is likely to vastly

expand a program’s code size and run-time, hence it is not used in the present

implementation.

Section 2.5 describes a program transformation (call chain disambiguation)

that adds context sensitivity to the profiling analysis. A context sensitive analysis

would identify different results for a particular variable depending on how its

scope block is reached in the call chain. The proposed transformation is a brute-

force approach. It disambiguates a variable’s context by uniquely duplicating

procedures along the call chain.

2.2.2 Instrumented Events

Here we describe all events in a program’s source code that are instrumented. Most

events are instrumented by the insertion of calls to run-time profiling routines

(those routines are described in Section 2.3.2, and their names will appear in

sans-serif font). Some events, notably goto and return statements, require more

sophisticated handling.

27

The C language allows unrestricted jumping within a function using goto and

return statements. The jump path is allowed to exit and enter arbitrary lexical

blocks. To properly profile block exits and entries along a jump path, a goto or

return statement is replaced by a sequence of jumps through special regions of

code called landing pads. An exit landing pad is a waypoint for jumps exiting

a block. It appears at the end of the block and consists of a target label and

a jump (goto) to the exit landing pad of the nearest enclosing block. An entry

landing pad is a waypoint for jumps entering a block. Any number of such pads

may appear at the begining of a block, one for each original goto that enters the

block. An entry landing pad consists of a target label, calls to ScopeEntry for each

local variable, and a jump (goto) to bypass adjacent entry landing pads.

The following is a list of all program events that are instrumented, along with

a description of the code inserted to handle each event:

1. Program entry/exit (in main)

• Call ProfileInit/ProfileExit to initialize/clean-up the profiling library

• Call RegisterVariable for each named variable in the program

• Call ScopeEntry/ScopeExit for each global variable

2. Function entry/exit

• Add exit landing pad for return

3. Block entry/exit

• Call ScopeEntry/ScopeExit for each local variable3

• Add entry landing pad(s) for incoming goto

• Add exit landing pad(s) for outgoing goto/return

3static local variables are transformed into global variables during pre-instrumentation op-
timization. They are profiled as globals, not locals.

28

4. Read from Storage

• Call Read after read operation

5. Write to Storage

• Call Write after write operation

6. goto

• If target is outside this block, call ScopeExit for each local variable of

each nested block exited by this goto path

• If target is inside a nested block, insert a goto to a new entry landing

pad in the target block. The landing pad will contain calls to ScopeEn-

try for each local variable of each nested block entered by this goto

path.

• Landing pads will be chained to support goto targets in arbitrarily

distant code blocks, even in non-surrounding blocks

7. return

• Handled as goto to the function’s exit landing pad

8. malloc, calloc, realloc, free

• Replace by call to profileMalloc, profileCalloc, profileRealloc, or profile-

Free which will create/delete/update a corresponding memory image

and core entry

9. exit, abort

• Replace by call to ProfileEnd to emit result report

29

10. setjmp, longjmp

• Replace by call to ProfileSetjmp or ProfileLongjmp to record/restore

local memory images for the call chain

2.3 Run-Time Data Collection

An instrumented program performs self-profiling by calling routines from a pro-

filing library at each relevant program event. To compute bit binding-times and

other statistics, the profiling library maintains various bit-masks, flags, and coun-

ters for each variable and allocated heap objects. For each local variable, the

library tracks the dynamic call chain and maintains local data structures for each

scope instantiation of the variable. This section describes the run-time data struc-

tures maintained by the profiling code as well as the algorithms that use them to

compute constancy statistics.

2.3.1 Data Structures

Identifying a read or write access to a given variable or heap object is complicated

by the use of pointers in C. Identifying access to a variable statically, i.e. where

it is referenced by name in the source code, is not sufficient because the same

variable may also be accessed by a seemingly unrelated pointer. Similarly, a heap

object may be accessed by multiple, seemingly unrelated pointers. The classic

problem of pointer aliasing makes it in general impossible to identify the value

of a pointer by static analysis. Hence, we must resort to dynamically identifying

which variable or heap object is accessed through a dereferenced pointer.

Identifying the object reached by dereferencing a pointer is the job of the core

data structure. The core maps an arbitrary address to the memory image of the

object containing that address (memory images are defined below). The core is

30

implemented by an interval set containing the address ranges of all known objects

in memory, including heap objects and all instances of local variables presently

on the call stack. Objects are added to the core as they are created, namely

whenever a heap object is allocated and whenever a lexical block containing local

variables is entered. Objects are removed from the core as they are destroyed,

namely whenever a heap object is freed and whenever a lexical block containing

local variables is exited.

It is possible for a dereferenced pointer to access an object not known by the

core, e.g. a structure created by an unprofiled library or operating system routine.

The number of run-time accesses to unknown objects must be relatively small, or

it will offset the statistics collected for known objects. The profiling library tallies

and reports the total counts of unknown as well as known accesses.

A memory image embodies the profiling library’s run-time information about

an object in memory. The library maintains such an image for every known

object, including allocated heap objects, all active instances of local variables,

as well as the argc and env arrays passed to main. A memory image contains

various bit-masks, flags, and counters used to incrementally compute bit binding-

times and other statistics. Bit binding-times are represented using a collection of

bit-masks that make them easy to compute incrementally using bit-parallel logic.

All counters are 64-bits to prevent overflow.4 Table 2.1 lists the components of a

memory image.

A variable image embodies the profiling library’s run-time information about a

variable. Only one variable image is needed per variable, but it contains multiple

memory images: one memory image to represent global, incremental results, plus

4For a rough calculation of how fast a profiling counter may overflow, suppose that the
original, uninstrumented program runs on a 100MHz clock and issues one variable or heap
access once per cycle. A 32-bit access counter would overflow after only 40 seconds of original
run-time. To allow for run-times in the minutes, we must use 64-bit counters.

5A bit is deemed to be a sign extension if its value and the value of every more significant bit
in the word have always been identical. This condition is checked whenever the bit is written.

31

Address Range: base, end — pointers
Bit Masks: value — most recent value of each bit

defined — true if bit was ever defined by a write
changed — true if bit value has changed in a write
sign — true if bit is a sign-extension bit in its

word5

Counters: reads — number of times byte was read
(per byte) writes — number of times byte was written

Flags: malloced — true for user-allocated heap objects;
not true for variables and objects allo-
cated by the OS, e.g. argc and argv
in main

Table 2.1: Components of a memory image

a stack of local memory images to represent each active instance of the variable.

The global memory image is updated at each exit from the variable’s scope block

using that block’s local memory image. A memory image actually contains only

enough bit masks to represent the simplified binding-times of heap bits (Undefined,

Per-Exec, Per-Def, and the signed variants thereof). A variable image contains

additional bit masks that, in conjunction with the global memory image, can

represent the entire bit binding-time domain. Table 2.2 lists the components of

a variable image. The counters at the bottom of the table are used only for the

experiment of Section 3.7 and are not present otherwise.

6The enable flag could be used for dynamically enabling and disabling the profiling of a
variable at run-time. In the present implementation, it is used statically to make instrumentation
simpler.

32

Memory Images: memImage — global, incremental memory image
memImageStack — stack of local memory images

Bit Masks: perExec — true for bits that have been constant
throughout program execution

perBlock — true for bits that have been con-
stant in each entry into their variable’s
block scope of definition

perSomeBlock — true for bits that have been constant
in at least one entry into their vari-
able’s block scope and dynamic in at
least one other entry

Flags: isConst — true if variable was declared const in
the source code

enable — true to enable run-time profiling of
variable6

Misc: name — variable’s name
size — variable’s size (in bytes)

Counters: lifetimes — number of times the variable’s block
scope was entered and the variable was
instantiated

Counters: constLifetimes — number of lifetimes in which bit was
constant

(per bit) signedLifetimes — number of lifetimes in which bit was a
sign extension

Table 2.2: Components of a variable image. The counters in the bottom panes of the table
are used only for the experiment of Section 3.7 and are not present otherwise.

33

Bit binding-times for variables are derived from the bit masks as follows:

Per-Exec = defined ∧ perExec

Per-Block = ¬Per-Exec ∧ defined ∧ perBlock

Sometimes-Per-Block = ¬Per-Block ∧ defined ∧ perSomeBlock

Per-Def = ¬Sometimes-Per-Block ∧ defined

Undefined = ¬defined

Bit binding-times for heap objects are derived from the bit masks as follows:

Per-Exec = defined ∧ ¬changed

Per-Def = defined ∧ changed

Undefined = ¬defined

A bit is a Sign variant of one of the above binding-times if and only if its sign bit

is true.

2.3.2 Profiler Actions

Here we describe the run-time profiling routines that are called by instrumented

code. The program events that are actually instrumented are listed in Section

2.2.2. The profiling routines and their actions are as follows:

ScopeEntry:

(Called on block entry for each local variable declared in the block)

• Allocate a local memory image (all bits initially undefined)

• Add memory image to core

• Push memory image onto variable image’s stack

34

ScopeExit:

(Called on block exit for each local variable declared in the block)

• Pop memory image from variable image’s stack

• Merge local image into global image:

readglobal ← readglobal + readlocal

writeglobal ← writeglobal + writelocal

valueglobal ← valuelocal

definedglobal ← definedglobal ∨ definedlocal

changedglobal ← changedglobal ∨ changedlocal

signglobal ← signglobal ∧ signlocal

perExec← perExec ∧ ¬changedlocal ∧ (valueglobal = valuelocal)

perBlock← perBlock ∧ ¬changedlocal

perSomeBlock← perSomeBlock ∨ changedlocal

Read:

(Called after reading from a variable or dereferenced pointer)

• Get accessed object’s memory image using core

• Increment read count: reads← reads + 1

• Detect an unprofiled write to this object: (e.g. by an external library)

if (valuenew 6= value) then call Write

Write:

(Called after writing to a variable or dereferenced pointer)

• Get accessed object’s memory image using core

35

• Increment write count: writes← writes + 1

• Mark bits as defined: defined← 1

• Detect value change: changed← changed ∨ (valuenew 6= value)

• Remember new value: value← valuenew

profileMalloc, profileCalloc:

(Called instead of malloc, calloc)

• Allocate heap object (call malloc/calloc)

• Create+initialize new memory image and insert into core

profileRealloc:

(Called instead of realloc)

• Realocate heap object (call realloc)

• Update corresponding memory image in core

profileFree:

(Called instead of free)

• Tally total reads, writes, etc.

• Deallocate heap object (call free)

• Remove corresponding memory image from core

profileSetjmp:

(Called instead of setjmp)

In UNIX, setjmp is used to save the present call stack, and longjmp is used

to jump back to that point in the program from any point deeper in the

call stack. To handle these jumps, the profiler must save and restore the

active local memory images of each variable. Because local memory images

36

are already kept on a stack in each variable image, it suffices to save only

the position on each stack.

To create a jump environment:

• For each variable, record the stack pointer from its stack of local mem-

ory images

• Call conventional setjmp

profileLongjmp:

(Called instead of setjmp)

To restore a jump environment:

• For each variable, pop the stack of local memory images until restoring

the stack pointer from the jump environment

• Call conventional longjmp

profileEnd:

(Called before exit, abort, and before falling off the end of main).

• For each variable, repeatedly pop the stack of local memory images and

call ScopeExit on the popped image (this simulates a clean exit even if

the exit is from a deeply nested code block)

• For each heap object, call profileFree to deallocate it

• Emit result report (see Section 2.4)

2.3.3 Cost of Profiling

The profiling approach described herein has a nontrivial cost in memory usage

and run-time. Instrumentation for self-profiling expands the code size several-fold

due to the addition of profiler function calls. Data size increases dramatically

37

due to the overhead of memory and variable images. Assuming minimum size

representations for the images of Tables 2.1 and 2.2, an N -bit heap object would

require 13 + 16N bytes, and an N -bit variable would require at least 35 + 19N

bytes.7 Thus, a typical 32-bit variable would require at least 111 bytes of image—

an overhead factor of about 28. The present implementation is significantly worse

due to indirection in the image representation and due to memory alignment.

In the implementation, a typical 32-bit variable requires at least 280 bytes— an

overhead factor of 70.

Empirically, the total run-time memory requirements of an instrumented pro-

gram are seen to be 100 to 300 times larger than that of the original, uninstru-

mented program. The actual run-time for an instrumented program is seen to be

approximately 1000 times larger than that of the original. Run-time may be larger

still if physical memory is insufficient and the program swaps to disk under virtual

memory. Experiments for this project were run on a machine with 2 gigabytes

of physical memory, allowing for swap-free profiling of programs which originally

require no more than about 20 megabytes.

2.4 Run-Time Result Report

Before exiting, an instrumented program invokes the profileEnd profiling routine

to emit a result report to disk. This textual report summarizes all access counts

and bit binding-time information collected during execution. Parts of the report

may be imported directly into a spreadsheet for graphing (this is in fact how

the graphs of Chapter 3 (Results) are generated). The result report includes the

following information:

7The minimum size of a variable image is 35 + 19N bytes assuming an empty name string,
no lifetime counters, and no recursion. Each dynamic level of recursion adds a local memory
image of 13 + 16N additional bytes.

38

1. Unknown accesses:

• Read and write counts for unknown objects

2. Heap statistics:

• Breakdown of bits by bit binding-time

• Breakdown of bit-reads by bit binding-time

These counts reflect all allocations and access on the heap throughout exe-

cution. Bit binding-times are from the restricted heap domain (Undefined,

Per-Exec, Per-Def).

3. Variable statistics:

• Breakdown of bits by bit binding-time.

• Breakdown of bit-reads by bit binding-time.

• Breakdown of bit-reads to constant bit regions by bit position.

This only considers Per-Exec and Per-Exec, Sign bits. The region po-

sitions reported are high-order, low-order, and entire word, with all

remaining bit-reads binned as “elsewhere”.8

• Breakdown of variables by read count.

This is a cumulative distribution of word-reads, binned and sorted by

the read count of each variable. It is intended to verify the 90-10 rule

that most word-reads are to a few, frequently-read variables.

• Breakdown of variable bits by read count.

This is a cumulative distribution of bit-reads, binned and sorted by the

read count of each bit’s variable. It is different from the previous bullet

8The breakdown of bit-reads by bit region position replaces an earlier analysis that emitted
a 2D histogram of bit-reads binned by the LSB and MSB positions of each bit’s surrounding bit
region.

39

because variables have different bit widths. It is intended to verify the

90-10 rule that most bit-reads are to a few, frequently-read bits.

• Complete variable dump.

This lists critical statistics for each variable: bit width, read/write

counts, lifetime count, ratios of these counts, a binding-time bitmap,

and the variable’s fractional contribution to bit-reads in each binding-

time. Variables are sorted by read count.

2.5 Call Chain Disambiguation

The approach of merging bit constancy information from all run-time instances of

a variable is conservative. It ignores the possibility that the constancy behavior

of a variable may be vastly different depending on how its lexical block is reached

in the dynamic call chain. For instance, a function f may be called with constant

arguments from function A but with dynamic arguments from function B. The A

context of the function f could be specialized, but the B context should not be.

This section discusses a program transformation that adds context sensitivity

to the profiling analysis. The transformation is applied before instrumentation,

and the target program proceeds normally through the profiling methodology.

The transformation disambiguates the call chain leading to any given C function

by replicating and binding the function separately for each possible call path.

In effect, this turns the static call graph into a tree (in the abscence of recur-

sion or reentrance). Local variables are thus disambiguated and will be analyzed

independently for each path in the call chain that uses them.

No attempt is made to merge bit constancy information for corresponding,

disambiguated variables. The experiment is only concerned with whether this

disambiguating transformation significantly affects the bit binding-time profile

40

of the entire program. The assumption is that a unique call path, if executed

frequently enough to warrant specialization, would significantly affect the total

binding-time profile of the program.

Call chain disambiguation may allow a compiler to perform better inter-procedural

optimization. Some disambiguated call paths could be folded away in their en-

tirety by an optimizing compiler. If this were done by SUIF’s pre-instrumentation

optimizations, it would simply remove certain functions and variables from the

profiled program.9 Such folding may also be done by the binary compiler in

post-instrumentation optimization. Thus, although procedural replication may

increase code size, it is ultimately seen to reduce the run-time of most profiled

programs.

9The version of SUIF and extensions used in this project implementation do not, to the
author’s knowledge, perform inter-prcedural optimizations.

41

Chapter 3

Results

3.1 Profiled Applications

The applications profiled in this project are primarily multimedia processing tasks,

namely signal processing, compression, and encryption. Such applications tend to

be data-path intensive, i.e. they spend most of their time processing large data

streams in a small set of computational kernels. This program form can benefit

significantly from specialization, since any savings realized in a specialized kernel

are amplified by reuse of that kernel.

We hypothesize that typical media processing tasks exhibit particular behav-

iors that are computationally wasteful at the bit level. Many of these programs

implement communication and storage standards and must deal with quantities

of irregular bit width. When implemented for a word-based architecture such as

a microprocessor, these programs must use the next largest available data width,

leaving many high-order bits unused. For instance, audio tasks on 16-bit samples

that need one or two overflow bits must resort to 32-bit computation. Encryption

tasks face a similar problem whenever custom bit widths or direct bit manipula-

tion is used. Furthermore, processing media streams typically involves sequential

43

access to blocks of memory, where array indexes or pointers are range-limited

(zero high-order bits) and/or strided (constant low-order bits).

Initial exploration with the profiling system was done with GNU’s gzip 1.2.4

[21] (an LZW-based compressor/decompressor) and Berkeley’s mpegencode suite

[17] (a video compressor for the MPEG-1 standard). The bulk of experimenta-

tion was done with UCLA’s MediaBench suite [29], a collection of 11 multimedia

processing benchmarks including signal processing, encryption, and image manip-

ulation tasks. The MediaBench components which were profiled include:

ADPCM rawcaudio, rawdaudio

Adaptive differential pulse code modulation for audio coding (com-

presses 16-bit samples into 4-bit code words)

EPIC epic, unepic

Lossy, wavelet-based image compression

G721 encode, decode

Voice compression for CCITT G.711, G.721, and G.723 standards

GSM toast, untoast

Speech transcoding as per the European GSM 06.10 standard (com-

presses frames of 160 13-bit samples into 260 bit code words)

JPEG cjpeg, djpeg

Lossy, DCT-based image compression

MPEG mpeg2encode, mpeg2decode

Lossy video compression as per the MPEG-2 standard

Several MediaBench components were not profiled, due to technical problems

discussed in section 4.1.1. They include:

44

Ghostscript PostScript interpreter

Mesa 3D library implementing the OpenGL standard, with 3 appli-

cations (mipmap, osdemo, texgen)

Pegwit Public-key encryption using elliptic curves, SHA1, and sym-

metric block cypher

PGP Public-key encryption using IDEA, MD5, and RSA

RASTA Speech recognition using PLP, RASTA, and Jah-RASTA tech-

niques

To study more general purpose applications, we attempted to profile the

SPECint95 suite [40]. However, most of those programs, could not success-

fully pass through the profiling system, for reasons discussed in section 4.1.1.

No SPECint95 findings are presented here.

3.2 Ninety-Ten Rule for Bit Storage

Specialization is a relatively difficult task, requiring non-trivial time and mem-

ory resources for recompilation. It is probably impractical to specialize all parts

of a program. Rather, we desire situations where specializing a small part of a

program (its kernels) will yield large performance gains. Whereas traditional pro-

filing identifies kernel code blocks, storage-based profiling instead identifies kernel

variables. Kernel variables are the most frequently accessed storage elements of a

program. Presumably, they serve as input and/or output to kernel code, but may

also be accessed elsewhere.

The classic “90-10 rule” claims that a program typically spends 90% of its time

executing 10% of its code. We wish to verify a corresponding rule for storage.

Does a program typically spend 90% of its reads accessing the same 10% of its

45

variables? Similarly, at the bit level, does a program typically spend 90% of

its bit-reads accessing the same 10% of its variable bits? These two questions

should be distinguished because different variables have different bit widths (this

discrepancy is especially evident among aggregates and arrays).

Figures 3.1 and 3.2 attempt to verify the “90-10 rule” for variables and vari-

able bits, respectively, in MediaBench. Figure 3.1 is a cumulative distribution of

variable reads, sorted by the read count of each variable. Essentially, it graphs

what percentage of variables are responsible for what percentage of variable read

operations. Variables are sorted along the horizontal access in descending order of

read count, so the most frequently-read variable are tallied first. The thick curve

represents a mean average over all profiled applications. We find that, on average,

90% of variable read operations access the same 12% of variables.

Figure 3.2 is the bit-level analogue of Figure 3.1. It is a cumulative distribution

of bit-reads to variables, sorted by the read count of each bit’s variable. We find

that, on average, 90% of all bit-read operations on variables access the same 16%

of bits. In both figures, these findings are in line with the proverbial “90-10 rule.”

The only rule breaker in Figure 3.1 is ADPCM (audio coding), where 90%

of variable reads access 28% of variables. The dilution of the “90-10 rule” arises

because MediaBench’s ADPCM implementation is essentially nothing but kernels.

ADPCM is the smallest MediaBench application, having only 3 routines (main,

encode, and decode) and 36 profiled variables. Hence, each kernel accesses a large

fraction of the program’s variables, and no single variable is most important.

The rule breakers in Figure 3.2 include JPEG (encode and decode) as well

as EPIC and MPEG-2 decoding, in which 90% of bit reads access 20%-30% of

variable bits. Here, the dilution of the “90-10 rule” is apparently to the use of

tables, implemented as statically declared arrays. Table accesses, which comprise

a large fraction of each program’s bit-reads, are spread out over the many bits

46

Percentage of Variables
Responsible for Read Activity

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percentage of Variables

P
er

ce
n

ta
g

e
o

f V
ar

ia
b

le
 R

ea
d

s

rawcaudio
rawdaudio
epic
unepic
g721 encode
g721 decode
gsm toast
gsm untoast
cjpeg
djpeg
mpeg2encode
mpeg2decode
Average

Figure 3.1: Ninety-Ten Rule: Cumulative distribution of variables responsible for word reads

Percentage of Variable Bits
Responsible for Bit-Read Activity

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percentage of Variable Bits

P
er

ce
n

ta
g

e
o

f V
ar

ia
b

le
 B

it
-R

ea
d

s

rawcaudio
rawdaudio
epic
unepic
g721 encode
g721 decode
gsm toast
gsm untoast
cjpeg
djpeg
mpeg2encode
mpeg2decode
Average

Figure 3.2: Ninety-Ten Rule: Cumulative distribution of variable bits responsible for bit-reads

47

of the tables. No particular table or table region is solely responsible for an

overwhelming majority of bit-reads.

One should note that even the rule breakers in these figures exhibit great reuse

of storage. In ADPCM, 50% of all variable read operations access the same 9% of

variables. Similarly, in EPIC, JPEG, and MPEG-2, 50% of all variable bit-reads

access no more than 7% of variable bits (in the case of MPEG-2 decode, that

number is less than 1% of variable bits).

3.3 Bit Constancy on the Heap

The analysis performed for variables is different than the analysis performed for

the heap. The analyses involve different bit binding-time domains and somewhat

different profiling actions. Although experiments were run for both variables and

heap storage, most of the results in this chapter focus on variables. The reason

for this bias is twofold. First, we observe that among the profiled applications,

reads to variables occur far more frequently than reads to the heap. Furthermore,

we observe that bit constancy in variables is fairly uniform across applications,

whereas bit constancy on the heap is highly application dependent. It appears

that bit-level computational waste in variables is endemic to the MediaBench

benchmark suite, possibly to a larger class of programs written in high-level lan-

guages. Hence, this waste in variables is more interesting than waste on the heap,

as a language phenomenon and for its specialization potential.

Table 3.1 presents the breakdown of bit-read operations in MediaBench among

variables, heap objects, and unknown objects. We find that, on average, a program

spends some 95% of its bit-reads accessing variables and only 5% accessing heap

objects. Some applications do not use heap storage at all, and no application

spends more than 12% of its bit-reads on the heap. Thus variable reads are

48

significantly more frequent than heap reads, on average 20 times more frequent.

Table 3.1 also demonstrates that read accesses to unknown (unprofiled) objects

are practically non-existent. Unprofiled objects would include any objects not

visible at compile-time, e.g. structures returned by library or operating system

routines.

Table 3.2 summarizes the bit constancy behavior observed on the heap in Me-

diaBench applications. We consider only two binding-times: bits whose value is

constant (Per-Exec) and bits whose value is dynamic (Per-Def) during the alloca-

tion lifetime of the enclosing heap object. We find that the fraction of constant bits

on the heap is highly application dependent. Similarly, the fraction of bit-reads

to constant bits on the heap is highly application dependent. Some applications

maintain and reuse a lot of constant heap storage, for instance JPEG compression

(cjpeg), where 94.2% of heap bits and 88.5% of heap bit-reads are constant val-

ued. This constant storage might consist of the input image, quantization tables,

and Huffman tables. Other applications use mostly dynamic heap storage, for

instance GSM speech transcoding (encode) where 98.5% of heap bits and 99.95%

of heap bit-reads are dynamic valued.

Bit constancy on the heap may be difficult to exploit by specialization because

of the sheer size of objects on the heap. While it may be practical to specialize

away a small lookup table (ROM) by hard-wiring its values in logic, it is not at

all practical for large tables with many values. When creating custom hardware,

the choice between a ROM and logic implementation for a lookup table involves

a time-space tradeoff which is beyond the scope of this paper.

49

Total Variable Heap Unknown
Reads Reads Reads Reads

(Millions)
rawcaudio 177 100.0% 0.0% 0.0%
rawdaudio 133 100.0% 0.0% 0.0%
epic 6590 89.3% 10.7% *
unepic 625 88.0% 12.0% 0.0%
g721 encode 4860 100.0% 0.0% 0.0%
g721 decode 4590 100.0% 0.0% 0.0%
gsm toast 2170 89.8% 10.2% *
gsm untoast 893 97.5% 2.5% *
cjpeg 302 91.2% 8.8% *
djpeg 78 89.2% 10.8% *
mpeg2encode 25600 91.6% 8.4% *
mpeg2decode 3620 99.6% 0.4% 0.0%
Average 4140 94.7% 5.3% 0.0%

Table 3.1: Breakdown of bit-read operations among variables, heap, and unknown objects
(* indicates a non-zero quantity less than 0.01%)

Heap Const Dynamic Heap Const Dynamic
Bits Bits Bits Reads Reads Reads

(Millions) (Millions)
rawcaudio – – – – – –
rawdaudio – – – – – –
epic 24.5 79.7% 20.3% 708 37.1% 62.9%
unepic 23.7 82.7% 17.3% 75.0 70.8% 29.2%
g721 encode – – – – – –
g721 decode – – – – – –
gsm toast 0.005 1.5% 98.5% 221 0.05% 99.95%
gsm untoast 0.003 2.1% 97.9% 22.2 0.5% 99.5%
cjpeg 1.1 94.2% 5.8% 26.6 88.5% 11.5%
djpeg 0.2 67.1% 32.9% 8.4 77.6% 22.4%
mpeg2encode 10.0 64.9% 35.1% 2150 84.5% 15.5%
mpeg2decode 3.1 77.3% 22.7% 14.5 75.1% 24.9%

Table 3.2: Bit binding-times on the heap (– indicates zero heap use)

50

3.4 Bit Constancy in Variables

We now summarize the bit binding-times found among variables in the Media-

Bench programs. Table 3.3 lists the breakdown of variable bits by binding-time.

It shows what fraction of storage falls into each binding-time. Table 3.4 lists

the breakdown of variable bit-reads by binding-time. It shows what fraction of

dynamic bit-reads are made to bits of each binding-time. The tables also total

the contribution of all sign bits and Per-Exec bits, since these are the bits that

should be easiest to specialize. The corresponding Figures 3.3 and 3.4 graph the

contribution of bits and bit-reads from each binding-time cumulatively. The bit

binding-times are sorted on the horizontal axis by frequency of change, as per the

partial ordering of the binding-time domain B. The heuristic information in these

graphs is that convex curves indicate abundant constancy, whereas concave curves

represent more dynamic behavior. Note, the tables and figures do not tally any

allocated storage that remains undefined and is never read.

We find significant contribution from Per-Exec bits that never change value

during execution. Table 3.3 shows that, on average, 66.4% of all variable bits

are bound Per-Exec (28.1% being sign extension bits, 38.3% being non-sign). Ta-

ble 3.4 shows that these bits account for an average 50.4% of dynamic bit-reads

to variables (40.5% reading sign-extension bits, 10.1% reading non-sign). Thus,

across all the profiled applications, typically more than half of dynamic bit-reads

are re-reading bits that never change.

We also find a significant contribution from sign-extension bits. Table 3.3

shows that 33% on average and as many as 99.6% of variable bits are sign bits.

Table 3.4 shows that these bits account for an average 56.1% of dynamic bit-reads

to variables. This is a promising prospect for specialization, since an arithmetic

data-path needs only one representative sign bit. A single sign bit is 1/n of the

bits in an n-bit word (e.g. 1/8 = 12.5% in a byte, 1/64 = 1.6% in a 64-bit word).

51

Variable const Per Per Per Per Sometimes Sometimes Per Per Sign Per Exec
Bits Exec, Exec Block, Block Per Block, Per Block Def, Def or Sign

(Thousands) signed Signed Signed Signed
rawcaudio 23.9 0.0% 1.7% 26.3% 0.0% 0.0% 0.2% 0.2% 8.1% 63.5% 10.0% 36.3%
rawdaudio 23.9 0.0% 1.7% 13.7% 0.0% 0.0% 0.2% 0.2% 8.1% 76.1% 10.0% 23.7%
epic 2110.0 0.0% 99.6% 0.3% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 99.6% 99.9%
unepic 3.5 0.0% 41.7% 38.1% 0.0% 4.5% 0.1% 1.3% 2.0% 12.3% 43.7% 81.8%
g721 encode 7.0 0.0% 16.0% 55.5% 4.0% 17.6% 0.3% 1.3% 0.9% 4.5% 21.2% 76.7%
g721 decode 6.6 0.0% 14.5% 57.9% 3.2% 17.3% 0.3% 1.1% 0.9% 4.7% 19.1% 76.9%
gsm toast 130.0 0.0% 3.5% 88.3% 0.5% 1.4% 0.7% 3.0% 0.3% 2.2% 5.1% 93.3%
gsm untoast 125.0 0.0% 3.1% 90.7% 0.7% 1.9% 0.3% 0.6% 0.3% 2.4% 4.4% 95.1%
cjpeg 61.7 27.0% 36.4% 15.7% 0.0% 1.8% 2.1% 2.0% 12.2% 2.9% 50.7% 66.3%
djpeg 41.2 21.8% 34.3% 25.8% 3.8% 9.2% 0.3% 2.1% 0.4% 2.3% 38.8% 64.6%
mpeg2encode 84.0 0.0% 38.0% 30.6% 0.4% 7.0% 1.0% 2.1% 8.1% 12.8% 47.6% 78.2%
mpeg2decode 172.0 0.0% 46.2% 16.2% 0.1% 2.6% 0.2% 0.3% 5.5% 28.8% 52.1% 68.4%
Average 232.0 4.1% 28.1% 38.3% 1.1% 5.3% 0.5% 1.2% 3.9% 17.7% 33.5% 71.8%

Table 3.3: Breakdown of variable bits by bit binding-time

Binding Times of Variable Bits

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
const

P
er-E

xec, S
ign

P
er-E

xec

P
er-B

lock, S
ign

P
er-B

lock

S
om

etim
es-P

er-
B

lock, S
ign

S
om

etim
es-P

er-
B

lock

P
er-D

ef, S
ign

P
er-D

ef

Binding Time

P
er

ce
n

t
o

f
V

ar
ia

b
le

 B
it

s rawcaudio
rawdaudio
epic
unepic
g721 encode
g721 decode
gsm toast
gsm untoast
cjpeg
djpeg
mpeg2encode
mpeg2decode
Average

Figure 3.3: Cumulative distribution of variable bits by bit binding-time

52

Variable const Per Per Per Per Sometimes Sometimes Per Per Sign Per Exec
Bit-Reads Exec, Exec Block, Block Per Block, Per Block Def, Def or Sign
(Millions) signed Signed Signed Signed

rawcaudio 177 0.0% 37.3% 6.6% 0.0% 0.0% 15.4% 14.4% 7.7% 18.6% 60.4% 67.0%
rawdaudio 133 0.0% 44.6% 8.3% 0.0% 0.0% 18.6% 11.4% 2.8% 14.3% 66.0% 74.3%
epic 5880 0.0% 51.0% 6.5% 0.0% 7.5% 0.1% 11.2% 3.1% 20.7% 54.1% 60.6%
unepic 550 0.0% 36.0% 18.0% 0.0% 1.4% 0.0% 2.9% 4.7% 37.0% 40.7% 58.7%
g721 encode 4860 0.0% 48.9% 19.5% 11.3% 9.4% 0.4% 6.3% 0.4% 3.8% 61.0% 80.4%
g721 decode 4590 0.0% 55.5% 19.8% 4.6% 9.0% 0.4% 6.2% 0.4% 3.9% 61.0% 80.8%
gsm toast 1950 0.0% 33.8% 3.6% 0.5% 0.8% 14.7% 32.2% 2.4% 12.1% 51.3% 54.9%
gsm untoast 871 0.0% 13.9% 12.5% 0.1% 0.5% 16.6% 15.8% 22.7% 17.8% 53.3% 65.9%
cjpeg 276 3.4% 45.9% 7.6% 0.2% 3.1% 14.3% 11.2% 2.6% 11.7% 63.0% 70.6%
djpeg 69 0.8% 37.6% 9.5% 3.1% 2.7% 6.4% 25.1% 2.0% 12.8% 49.1% 58.5%
mpeg2encode 23500 0.0% 33.8% 2.9% 0.1% 3.3% 29.6% 25.6% 0.1% 4.7% 63.6% 66.4%
mpeg2decode 3610 0.0% 47.2% 6.9% 0.2% 7.9% 1.4% 17.5% 1.2% 17.7% 50.0% 56.9%
Average 3870 0.3% 40.5% 10.1% 1.7% 3.8% 9.8% 15.0% 4.2% 14.6% 56.1% 66.3%

Table 3.4: Breakdown of variable bit-reads by bit binding-time

Binding Times of Variable Bit-Reads

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

const

P
er-E

xec, S
ign

P
er-E

xec

P
er-B

lock, S
ign

P
er-B

lock

S
om

etim
es-P

er-
B

lock, S
ign

S
om

etim
es-P

er-
B

lock

P
er-D

ef, S
ign

P
er-D

ef

Binding Time

P
er

ce
n

t
o

f
V

ar
ia

b
le

 B
it

-R
ea

d
s

rawcaudio
rawdaudio
epic
unepic
g721 encode
g721 decode
gsm toast
gsm untoast
cjpeg
djpeg
mpeg2encode
mpeg2decode
Average

Figure 3.4: Cumulative distribution of variable bit-reads by bit binding-time

53

Hence the fact that 33% of all variable bits are sign bits indicates that there are

many more sign bits than necessary in each word.

Altogether, we find that some 70% of dynamic bit-reads in variables are to

easily-identified constant and sign data. On average, 56.1% of bit-reads are to sign-

extension bits that could be specialized by narrower data-paths. An additional

10.1% of bit-reads are to Per-Exec bits that could be specialized once per execution

(possibly once across all executions, since we do not know how many of these bits

are actually Per-Compile). An additional 3.8% of bit-reads are to Per-Block bits

that could be specialized once per entry into their variable’s scope (e.g. once per

function entry, once per loop iteration, etc.). Together, these are 70%.

The remaining 30% of bit-reads in variables are to dynamic quantities that are

less promising for specialization. They are split fairly evenly between Per-Def and

Sometimes-Per-Def bits. The more slowly-changing bits in these categories may

still be amenable to probabilistic specialization techniques, as described in section

4.4.3.

It is interesting to note that nearly none of the MediaBench applications use

const variables. The only exception is the JPEG suite (cjpeg, djpeg) which

uses numerous const arrays, e.g. for tables of DCT coefficients. The typical

under-use of explicitly declared constants may be due to the fact that C has no

syntax to declare dynamically-valued constants (DVCs). Schilling [43] suggests

that this under-use is due to bad programming practice, since it is common even in

languages like C++ which allow declaring DVCs. If MediaBench indeed exhibits

Schilling’s problem of having many candidate but undeclared DVCs, then we

should expect to find a large contribution from DVC words where all bits are

either Per-Block or Per-Exec (possibly signed). This question is partially answered

in Section 3.5, where Table 3.5 shows that only 7% of Per-Exec bit-reads are

to fully Per-Exec words. However, we have not tallied bit-reads to words that

54

also allow Per-Block bits. If the fraction of bit-reads to such DVC words were

large, then this would be an argument for the addition of DVC declaration as

a language feature. Note that Schilling reports that 40% of local variables were

DVC candidates, but he does not report how often they were read, so there is no

basis of comparison with our measure of bit-reads.

3.5 Constancy in Bit Regions of Variables

The bit position of unchanging or slowly varying bits affects their potential impact

for specialization. Of particular interest are sign extension bits, since they may

allow many high-order bits to be removed from a data-path. More generally, we

are interested in contiguous regions of unchanging bits inside a word, because

specializing around them may significantly speed up arithmetic carry chains and

other cascades. Unchanging bit regions in the most significant position are typical

of range-limited arithmetic (they may be sign or constant). Unchanging bit regions

in the least significant position are typical of arithmetic involving multiples of 2n,

for instance in pointer arithmetic.

Table 3.5 and the corresponding Figure 3.5 show bit-reads to constant bit re-

gions of variables in MediaBench. They show how many bit-reads were actually

to bits in contiguous regions of Per-Exec and/or Per-Exec, Sign bits. We differ-

entiate between high-order bit regions (that include MSB), low-order bit regions

(that include LSB), and entire-word bit regions (that include all bits of a word).

Bit-reads to Per-Exec bits in other positions are tallied in the “elsewhere” column.

The total contribution of bit-reads in Per-Exec and/or Per-Exec, Sign bits is copied

from Table 3.4 for reference.

We find that bit-reads to bits defined once per execution are due primarily

to constant high-order bit regions. Of the average total 50.6% of bit-reads from

55

Low High Entire Else- Total Per Per Non-sign
Order Order Word where Exec, Exec High

Bit Bit Signed Order
Region Region

rawcaudio 0.6% 37.7% 5.3% 0.3% 43.9% 37.3% 6.6% 5.7%
rawdaudio 0.6% 45.2% 7.1% 0.0% 52.9% 44.6% 8.3% 7.8%
epic 3.6% 48.1% 3.9% 1.9% 57.5% 51.0% 6.5% 1.0%
unepic 7.8% 33.2% 12.5% 0.5% 54.0% 36.0% 18.0% 9.7%
g721 encode 1.9% 55.4% 10.5% 0.6% 68.4% 48.9% 19.5% 17.0%
g721 decode 0.8% 52.1% 21.8% 0.6% 75.4% 55.5% 19.8% 18.4%
gsm toast 0.3% 36.2% 0.7% 0.2% 37.3% 33.8% 3.6% 3.1%
gsm untoast 0.3% 16.4% 9.5% 0.2% 26.4% 13.9% 12.5% 12.0%
cjpeg 1.1% 40.0% 9.3% 3.1% 53.5% 45.9% 7.6% 3.4%
djpeg 0.7% 41.5% 3.8% 1.1% 47.1% 37.6% 9.5% 7.7%
mpeg2encode 1.3% 33.8% 0.2% 1.4% 36.7% 33.8% 2.9% 0.2%
mpeg2decode 0.3% 47.1% 0.2% 6.6% 54.1% 47.2% 6.9% 0.0%
Average 1.6% 40.6% 7.1% 1.4% 50.6% 40.5% 10.1% 7.2%

Table 3.5: Variable bit-reads to constant, contiguous bit regions containing Per-Exec and Per-
Exec, Sign bits. Percentages are taken as fractions of all variable bit-reads in the application.

Variable Bit-Reads to Constant, Contiguous Bit Regions

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

raw
caudio

raw
daudio

epic

unepic

g721 encode

g721 decode

gsm
 toast

gsm
 untoast

cjpeg

djpeg

m
peg2encode

m
peg2decode

A
verage

P
er

ce
n

t
o

f
V

ar
ia

b
le

 B
it

-R
ea

d
s

Elsewhere
Entire Word
High bit-range
Low bit-range

Figure 3.5: Variable bit-reads to constant, contiguous bit regions containing Per-Exec and
Per-Exec, Sign bits. Percentages are taken as fractions of all bit-reads in the application.

56

Per-Exec and Per-Exec, Sign bits, 40.6% are to bits in high-order bit regions. Only

1.6% are to constant low-order bit regions, and 1.4% are to elsewhere in a word.

A modest 7.1% of bit-reads are to entirely constant words.

Are bits in high-order regions really all sign bits? Or are there also constant,

non-sign bits in high-order regions? These non-sign bits would be in the less

significant positions of high-order regions, flanked to the left by sign bits. Unlike

the sign bits, constant non-sign bits cannot simply be removed from a data-path.

They must be specialized by other means such as bit-level constant folding. It is

possible to find the contribution of constant, non-sign, high-order bit-reads from

simple arithmetic on table columns. Sign bits must come from high-order and

entire-word regions, so we calculate non-sign, high-order bit-reads as:

(Non-Sign High Order) = (High Order Bit Region) + (Entire Word)− (Per-Exec, Sign)

The result, shown in the rightmost column, indicates that an average 7.2% of

bit-reads are to Per-Exec (non-sign) bits in high-order bit regions. This is only

about 1/6 of the 40.6% of bit-reads in constant bit regions. The remaining 5/6

are to sign bits.

3.6 Effects of Call Chain Disambiguation

Tables 3.6 and 3.7 show bit binding-times among variables in MediaBench when

using call chain disambiguation (as described in Section 2.5). The tables are analo-

gous to Tables 3.3 and 3.4 which tally variable bits and bit-reads without call chain

disambiguation. Similarly, the corresponding Figures 3.6 and 3.7 are analogous

to Figures 3.3 and 3.4. There is no data collected for application mpeg2decode,

since call chain disambiguation could not be applied to it successfully.

Table 3.6 shows that call chain disambiguation has negligible effect on the size

57

Variable const Per Per Per Per Sometimes Sometimes Per Per Sign Per Exec
Bits Exec, Exec Block, Block Per Block, Per Block Def, Def or Sign

(Thousands) signed Signed Signed Signed
rawcaudio 23.9 0.0% 1.7% 26.3% 0.0% 0.0% 0.3% 0.2% 8.1% 63.6% 10.0% 36.2%
rawdaudio 23.9 0.0% 1.7% 13.7% 0.0% 0.0% 0.2% 0.2% 8.1% 76.1% 4.0% 23.7%
epic 2110.9 0.0% 99.6% 0.3% 0.0% 0.02% 0.0% 0.01% 0.01% 0.09% 99.6% 99.9%
unepic 3.5 0.0% 43.7% 37.3% 0.0% 3.7% 0.06% 1.3% 1.9% 12.0% 45.7% 83.0%
g721 encode 6.1 0.0% 12.6% 63.1% 3.2% 15.0% 0.0% 0.0% 1.0% 5.2% 16.8% 79.9%
g721 decode 5.9 0.0% 11.7% 64.9% 2.5% 14.6% 0.0% 0.0% 1.1% 5.3% 15.3% 80.2%
gsm toast 127 0.0% 2.8% 90.2% 0.5% 1.4% 0.5% 2.2% 0.4% 2.2% 4.1% 94.3%
gsm untoast 124 0.0% 3.3% 91.2% 0.7% 1.8% 0.2% 0.4% 0.2% 2.2% 4.4% 95.6%
cjpeg 59.5 28.9% 37.1% 12.4% 0.1% 1.9% 2.2% 2.0% 12.6% 2.8% 52.0% 64.4%
djpeg 42.0 25.3% 32.3% 25.0% 3.8% 9.3% 0.3% 1.7% 0.3% 2.0% 36.7% 61.7%
mpeg2encode 77.9 0.0% 36.4% 34.3% 0.5% 7.3% 0.3% 0.3% 8.7% 12.2% 45.9% 80.1%
mpeg2decode – – – – – – – – – – – –
Average 236.0 4.9% 25.7% 41.7% 1.0% 5.0% 0.4% 0.8% 3.9% 16.7% 30.9% 72.6%

Table 3.6: Call chain disambiguation: Breakdown of variable bits by bit binding-time

Binding Times of Variable Bits
With Call Chain Disambiguation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
const

P
er-E

xec, S
ign

P
er-E

xec

P
er-B

lock, S
ign

P
er-B

lock

S
om

etim
es-P

er-
B

lock, S
ign

S
om

etim
es-P

er-
B

lock

P
er-D

ef, S
ign

P
er-D

ef

Binding Time

P
er

ce
n

t
o

f
V

ar
ia

b
le

 B
it

s rawcaudio
rawdaudio
epic
unepic
g721 encode
g721 decode
gsm toast
gsm untoast
cjpeg
djpeg
mpeg2encode
mpeg2decode
Average

Figure 3.6: Call chain disambiguation: Cumulative distribution of variable bits by bit binding-
time

58

Variable const Per Per Per Per Sometimes Sometimes Per Per Sign Per Exec
Bit-Reads Exec, Exec Block, Block Per Block, Per Block Def, Def or Sign
(Millions) signed Signed Signed Signed

rawcaudio 177 0.0% 37.3% 5.7% 0.0% 0.0% 15.4% 14.4% 7.7% 19.6% 60.4% 66.1%
rawdaudio 133 0.0% 44.6% 7.2% 0.0% 0.0% 18.6% 12.5% 2.8% 14.3% 66.0% 73.2%
epic 1450 0.0% 42.2% 12.4% 0.03% 7.3% 1.5% 22.6% 0.1% 13.9% 43.8% 56.2%
unepic 550 0.0% 36.6% 17.7% 0.0% 1.3% 0.0% 2.9% 4.7% 36.8% 41.4% 59.0%
g721 encode 498 0.0% 17.8% 52.3% 0.0% 0.8% 0.0% 0.0% 3.8% 25.2% 21.7% 73.9%
g721 decode 474 0.0% 17.6% 51.4% 0.0% 0.8% 0.0% 0.0% 4.0% 26.2% 21.5% 73.0%
gsm toast 138 0.0% 3.2% 0.6% 1.6% 3.4% 10.0% 61.2% 5.1% 15.0% 19.9% 20.4%
gsm untoast 30.1 0.0% 6.0% 1.6% 2.4% 6.7% 7.1% 63.3% 0.8% 12.1% 16.3% 17.9%
cjpeg 253 3.7% 45.5% 6.2% 0.0% 2.9% 15.6% 10.9% 2.8% 12.5% 63.8% 70.0%
djpeg 66.4 0.8% 37.0% 8.7% 3.3% 2.8% 6.6% 25.1% 2.1% 13.7% 49.0% 57.7%
mpeg2encode 959 0.0% 8.9% 25.5% 0.5% 28.4% 0.01% 0.09% 0.9% 35.8% 10.2% 35.7%
mpeg2decode – – – – – – – – – – – –
Average 430 0.4% 27.0% 17.2% 0.7% 4.9% 6.8% 19.4% 3.2% 20.5% 37.6% 54.8%

Table 3.7: Call chain disambiguation: Breakdown of variable bit-reads by bit binding-time

Binding Times of Variable Bit-Reads
With Call Chain Disambiguation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

const

P
er-E

xec, S
ign

P
er-E

xec

P
er-B

lock, S
ign

P
er-B

lock

S
om

etim
es-P

er-
B

lock, S
ign

S
om

etim
es-P

er-
B

lock

P
er-D

ef, S
ign

P
er-D

ef

Binding Time

P
er

ce
n

t
o

f
V

ar
ia

b
le

 B
it

-R
ea

d
s

rawcaudio
rawdaudio
epic
unepic
g721 encode
g721 decode
gsm toast
gsm untoast
cjpeg
djpeg
mpeg2encode
mpeg2decode
Average

Figure 3.7: Call chain disambiguation: Cumulative distribution of variable bit-reads by bit
binding-time

59

of variable storage, nor on the breakdown of bits by binding-time. Table 3.7,

on the other hand, shows that call chain disambiguation can have a significant

effect on the access pattern to variables. A few applications experience negligible

change, but in the applications that do change, the total number of bit-reads to

variables shrinks by about tenfold. This is presumably because the program trans-

formation subsequently enables more effective compiler optimization. The massive

reduction in bit-reads is actually the most beneficial outcome of call chain disam-

biguation. The resulting optimized program, while faster, is actually (relatively)

more dynamic and harder to specialize for reasons described below.

Call chain disambiguation and subsequent compiler optimization tends to cre-

ate more dynamic bit binding-times. The fraction of bit-reads to bits defined per

execution (Per-Exec and Per-Exec, Sign) decreases by an average 6.4% (from 50.6%

to 44.2%), while the fraction of bit-reads to dynamic bits (Per-Def and Per-Def,

Sign) increases by an average 4.9% (from 18.8% to 23.7%). Also, the fraction of

bit-reads to sign bits drops across all binding-times, going in total from 56.1% to

37.6%. Nevertheless, it is incorrect to say that call chain disambiguation makes a

program more dynamic, since it actually reduces the total bit-read count by up to

tenfold. It makes a program relatively more dynamic with much reduced activity.

Table 3.8 shows the effect of call chain disambiguation and subsequent compiler

optimization on several measures of program size and performance. Execution

time is seen to decrease on average to 67.4%, while executable size increases by

no more than 50% (except in the case of mpeg2encode which expands tenfold;

similarly, mpeg2decode expanded so much that call chain disambiguation could

not be completed). Interestingly, call chain disambiguation tends to increase

program size without increasing data size (i.e. without adding many variable and

heap bits). In some cases, data size actually decreases. This is again testament

that the program transformation enables more effective compiler optimizations.

60

Relative Size Relative Performance
Executable Variable Heap Execution Variable Heap

Bits Bits Time Bit-Reads Bit-Reads
rawcaudio 102.5% 100.0% – 75.7% 100.0% –
rawdaudio 103.0% 100.0% – 71.1% 100.0% –
epic 113.3% 100.0% 100.0% 35.4% 24.7% 100.0%
unepic 88.8% 101.2% 100.0% 100.6% 100.0% 100.0%
g721 encode 134.2% 87.9% – 82.7% 10.2% –
g721 decode 153.8% 89.3% – 82.6% 10.3% –
gsm toast 152.8% 97.5% 99.8% 40.3% 7.1% 100.0%
gsm untoast 152.8% 99.3% 99.7% 35.2% 3.5% 100.0%
cjpeg 123.7% 96.4% 100.0% 88.3% 91.8% 100.0%
djpeg 113.8% 101.8% 100.0% 82.6% 95.7% 100.0%
mpeg2encode 998.6% 92.7% 100.0% 47.4% 4.1% 100.0%
mpeg2decode – – – – – –
Average 203.4% 96.9% 99.9% 67.4% 49.8% 100.0%

Table 3.8: Call chain disambiguation: Change in size and performance of MediaBench appli-
cations. All quantities are relative to without call chain disambiguation.

Although the transformations reduce bit-reads to variables, they leave bit-

reads to the heap largely unaffected. This greatly emphasizes heap access while

deemphasizing variable access. Thus, the potential benefit of specializing around

constant variables is reduced.

3.7 Constancy In Some Lifetimes

Table 3.4 shows that that 15.0% of variable bit-reads in MediaBench are to non-

sign Sometimes-Per-Block bits. These are bits that take on a single value in some

of their scope instantiations (lifetimes) but more than one value in others.

The question we pose is how often (dynamically) is a bit of this class actually

bound once in its scope? If the answer is most of the time, then the bit could be

specialized for the common case using the same methods as Per-Block bits. The

uncommon case of multiple definitions per block would have to be detected each

time through the block and handled accordingly. Such a probabilistic specializa-

tion scheme could be profitable if the total cost of handling the uncommon case

were smaller than the savings had by specializing the common case. We define

61

a local variable’s lifetime as a single pass of control flow through the variable’s

scope of definition (resulting in creation, use, and destruction of an instance of

the variable). The metric we examine is the fraction of a variable bit’s lifetimes

in which the bit is bound once, i.e. is constant through the lifetime.

Table 3.9 and Figure 3.8 show the number of bit-reads to Sometimes-Per-Block

bits that are constant in at least 90% and 50% of their dynamic lifetimes. Note,

the table does not tally Per-Block bits, which are effectively constant in 100% of

their lifetimes. Also, the table only tallies non-sign bits (sign bits are less interest-

ing here since they can be specialized by a one-time narrowing of the data-path).

The results shown are for unoptimized versions of the MediaBench applications.

Nevertheless, the break-down of bit-reads by binding-times in these results was

remarkably similar to the break-down of optimized compilations. The total con-

tribution of bit-reads tabulated here is 14.0%, whereas the total contribution of

Sometimes-Per-Block bit-reads in optimized MediaBench applications (Table 3.4)

is 15.0%.

The results are not promising for specialization. Among the 14.0% of bit-reads

to Sometimes-Per-Block bits, on average only 0.65% are to bits constant in over

90% of their lifetimes. Only 1.7% of bit-reads are to bits constant in over 50%

of their lifetimes. This indicates that most Sometimes-Per-Block bits are only

rarely bound once per lifetime. Those bits which are frequently bound once per

lifetime may be amenable to probabilistic specialization, but their contribution to

the total bit-read activity of a program is so small that their specialization would

have negligible effect on total run-time.

62

Bit-Reads Bit-Reads Total
to bits to bits Bit-Reads

const in const in
>90% Lifetimes >50% Lifetimes

rawcaudio 0.61% 1.38% 13.89%
rawdaudio 0.23% 0.69% 11.70%
epic 1.29% 3.85% 9.06%
unepic – – –
g721 encode 0.85% 1.32% 5.36%
g721 decode 0.14% 0.57% 5.26%
gsm toast 0.07% 0.73% 23.78%
gsm untoast 0.01% 0.30% 13.77%
cjpeg 0.12% 0.23% 9.14%
djpeg 0.52% 1.06% 18.49%
mpeg2encode 4.14% 8.28% 28.10%
mpeg2decode 0.47% 2.76% 16.54%
pegwitenc 0.01% 0.34% 14.65%
pegwitdec 0.00% 0.36% 11.89%
Average 0.65% 1.68% 13.97%

Table 3.9: Variable bit-reads to bits constant in some lifetimes (non-sign Sometimes-Per-Block),
categorized by fraction of lifetimes in which bit is constant

Variable Bit-Reads
to Bits Constant in Some Lifetimes

0%

5%

10%

15%

20%

25%

30%

raw
caudio

raw
daudio

epic

unepic

g721 encode

g721 decode

gsm
 toast

gsm
 untoast

cjpeg

djpeg

m
peg2encode

m
peg2decode

pegw
it encode

pegw
it decode

A
V

E
R

A
G

E

P
er

ce
n

t
o

f
V

ar
ia

b
le

 B
it

-R
ea

d
s

Total Bit-Reads

Bit-Reads to bits
const >50% lifetimes
Bit-Reads to bits
const >90% lifetimes

Figure 3.8: Variable bit-reads to bits constant in some lifetimes (non-sign Sometimes-Per-
Block), categorized by fraction of lifetimes in which bit is constant

63

3.8 Sensitivity to Inputs

A natural question for profile-based systems is whether the results of profiling with

one input set are indicative of an application’s behavior with other inputs. Rel-

ative insensitivity to inputs is a desired property for profile-driven specialization.

It makes specialization easier and should yield better run-time efficiency. Also,

insensitivity to inputs is important for validating the results of this project, since

the results reported are typically based on a single data set per application. This

section presents preliminary evidence that bit binding-time profiles are largely

insensitive to variation in input data sets.

Media processing applications typically run large streams of data through well-

defined computational pipelines. It is conceivable that execution profiles for a

given application would vary little across different input data files, because the

processing pipeline is fairly rigid. Nevertheless, we might find significantly dif-

ferent profiles for different operating modes of an application, because different

modes do affect the processing pipeline. For instance, choosing between a com-

pression and decompression mode may select an entirely different pipeline.

With this in mind, we conducted a preliminary study of input sensitivity using

the gzip 1.2.4 compression program. gzip is a freely-available, lossless, LZW-

based compression suite. It is a convenient representative application for this

experiment for two reasons. First, it implements both a compression and a de-

compression mode in the same executable, selected by a command-line option.

Second, it can operate on any file, so input data sets are plentiful.

Four input files were chosen to represent four different data domains for gzip:

executable machine code, C source code, English text, and a graphic image. Ta-

ble 3.10 lists details of those input files. To profile the compression mode, we

instrument and run gzip on each file. To profile the decompression mode, we run

gunzip (effectively gzip -d) on a compressed version of each file.

64

File Content Description Uncompressed Compressed
Size Size

vmlinuxa PowerPC machine code (Linux kernel) 1.8MB 684KB
gzip-1.2.4.tarb C source-code, tarred 780KB 216KB
Shakespeare.tragediesc English text 1.4MB 541KB
lena.rawd 512x512 8-bit image (Lena’s face) 256KB 206KB

aFrom: ftp://ftp.dodds.net/pub/linux/pmac/vmlinux
bFrom: ftp://ftp.cdrom.com/pub/gnu/gzip-1.2.4.tar.gz
cFrom: http://ftp.std.com/obi/Shakespeare/Shakespeare.tragedies
dFrom: ftp://ftp.cdrom.com/pub/X11/R5contrib/wavelet_pic/lena.raw

Table 3.10: Data files for gzip input sensitivity experiment

The experiment was conducted early in the project development and thus suf-

fers from two technical flaws. First, it was performed using an early version of

the bit binding-time lattice, hence the results presented do not distinguish be-

tween sign and non-sign bits. Second, compiler optimizations were not performed

prior to instrumenting the application, hence the profile results reflect the unop-

timized programmer’s model of the computation (not what would be executed on

a processor).

Table 3.11 presents the bit binding-times for variables using the four input

files described above. Figure 3.9 shows the same results graphically. We find

some sensitivity to inputs among the more dynamic bit binding-times but little

sensitivity everywhere else. In particular, the largest binding-time class, also the

one most promising for specialization— bits bound once per execution— shows

little variation. It contributes 50–56% of variable bit-reads across all data sets

and operating modes.

There is some variation with operating mode (compression or decompression)

in the profile of the most dynamic binding-times. Compared to compression,

decompression exhibits on average 10.3% more bit-reads to Per-Def bits and 7.5%

fewer bit-reads to Sometimes-Per-Block bits. Thus, decompression seems to have

marginally more dynamic behavior.

Within each operating mode, profiles are consistent across all input data files

65

Variable const Per Per Sometimes Per
Bit-Reads Exec Block Per Block Def
(Millions)

gzip vmlinux 8895 0.0% 52.3% 4.8% 29.2% 13.7%
gzip gzip-1.2.4.tar 2812 0.0% 52.0% 3.7% 30.0% 14.2%
gzip Shakespeare.tragedies 7699 0.0% 53.5% 4.5% 29.4% 12.6%
gzip lena.raw 898 0.0% 55.1% 3.7% 15.7% 25.5%
gzip Average 5077 0.0% 53.2% 4.2% 26.1% 16.5%

gunzip vmlinux 1163 0.0% 51.1% 4.0% 20.2% 24.7%
gunzip gzip-1.2.4.tar 411 0.0% 50.1% 2.9% 23.3% 23.8%
gunzip Shakespeare.tragedies 915 0.0% 51.4% 3.0% 18.3% 27.3%
gunzip lena.raw 248 0.0% 56.0% 2.0% 12.8% 29.2%
gunzip Average 685 0.0% 52.2% 3.0% 18.6% 26.2%

Average 2881 0.0% 52.7% 3.6% 22.4% 21.4%

Table 3.11: Bit binding-times for gzip bit-reads using different inputs

Sensitivity to Inputs:
Variable Bit-Reads in gzip

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gzip vm
linux

gzip gzip-1.2.4.tar

gzip
S

hakespeare.tragedies

gzip lena.raw

gunzip vm
linux

gunzip gzip-1.2.4.tar

gunzip
S

hakespeare.tragedies

gunzip lena.raw

P
er

ce
n

t o
f V

ar
ia

b
le

 B
it

-R
ea

d
s

Per Definition
Sometimes Per Block
Per Block
Per Compile
const

Figure 3.9: Bit binding-times for gzip bit-reads using different inputs

66

except with the graphic image, lena.raw. The image file tends to make gzip

behave more dynamically, pushing some 14% of bit-reads from Sometimes-Per-

Block to Per-Def in compression, and pushing somewhat less in decompression.

The image file differs from the other inputs in that it is the only format known

to be generally incompressible by LZW. In that sense, the image file is a known

“bad” input for which high performance is perhaps unimportant. Thus, we may

draw a weaker conclusion that the bit binding-time profile for gzip is insensitive

to data inputs across a large variety of compressible input formats.

Similar findings are reported in the literature that data constancy is largely

insensitive to any particular data set. Calder et al. [6] report on a variety of data

invariance metrics for processor instructions, citing little variation across data sets

for Spec95 programs. Fisher and Freudenberger [11] report similar invariance for

profile-based branch prediction of Spec programs but concede that every program

has “bad” input sets that exercise unusual parts of the code. These findings

and our own suggest that a program’s constancy behavior is more dependent on

algorithmic structure than on particular data values.

3.9 Summary and Conclusions

We have presented a methodology that tallies “bit-read” operations. We consider

a read to be any reference in the source code to a named variable or a memory

location. In C, such reads are always done on words, e.g. on 8-bit “char” types

or 32-bit “int” types. Our methodology tallies each such read as a collection of

parallel bit operations, i.e. bit-reads. The methodology then reports which bit-

reads accessed constant bits and which accessed dynamic bits. The categorization

of constant vs. dynamic bits is actually on a lattice of binding times representing:

(1) the frequency of a bit’s change with respect to the scope of its variable, and

67

(2) whether or not the bit is a sign extension bit.

We find that the constancy of bits on the heap is highly application-dependent.

In the applications examined, anywhere from 11.5% to 99.95% of bit-read opera-

tions on the heap are to unchanging bits. Although this is not wholly promising,

we further find that accesses to the heap are dwarfed by accesses to variables.

Hence we subsequently concentrate only on variables.

We find that 70% of all bit-reads in variables are to easily-identified con-

stant bits. This represents a significant raw opportunity for specialization. It

means that 70% of all bit operations are doing repeated, wasteful work on con-

stant or previously-seen inputs. Aggressive specialization should be able to dras-

tically shrink the number of required, useful bit operations. Several applicable

approaches to specialization are discussed in the next chapter, in Sections 4.4 and

4.5. The breakdown of this 70% follows.

We find that, on average, 56.1% of bit-reads in variables are to sign-extension

bits. Sign extension bits are particularly easy to to exploit, simply by using

narrower data-paths. An ALU operation (add, subtract) typically needs to use

only one sign bit. Hence, it may be possible to remove more than half of a

program’s bit operations simply by specializing to use narrower data-paths. This

is, arguably, the most promising and useful finding of the experiments. The

remaining results contribute relatively little opportunity for specialization. They

are included for completeness.

We find that, on average, 10.1% of bit-reads in variables are to Per-Exec bits,

i.e. non-sign bits that remain constant during program execution. It may be

possible to specialize the data-paths that process these bits, using bit-level partial

evaluation, once during execution, after the bit values are known. However, these

bit-reads touch, on average, 38.3% of all bits of a program’s variables. Hence

they represent a very large collection of constant values, perhaps too large to be

68

usefully specialized.

We find that, on average, 3.8% of bit-reads in variables are to Per-Block bits,

i.e. non-sign bits that remain constant during each scope invocation of their vari-

able. These variables represent local variables that are instantiated anew whenever

execution enters their block scope (In C, such a block is a curly-braced statement

block). It may be possible to specialize the data-paths that process these bits,

using bit-level partial evaluation, once on each entry into the block scope. A net

performance benefit may be had if the total cost of dynamic respecialization were

less than the total savings had by specialized execution. Nevertheless, the con-

tribution of such bits to the total bit-read activity of a program is so small that

such specialization is probably not worth the effort.

Beyond the easy 70% of bit-reads, we find that, on average, 15.0% of bit-reads

in variables are to Sometimes-Per-Block bits, i.e. non-sign bits that remain constant

in only some of the scope invocations of their variable. If a given bit were constant

in most of the scope invocations of its variable, then it could be specialized as if it

were constant in all of the invocations, provided that additional hardware guards

were used to detect and special-case those instances when the bit is not constant.

Such probabilistic specialization could have an overall net benefit if a bit were

constant often enough (in particular, the cost of dynamic respecializations and

special-casing must be less than the savings had by specialized execution when

the bit is constant). In practice, however, we find that only about 1/20 of the

bit-reads in this category (representing 0.65% of bit-reads in variables) are to bits

which are constant in more than 90% of the scope invocations of their variable.

The contribution of such bits to the total bit-read activity of a program is so small

that such specialization is probably not worth the effort.

We find that the final 14.6% of bit-reads in variables are to Per-Def bits,

i.e. non-sign bits that change dynamically in their variable’s scope. These bits,

69

as well as most Sometimes-Per-Block bits, have patterns of change that do not

correspond well to lexical blocks and hence cannot be identified or specialized

using the methodology of this study. It possible that some of these bits retain

a constant value for long epochs, so that they could in principle benefit from

dynamic specialization. A further analysis to discover such cases is discussed in

Section 4.3.3.

In addition, we explored a program transformation (call chain disambigua-

tion) intended to discover if a code block behaves differently when called from

different call sites, so as to allow separate optimizations/specializations for differ-

ent call sites. The transformation was found to enable substantial optimizations

during standard C compilation, leading to program executions with, on average,

10 times fewer bit-reads, without a substantial increase in code size or data size

(note, however, that some programs are not affected at all by this transforma-

tion). The remaining code exhibits somewhat less opportunity for specialization.

In particular, only 37.6% of all bit-reads in variables are to sign bits (as compared

with 56.1% in code without call chain disambiguation). Regardless of its value to

bit-level specialization, we find that this program transformation may be of great

value in traditional C compilation for microprocessor architectures.

The following chapter (Discussion) proposes further analyses to uncover yet

more specializable bit constancy, along with a number of techniques for exploiting

that constancy in hardware implementations of C programs.

70

Chapter 4

Discussion

The experimental results of Chapter 3 (Results) indicate a substantial opportunity

for bit-level specialization of C programs. This chapter discusses possible applica-

tions of those findings in specializing hardware and software, as well as recounting

problems, limitations, and possible extensions to the experimental methodology.

We begin in Section 4.1 with a discussion of problems and limitations in the

profiling implementation of this study. Section 4.2 in particular discusses the im-

plementation’s excessive memory usage and how to control it. Section 4.3 proposes

several further analyses to uncover more bit-level constancy. Section 4.4 discusses

mechanisms for exploiting the bit-level constancy found by profiling, including

possible language extensions and run-time support for dynamic specialization.

Section 4.5 explores the specialization of multipliers, proposing a multiply-centric

profiling methodology, a cost model, and implementation issues.

4.1 Problems and Limitations

This section discusses problems and shortcomings of the profiling methodology

used in this project. We discuss some conceptual limitations of the approach, as

well as implementation issues that weakened results or prevented particular appli-

71

cations from being profiled. A discussion of the implementation’s large memory

requirements and how to reduce them follows in Section 4.2.

Relevance to Hardware

Perhaps the most serious shortcoming of the profiling approach in this project is

that it cannot directly quantify the available benefit of specializing a hardware

implementation with metrics such as time, area, or power. In profiling at the bit

level, our analysis identifies computations that may benefit from logic-level spe-

cialization of hardware data-paths. However, in profiling storage, our analysis is

actually abstracted from the specifics of any logic-level, hardware implementation.

Finding a constant bit in a storage location does not, in and of itself, indicate the

performance benefit that the associated data-paths would get from specializing

around that bit’s value.

Quantifying the hardware benefit of specializing a program with constant bits

requires a model for the hardware cost and specialization techniques of each op-

eration on those bits. Different operations are amenable to different forms of

specialization. Section 4.5 develops such models for the multiply operation in

particular.

The closest description that one might extract from a C program of the ac-

tual operations to be done in hardware is a machine-specific instruction sequence.

Alternatively, one could use a machine-independent sequence such as SUIF’s inter-

nal program representation. Bit constancy would then be profiled in instruction

operands rather than storage locations. Analyzing an instruction stream may be

appropriate for evaluating alternative microprocessor hardware, e.g. moving to a

SIMD multimedia ISA with a vector of narrow ALUs. However, an instruction

stream introduces ISA-specific grouping and sequentialization of primitive opera-

tions. So it is still not ideal for evaluating savings from custom hardware, where

72

primitive operations may be grouped and parallelized more flexibly.

Aggregate Data Structures

The profiling methodology of this project is geared to integer data types. The use

of sign bits in the bit binding-time domain assumes that every word is in one’s-

or two’s-complement representation. In the present implementation, aggregates

such as C structs and arrays are analyzed as very wide integer objects. This

completely ignores the structure of individual words in the aggregate and produces

faulty information on sign bits. A type-aware analysis is needed to decompose

aggregates into constituent integer elements and to capture their respective bit

binding-times.

Recognizing which component of an aggregate is being accessed is simple for

direct variable access but difficult through a pointer. In direct variable access,

the component is identified either by its explicit name (e.g. x.y) or its offset (e.g.

x[y]). If the component is accessed through a pointer, then the profiling library

knows only which run-time address is being accessed. The core can identify which

object contains that address (see Section 2.3.1). Identifying which component of

an object is being accessed further requires knowing the type of the object. This is

easy enough if the object turns out to be a variable, since its type would be known

statically from the C source code.1 However, it is in general impossible to know

the type of an object on the heap. The heap allocation routine used in C, malloc,

is not strongly typed and knows nothing about the allocated object except for its

size. The only clue as to the type of an object on the heap comes from the type

of the pointer used to access it. A complication arises if an aggregate is accessed

by several pointers of different types (e.g. a region of memory being block-copied

1Identifying which component of an aggregate is being accessed through a dereferenced
pointer is not possible for a union variable, since multiple types exist for certain offsets in
the aggregate

73

as an array of chars by the construct: while (a<e) *b++=*a++;). This multiple

typing problem exists with variables as well as heap objects. It is similar in nature

to the multiple typing evident in union aggregates but exists specifically because

of pointer aliasing.

One solution for determining the type of an integer component accessed through

a pointer is to always believe the type of the pointer. A char pointer must be ac-

cessing a char, an int pointer must be accessing an int, and so on. This solution

may misinterpret the location of sign extension bits and bit regions within the

accessed object, since it is possible to access a given byte of storage in different

alignments within larger integer accesses (e.g. a byte at address A+0x3 may be

part of a 16-bit short at address A+0x2 or a 32-bit int at address A). This com-

plication is perhaps not an issue for C programs with highly structured, strongly

typed conventions, where most bytes of storage are only ever accessed as one type.

4.1.1 Problems with SUIF

The SUIF compiler proved to be a stumbling block for profiling some applications.

In some cases, the SUIF front end could not be made to accept a program. In

some cases, the SUIF optimization passes crashed. In some cases, the SUIF back-

end emitted a faulty program which would subsequently crash. These problems

prevented a number of programs from being analyzed. Here we list those programs

along with the specific problem encountered:

• Programs from UCLA MediaBench suite: [29]

Ghostscript SUIF linker fails

Pegwit, PGP, RASTA SUIF optimizations (porky) run out of mem-

ory

74

• Programs from SPECint95: [40]

m88ksim SUIF C back-end crashes due to variable-length argument

lists (va list)

compress, li Emitted program crashes

ijpeg SUIF C back-end crashes

perl Procedure duplication for call chain disambiguation fails

(too many copies of safemalloc())

Certain SUIF optimizations proved to be frequently buggy and were not used on

any profiled applications. These include:

• -fold — constant folding

• -reduction — reduction to move summation out of a loop

• -ivar — induction variable detection and reduction

The task of running an application through the SUIF-based transformation

and compilation pipeline is a difficult one. It is not possible to simply substitute

the SUIF compiler in place of a traditional C compiler. Each SUIF pass (front

end, linking, instrumentation, back-end, etc.) requires a separate program execu-

tion. Some passes operate on individual source files, like traditional incremental

C compilation, while some passes process the entire file set at once. Hence it is

not sufficient to use traditional Makefile rules that simply map one file extension

into another. Instead, each application requires a new, custom Makefile with an

explicit sequence of SUIF passes (Appendix B explains this compilation sequence).

For some applications with sophisticated Makefiles and build scripts (notably gcc

from SPECint95), identifying and/or creating a working set of source files and cre-

ating a new Makefile proved to be so difficult that the applications were forsaken

75

altogether.2

4.2 Reducing Memory Usage

One major shortcoming of the profiling methodology of this project is its large

memory requirement. As seen in Section 2.3.3, the analysis expands both code

and data sizes, leading to a memory requirement as high as 100-300 times that of

the original program. The expansion of data memory is perhaps a factor of 2-3

times larger than necessary due to a poor implementation of memory and variable

images. However, the only promising way to significantly reduce the total memory

requirement is to selectively profile only a small fraction of the program’s storage.

As the 90-10 rule suggests, one should be able to capture most of the interesting

activity in a program with only a small fraction of the storage. Here we discuss

several ways of choosing which storage to profile and which to ignore.

Profile kernels only This two-pass strategy seeks to profile only those lexical

blocks that comprise computational kernels, i.e. that contribute a large frac-

tion of the program’s execution time. A first execution is needed to identify

kernels, using a profiling tool such as gprof [18]. A second execution is

instrumented to profiles the kernels.

Profile “best” variables only This two-pass strategy seeks to profile only those

variables that excel at some particular metric, e.g. highest read count. A

first execution is needed to compute the desired metric for all variables (it is

necessary that computing the desired metric require less memory than the

conventional bit binding-time analysis, or else no savings are realized). A

2The SUIF community is quick to point out that SUIF1 cannot compile the SPEC95 suite.
Harvard’s MachSUIF extensions introduce bug fixes to enable compilation of SPEC95. We use
SUIF1 with MachSUIF but were still unable to successfully instrument and compile SPEC95.
SUIF2 (presently in beta) also promises to compile SPEC95.

76

second pass is instrumented to profile only the variables with best metric.

Note that the metric does not have to be a variable’s read count but should

rank the variable’s importance or cost in the implementation.

Cache “best” variables Rather than preselect which variables to profile, a cache

model could be used to select variables on the fly. In this one-pass approach,

the profiling system reserves a fixed amount of memory to fully profile a

small number of variables. Variables enter and leave this cache according to

a metric-based eviction policy. The most appropriate metric is probably a

variable’s read count. Additional memory may be needed to compute this

metric for all variables. The cache model assumes that a particular work-

ing set of most frequently read variables will emerge during execution. As

with any cache, thrashing is possible. One disadvantage of this scheme is

that a profiled variable may not spend the duration of the program in the

cache, hence its binding-time information will be incomplete. Cache con-

tents could be periodically analyzed and written to file in order to catch an

evolving working set of variables.

Additional savings in memory may be had by collapsing array variables, i.e.

by keeping incremental binding-time information for only a single, representative

element. This is discussed in Section 4.3.1.

4.3 Further Analyses

Several transformations and analyses were considered in detail but never imple-

mented due to lack of time. Their purpose is collectively to uncover more forms

of bit constancy. These approaches are discussed here.

77

4.3.1 Collapsing Array Information

At present, the profiling system analyzes each array as a single, very wide integer.

As discussed in Section 4.1, this makes the results for arrays less useful and possi-

bly erroneous, since sign bits are not properly identified. A useful way to analyze

an array in this profiling framework is to combine the bit binding-times from each

array element by least-upper-bound (LUB) into a single representative element.

We refer to this as collapsing the array.

Collapsing an array into a single element is not likely to lose any significant

element-wise information. This is because array elements are seldom accessed

individually. Media processing programs in particular tend to walk sequentially

over ranges of array elements, often over an entire array. Thus in a first order

analysis, we expect that all elements of an array have similar constancy. Even

when this is not true, a representative element formed by a LUB is conservative,

and any specialization based on it will be computationally correct.

The actual collapsing of elements can be done at one of several points in the

profiling framework. One approach is to collapse at program exit, while computing

the result report. This requires incrementally computing and storing binding-

times for each array element during execution. An alternative approach is to

incrementally compute binding-times only for the representative element. This

approach can save significant memory, because the array’s memory image can be

simplified to contain only the most recent value (it is possible to avoid even this

cost3). A full memory or variable image containing counters and bit masks would

be needed only for the representative element.

3It is possible to avoid keeping a most recent value for each storage location. This requires
each write operation to be profiled immediately prior to the write, when the previous value is
still in place. However, this approach will not recognize value changes made by unprofiled code,
e.g. by a library routine.

78

int x; for (...) {
for (...) { int x;

x=...; x=...;
... ...

} }

(a) (b)

Figure 4.1: Pushing a variable declaration to the point of use

4.3.2 Pushing Variable Declarations to Point of Use

Declaring a variable well before its use may make that variable’s lexical scope

appear needlessly large and its binding-time needlessly weak. The bit binding-time

of a variable bit measures its rate of change with respect to the variable’s scope of

definition. That binding-time can be thought of as covariant with constancy but

contravariant with the size of the block. For a tighter analysis, it is beneficial to

identify for each variable the smallest block in which that variable could possibly

be declared.

Consider, for instance, a variable x that is updated in each iteration of a loop

and does not embody a loop-carried dependency (i.e. its value from one iteration

is not used in subsequent iterations). Its logical scope is the body of the loop. In

Figure 4.1(a), the variable is declared outside the loop body. Because it changes

value during its lifetime, its bits are classified as Per-Def. In Figure 4.1(b), the

variable is declared inside the loop body. Now it is constant in each lifetime,

so its bits are classified as Per-Block. Moving the variable declaration into the

smallest possible scope yields a stronger binding-time, which is more useful for a

specialization system.

It is easy to formalize and automate the process of identifying the smallest

scope in which a variable could be declared. One could write a SUIF compiler

pass to identify that smallest scope and to transform the program so as to push

79

the variable’s declaration to that point.4 At best, such a pass will promote the

classification of certain bits from Per-Def and Sometimes-Per-Block to Per-Block.

4.3.3 Bitwise Reads-Per-Write, Reads-Per-Change

The bit binding-time domain does not detect slowly-varying behavior that is not

clearly related to a lexical block. For instance, it cannot detect when a variable

is constant in one loop and dynamic in another loop. If the first loop runs for

very many iterations, it may be profitable to specialize it around the variable’s

constant value. A variety of source-level transformations can go some way to

disambiguate a value’s scope of constancy to the profiling methodology. Pushing

variables to the point of use (Section 4.3.2) helps by refining a variable’s lexical

scope. A transformation to static single assignment (SSA) form would add flow

sensitivity, i.e. disambiguate the use of a variable in different places, by splitting

it into separate variables. Similarly, Call chain disambiguation (Section 2.5) adds

context sensitivity, i.e. disambiguates the use of a variable from different call sites,

by duplicating the variable and its surrounding code.

One shortcoming of the binding-time model that cannot be ameliorated by

any of the above transformations is that it cannot quantify numerically how often

a value changes. The transformations help refine the lexical scope of a value,

but that scope says nothing about how many times the value is actually used

or changed. Specializing around a constant value is only profitable if that con-

stant value is reused many times before changing. Hence we propose two metrics

that are orthogonal to lexical binding-time: reads between writes (RBW) and

reads between value changes (RBVC). RBW counts the number of uses a variable

gets between write operations. RBVC counts the number of uses a variable gets

between writes that actually change the variable’s values. These metrics help

4A SUIF pass to push variable declarations into the scope of use was actually written but
not fully debugged. Its results are not discussed in this report.

80

identify, for instance, which Per-Block bits are actually worth specializing once

per block, and which Per-Def bits are worth specializing ever.

Measuring average reads between writes and average reads between value

changes is actually trivial. It is equivalent to computing the ratio of total reads

to total writes and total reads to total value changes, respectively.5 The former

requires read and write counters for each variable, which are already implemented.

The latter requires a change counter for each bit, which is a rather large overhead

(a 64-bit change counter would make for 64 bytes of overhead per byte of original

program storage). Measuring the standard deviation of these metrics is not much

more complicated, since it can be computed incrementally using several additional

counters. The value of these metrics may in fact vary at different times during

program execution. Thus, one might consider reporting the averages multiple

times during execution.

4.4 Exploiting Bit Constancy

The goal of the analyses in this paper has been to quantify computational waste in

the form of constant and slowly-varying bits. Ultimately, the goal is to find ways

of avoiding or exploiting that waste. There are at least two distinct approaches to

that end. One approach is to modify the language and program representation to

explicitly reduce computational requirements. Another approach is to transpar-

ently modify the implementation, specializing either the hardware or the software

around known bit behavior. In this section we pose some thoughts about both

approaches.

5To compute the mean reads-between-writes (RBW), suppose that for each write wi
(i ∈ {1...N}) we record the number of reads ri which occured between writes wi−1 and wi. Then
RBW = mean(ri) = 1

N

∑
i ri = total reads

total writes . Similarly, the mean reads-between-value-changes
RBV C = total reads

total value changes .

81

4.4.1 Language Features

The results of this study suggest that there are two language features which may

help exploit constant bits: run-time constants and explicit bit widths.

A dynamically valued constant (DVC) is variable whose value is constant but

not actually known until run-time. Declaring a DVC in effect allows the pro-

grammer to explicitly declare the binding-time of a variable and the lifetime of

its value. C++ can declare DVCs using the const keyword, which declares that

a local variable’s value will be constant in its scope of definition but may be dif-

ferent the next time the scope is entered. With respect to our bit binding-times,

a DVC is a variable all of whose bits are bound Per-Exec or Per-Block (including

sign variants). We have already seen in Section 3.5 that, in MediaBench, entirely

constant (Per-Exec) words (a subset of DVCs) account for 7.1% of all bit-reads

in variables. More general DVCs account for still more bit-reads. One may be

tempted to add a language feature to define individual bits of variables as DVCs.

However, this level of expressivity is cumbersome and error-prone.

The second language feature, explicit bit widths, would allow a programmer

to explicitly request narrow width computation. In C, as in most high level

languages, data widths are quantized at certain powers of 2 (typically 8, 16, 32, and

64 bits.) If a variable needs just one extra bit (e.g. to detect overflow), its width

must be doubled to the next available size. Sections 3.4 and 3.5 support this notion

in the finding that nearly half of all bit-reads in variables are to high-order regions

of constant (Per-Exec and Per-Exec, Sign) bits. If word data types contained

explicit bit widths, a compiler could infer the minimum allowable precision (bit

width) of every computation and result (e.g. 12-bit + 3-bit = 13-bit, using a 12-

bit adder). Alternatively, the programmer could explicitly state the bit width of

each primitive operation (e.g. 12-bit + 3-bit should be done using a 3-bit adder,

and the programmer guarantees that values will not overflow). However, explicit

82

operation widths are cumbersome to the programmer and highly error-prone.

4.4.2 Exploitation in Hardware

Given the position of constant bits in a variable, there are three possible cases

for specialization: (1) entirely constant words, (2) constant high-order or low-

order bits, and (3) constant bits in random positions. Specialization may be

considered in each of these cases regardless of the actual binding-time of bits.

The bit binding-times only determine when specialization should take place.

A computation with constant word operands (all Per-Exec and/or Per-Block

bits) might be folded in its entirety. This is possible in any kind of hardware im-

plementation, microprocessor or custom logic. If only some of the word operands

are constant, then a custom hardware implementation might still be specialized by

partial evaluation, e.g. a constant coefficient multiplier [33] [9] (a constant times

a dynamic).

A computation whose operands have constant high-order or low-order bits may

merit a narrow data-path implementation. This is appropriate for a custom hard-

ware implementation where a data-path of arbitrary width may be synthesized. It

may also be possible on a microprocessor if a narrower ALU operation is available

and has some advantage, e.g. lower power. One interesting use of narrow ALU

operations is in the SIMD vector units associated with multimedia instruction sets

(e.g. Vis [28], MMX [36], AltiVec [35]). Brooks and Martonosi [4] describe one

approach to automatically pack operations with constant high order bits into the

parallel slots of a SIMD vector instruction.

Finally, a computation whose operands have constant bits in random locations

could be specialized in custom hardware by logic optimizations, e.g. bit-level con-

stant propagation and folding. This will mostly likely result in a minor area

savings and may in fact have an adverse effect on the regularity of a data struc-

83

ture.

4.4.3 Probabilistic Specialization

Bit binding-time information collected by profiling is necessarily data dependent

and may not be universally applicable. If the constancy behavior of a program is

in fact sensitive to data, then any specialization based on one data set may not be

appropriate for another data set. For example, a narrow computation appropriate

for one data set may overflow with another data set and affect program correctness.

Section 3.8 indicates that bit constancy in the gzip compression program is not

very sensitive to the input file. In general, however, one must be prepared for

sensitivity and ensure program correctness.

Specializing around profiled information must be done with safeguards. We

can probabilistically specialize for the common case but must also detect and

handle the uncommon case. Detecting the uncommon case amounts to detecting

when the assumptions on input bit behavior are violated for a particular special-

ized data-path. If a specialization assumes that certain input bits are constant,

then a comparator must be used on those bits to verify their value. If a narrow

data-path specialization assumes that inputs have a certain width, then compara-

tors or overflow detection must be used to verify that. Hardware support for such

verification in microprocessors is rare. One possible mechanism to ensure that a

storage location stays constant is to write-protect it using virtual memory tech-

niques [12], so that any write is detected and the written value can be verified.

This technique may require placing the storage element on its own memory page,

leading to a substantial storage overhead.

A variety of actions might be taken to handle the uncommon case when an

input assumption is violated. If a microprocessor is available, it may be possible

to handle the uncommon case in software. This is true regardless of the common-

84

case implementation, be it software, reconfigurable logic, or custom ASIC. The

appearance of an uncommon case may provide a signal that the common-case

implementation is too specific and that a more general implementation should be

used for all subsequent computations. In a reconfigurable logic implementation,

we might consider reloading a slightly less specialized configuration to handle all

subsequent computation. Depending on the relative cost of switching out to the

uncommon-case implementation and back, it may or may not be beneficial to

return to a specialized implementation after such an interruption.

4.4.4 Online vs. Offline

The complementary processes of profiling and specializing an application may each

be done online (in real-time) or offline. The profiling methodology described thus

far can be considered offline, since its large memory and run-time requirements

make it impossible to incorporate it into a casual execution of a program.

Any online profiling methodology must contribute only negligible overhead to

a program’s memory consumption and run-time. Modifying our profiling method-

ology into an online version would involve, first and foremost, implementing the

memory savings techniques described in Section 4.2. Additional run-time sav-

ings might be realized by profiling during only part of the execution. The gprof

profiling system [18] does this by profiling only on interrupts. As a coarse solu-

tion, we might consider profiling snapshots of storage at interrupts. Alternatively,

we could periodically switch a program between self-profiling and non-profiling

modes. This would require patching the program to have both profiling and non-

profiling versions of each routine, and selecting which version to run using jump

tables.

A continuum of specialization approaches exists, including online, offline, and

combinations thereof. Purely online specialization is probably too expensive to

85

consider, since it requires online recompilation or logic synthesis in addition to

online profiling. Purely offline specialization, including offline profiling, is perhaps

the easiest to implement. One attractive hybrid approach might involve the offline

generation of several specialized instances of a kernel routine, then the online

selection of a particular instance depending on the constancy behavior detected

in that execution by online profiling.

4.5 Application: Specializing Multipliers

The precise benefit of specialization depends not only on the program’s bit binding-

time profile but also on the particular operations being specialized. Different oper-

ations (e.g. add, multiply, etc.) admit different mechanisms for specialization and

have different cost models for the specialized area and performance. This project

uses a simplified profiling model that intentionally avoids distinguishing particu-

lar operations. This section considers extensions to the profiling methodology for

assessing and specializing a particular operation, namely integer multiplication.

Multiplication is a simple but non-trivial operation to specialize. It has a

potentially large area benefit from specialization around narrow width operands,

since a spatial n × m-bit multiply has area O(nm). In addition, multiplication

is amenable to specialization around only a single constant operand (constant

coefficient multiplier [33] [9]).

S V C(a)

(b) CC VS

Figure 4.2: Decomposition of a word into bit ranges, (a) SVC model, (b) SCVC model.

86

4.5.1 A Simpler Constancy Model: Bit Regions

Section 3.5 presented evidence that a large part of the bit-level waste in Medi-

aBench appears in sign bits and in contiguous regions of constant bits in high-

or low-order bit positions. This suggests that the binding-time model presented

in Section 1.4 could be simplified to consider contiguous bit regions rather than

individual bits. Figure 4.2 shows two possible models in which a word is analyzed

as a group of bit regions. The region labels shown are:

S — sign extension bits.

These are high-order bits that carry the same value as one another. They can

be represented by a single sign bit to create narrower arithmetic data-paths.

V — variable (i.e. dynamic) bits.

These are dynamic bits with no a-priori known value.

C — constant (i.e. static) bits.

These are unchanging bits whose value is known and can be specialized by

partial evaluation of the logic.

The SVC model of Figure 4.2(a) is particularly simple, admitting only sign bits at

the high bit positions. The SCVC model of Figure 4.2(b) is a possible extension

to allow constant bits in the high bit positions. It is possible for a bit region to

have zero width, so SVC may in practice collapse into SV (range-limited around

zero), and SCVC may collapse into CV (range-limited around a non-zero value).

In the rest of this section, we consider only the SVC model of Figure 4.2(a).

87

To see how a multiplication may be specialized in the SVC model, consider the

following decomposition:6

S1V1C1 × S2V2C2 = (S1 × S2) + (S1 × V2 + S2 × V1) + (S1 × C2 + S2 × C1)

+ (V1 × V2) + (V1 × C2 + V2 × C1) + (C1 × C2)

The component multiplications may be specialized into the following run-time

structures:

S× S — a single-bit XOR

S× V — controlled arithmetic negation

S× C — controlled arithmetic negation of a constant, im-

plemented by word selection (bit-parallel multi-

plexers or AND/OR plane)

V × V — a conventional multiplier

V × C — a constant-coefficient multiplier (ANDs and

adders)

C× C — precomputed to a constant

The only part of the multiply that cannot be specialized is V × V. The area

and time benefit of specialization depends on the actual widths of the bit regions

(minus the cost of producing the specialization).

Note that the SVC model does not incorporate scope-based binding-times.

Nominarlly, we consider V to be fully dynamic, i.e. bound per-definition, and C

to be bound per-compile or per-execution. It is possible to identify V as a slowly-

varying value regardless of scope using dynamic metrics such as uses per value

change (equivalent to RBV C from Section 4.3.3).

6In the notation, adjoining letters represent bit concatenation, not multiplication. Multipli-
cation is represented by ×.

88

4.5.2 Profiling Multiplies

Specializable multiplies may be discovered by profiling the operands of multiply

instructions. This is an instance of instruction-based profiling, which is qualita-

tively different than the storage-based profiling used in this project (the differences

are discussed in Section 1.3.3). This approach can still be implemented by instru-

mentation of SUIF’s intermediate form.

The objective of profiling is to discover the SVC profile for both operands of

each multiply instruction. This can be done incrementally with minimal storage

requirements. For each operand of each multiply, the profiling system must main-

tain a most-recent value and an incremental SVC profile. The SVC profile can be

represented compactly by the bit-positions of the V bit-range, for instance using

an LSB/MSB integer pair, or using a bit-mask. At each dynamic execution of a

multiply, and for each operand, the profiling system would XOR the operand’s

present and most-recent values to discover changes, then update the incremental

SVC profile by widening V appropriately. An operand’s initial profile must be

marked as undefined. At the first use of that operand, the profile would be set to

have maximal S and C regions, with an implicitely zero-width V.

4.5.3 Specialization models

A practical specialization scheme must decide which multiplies are worth special-

izing and precisely when to specialize them. In the simplest model, we consider

specializing a multiplier only once per execution (or per compile). If the V value

is slowly varying, we can consider dynamically respecializing a multiplier around

different V values. It is also be possible, in principle, to detect and specialize

around slowly-varying precision of operands, i.e. for varying V widths. However,

this requires significantly more expensive profiling and will not be discussed here.

89

Specializing Once

In this model, we consider V to be fully dynamic and C to be fully static. If

the C values of both operands of a particular multiply are known a-priori (before

execution, i.e. bound per-compile), then the multiplier could be specialized offline,

once and for all. If the C value of either operand will not be known until execution

time (i.e. bound per-execution), then the multiplier could be specialized online as

soon as the values are known. This may be as early as the first dynamic execution

of the multiply (possibly earlier with a backwards data-flow analysis) or could

be delayed until several multipliers are ready for specialization. A specialized

multiplier should include input comparators to ensure that its operands maintain

their expected values.

Because the benefit of specialization (especially online specialization) is offset

by the cost of producing a specialization, it may not be desirable to specialize all

multipliers. The savings of a particular multiplier can be calculated roughly as:

savings = (original cost− specialized cost)× uses− cost of specialization

where “uses” is the number of dynamic executions of the multiplier.

We must be more precise to obtain comparable units of “cost.” The cost of

producing a specialization is typically in time (on a microprocessor), but the sav-

ings in multiplier cost are more complex. A specialized multiplier may have time

advantages such as lower latency and higher throughput, but in a pipelined, feed-

forward computation, these time measures are irrelevant (throughput becomes

one-per-cycle, and latency is largely ignored). The real benefit comes from reduc-

tion in multiplier area, which allows the packing of more parallel hardware for

better overall throughput. One heuristic way to express the area savings in time

units is to scale a time measure (e.g. latency) by the area reduction factor (this is

90

an idealized savings, pretending that the entire computation consists of identical

multipliers). Thus the heuristic time savings of a specialized multiplier are:

Tsaved =

(
Torig − Tspec

Aspec

Aorig

)
× uses− Tspecialization-cost

where A is area, T can be taken as latency, and “orig” and “spec” refer to the

original and specialized multipliers, respectively. A specialization system can then

choose the most profitable multiply instructions to specialize by ranking their

Tsaved, post profiling.

Specializing for Slowly Varying Values

If the V (dynamic) part of a multiply operand changes value infrequently, an ag-

gressive system may wish to dynamically respecialize around each new value. Each

such specialization treats V as a constant, converting the SVC operand into SC’.

It is possible but not necessary for both operands of a multiply to be specialized

this way.

The run-time benefit of respecialization for a particular multiply depends on

the number of dynamic executions (uses) of each specialized instance. The heuris-

tic savings metric described above is still valid but must now be applied for each

specialized instance individually. If the run-time system respecializes at each

change of operand value, then the total savings of a specialized multiplier are:

Tsaved =

changes∑
i=1

(
Torig − Tspec(i)

Aspec(i)

Aorig

)
× uses(i) − changes× Tspecialization-cost

Computing this cost precisely is difficult, since it requires remembering the bit

pattern and number of uses for every unique V value of every multiplier (the

bit pattern is needed to ascertain a precise area-time cost). If we instead con-

91

sider average costs Tspec, Aspec over all possible values,7 then the savings formula

becomes:

Tsaved =

changes∑
i=1

(
Torig − Tspec

Aspec

Aorig

)
× uses(i) − changes× Tspecialization-cost

= changes×
(
Torig − Tspec

Aspec

Aorig

)
× uses− changes× Tspecialization-cost

= changes×
[(
Torig − Tspec

Aspec

Aorig

)
× uses− Tspecialization-cost

]

Computing this cost is significantly easier, since it only requires the profiler to

collect the total number of changes and uses for each multiplier operand. Again,

a specialization system should rank all multiply instructions by savings metric

and specialize only the most profitable instructions.

7The cost of a constant-coefficient multiplier depends on the coefficient value. Given an
SVC profile, an average cost can be computed over all possible values. An average cost over all
possible bit patterns can be tabulated for any SVC value. Alternatively, if the profiler collects
all values actually used with a multiplier, the average cost can be computed over that set of
values.

92

Bibliography

[1] Tito Autrey and Michael Wolfe. Initial results for glacial variable analysis. In

Proc. Ninth International Workshop on Languages and Compilers for Parallel

Computing (LCPC ’96), pages 120–134, San Jose, California, August 8–10,

1996.

[2] William Blume and Rudolf Eigenmann. Symbolic range propagation. In Proc.

Ninth International Parallel Processing Symposium, pages 357–363, Santa

Barbara, California, April 25–28, 1995.

[3] Kiran Bondalapati and Viktor K. Prasanna. Dynamic precision manage-

ment for loop computations on reconfigurable architectures. In Proc. IEEE

Symposium on FPGAs for Custom Computing Machines (FCCM ’99), pages

249–258, Napa Valley, California, April 21–23, 1999.

[4] David Brooks and Margaret Martonosi. Dynamically exploiting narrow width

operands to improve processor power and performance. In Fifth Inter-

national Symposium on High Performance Computer Architecture (HPCA

’99), Orlando, Florida, January 9–12, 1999. Available as: http://www.ee.

princeton.edu/~mrm/papers/hpca99.pdf.

[5] Mihai Budiu and Seth Copen Goldstein. Detecting and exploiting narrow

bitwidth computations. In Second Annual CMU Symposium on Computer

93

Systems (SOCS-2), Pittsburgh, Pennsylvania, October 2, 1999. Available as:

http://www.cs.cmu.edu/~mihaib/research/socs2.ps.gz.

[6] Brad Calder, Peter Feller, and Alan Eustace. Value profiling. In Proc. 30th

International Symposium on Microarchitecture (MICRO-30), pages 259–269,

Research Triangle Park, North Carolina, December 1–3, 1997.

[7] Timothy J. Callahan, John Hauser, and John Wawrzynek. The garp archi-

tecture and C compiler. IEEE Computer, 33(4):62–69, April 2000.

[8] Eylon Caspi. Binding time analysis for bits. Project report for course CS263,

Design and Analysis of Programming Languages, spring 1998, University of

California, Berkeley, May 1998. Available as: http://www.cs.berkeley.

edu/~eylon/cs263/report.ps.gz.

[9] Kenneth David Chapman. Fast integer multipliers fit in fpgas. EDN,

39(10):80, May 12, 1993.

[10] Charles Consel and François Noël. A general approach for run-time spe-

cialization and its application to c. In Proc. 23rd ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages (POPL ’96), pages 145–

156, St. Petersburg Beach, Florida, January 21–24, 1996.

[11] Joseph A. Fisher and Stefan M. Freudenberger. Predicting conditional branch

directions from previous runs of a program. In Proc. Fifth International Con-

ference on Architectural Support for Programming Language and Operating

Systems(ASPLOS-V), pages 85–95, Boston, Massachusetts, October 12–15,

1992.

[12] Virtual Memory Primitives for User Programs. A.w. appel and kai li. In Proc.

Fourth International Conference on Architectural Support for Programming

94

Language and Operating Systems (ASPLOS-IV), pages 96–107, April 8–11,

1991.

[13] Freddy Gabbay and Avi Mendelson. Can program profiling support value

prediction? In Proc. 30th International Symposium on Microarchitecture

(MICRO-30), pages 270–280, Research Triangle Park, North Carolina, De-

cember 1–3, 1997.

[14] David Galloway. The transmogrifier C hardware description language and

compiler for FPGAs. In Proc. IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM ’95), pages 136–144, Los Alamitos, California,

April 19–21, 1995.

[15] Maya Gokhale and Edson Gomersall. High level compilation for fine grained

FPGAs. In Proc. IEEE Symposium on FPGAs for Custom Computing Ma-

chines (FCCM ’97), pages 165–173, Napa Valley, California, April 16–18,

1997.

[16] Maya B. Gokhale and Janice M. Stone. NAPA C: Compiling for a hybrid

RISC/FPGA architecture. In Proc. IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM ’98), pages 126–134, Napa Valley, California,

April 15–17, 1998.

[17] K.L. Gong and L.A. Rowe. Parallel MPEG-1 video encoding. In 1994 Picture

Coding Symposium (PCS ’94), Sacramento, California, September 1994. See

also: http://bmrc.berkeley.edu/frame/research/mpeg/.

[18] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: a

call graph execution profiler. ACM SIGPLAN Notices, 17(6):120–126, June

1982.

95

[19] Brian Grant, Markus Mock, Matthai Philipose, Craig Chambers, and Su-

san J. Eggers. Annotation-directed run-time specialization in C. In

Proc. ACM SIGPLAN Symposium on Partial Evaluation and Semantics-

Based Program Manipulation (PEPM ’97), pages 163–178, Amsterdam, The

Netherlands, June 12–13, 1997.

[20] B. Gunther, G. Milne, and L. Narasimhan. Assessing document relevance

with run-time reconfigurable machines. In Proc. IEEE Workshop on FPGAs

for Custom Computing Machines (FCCM ’96), pages 10–17, Napa Valley,

California, April 15–17, 1996.

[21] The gzip home page. http://www.gzip.org.

[22] William H. Harrison. Compiler analysis of the value ranges for variables.

IEEE Transactions on Software Engineering, SE-3(3):243–250, May 1977.

[23] John R. Hauser and John Wawrzynek. Garp: A MIPS processor with a

reconfigurable coprocessor. In Proc. IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM ’97), pages 24–33, Napa Valley, California,

April 16–18, 1997.

[24] Simon D. Haynes and Peter Y. K. Cheung. A reconfigurable multiplier array

for video image processing tasks, suitable for embedding in an fpga struc-

ture. In Proc. IEEE Symposium on FPGAs for Custom Computing Machines

(FCCM ’98), pages 226–234, Napa Valley, California, April 15–17, 1998.

[25] Luke Hornof and Jacques Noyé. Accurate binding-time analysis for imper-

ative languages: Flow, context, and return sensitivity. In Proc. ACM SIG-

PLAN Symposium on Partial Evaluation and Semantics-Based Program Ma-

nipulation (PEPM ’97), pages 63–73, Amsterdam, The Netherlands, June 12–

13, 1997.

96

[26] N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic

Program Generation. Prentice-Hall International, 1993.

[27] Ulrik Jørring and William L. Scherlis. Compilers and staging transformations.

In Proc. 13th ACM Symposium on Principles of Programming Languages,

pages 86–96, St. Petersburg Beach, Florida, January 1986.

[28] Leslie Kohn, Guillermo Maturana, Marc Tremblay, and A. Prabhuand G.

Zyner. The visual instruction set (VIS) in ultraSPARC. In Forty-First IEEE

Computer Society International Conference (COMPCON ’95) Digest of Pa-

pers, pages 462–469, San Francisco, California, March 5–9, 1995.

[29] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. Media-

bench: A tool for evaluating and synthesizing multimedia and communica-

tions systems. In Proc. 30th International Symposium on Microarchitecture

(MICRO-30), pages 330–335, Research Triangle Park, North Carolina, De-

cember 1–3, 1997.

[30] Peter Lee and Mark Leone. Optimizing ML with run-time code genera-

tion. In Proc. ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’96), pages 137–148, Philadelphia, Pennsylvania,

May 21–24, 1996.

[31] Mikko H. Lipasti and John Paul Shen. Exceeding the dataflow limit via

value prediction. In Proc. 29th International Symposium on Microarchitecture

(MICRO-29), pages 226–237, Paris, France, December 2–4, 1996.

[32] Mikko H. Lipasti, Christopher B. Wilkerson, and John P. Shen. Value lo-

cality and load value prediction. In Proc. Seventh International Conference

on Architectural Support for Programming Language and Operating Systems

97

(ASPLOS-VII), pages 138–147, Cambridge, Massachusetts, October 1–4,

1996.

[33] Daniel J. Magenheimer, Liz Peters, Karl Pettis, and Dan Zuras. Integer mul-

tiplication and division on the hp precision architecture. In Proc. Second In-

ternational Conference on Architectural Support for Programming Language

and Operating Systems (ASPLOS-II), pages 90–99, October 5–8, 1987.

[34] Tony Alan Marshall, Igor Kostarnov Stansfield, Jean Vuillemin, and Brad

Hutchings. A reconfigurable arithmetic array for multimedia applications. In

Proc. International Symposium on Field Programmable Gate Arrays (FPGA

’99), pages 135–143, Monterey, California, February 21-23, 1999.

[35] Motorola, Inc. AltiVec Technology Programming Environments Manual,

November 1998. Available as: http://www.motorola.com/SPS/PowerPC/

teksupport/teklibrary/manuals/altiv%ec_pem.pdf.

[36] Alex Peleg, Sam Wilkie, and Uri Weiser. Intel MMX for multimedia PCs.

Communications of the ACM, 40(1):24–38, January 1997.

[37] J. A. Perkins. Programming practices: Analysis of Ada source developed for

the air force, army, and navy. In Conference Proceedings on Ada Technology in

Context: Application, Development, and Deployment (TRI-Ada ’89), pages

342–354, Pittsburgh, Pennsylvania, October 22–26, 1989.

[38] A. Rashid, J. Leonard, and W.H. Mangione-Smith. Dynamic circuit genera-

tion for solving specific problem instances of boolean satisfiability. In Proc.

IEEE Symposium on FPGAs for Custom Computing Machines (FCCM ’98),

pages 196–204, Napa Valley, California, April 15–17, 1998.

[39] Rahul Razdan and Michael D. Smith. A high-performance microarchitecture

with hardware-programmable functional units. In Proc. 27th International

98

Symposium on Microarchitecture (MICRO-27), pages 172–180, San Jose, Cal-

ifornia, November 1994.

[40] Jeff Reilly. SPEC describes SPEC95 products and benchmarks. SPEC

Newsletter, September 1995. Available as: http://www.spec.org/osg/

cpu95/news/cpu95descr.html.

[41] Stephen E. Richardson. Exploiting trivial and redundant computation. In

Proc. Eleventh Symposium on Computer Arithmetic, pages 220–227, Wind-

sor, Ontario, June 29–July 2, 1993.

[42] Yiannakis Sazeides and James E. Smith. The predictability of data values.

In Proc. 30th International Symposium on Microarchitecture (MICRO-30),

pages 248–258, Research Triangle Park, North Carolina, December 1–3, 1997.

[43] Jonatahan L. Schilling. Dynamically-valued constants: An underused lan-

guage feature. ACM SIGNPLAN Notices, 30(4):13–20, April 1995.

[44] Michael D. Smith. Extending SUIF for machine-dependent optimizations.

In Proc. First SUIF Compiler Workshop, pages 14–25, Stanford, California,

January11–13, 1996. Stanford University.

[45] Kai Wang and Manoj Franklin. Highly accurate data value prediction using

hybrid predictors. In Proc. 30th International Symposium on Microarchitec-

ture (MICRO-30), pages 281–290, Research Triangle Park, North Carolina,

December 1–3, 1997.

[46] Robert P. Wilson, Robert S. French, Christopher S. Wilson, Saman P. Ama-

rasinghe, Jennifer-Ann M. Anderson, Steven W. K. Tjiang, Shih-Wei Liao,

Chau-Wen Tseng, Mary W. Hall, Monica S. Lam, and John L. Hennessy.

SUIF: An infrastructure for research on parallelizing and optimizing compil-

ers. ACM SIGPLAN Notices, 29(12):31–37, December 1994.

99

[47] P. Zhong, M. Martonosi, P. Ashar, and S. Malik. Accelerating boolean satis-

fiability with configurable hardware. In Proc. IEEE Symposium on FPGAs

for Custom Computing Machines (FCCM ’98), pages 186–195, Napa Valley,

California, April 15–17, 1998.

100

Appendix A

SUIF Optimizations

This appendix describes compiler optimizations that were applied to each pro-

gram before profiling. All optimizations are standard options in SUIF1 and their

descriptions are copied directly from the porky man page. Successfully applied

optimizations include:

Forward propagation

(-forward-prop) This forward propagates the calculation of local variables

into uses of those variables when possible. The idea is to give more informa-

tion about loop bounds and array indexing for doing dependence analysis

and loop transformations, or generally to any pass doing analysis.

Constant propagation

(-const-prop) This does simple constant propagation.

Dead code elimination

(-dead-code) This does simple dead-code elimination.

Variable privatization

(-privatize) This privatizes all variables listed in the annotation “privati-

zable” on each TREE FOR.

101

(-glob-priv) Do some code transformations to help with privatization of

global variables across calls. It looks for “possible global privatizable” an-

notations on proc syms. In each such annotation it expects to find a list of

global variables. It changes the code so that a new parameter is added to

the procedure for each symbol in the annotation, and all uses of the sym-

bol are replaced by indirect references through the new parameter, and at

callsites the location of that symbol is passed. If the procedure is a For-

tran procedure, the new parameter is a call-by-ref parameter. It arranges

for this to work through arbitrary call graphs of procedures. The result is

code that has the same semantics but in which the globals listed in each

of these annotations are never referenced directly, but instead a location to

use is passed as a parameter. If the annotations are put on the input code

properly, this allows privatization of global variables to be done as if the

globals were local.

Common subexpression elimination

(-cse) This does simple common sub-expression elimination.

Hoist loop invariants

(-loop-invariants) This moves the calculation of loop-invariant expres-

sions outside loop bodies.

(-loop-cond) Move all loop-invariant conditionals that are inside a TREE LOOP

or TREE FOR outside the outermost loop.

Iterate optimizations

(-iterate) This flag says to keep doing all the specified optimizations as

long as any of them make progress.

102

Additional, useful optimizations that were not successfully applied due to software

bugs include:

Constant folding

(-fold) This folds constants wherever possible.

Reduction

(-reduction) This finds simple instances of reduction. It moves the sum-

mation out of the loop.

(-ivar) This does simple induction variable detection. It replaces the uses

of the induction variable within the loop by expressions of the loop index

and moves the incrementing of the induction variable outside the loop.

103

Appendix B

The Compilation Sequence

Table B.1 below describes the sequence of steps for compiling a self-profiling appli-

cation. These steps include preprocessing, a number of SUIF passes, instrumenta-

tion, and subsequent emission and recompilation of C. Subsequent steps commu-

nicate through intermediate files, as listed in the Inputs and Outputs columns.

Some of the steps can work incrementally on one source file at a time. How-

ever, many of the SUIF-based transformations (notably linksuif, dup procs,

and instrument) must process an entire file set at once. Rules for the entire com-

pilation sequence are programmed into a Makefile that is included by the custom

Makefile of each application.

105

Command Inputs Outputs Description
perl prof prep *.c *.c Prepend: #include <prof runtime.h>

(profiling library header) into each C source
file

scc† -.spd *.c *.spd SUIF front end (preprocess and read C into
internal form)

linksuif† *.spd *-l.spd SUIF linker (reconcile global symbols in in-
ternal form)

porky† -globalize *-l.spd *-g.spd Convert static local variables into globals
dup procs *-g.spd *-c.spd Duplicate procedures for call chain disam-

biguation (optional)
porky† -forward-prop
-const-prop
-dead-code
-glob-priv
-privatize -cse
-loop-invariants
-loop-cond -iterate

*-c.spd *-o.spd Compiler optimizations

porky† -Dfors *-o.spd *-d.spd Dismantle for loops into do...while form
instrument *-d.spd *-i.spd Instrument for profiling
s2c† *-i.spd *-i.c Convert to C
gcc -c *-i.c *-i.o Compile to object code
gcc -lprof runtime *-i.o Link executable with profiling library

prof runtime.a

†Part of the SUIF distribution

Table B.1: Sequence of steps for compiling a self-profiling application

106

