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Abstract

Deep Sub-Micron Photolithography Control through In-Line Metrology

by

Nickhil Harsh Jakatdar

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Costas J. Spanos, Chair

The exponential increase of integrated circuit density and semiconductor manufacturing

cost is well described by Moore's Law. In order to provide affordable lithography at and

below lOOnm, in-situ and in-line metrology is becomingincreasingly critical for advanced

process control and rapid yield learning. The successful implementation of a real time or

run-to-run controller requires metrologyfor the intermediateand final quantities of interest

as well as robust process models.

In this thesis, a metrology framework is developed for eachof the process stepsby identi

fying the observable that is related to the final quantity of interest, identifying the associ

ated sensors and developing efficient algorithms to analyze the sensor data. This

framework is demonstratedfor optical constant measurementsofthin films before and after

the spin-coat and soft-bake steps, deprotection and associated thickness loss measurements

aftertheexposure andpost-exposure bakesteps, andthecross-section resistandpolysilicon

profile measurements after the lithography and etch steps. Simple optical sensors, such as

spectroscopic reflectometry and spectroscopic ellipsometry, are used for the different

metrology steps in order to facilitate integrated metrology with the lithography process

equipment i.e. wafer track and stepper.

Modeling the chemistry and physics of the deep ultraviolet lithography is critical in the

deep sub-micron pattem transfer process for effective CD prediction. In this thesis, novel

process models are developed for each step of the lithography process to provide an effec-



tive simulation environment. To make the simulation predictive, ahierarchical architecture
is developed that calibrates the simulator model coefficients based on experimental cross-
section profile dataanda global optimization routine.

The process models together with the metrology scheme provide the building blocks of a
process controller. The process models developed in this thesis provide insight into the
observables available at every step ofthe lithography sequence and their correlation to the
final critical dimension. The metrology schemes indicate the sensors and algorithms
required to efficiently measure these observables. These building blocks are used to
develop a Kalman Filter based process controller that integrates orfuses information from

multiple sensors, such as the deprotection induced thickness loss system and the specular
spectroscopic scatterometry system. This scheme promises a better than 50% reduction in

the deep ultraviolet lithography process variability.

Professor C. J. Spanos

Committee Chairman
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Chapter 1

Chapter 1 Introduction

LI. Motivation

The semiconductor industry is unique in having sustained such rapid technology
development over so long a period, growing at an annual rate ofapproximately 15% over
the past three and a halfdecades. Ithas been said that ifother industries, such asthe airline

industry, had progressed at the same rate over the last 30 years, itwould have been possible
to fly from San Francisco to New York in less than aminute for less than adollar. However,

it now appears that the industry is rapidly approaching aformidable "ICQ nm barrier", con
sisting ofan unprecedented number ofdistinct technical challenges which threaten contin

uation. of its historical success formula. Two ofthe "Grand Challenges" identified in the

National Technology for Roadmap (1999 Edition) are affordable lithography at or below
100 nmand solutions for Metrology & Test [1].

Ever since the invention ofthe integrated circuit, patterning has been achieved by
lithographic techniques that use visible light. With the relentless decrease in feature size

required for the productivity increases necessary to follow Moore's Law, lithography
sources have progressed to ever shorter wavelengths, leading to today's exposure tools

based on deep ultraviolet light. However, this reduction in exposure wavelength has not
been pushed as aggressively as the reduction in the feature size, as plotted in Figure 1.1.
While innovative technological approaches have enabled the industry to manufacture sub-

wavelength feature sizes, it will get increasingly difficult as the ratio of the feature size to

exposure wavelength falls below 0.5. To make matters worse, industry analysts estimate
that a state-of-the-art fab for the 0.15 pm technology will cost more than $2.5 Billion and

will touch the $10 Billion mark for sub 0.10 pm technology generation.
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Lithography Exposure Wavelength

200 -

100 -

Minimum Feature Size(CD)

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010 2012
Figure 1.1. The reduction in the lithography exposure wavelength and minimum feature
size over time.

To keep the industry on its historic 25-30% /year reduction in cost/function despite
the escalating factory costs (20% / year), greater synergy must be developed between the
areas ofmetrology, modeling and control. Sturtevant et.al. have demonstrated the efficacy
ofsuch asynergy in the pattern transfer sequence, where they used asimple run-to-run con
troller working in unison with simple process models, and aCD-SEM to reduce variability
by 54% [2]. The tighter lot critical dimension (CD) distribution allowed the target to shift
to shorter Lgfj- without ayield hit, allowing for a$2 Million increase in revenues per 1000
wafer starts, as shown in Figure 1.2. AMD and Honeywell used a similar framework to

demonstrate a70% reduction in process scrap and rework in the lithography sequence [3].
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Figure 1.2. The trade-off between speed and yield as afunction ofaLgff-

The key components to keeping on the manufacturing cost learning curve are
shown in Figure 1.3.

CONTROL

Run-to-Run Controller

METROLOGY

Thin film
Process

Models

Thin-Film

Metrology

PROCESI

Thin film

deposition

Spin Coat

Soft Bake

DITL
Process

Models

Thin-Film

Metrology
DITL

Metrology

T

Exposure

PEB

Lithography Workcell

Develop
Process

Models

Develop

SSS

Metrology

Figure 1.3. AMetrology, Modeling and Control Framework for the DUV Lithography
Process. o r j
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Chapter 1
1.1.1.Metrology

Metrology is essential to the development and improvement of new processes and
tools for future technology generations. Metrology can potentially reduce the cost ofman
ufacturing and time-to-market for new products through better characterization ofprocess
tools and processes. As device dimensions shrink, the challenge for physical metrology will
be to keep pace with inline electrical testing that provides critical electrical performance
data. Manufacturing sub-100 nm devices will require the availability of robust in-situ
equipment, process, and wafer-state sensors in process tools. These sensors must have ade
quate repeatability, reproducibility and calibration capability to provide the necessary real
time information for fault detection and process control. This would need the development
of increasingly faster data acquisition and computational algorithms for converting sensor
data into useful information. It is acknowledged that the implementation ofin-situ metrol
ogy will be driven by reducing pilot wafer use, while simultaneously increasing process
capability.

1.1.2. Modeling

Modeling, according to the NTRS, is like astool that requires three legs for astable
result. The three legs are:

1. Models - amental image ofreality, formalized in amathematical model.

2. Simulators - the computer codes that implement the models

3. Calibration and Validation -the comparison ofsimulated results to relevant experimental
data to determine numerical values for parameters, and to demonstrate "suitability for pur
pose".

In early stages of development, modeling and simulation technology is often used
to provide insight into technology directions and interactions between options. During later
stages, it is used for quantitative analyses like optimization, sensitivity analysis and process
diagnosis. Models ranging from easy-to-use to complex, from fast-executing to computa
tionally intensive, and from high accuracy in aconstrained process space to moderately pre
dictive over wide ranges should be available to satisfy all uses. It is expected that optical

14



Chapter 1
lithography at 100 nm and below will require modeling approaches that integrate the anal
ysis ofthe stepper/scanner optics with that ofthe resist materials. New phenomena, such as

polymer-surface interaction, chemical amplification and its effect on deprotection and dif
fusion, and the interaction oflocal resolution enhancements with image non-idealities, will
become important. Matching the simulation results to the real measurements becomes a

challenge, because ofthe non-linearity ofthe optimization problem and the presence of
multiple local minima.

1.1.3. Control

Process engineers have expended considerable effort in the design of"get-it-right-
the-first-time processes. However, the aggressive CD control specifications projected for
future device generations are fast outpacing the inherent process or equipment variability.
Given the continually reducing process windows available with the sub-150 nm technology
node causing misprocessing to become prohibitively expensive, semiconductor manufac

turing is slowly moving from fixed process recipe, open-loop control to closed-loop control
via sensor-driven model-based integrated manufacturing (SDMBIM) [1]. In-situ process
control is a critical solution for the future factory as conventional metrology becomes less
reliable, more expensive, and can only identify process excursions after significant yield
loss. Control algorithms are required that can efficiently fuse information from the multiple
metrology schemes available to reduce process variability.

1.2. Thesis Organization

This thesis presents a framework to integrate the aspects ofmetrology, modeling
and process control for the deep ultraviolet lithography (DUV) sequence.

This thesis begins with Chapter 2providing a review ofoptimization, learning and
control algorithms. Simulated Annealing (SA) isthe optimization algorithm discussed due

to its global optimization behavior. In this thesis, SA is applied to parameter extraction
required in resist modeling and lithography recipe generation. An introduction to Neural

Networks (NN) is presented as acandidate for areal time learning algorithm. The final sec
tion presents an introduction to Kalman Filters (KF) as an algorithm suitable for run-to-run
control and for sensor fusion.

15



Chapter I
Chapter 3presents metrology for the thin film processes (deposition and spin-on/

soft-bake), for the exposure and post-exposure bake (PEB) processes, and for the develop
and etch processes. The metrology study consists ofidentifying the observables and their

correlation to the final quantity ofinterest, identifying the appropriate sensor that could be
potentially integrated in-line/in-situ, developing an algorithm that could be used for real

time use, and finally presenting results from such an application. The algorithms presented
in this chapter include the NN-ASA algorithm for rapid thin film optical constant extrac
tion, the modeling ofdeprotection induced thickness loss, and the algorithm to reconstruct
profiles using specular spectroscopic scatterometry.

Chapter 4presents the static and dynamic models developed to explain the depro
tection induced thickness loss mechanism. This includes the simulation framework used,
and experimental results validating the proposed mechanism. Results are presented for
commercially available chemically amplified resists from Shipley and Clariant.

Chapter 5presents aframework for efficient lithography simulator calibration, thus
reducing reliance on experimentation. Experimental results for both unpattemed and pat
terned characterization experiments are matched to the output of theoretical models pre
sented earlier over a training set. This framework demonstrates excellent predictive
capabilities when used with atest set ofexperimental data, and has the potential to improve
yield ramp rates and reduce development costs when implemented commercially.

In chapter 6, the various sources ofvariability in the lithography sequence are enu
merated followed by metrology schemes for each ofthe process steps. This is followed by
the run-to-run controller design that includes the experiments performed, the process and
drift models used and two different scenarios for the run-to-run control architecture. The

first scenario assumes a less aggressive metrology integration, relying on off-line CD
metrology, while the second scenario assumes a complete in-line sensor integration for
both intermediate as well as CD metrology.

Chapter 7provides concluding remarks and future work in the area ofmetrology,
modeling andcontrol of the lithography sequence.

16



Chapter 2 Modeling, Optimization
and Control Algorithms

Chapter 2

2.1. Introduction

The implementation of in-line/in-situ sensors in a real time or run-to-run control

framework requires high-speed and accurate algorithms for model-building, optimization
and control. In this thesis, the optimization algorithms are used for high dimensionality
parameter extraction in non-linear functions, while the modeling algorithms are used to

speed up the parameter extraction process so as to make it practical for real-time applica
tions. The control algorithms are used for sensor fusion in a run-to-run control environ

ment. Specifically, this chapter covers Adaptive Simulated Annealing (ASA), Neural

Networks (NN) and Kalman Filters.

2.2. Optimization through Simulated Annealing

Simulated annealing (SA) [4] is a probabilistic optimization technique well suited
to multi-modal, discrete, non-linear and non-differentiable functions. SA's main strength is
its statistical guarantee ofglobal minimization, even in the presence ofmany local minima.

However, simulated annealing methods are notoriously slow. There are various approaches
to address the speed problem in SA such as by using different annealing algorithms, includ
ing the cooling schedule and probability density function ofthe state space [4].

2.2.1. Introduction to Simulated Annealing

Pseudo-code for the SA algorithm is presented in Figure 4.1. The control parameter
T is decreased after anumber of transitions, L. , and can, therefore, be described by a
sequence of homogeneous Markov chains, each generated at a fixed value of T.

17



Procedure Homogeneous SA algorithm
Begin

Initialize(«, r ,)
while « = 0;
Repeat

Repeat
Generate state/ a neighbor to /;
Calculate dE =
ifAccept(5£, Z, )= true4en i=j

until! ;
J = n + 1;
Updated ;
Update 7^;

until Stoppingdriterion = true
End

Subroutine Accept(6£, T^)
ifbE < 0 then return true
else

return true with probability h(6E)
endif

Figure 2.1. Pseudo-code for the Simulated Annealing Algorithm

Chapter 2

There are five major components in SA implementation:

1) Temperature fimction , or cooling schedule. is the "temperatme" parameter,
n is the number oftimes the temperature parameter has changed. The initial value of
is generally relatively high, so that most changes are accepted and there is little chance of
the algorithm been trapped in local minimum. The cooling schedule is used to reduce the
temperature parameter through theprocess of optimization.

2) Repetition function L^. This is to decide how many changes are to be attempted at each
value of T.

3) Probability density g(A:)of state-space of Dm parameters.

18



Chapter 2
4) Probability h{b{E, T^) for acceptance ofnew cost-function given the previous state.

5) Stopping criterion. This is to decide how to terminate the algorithm.

2.2.2. Adaptive Simulated Annealing

There are numerous algorithms that attempt to overcome the disadvantages ofsim
ulated annealing, viz. the inability to rapidly converge to the global minimum. One ofthe

most promising ofthese algorithms, for the constrained optimization problem, is the Adap
tive Simulated Annealing (ASA) [5].

In ASA, there are two temperature notations, namely the parameter temperature Z^, asso
ciated with the i th parameter and the cost temperature

T. controls the generation function of the /th parameter. The state of /th parameter
1at annealing time ^+1 with the range i e [^4 5.] is calculated from

the previous state by

^'k+l = x'lc+P'iBj-Aj) (2.1)
where € [—1, 1 . The generation function is

D

,P,2(M +7',.)1ii(1 +1/7'.) '
and is generated from value v} drawn from the uniform distribution

v} e C/[0, 1] by

y = sgn(w '̂-0.5)r.[(l + l/r.)[2w'-l]_i] . (2.3)

falls outside of the range [ApB-\ , p^ is re-generated until
in the correct range.

A cooling schedule for 7^ is

Tjik) = ro,-exp(-C;A:/^^) (2.4)

19



Chapter 2
where Tq. is the initial temperature of the /th parameter. A:, is the generation number for
the zth parameter, and is the cooling scaling factor for .Tq .is usually set to 1.

Acooling schedule for ^cost given by

^cost^^cost^ ~ ^0,cost®''P(~'̂ cost^cos?^ (2.5)
where Tq^ is the initial temperature of the acceptance ftmction, k , is the

wOSl

number ofacceptance, and c , is the cooling scaling factor for T .
° cost • 0, cost

is usually set to the average initial value ofsome initial sample runs.

There are two important tuning parameters, " Temperature Ratio Scale " and
" Temperature Anneal Scale" s to control c.

^ /

=-(log(5^))exp(-l^^^ . (2.6)
Another tuning parameter" Cost Parameter Scale Ratio "s is used to link c and

P cost

''i-

^cost ' (2.7)I P

Even through can be set according to the uh parameter, however, for simplicity, usually
it is set to be independent of i.

2.3. Learning through Articial Neural Networks

Artificial Neural Networks are widely used in functional approximation and pattern
classification applications due to their capability for modeling complex and highly non
linear fimctions. There are many different kinds ofANNs. Rosenblatt's Perceptron Model
[6], the Hopfield Network [6], Multi-Layer Perceptron [7], Radial Basis Function Network
[7], etc. are some examples. Neural Networks find extensive use in the industry in modeling
processes which are inherently complex and hence difficult to formulate. In general, phys
ical systems are characterized with the help ofmathematical models. Very accurate models
can be built when the physics underlying the system being modeled is known. In many

20



Chapter 2
cases however, the mechanism is either too complex for practical modeling, or unknown.

This calls for empirical modeling techniques to develop approximate mathematical models,
which are inferred from available data. ANNs have shown to provide efficient approximat
ing functions for nonlinear models, even with large problem dimensionality, due to their
highly parallel structure and powerful representational capacity.

Among all the architectures available, the Multi-Layer Perceptron and the Radial

Basis Function Network (RBFN) exhibit the best performance in terms ofconvergence and
training time for our fimctional approximation applications. An introduction to both these

approaches is presented in the following sections.

2.3.1. Multi-Layer Perceptron

MLPs are a class of feedforward neural networks that typically consist of three
types oflayers, namely, the input layer, the hidden layers, and the output layer. In this sense
they are a generalization ofthe single layer perceptrons [7].

Nodes in different layers are connected to each other via links characterized by
weights .The input to the ith node of the hth layer is the weighted sum ofall the outputs

from the h-lth layer. The model ofeach neuron in the network is associated with a contin

uously differentiable transfer function. The most commonly used form satisfying this con
dition is the sigmoidal transfer function. This is mathematically described as follows: Let
Xhij be the input to the ith node of the hth layer from the jth node in the h-1 layer, and y^j
be the corresponding output. Then,

where

i -r e

^hi = X ^jiXhij +^hi for i=l,2,....Sh and h=1, 2,... L (2.9)
y=l

21



Chapter 2
The term is the bias for the jth node and is the number ofneurons in the hth layer. A
conventional MLP structure is shown inFigure 2.2

Hidden Layer —• h-1 h

Input
Vector ^ ^ Output

Vector

Figure 2.2. Architecture ofa Multi Layer Perceptron

Typically, aneural network operates in two phases, namely training and testing. In
the training phase of the MLP, the desired outputs are clamped to the output nodes for the
corresponding inputs. The network 'learns' this input-output mapping by iteratively mini
mizing an error fimction. In this case, the error function, E, is the sum ofsquares ofthe dif
ference between the calculated (yj) and the desired output,

N

(2-10)
y= I

where N is the number of output nodes.

MLPs have been successfully applied to solve complex problems, by adapting to
them in a supervised manner using the popular back-propagation algorithm. Since this

algorithm is based on the error correction rule, itcan also be considered as ageneralization
ofthe Least Means Square (LMS) [8] algorithm. The back-propagation performs astochas
tic gradient descent in the weight space. Basically, the error back-propagation process con
sists oftwo passes through the different layers ofthe network. In the forward pass, an input
vector is applied to the input layer and its effect is propagated forward to the output layer
to provide the response ofthe network to the input stimulus. The weights ofthe connections
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in the network remain fixed. Inthe backward pass, error is propagated backwards from the

output layer, and the weights areadjusted using an error correction rule so as to make the

actual response move closer to the desired response.

2.3.2. Radial Basis Function Network(RBFN)

Unlike Multi-Layer Perceptrons (MLPs), RBFNs use adistance metric in the input
space to determine the hidden layer activations (Figure 2.3). As a result, the contours of

constant activation ofthe hidden layer are hyperspheres instead ofthe hyperplanes used in

MLPs. The contours are finite in length and form closed regions ofsignificant activation,
as opposed to MLPs where the contours are infinite in length and form semi-infinite regions
of significant activation.

Unweighted Weighted

Input ^ . Output
Vector ^ fee • Vector

Figure 2.3. Architecture ofa Radial Basis Function Network

1) The first layer is simply a fanout ofthe inputs to the hidden layer and are not weighted
connections.

2)The hidden layer consists ofHradial units plus one bias node with a constant activation

ofone. The transfer function of the hidden node is computed using abasis function (|),

r II ii2\

= <l>
IX-X

2
(2.11)

where a/j is the output ofthe umt hin the hidden layer for agiven input x.
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Chapter 2Each RBF node is characterized by two internal parameters, namely Xh and cs^,:
is the position of the basis center in the N-dimensional feature space, and is adistance
scaling parameter, which is the width in the input space over which the imit will have asig
nificant influence. The connections in the second layer of the RBFN represent weights of
the linear combination.

The output layer has nodes which are linear summation units. The value ofthe ith output
node yj is given by

H+l H+l _ ||2\
" E ^ih"h = E 2 (2.12)

h=l h=l ^ •'

where w,,, are the interconnection weights from the hidden nodes to the ith output node. The
(H+l)th node is the bias node with apj+i =1.

2.3.3. Training the RBFN

There are several variations in the techniques for training the RBFN. The most com
monly used technique is based on the algorithm suggested by Moody and Darken [9]. This
method trains the RBFN in three sequential stages:

1) The first stage consists ofdetermining the number of unit centers Hand position of the
unit centers Xf, by the k-means clustering algorithm, an unsupervised technique that places
unit centers centrally among clusters oftraining points.

2) Next the unit widths are determined using anearest neighbor heuristic that ensures the

smoothness and continuity ofthe fitted function. The width of any hidden unit is taken as
the RMS (root mean square) distance to the Pnearest unit centers, where Pis adesign
parameter.

3) Finally, the weights of the second layer of connections are determined by linear regres
sion, the objective function to be minimized being the sum of the squared error as given in
Equation [2.10].

The optimality ofan RBFN for aparticular application is largely dependent on the
number ofnodes in the hidden layer. By using an excess number ofnodes, we may overfit
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the function being approximated by ahigher order function. In this case, the training points

may give acceptable error, but the test points would give unsatisfactory results. Similarly,

taking too few hidden nodes would result ina sub-optimal model.

The conventional k-Means algorithm is largely dependent on the number of clus

ters, k being the choice ofthe initial cluster centers and the order in which the data is pre

sented. Linearly separable data are reasonably clustered by the k-means algorithm

depending on the spatial properties ofthe training data. In training RBFNs, adaptive forms
ofthe k- Means algorithms have been used to obtain optimum results.

In this algorithm, the number of clusters is automatically adjusted on the basis of

spatial distribution ofthe samples. The k-Means algorithm is first applied by arbitrarily
selecting the cluster centers, nQ. The minimum intercluster distance {d) is then calculated.

min {dist(x.-xj)} foTi/] = \,2,...,nQ (2.13)
1 < ij < «Q, i

where X's are the yiq cluster centers and dist is the Euclidean distance given by

dist(a,b) = bff+(a^- b2f +... +(a^-b„f (2.14)
in an m-dimensional space.

The diameter (Z)^ of the kth cluster is defined as the maximum distance between

two samples in cluster k. The largest diameter (R) is computed next. Ifx'sare the points in
the cluster k, the intracluster distance Dj^ isgiven by

Dk = max {distix^,Xj)} for i, j = 1, 2,... ,0^ (2.15)

where N|̂ is thenumber of points incluster k and.

R = max (Z)^) (2.16)
\<k<nQ

When d> aR, (where a is an empirically preset threshold value) itmeans that the
scatter plot of the points belonging to the largest cluster exceeds the threshold value that
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has been preset as a fraction of the largest diameter R. This intracluster distance can be

reduced by increasing the number ofclusters, rig. Therefore, ifd> aR, the number ofcluster

centers is incremented. Otherwise, it is decremented. The iterative k-Means algorithm is
used to obtain the new cluster centers. The algorithm converges when the number ofclus

ters do not change.

2.4. Control Utilizing Kalman Filter

AKalman Filter is an extension ofLinear Least Squares estimation applied to sto
chastic processes. Kalman Filter development is done from astate space description ofthe
desired and measured signals. Also, Kalman Filter does not assume stationarity of the
desired signal, thus making it an ideal tool to handle practical process control problems. A
thorough treatment ofKalman Filters can be found in [10].

The Kalman Filtering problem begins with the following signal model

Xk+i = Fj^k +Gj^Wk (2.17)

Zk = H^*Xk + n (2.18)

We assume v^, are both zero mean, independent ofeach other, and have cova-

riances E[vi^vi ] = R|̂ 5[k-1], E[w|̂ wi ] = Q(^6[k-1], The initial state xq is random with
mean Xq, covariance Pq, and isindependent ofv|̂ , iv j^. Let z denote the set ofobservations

{zo,Zi,..., Zk), and define the estimator error covariance matrix as

^k+\\k ~ 1 1 iC-^a)) ] (2-19)

where +i|a = +,(z^) isour estimate ofx^+i based on the data z The problem isto

find the function X/^+^^ih) that minimizes S^+iik. It is shown in [10] that the Kalman
Filter, which is an affine function of z^, achieves an estimator error covariance, 2k+i|k
which is less than orequal to the estimator error covariance ofany other affine estimator.

The Kalman Filter is defined by the recursion relations:

l\k~ ^k^k*^^k\k-l ^ ~ (2.20)

^k ^ ^k^k\k-\^ki^k*^k\k-l^k'̂ ^k] ^ (2.21)
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The estimation error covariance used in(2.21) to compute the Kalman gain, K^, is

givenby a discrete time Riccati equation:

27

^k*\\k =Pk\.h\k-1 - 4|i-\HkiHk*^k\k-\Hk-^l^k)^Hk*h\k-\Wk* +
where Eo|.i = Pq

When V1^, w and x qare Gaussian, muchmorecanbe said about the KalmanFilter.

^k+i(^k) IS actually the conditional mean E[xk+i|zk ], and Sk+,|k is the conditional cova
riance E[(x jj+|-Xj^+i)(x i^+|-Xi^+i)*|z jj]. Thus the Kalman Filter equations become a mecha

nism for updating the entire conditional probability density of [10]. To extend the use

ofthe Kalman Filter to integrate measurements from multiple sensors atdifferent measure

ment frequencies, the measurement update step is repeated as many times in atime step as

the number ofsensors collecting data inthat time step.

Often the signal model that best represents our desired signal is time invariant, and

for computational reasons we would like toestimate the signal with a time invariant filter.

Although the Kalman Filter is in general a time varying filter, there are conditions under

which it asymptotically becomes time invariant, and is truly time invariant with a proper

choice of Fq. Our signalmodel is now:

Xk+\ - Fxk + Gwk (2.23)

Zk = H*h +vt (2.24)
Again, we assume v w^arebothzeromean, independent of eachother, andhave

covariances E[?k V|*] =Rk5[k-1], E[W|(W|*] =Q|(5[k-1].

S = F[t-T,H(H*i:H+R)~^H*T,]F* +GQG* (2.25)
As a result, the Kalman gain approaches a limiting valueof

K= FtH[H*ZH+R]~^ (2.26)
It should also be clear that if Pq is selected to be E, the Kalman Filter will be truly

time invariant, notjust asymptotically time invariant.



Chapter 3 In-line/In-situ Metrology
for the Pattern Transfer Process

Chapter 3

3.1. Introduction

The DUV lithography process provides the process engineer with numerous oppor

tunities to monitor the process and wafer state as shown inchapter 1. In-situ sensors with

real time capability ofanalyzing data and using this information for closed loop control, are

good candidates for a supervisory control scheme. Developing metrology for a process,

however, requires knowledge ofwhat to monitor inthe process sequence, when to monitor

itand how to monitor it. Asystem that answers all ofthe above questions adequately would

constitute a practical metrology system.

The first step indesigning a metrology system for a specific process is todecide on

what quantity one is interested in monitoring. In the DUV lithography sequence, the final

quantity ofinterest isthe CD, which does not begin to form until the PEB step atthe earli

est. Hence, it becomes important to identify practical observables, available early in the

process, that are strongly related to the final CD. This provides an opportunity to control

the final quantity in a feed-forward sense.

Having identified the quantities that one would like to monitor, the second step is

to evaluate existing sensors, and if appropriate, design newsensors that can measure these

quantities. The mostwidely used off-line metrology tools arebroadband reflectometers and

ellipsometers for the measurement ofthe optical constants and thickness ofuniform (unpat-

temed) thin films. An in-situ implementation ofthe broadbandreflectometerhas been suc

cessfully demonstrated in the past [11]. Thus, the third step in designing a metrology

system for a specific process, is to identify a technique which is highly sensitive to the
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observable that needs to be measured. Examples include using reflectometry for thin film

measurements, fourier transform infrared techniques (FTIR) for chemical analyses, etc.

The fourth and final step is to identify algorithms that allow rapid analysis of the

sensor data that isrelated tothe quantity being measured. Algorithms are required toextract

relevant information from the data. To realize immediate control, algorithms are needed

that can extract this information efficiently and feed this to other process modules for either

feedback or feedforward control.

Inthe subsequent sections, we will describe metrology systems designed for the dif

ferent process steps.

3.2, Thin Film Metrology

3.2.1. Optical Constants

Optical properties ofany material can be described by the complex index ofrefrac

tion, h = n-jk , where n isthe refractive index and k is the extinction coefficient. Both

« and A: depend on the wavelength of light, X, or, more fundamentally, to the photon
energy, E = (/ic)/A,. For the purpose oflithography control, the «(A.) and A:(A.) atwave

lengths in the 200-600 nm range should be determined. The reason optical constants are

important is because they play akey role in defining the energy coupling during exposure.
Therefore, a change in the optical constants affects the reflectivity of the thin film and

hence theeffective exposure energy absorbed by theresist film. This inturn affects the CD.

The reason for broadband determination is to reduce the effect of sensor noise at certain

wavelengths.

The Forouhi-Bloomer (F-B) equations are commonly used dispersion formulations

derived from the Kramers Kronig relationship, with some simplifying assumptions that are
suitable for most semiconductor materials [12]. The F-B equations are given byi

^i . (3-1)ill /=!

where represents the optical energy band-gap [12]. Acharacteristic of the F-B formu

lation is its relative simplicity. The number ofterms required to approximate the dispersion
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behavior for different films varies according to the composition of the film. Most films

require between 8-12 terms to be accurately represented from the deep ultraviolet to the

near infrared wavelength range. This means that optimization must take place over a large
set ofparameters.

3.2.2. Broadband Reflectometry

Because of its inherent simplicity, normal incidence reflectometry is.often inte

grated into the real-time process control paradigm for several reasons: good spatial resolu
tion, high throughput, accuracy and ease ofautomation [13]. In most semiconductor thin-

film reflectometry, the spectral reflectance ofasample is measured through the use ofrel
ative reflectance methods. Inthese methods, the comparison ofthe reflectance from the test

sample with that ofastandard sample (usually abare wafer) is measured and analyzed. The
theoretical reflectance can be calculated from the optical properties and thickness ofeach

film. Measured and theoretical curves can be matched by fitting for the film thickness and

opticalproperties. The problemis formulated as

min (3.2)

where w,. is the optimization weight and the reflectance R is afunction ofoptical prop
erties and thicknesses ofall the thin-films in the stack. Different settings of w- yield dif

ferent optimization speeds, sometimes even different results. Figure 5.1 shows the block

diagram ofthe various modules required to tackle this problem. Two techniques that can
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be employed for optimization, that is the Adaptive Simulated Annealing (ASA) combined

with the Neural Network (NN) modeling have been described inChapter 2..

dispersion
relation

measured

theoretical optimizer

simulate
Thick

Figure 3.1. The objective is to match the simulated and measured broadband spectra by
timing the parameters ofthe dispersion relationship using the optimizer.

Due to the high dimensionality ofthe F-B dispersion relation (16 parameters) and

the expensive cost fimction, the ASA technique takes an average of 10 minutes of SUN-

SPARC 20 CPU time per run. If this is done off-line, it does not pose any problems. To
increase the probability that the global minima is reached, the ASA could be run on the

same wafer signal multiple times using different starting points. However, each computa

tion, on an average, requires 10 minutes ofCPU time, which would be considered imprac
tical for any real time application. Further work has been done in reducing the metrology

parameter space using a Bayesian screening technique [14]. This resulted in reducing the

metrology parameter space to 4 parameters per film, and the CPU time to 1 minute on a
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SUN SPARC 20 for a single film stack. A typical fit obtained with the ASA is shown in

Figure [5.2].

^ 2.0

« 0.2

350
wavelength in (nm)

800

Figure 3.2. Results ofthe ASA Optimization Algorithm. Figure shows the simulated
versus the experimental reflectance spectra (relative tobare Silicon).

The drawback of this technique lies in its computational requirements. Since our

goal is to develop an algorithm that could be used in real time applications, we need to

reduce the computation time down to a few seconds. This motivated the NN-ASA algo

rithm, described in the following section.

3.2.3. NeuralNetwork - Adaptive Simulated Annealing (NN-ASA)

The NN-ASA algorithm combines the high speed optimization prowess of Neural

Networks ina localized space with the global optimization abilities ofAdaptive Simulated

Annealing to provide a high speed, global optimization algorithm.

The NN-ASA algorithm is best explained through a case study. One lotof twenty

4" wafers were deposited with polysilicon with a thickness of400 nm. Phophorus doping

was used, and the LPCVD deposition time was two hours at 650 degrees Celcius. Due to

the gas depletion effects intrinsic inconventional LPCVD tubes, there must be a tempera

ture gradient along the length of the tube to compensate for the reduced reactive gas con-
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centration. Adifficulty with this process isthat Poly-Si properties depend very strongly on

deposition temperature, and will thus vary with wafer position along the tube [15]. The

wafers were then measured off-line for reflectance using a commercial SC Technology

broadband reflectometer. Thedataacquisition wasdonefrom 350nmto 800nm. Therewas

oneoff-line measurement madeperwafer, yielding a totalof 20 measurements. Thesemea

surements were made on the center of the wafer using a footprint 1 mm in diameter for a

duration of 3 seconds.

This algorithm was designed to enhance the ASA optimization routine so as to be

suitable for real time applications. A block diagram for this algorithm is shown in

Figure 3.3. The basic blocks of this setupare:

1) ParameterExtraction usingASA

2)Monte Carlo Simulation using the F-B formulation and Maxwell's equations

3) Spectral Feature Selection

4) Neural Network Trainingand Validation

Monte Carlo

Simulation using
the extracted

parameters

Parameter

extraction

using a

global

optimizer

(ASA)

and F-B

formulation

Outputs of the NN

Spectral
Feature
Selection

Database

Train NN

using RBF

Validation

Figure 3.3.Block Diagram of the NN-ASA Algorithm
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3.2.3.1. Parameter Extraction usingASA

The objective ofthis step was to extract the correct thickness values along with the
corresponding optical constants. Due to the dependence ofthe optical constants ofthe film
on the deposition conditions, it is incorrect to assume afixed value for the optical constants
and solve only for the film thickness. This necessitates the simultaneous extraction ofboth

the optical constants and the thickness. Due to the high dimensionality and presence of
local minima in the optimization problem, ASA was used as the optimization engine.

The twenty wafers were analyzed for the optical constants and the thickness. This

algorithm was run three times per wafer to increase the chances ofreaching the global min
imum. The extraction procedure was automated and allowed to run overnight. We reached
the global mimimum in two or more cases for each wafer. This provided us with the range
ofvalues over which the optical constants varied in the LPCVD process. This also provided
us with the range ofvalues over which the parameters of the F-B equations varied. The

importance ofthis step is that it provides us with an idea ofthe natural variability ofour
LPCVD chamber.

3.2.3.2. Monte Carlo Simulation using the F-B formulation and Reflectance
equations

We assumed that the typical variation in the parameters ofthe F-B equation were
worse than those extracted from the ASA algorithm. A +/- 1% perturbation around the

mean values was applied to all the statistically important parameters [14] ofthe F-B equa
tion. We also used a +/- 50 nm perturbation to the mean thickness value whereas the vari

ation in thickness, as extracted by ASA, was around +/- 30 nm. This was done to account

for the fact that this particular lot may have had lower variability than the average.

Auniform distribution was used to generate values for each ofthe 4parameters of
the F-B equations as well as the thickness of the polysilicon (a native oxide of25-45 Ang
stroms was assumed for all the wafers). 1000 vectors containing 5elements each were gen
erated. We thus had a poly-silicon, native oxide and silicon stack, with variable optical
constants for the top-most layer. The next step was to. generate the simulated broadband

reflectance spectra using Maxwell's equations.
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The optical propertiesofa layer of film are describedby its characteristicmatrix M

Assuming a normal incident angle, the characteristic matrix is givenby

M =
cos(^o"0 7^sin(/:o«0
jsin(^o"0 cos(^o^O

where h is the complex index of refraction, I is the film thickness, = ^. The char-
X

acteristic matrix of a stack of Nj films is then

Yl^j (3.4)
y=i

Assume that the two end films are semi-infinite, in other words, the thickness values

of the air andsilicon substrate are oo, the reflectivity of theentire stack is

= (^11 +^12^5/)^a,r-(^21 +^22"J
(Mji + +M22«,,)

where the subscripts ofMrefer tothe row and column numbers respectively and h denotes

the complex index of refraction for the various layers. This step generates 1000 simulated

broadband reflectance spectra in 2 minutes on a SUN SPARC20.

(3.3)

3.2.3.3. Spectral Feature Selection

This step decides the features thatshould serve as the input to the neural network.

This requires a physical understanding ofthe problem and is hence a very important step,

as it lends physical intuition tothe otherwise empirical neural network approach. It means

looking at that part of the spectrum that carries maximum information about the optical

constants ofthe film. This region would differ from stack to stack. When we are interested

in measuring the optical constants of the polysilicon film inpolysilicon-silicon stacks, we

use the longer wavelengths, where poly isnot absorbing and hence the reflectance spectrum

contains the maximum information about the optical constants of the polysilicon. In the

case of photoresist as in photoresist-polysilicon-silicon stacks, we use the shorter wave

lengths since poly is opaque to the UV, and the resultant reflectance depends only on the
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layers deposited on poly. This step was automated by placing the part ofthe spectrum that
needs to be used foreachstackconfiguration in a database. We thenreduce the dimension

ality ofthe input features further by noting that the wavelengths atwhich the extrema occur,

andthe reflectance at thosewavelengths, arecorrelated to the thickness and refractive indi

ces of the film [16]. Stokowski's paper has shown that the film refractive index affects

reflectance values away from the reflectance maxima. The larger changes in reflectance
with refractive index occur at the minima. At a minimum, the reflectance value is related

to the refractive indices ofa non-absorbing film ( h), its substrate ( wj) and the ambient
medium ( « /) by the equation

'" irti"*"'
Although we do not use this form of the equation, it is interesting to note that the

broadband reflectance spectra can provide information on the refractive indices ofthe top

layer in the nonabsorbing portion of the spectra.

The output ofthe physical filter isa vector ofthe wavelengths atwhich the maxima

and minima occur, as well as the intensitiesat these extrema. It was observed that the neural

network training improved when the inputs were normalized. One possible explanation for

this is that we are using a k-means clustering algorithm with a single spread parameter in

the Radial Basis Function. Ifwe were touse multiple spread parameters inour design, we

could avoid normalizing our inputs, but this would be atthe cost offinding optimum values

for a larger set of NN designparameters.

3.2.3.4. Neural Network Training and Validation

A radial basis function neural network architecture was used due to its well proven

functional approximation capabilities [6]. The inputs to the network were the normalized

outputs of the physical filter, while the outputs during the training stage were the optical

constants used to generate the simulated reflectance spectra. The design parameter of the

network was the spread ofthe Gaussian functions. We used a network with a single spread,

so it was necessary to normalize the outputs of the physical filter.
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The 1000 data points were divided into two blocks. One block of 600 was used for

training, and theother block of400 was used fortesting. Anautomated routine was written

in Matlab to pick the value ofthe spread that minimized the error ofthe testing samples.

The values ofthe other design parameters were kept fixed at their optimum values.

3.2.4. Results of the NN-ASA Algorithm

The results ofthis optimization are shown inFigure 3.4. The figure shows the pre

dicted values ofthickness versus the simulated values, as well asthe predicted values ofthe

real part ofthe refractive indexversusthe simulated values at 600 nm. Wechoseto use this

wavelength because most oftheavailable data onpolysilicon refractive indices in the liter

ature is found at this wavelength. At A, = 600 nm, the extinction coefficient k is zero, so it

was not predicted here. As can be seen from the figure, the prediction capabilities of the

neural network were excellent. However, the main goal ofusing the neural network based

optimization routine was tocut down on the computation time. This approach reduced the

computation time on a SUN-SPARC 20 dovm from 1 minute to less than 1 second. This

made it possible to use this algorithm for real time computation of the optical constants

from broadband reflectance spectra. The training and testing phase took close to 1hour on
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a SUN-SPARC 20.However, it is important to note thattheASA extraction andtheneural

networktrainingand testingare both one-time tasks and can be done off-line.
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Figure 3.4. Performance ofthe NN-ASA algorithm for poly-Si on native oxide on Si
stack.

3.3. Exposure and PEB Metrology

3.3.1. Deprotection Induced Thickness Loss (DITL)

Chemically Amplified Resists (CARs) are composed ofa polymer resin, which is
very soluble in an aqueous base developer due to the presence ofhydroxyl groups. These

hydroxyl groups are "blocked" by reacting the hydroxyl group with some longer chain mol
ecule, such as a t-BOC group, resulting ina very slowly dissolving polymer. In addition,

there are possibly some dyes and additives along with the casting solvent.
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The mechanism can be broken down into the initiation, the deprotection and the

quenching stages. In the initiation phase, the exposure energy causes the Photo-Acid Gen

erator (FAG) to produce acid. In the deprotection phase, these H+ ions attack the side

chains (t-BOC) of the polymer and generate more H+ ions, thus making the resist even

more soluble. Thistakes place in thepresence of heat. In thequenching stage, the H+ions

are slowly quenched by anything more basic than the acid, such asthe additives and the by

products ofthe reaction. Inshort, the t-BOC blocked polymer undergoes acidolysis togen

erate thesoluble hydroxyl group in the presence of acid and heat [17]. (Figure 3.5)

C=0+H
.+ heat

C=0+ H+ +

OH

Figure 3.5. Resist Mechanism during the Exposure and Post Exposure Bake Steps for a
commercial DUV photoresist.

The blocking group is such an effective inhibitor of dissolution, that nearly every

blocked site on the polymer must be deblocked in order to obtain significant dissolution.

Thus the photoresist isusually made more "sensitive" by only partially blocking the resin.

Typical photoresists block 10-30% of the hydroxyl groups, 20% being a common value

[18][17]. The cleaved t-BOC is volatile and evaporates, causing film shrinkage in the

exposed areas. Theextent of thisexposed photoresist thinning is dependent on the molec

ular weight of the blocking groups.

There does notseem to beany universal definition for deprotection due to the dif

ferent resistchemistries. However, inall itsdefinitions, thetermrefers to the amount of de

blocking ofthe resin. For the resist chemistry shown infigure 2.1, the deprotection reaction
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is quantitatively followed by monitoring the loss ofthe ester (C-O-C 1150 cm"^) and the
gain ofthe hydroxyl (0-H 3100 - 3400 cm "') vibrational bands [19][23][24]. The larger
the exposure energy, the greater the number ofH+ ions generated. Similarly, increasing the
PEB temperature increases the amount ofreaction between the H+ ions and the side chains,
and hence the deprotection. The deprotection Dis measured by taking the ratio ofthe inte

grated areas at agiven exposure to the integrated area ofthe absorbance plot for no expo
sure (Rj) and subtracting from 1.

Ri = (3.7)
Oester

^ ester ^ (3.8)

Theoretically, the CD is astong function ofthe exposure and PEB process param
eters. However, since the CD is formed only during the develop step, being able to predict
it through measurements ofother observables that are also strong functions ofthe exposure
and PEB steps, would help in predicting the CD before itis even formed. Astudy was car
ried out to identify an observable that demonstrated such astrong dependence on the expo
sure and PEB process settings, while allowing a simple sensor setup for its measurement.

The process inputs for this experiment were the exposure dose and the PEB temper
ature, while the response variables were the amount ofdeprotection and the exposed area
resist thickness loss. The exposure dose was varied from 1mJ/cm^ to 5mJ/cm^ in steps of
0.5 mJ/cm on each wafer (nine blanket area exposures). The PEB temperature was varied

from 130 degrees Celsius to 150 degrees Celsius in 10 degrees Celsius steps, thus requiring
a total of 3 wafers.

3.3.2. Broadband Reflectometry for Thickness Loss

The same sensor as described in Section 3.2.2 can be used for this film thickness

application.
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3.3.3. Correlating Thickness Loss to Deprotection

Any FTIR experiment usually requires the use of highly reflective substrates to

increase the signal to noise ratio. This isusually done by coating the wafers with either Alu

minum or Tungsten. Hence, the three wafers were first coated with tungsten. The wafers

were primed with HMDS on the FSI wafer track, after which UV5, a chemically amplified

photoresist was spun on and soft-baked using the standard process recipe. These wafers

were taken to a Tencor 1250 single angle broadband ellipsometer for pre-exposure thick

ness measurements. The wafers were exposed using the ISI stepper (KrF excimer laser) at

248 nm with the pattern shown inFigure 3.6 and post exposure baked.

Figure 3.6. Layout of theblanket exposure areas on the wafer

The wafers were taken once again to the Tencor for post bake measurements of

thickness. This provided the thickness loss as afunction ofthe different exposure doses and

PEB temperatures. Next, the wafers were taken to a FTIR tool where aBio-Rad Spectrom

eter was used to measure the IR absorption ofthe hydroxy (0-H; 3100 - 3400 cm"^) and

ester (C-O-C; 1150 cm vibrational bands. All the thickness loss and deprotection mea

surements were made on the exposed areas (1 - 9) as well as on one unexposed area (10)

on the wafer. The wafers were fractured to facilitate measurement. Thirty two scans were

used with a resolution of1cm '. The time required for asingle measurement was about 1
minute. The integration ofthe spectra to yield the deprotection was done using acomputer
macro.
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3.3.4. Results of DITL Metrology

The thickness loss measured in the unexposed areas of the wafers wasassumed to

be due to solvent evaporation. This value was subtracted from all the thickness loss mea

surements of the corresponding wafer. The aimwasto correlate this resultantthickness loss

to the amount ofdeprotection. The deprotection was extracted using Eq. (3.7).

Linear Regression was used to build a model for the thickness loss in the exposed
areas as a function of the amount of deprotection. Figure 3.7shows the fit.

H 100

'ester

SummaryofFit: Multiple = 0.9956

Average model prediction error = 16.52 on24degrees of freedom
^i,24~5460 ; model is highly significant

Figure 3.7. Thickness loss as a function ofthe deprotection measured by monitoring the
normalized ester absorbance.
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Model Value Std. Error t value Pr(>|t|)
Slope 375.04 5.08 73.89 0.0000

The final model for thickness loss as a function ofdeprotection is

= 375.04 X

43
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Asimilar study was done using the integrated hydroxy absorbance as a measure of

deprotection, correlated to the final thickness loss. Even though this signal was more noisy
due to the broad hydroxy absorbance bands, the model is significant.

:: 200

H 100

Summaiy ofFit: Multiple =0.9897
Average model prediction error =25.33 on 24 degrees offreedom
^1,24 ^ 2310 ; model ishighly significant

Figure 3.8. Thickness loss as a fimction ofthe deprotection measured by monitorine
the normalized hydroxy absorbance

Model Value Std. Error t value Pr(>|t|)
Slope 360.22 7.49 48.07 0.0000

The final model for thickness loss as a function ofdeprotection is

'̂ loss = 360.22 (3.10)
Note the absence of the intercept term inthe two models. This is because we have

subtracted the thickness loss in the unexposed regions, and have hence accounted for the
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solvent loss. The regression model showed no evidence ofan intercept term (Pr >|t| =0.84).

Figure 3.9 shows the behavior of the normalized ester and hydroxy peaks processed at a

given temperature as a function of exposure dose.
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Figure 3.9. The normalized ester and hydroxy peaks as a function ofexposure dose for
different PEB temperatures.
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3.4. Post-Develop and Post-Etch Profile Metrology

3.4.1. Patterned Profiles

With the progress of deep sub-micron technology, the accurate and efficient mea

surement of parameters such as the line width, height/depth and side-wall profile are

becoming increasingly critical in developing and characterizing lithography and plasma
etch processes. Scanmng electron microscopes (SEM) and atomic force microscopes
(AFM) can deliver direct images ofsmall structures, but they are expensive, and can be

time-consuming or even destructive. Electrical measurements can provide information on
final effective CD linewidths, but they cannot be used in-situ, and cannot deliver reliable

profile information. Niu, et. al. have shown the use ofspecular spectroscopic scatterometry,
an optical metrology technique that uses a spectroscopic ellipsometer to extract patterned

profiles [22]. The advantage ofusing an optical technique is that it lends itself to inexpen
sive, in-line measurement schemes.

3.4.2. Spectroscopic Ellipsometry

Spectroscopic Ellipsometry (SE) has become an essential metrology tool for the

semiconductor industry [23]. The basic principle ofSE is based on the fact that linearly
polarized incident light has reflection coefficients that depend on the direction ofpolariza
tion. The two polarization directions ofinterest are the por TM (electric field parallel to the

plane ofincidence) and the s or TE (electric field perpendicular to the plane ofincidence).

Any linearly polarized light can be decomposed into the p and s components. These com

ponent waves experience different amplitude attenuations and different absolute phase

shifts upon reflection; hence, the state ofpolarization is changed. Ellipsometry refers to the

measurement ofthe state ofpolarization before and after reflection for the purpose ofstudy

ing the properties ofthe reflecting boundary. The measurement is usually expressed as

p = ^ (3.n)

where and are the complex reflectioncoefficient for TM and TE waves.

Ellipsometry derives its sensitivity from the fact that the polarization-altering prop

erties of thereflecting boundary are modified significantly even when ultra-thin films are
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present. Consequently, ellipsometry has become a major means of characterizing thin

films. The basics ofellipsometry is illustrated in Figure 3.10.

\ t y p. h.

A —A] —A2

Figure 3.10. Spectroscopic ellipsometry measurements.

Ellipsometry measures polarization-state-in vs. polarization-state-out. Although
visible light iscommonly used, propagation ofvirtually any transverse wave can lead toan

ellipsometric measurement.

The advantage ofellipsometry over reflectometry is its accuracy. First, ellipsometry

measures the polarization state of light by looking at the ratio of values, rather than the

absolute intensity ofthe reflected light. This property isespecially useful inthe DUV wave

length range, where very little light is typically available. Second, ellipsometry can gather

the phase information (A) inaddition to reflectivity ratio (ny) information. Phase informa

tion provides more sensitivity to the thin-film variation. SE provides reading of A(X) and

which are then used to accurately characterize thickness and refractive index of thin

films.

For lithography process control, semiconductor materials, anti-reflective coatings

and photoresists need to be characterized by spectroscopic ellipsometry. In the DUV range,

most of the above materials are absorbing. We now consider the case ofanabsorbing film

which has a complex index of refraction at a given wavelength. The real and imaginary

parts of the refractive index, and the thickness of the film cannot all be determined from a

single set ofellipsometer readings. Since a set ofellipsometer readings consists ofonly two

values, and A, it cannot determine all three quantities for the film. However, using a

dispersion relation to describe the behavior of the optical constants over a broadband

ensures that the refractive index does not vary randomly but follows a certain function.



Chapter 3

There are several options for dispersion relationships, such as the Cauchy for the visible

wavelength range, the F-B for the wavelength range from the deep ultraviolet to the near

infrared.

Variable Angle Spectroscopic Ellipsometry (VASE) tools have been developed for

the purpose [24][25]. The data analysis techniques depend on the used dispersion relation

formulation. The method which commercial tools employ usually consists of two steps.

First, the film thickness and the real part ofthe index n inthe transparent region ( A: = 0,

usually in the red or near infrared range) are extracted by a local optimization algorithm.

Then, the film thickness isused for both « and A: extraction atshorter wavelengths, where

the film is absorbing. The advantage of this approach isthat it achieves unique solutions.

In each step, there are two unknowns and two measured parameters. The disadvantage is

the inherent lack of accuracy. Because the determination of the wavelength range where

A: = 0 is quite arbitrary, small errors of the film thickness extracted in the transparent
region can be propagated and magnified inthe shorter wavelength region. Inthis thesis, we

address this problem by using dispersion models derived from Kramers-Kronig relation

and a global optimizationtechnique.

The novel idea introduced in this work isthe use ofSE equipment for specular spec

troscopic scatterometry (SSS). SSS measures the 0th order diffraction responses ofa grat

ing at multiple wavelengths. Given the 0th order diffraction responses, one can then attempt
to reconstruct the grating profile. Conventional spectroscopic ellipsometry equipment can

be directly used in this type ofmetrology. In other words, we do not need special equipment
for specular spectroscopic scatterometry, as the cost of hardware is shifted to software.

Compared to single-wavelength, variable-angle scatterometry, specular spectroscopic scat

terometry has the advantage ofthe additional information contained inthe spectral compo

nent.

Aspectroscopic ellipsometer isused inthis work for IDgratings. With this config

uration, the ratio ofthe 0th order complex transverse electric (TE) and transverse magnetic

(TM) reflectivity p = q = is measured, where q is the
0th order TM reflectance coefficient and q is the 0th order TE reflectance coeffi
cient. Using aspectroscopic ellipsometer has two advantages. First, the measurement ofthe
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ratio of TE andTM provides more sensitivity th£in justusing the measurement of TE or

TM. Second, we can make direct use ofa commercial eilipsometer, hence avoiding the

additional hardware expense.

3.4.3.A Library-Based Methodology for CD Profile Extraction

The extraction of a CD profile can be viewed as an optimization problem. The

objective is to find a profile whose simulated diffraction responses match the measured

responses. Optimization techniques, such as simulated annealing and gradient based opti

mization techniques, can be applied. However, it is not feasible to exhaustively search for
the optimum match when analyzing complicated profiles. Apractical way is to generate the

simulation responses before the measurement [26]. Alibrary-based methodology for CD
profile extraction has been used in this work.

Library
Generation

Simulated Ellipsometry Signal

Gwerate Profile

Libr^,

Electromagnetic
Simulatirm
Software

Generate^ignal
•Library

Compiled
Libraiy Collect

Reflected Signal

Compiled
Library

EUipsometiy
Measurement

jl \\M BE CHANGED

Test Grating (Scribe Lane)Eilipsometer /
Reflectometer

7ZZZZZZZZ2ZZZZL

Reconstructed Profile

Load Library
on Eilipsometer

Ellipsometry
Measurement

Analysis

Figure 3.11. A library based methodology forCD profile extraction.

Figure 3.11. describes the extraction flow, including the following 3 steps:

[1.] Mask information, technology characteristics, thin-film information (optical properties
n, k and thickness values), are used to obtain acollection ofprofiles. The profile informa-
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tion includes the information ofthe grating layer and ofall the underneath layers. The pro

files can be obtained by atuned TCAD simulator, orby arandom profile generator. The set

of pre-simulated profiles should be sufficient and efficient. Sufficient means that there

should be enough profiles in the library for most possible process results, while efficient

means that there should not be too many unnecessary profiles inthe library.

[2.] The profiles are used as inputs to adiffraction grating simulator, such as gtk, to generate

the simulated diffraction responses. Usually the diffraction efficiencies, tan^ arid cos A

are simulated overa wide range of wavelengths.

[3.] Specular spectroscopic scatterometry diffraction responses are measured and com

pared with the library. If the library is sufficient, there will be one ormore profiles whose

simulated responses will match those ofthe measured sample.

The key of the success for this library-based extraction methodology is the suffi

ciency ofthe library, combined with efficient simulation and search methods. The unique
ness of solution is an issue in this approach. In other words, it is possible that different

profiles may lead to similar diffi-action responses. There are several theoretical studies on

this issue [27][28]. This problem has been addressed experimentally in [26][49]. Due to the

larger number ofdegrees offreedom available in this approach (considering both phase and
magnitude), we have not encountered non-uniqueness issues so far.

To extract the CDprofile from a measurement, the measured tan^ and cos A are

compared with each simulated tan4^ and cosAin the library. If there isa "good" match

between the measured and simulated signals, the corresponding CD profile is considered

as the extracted profile. Mathematically, the matching is done by minimizing the cost func

tion

min<^ !S((^^g(tan^measured, l) ^theoretical, A.^^^^tanT', X

(cosA^ cos w

while searching the library. In our approach weset w. xi/ i = w a i -= 1
tanx, A cos A, A.
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3.4.4. Results ofSpecular Spectroscopic Scatterometry

The experimental verification ofspecular spectroscopic scatterometry consists of
two parts: the verification ofthe forward diffraction grating simulation from given CD pro
files, and the verification of the inverse CD profile extraction from the scatterometry mea
surement. In this section, we will focus on the experimental work done in the inverse

problem for three different case studies.

3.4.4.1. Photoresist on ARC on Silicon

A focus-exposure matrix experiment was done using UV-5, a commercial chemi

cally amplified photoresist on abottom anti-reflection coating (ARC) on Silicon stack. As
shown in Figure 3.12, we have 5focus settings and 7dose settings. The dose settings are
coded as -3, -2, -1, 0, 1, 2, and 3, indicating the values from 11.5 mJ/cm2 to 14.5 mJ/cm2

in steps of 0.5 mJ/cni2. The focus settings are coded as -2, -1, 0, 1, and 2, indicating the
values from -0.2 pm to 0.2 pm in steps of0.1 pm. In total we have 31 settings on each
wafer. The mask has 0.28 pni/0.28 pm line/space gratings. After exposure and PER, UV5
was developed to form 200 pm-by-200 pm grating regions. A KLA-Tencor Prometrix®

UV-1280SE was used to measure the ratio of 0th order TE and TM fields. The incident

angle is 70.5 degrees. The light beam was focused on a 30 pm-by-70 pm region.

The library-based CD profile extraction methodology described inSection 3.4.3 is

implemented. Aprofile library is randomly generated from aset ofprofile primitives [26].
About 180,000 profiles are generated, and the corresponding diffraction responses are sim
ulated by gtk. Because of the computational cost, each grating profile is simulated every
1Onm from 240nm to 780nm. The number ofretained orders for TE and TM are 31 and 41,
respectively. Using gtk, the simulation for one profile, which includes both TE and TM on

53 wavelengths, takes approximately 2 minutes on a Sun UltraSparc I 167MHz worksta
tion.
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Figure 3.13 shows the comparison between the extracted profiles and AFM mea

surements across the entire focus-exposure matrix. The AFM measurements agree very
closely with the extracted profiles.
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Figure 3.13. Comparison between the extracted grating profiles and the CD-AFM profile
across the focus-exposure matrix. The four AFM profiles with (dose, focus) level of(2 -2)
(3,-1), (-1,2) and (2,2) have not been measured.

3.4.4.2. Metal Stack

Afocus-exposure matrix experiment was done on astack involving TiN/Al/TiN/Ti/
TEOS/Silicon with UV6, a commercially available DUV resist onan anti-reflective coat

ing. As shown in Figure 3.12, we have 5focus settings and 7dose settings. The dose set
tings are coded as -3, -2, -1, 0, 1,2, and 3, indicating the values from 11.5 mJ/cm2 to 14.5

mJ/cm2 in steps of0.5 mJ/cm2. The focus settings are coded as -2, -1,0,1, and 2, indicating
the values from -0.2 pm to 0.2 pm in steps of 0.1 pm. In total we have 31 settings on each
wafer. The mask has 0.22 pm/0.44 pm line/space gratings. A KLA-Tencor Prometrix®

UV-1280SE was used to measure the ratio of0th order TE and TM fields. The incident
angle is 70.5 degrees. The light beam was focused on a30pm-by-70pm region.
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TEOS

Figure 3.14. (a) Grating structures; (b) Focus-exposure matrix experiment setup.

The library-based CD profile extraction methodology described inSection 3.4.3 is

implemented. Aprofile library is randomly generated from aset ofprofile primitives [26].
About 200,000 profiles are generated, and the corresponding diffraction responses are sim
ulated by gtk. Because ofthe computational cost, each grating profile is simulated every
lOnm from 240nm to 780nm. The number ofretained orders for TE and TM are 31 and 41,

respectively. Using gtk, thesimulation for one profile, which includes both TEand TM on

53 wavelengths, takes approximately 2 minutes on a Sun UltraSparc I 167MHz worksta-
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Figure 3.15 shows the comparison of "top" CD measurement from CD-SEM and

specular spectroscopic scatterometry across the focus-exposure matrix. The correlation

coefficient is0.9225. On the average, the CD-SEM "top" CD measurement isabout 12. Inm

larger than the "top" CD value extracted from specular spectroscopic scatterometry.
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Figure 3.15. Comparison oftop CD between specular spectroscopic scatterometrv and
top-down CD-SEM. i- i- j

While there were no cross-section SEM measurements made on this particular
wafer, there were cross-section SEM measurements made on an identical "sister" wafer
which yielded results within 7nm (1-ct) ofthe SSS predicted results but more than 15 nm
(1-a) ofthe CD-SEM results. This provides considerable confidence in the accuracy ofthe
SSS approach.
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Chapter 4 Lithography Modeling

4.1. Introduction

As we enter the DUV lithography generation, the developmental phase ofthe pho
tolithography process is becoming crucial due to the high costs associated with equipment
and materials, and the continually reducing time-to-market. Improvements in the modeling
ofchemically amplified resists are necessary to extract the maximum possible information
from the minimum amount of experimentation. This includes modeling of both the thin
film aswell as the pattern transfer sequence.

The extraction ofoptical constants of thin films from in-situ broadband reflectom-

etry and ellipsometry signals is an application that requires algorithms that are both accu

rate and fast. An algorithm to solve the problem ofextracting the optical constants from
broadband reflectometry / ellipsometry signals is necessitated for the real time computa
tions ofcomplex functions.

All high activation, chemically amplified resist systems (CARS) exhibit a signifi
cant volume shrinkage during the post-exposure bake (PEB) step (typically 4% to 15% in

current resist systems) [1]. Current models for PEB and development do not take into con

sideration this shrinkage for calculating line-widths. At present, workers at AMD [2] are
developing anew methodology for characterizing PEB. Adding shrinkage characterization

to the understanding ofbake and development will significantly improve our understanding
of lithography resist processing. This volume shrinkage manifests itself in the form of

thickness loss, and it has been shown that this shrinkage is directly proportional to the
deprotection of the resist in flood exposed films [3].
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This work aims at describing the kinetics of the post-exposure bake process by

tracking the volume shrinkage observed in high activation energy resists. We begin with a
briefintroduction to the physical mechanism underlying the volume shrinkage followed by
the proposed mechanism for both the static as well as the dynamic models. An optimization

framework is then presented, and it is used to extract the parameters ofthe models. Finally,
results ofmodeling two different resists are discussed.

4.2. The Forouhi-Bloomer (F-B) Dispersion Relation

Optical properties ofany material can be described by the complex index ofrefrac
tion, N = n-jk, where n is the refractive index and k is the extinction coefficient. Both

noxi&k depend on the wavelength oflight, X, as well as the photon energy, E,according
to ^ = {hc)/X. For the purpose of lithography control, the n{X) and k{X) at wave
lengths inthe range ofthe exposure wavelengths should be determined. The reason that the

optical constants are important is because they are strongly correlated to the processing
conditions and the reason for determination over a broadband is to reduce the effect of

sensor noise at certain wavelengths. The Forouhi-Bloomer (F-B) equations are derived

from the Kramers Kronig relationship with some simplifying assumptions that are suitable
for most semiconductor materials [11]. The F-B equations are given by:

where represents the optical energy band-gap [11]. Acharacteristic of the F-B equa
tions is its relative simplicity. The number of terms required to approximate the dispersion
relations for different films varies according to the composition ofthe film. Most films
require between 2-4 terms to be represented with the required amount ofaccuracy. This
means that optimization must take place over a large set ofparameters.

4.3. Experimental Setup

Alot oftwenty four inch wafers were deposited with polysilicon with a thickness
of400 nm. Phophorus doping was used and the time ofdeposition in the LPCVD chamber
was two hours at650 degrees Celcius. Due to the gas depletion effects intrinsic in conven-
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tional LPCVD chambers, the temperature needs to be increased along the length ofthe tube
to compensate for the reduced deposition rate. Adifficulty with this process is that Poly-Si

properties depend very strongly on deposition temperature, and will thus vary with wafer

position along the tube [12], The wafers were then measured off-line for reflectance using
a commercial SC Technology broadband reflectometer. The data acquisition was done

from 350 nm to 800 nm. There was one measurement made per wafer yielding atotal of20

measurements. These measurements were made on the center ofthe wafer using afootprint
1 mm in diameter for a duration of 3 seconds. Thesemeasurements weremadeoffline.

4.4. Optimization using the ASA algorithm

Since there exist local minima in the solution ofEq. (4.1) for amultiple-layer thin-
film system, traditional optimization algorithms are not appropriate here. The major advan
tage ofsimulated annealing over other methods, as mentioned in the earlier chapter, is its
ability to avoid becoming trapped at local minima. The algorithm employs a random

search, which not only accepts changes that decrease the objective function, but also some

changes that increase it, at leasttemporarily.

We used theASA technique to extract the optical constants and thethickness from

the reflectance spectra for all the 20 wafers. Due to the high dimensionality ofthe problem

(16 parameters) and the expensive cost function, this technique took an average of10 min

utes ofSUN-SPARC 20 CPU time per run. Since this was done off-line, itdid not pose any

problems. Toincrease theprobability thattheglobal minima was reached, theASA was run

on the same wafer signal three times using different starting points. The convergence prob

ability ofASA algorithms from past experience was around 0.9. Using a binomial distribu

tion, we estimated theprobability of reaching theglobal minimum two or more times to be

0.97. However, each computation, onanaverage, required 10 minutes of CPU time which

would be considered impractical for any real time application. Further work was done in

reducing the metrology parameter space using a Bayesian screening technique [13]. This
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resulted in reducing themetrology parameter space to 4 parameters andthe CPU time to 1

minute. Thefit obtained with theASA is shown in Fig4.1

350
wavelength in (nm)

800

Figure 4.1. Results of the ASA Optimization Algorithm. Figure shows the simulated
versus the experimental reflectance spectra

The drawback ofthis technique lay in its speed. Since our goal was to develop an
algorithm that could be used in real time applications, we needed to reduce the computation
time down to a few seconds. This motivated the NN-ASA algorithm, described in the fol

lowing sections.

4.5. The Neural Network Enhanced ASA Optimization Algorithm

This algorithm was designed to enhance the ASA optimization routine so as to be

suitable for real time applications. Ablock diagram for this algorithm is shown in Figure
5.3. The basicblocksof this setupare

1)Parameter Extraction usingASA

2) Monte Carlo Simulation using the F-B formulation and Maxwell's equations

3) Spectral Feature Selection
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Figure 4.2. Block Diagram ofthe NN-ASA Algorithm

4.5.1. Parameter Extraction usingASA

This step is the ASA optimization technique described in the earlier chapter. The
twenty wafers were analyzed for the optical constants and the thickness. This process was

run three times per wafer to increase the chances of reaching the global minimum. The

extraction procedure was automated and allowed to run overnight. We reached the global
mimimum in two or more cases all the times, as was predicted in chapter 3using the bino
mial distribution. This provided us with the range ofvalues over which the optical constants

varied inthe LPCVD chamber. This also provided us with the range ofvalues over which

the parameters ofthe F-B equations varied. The importance ofthis step is that itprovides
us with an ideaof the natural variability of our LPCVD chamber.

4.5.2. Monte Carlo Simulation using F-B formulation and Maxwell's equations

We assumed that the typical variation in the parameters of the F-B equation were

worse than those extracted from the ASA algorithm. A +/- 1% perturbation around the

mean values, was applied to all the statistically important parameters [?13?] of the F-B

equation. We also used a +/- 50 nm perturbation to the mean thickness value whereas the
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typical variation inthickness was around +/- 30 nm. This was done to account for the fact

that this particular lot may have had lower variability than the average.

Auniform distribution was used to generate values for each ofthe 4 parameters of
the F-B equations as well as the thickness of the polysilicon (a native oxide of 25-45 Ang
stroms was assumed for all the wafers). 1000 vectors containing 5elements each were gen
erated. We thus had aPoly-Silicon on native oxide on Silicon stack with variable optical
constants for the topmost layer. The next step was to generate the simulated broadband

reflectance spectra using Maxwell's equations.

The optical properties ofa layer offilm are described by its characteristic matrix M.

Assuming anormal incident angle, the characteristic matrix is given by

=

cosik^Nl) -l-sm(k^l)

jsin(fcoM) cos(^(|M)
(4.2)

where Nis the index of refraction, I is the film thickness, =^. The characteristic
matrix ofa stack of N>p films is then

Nj

M=ri (4,3)
y=i

Assume that the two end films are semi-infinite, in other words, the thickness values
ofthe air and silicon substrate are oo, the reflectivity ofthe entire stack is

(M„ + +(^21+ M22NJ

where the subscripts ofMrefer to the row and column numbers respectively and Ndenotes
the complex index of refraction for the various layers. This step generates 1000 simulated
broadband reflectance spectra.
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4.5.3. Spectral Feature Selection

This step decides the features that should serve as the input to the neural network.

This requires a physical understanding ofthe problem and is hence a very important step

as itlends aphysical intuition to the otherwise empirical neural network approach. Itwould

mean looking atthat part ofthe spectrum that carries maximum information about the opti

cal constants of the film. This region would differ from stack to stack. When we are inter

ested inmeasuring the optical constants ofthe polysilicon film inpolysilicon-silicon stacks,

we use the higher wavelengths where poly is not absorbing and hence the reflectance spec

trum contains the maximum information about the optical constants of the polysilicon. In

the case of photoresist as in photoresist-polysilicon-silicon stacks, weuse the lower wave

lengths since poly is opaque to the UV and the resultant reflectance depends only on the

layers deposited on poly. This step was automated by placing the part ofthe spectrum that

needs tobe used for each stack configuration in a database. We then reduce the input fea

tures further by noting that the wavelengths at whichthe extrema occurand the intensities

at those wavelengths are correlated to the thickness and refractive indices of the film

[?14?]. Stokowski's paper has shown that the film refractive index affects reflectance

values away from the reflectance maxima. The larger changes inreflectance with refractive

index occur at the minima. At a minimum, the reflectance value is related to the refractive

indices ofanon-absorbing film (n), its substrate (n3) and the ambient medium (n|) by the
equation

"" irfl"'"' <">
Although we do not use this form of the equation, it is interesting to note that the

broadband reflectance spectra can provide information on the refractive indices ofthe top

layerin the non absorbing portion of the spectra.

The output of the physical filter is a vectorof the wavelengths at whichthe maxima

and minima occur as well as the intensities at these extrema. It was observed that the neural

network training improved when theinputs were normalized. One possible explanation for

this is thatwe areusing a K-means clustering algorithm with a single spread parameter in

the Radial Basis Function. If wewere to use multiple spread parameters in ourdesign, we
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could avoid normalizing our inputs but this would be atthe cost offinding optimum values

fora larger set of NN design parameters.

4.5.4.Neural Network Training and Validation

Aradial basis function neural network architecture was used due to its well proven

functional approximation prowess [?5?]. The inputs to the network were the normalized

outputs ofthe physical filter while the outputs, during the training stage were the optical
constants used to generate the simulated reflectance spectra. The design parameter of the

network was the spread ofthe Gaussian functions. We used a network that used a single
spread and hence the need to normalize the outputs ofthe physical filter.

The 1000 inputs were divided into two blocks. One block of600 wasused fortrain

ing and the other block of400 was used for testing. An automated routine was written in

Matlab [Appendix A] to pick the value ofthe spread that minimized the error ofthe testing
samples. The values ofthe other design parameters were kept fixed at their optimum values.

4.6. Results

The results ofthis optimization are shown in Fig 4.3. The figure shows the predicted
values ofthickness versus the simulated values as well as the predicted values ofthe real

part of the refractive index versus the simulated values at 600 nm. We chose to use this

wavelength because most ofthe available data on polysilicon refractive indices inthe liter

ature is found at this wavelength. At A. = 600 nm, the extinction coefficient k is zero and

was hence not predicted here. As can be seen from the figure, the prediction capabilities of
the neural network were excellent. However, the main goal ofusing the neural network
based optimization routine was to cut down on the computation time. This approach
reduced the computation time on a SUN-SPARC 20 down from 1minute to less than 1sec

ond. This now made it possible to use this algorithm for real time computation ofthe optical
constants from broadband reflectance spectra. The training and testing phase took close to
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1hour ona SUN-SPARC 20. However, it is important tonote that the ASA extraction and

theneural network training and testing are both one time tasks and canbe done off-line.
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Figure 4.3. Performance of the NN-ASA algorithm for poly-Si on native oxide on Si
stack.

4.7. Volume Shrinkage in Chemically Amplified Resist Systems

Chemically Amplified Resists (CAJ^) are typically composed of a polymer resin

which is very soluble in an aqueous base developer, a protecting t-BOC group causing a
very slowly dissolving polymer, photo-acid generators and possibly some dyes and addi

tives along with thecasting solvent. Thedeprotection mechanism canbe broken down into

the initiation, the deprotection and the quenching stages. In the initiation phase, the expo

sure energy causes the Photo-Acid Generator (PAG) to produce acid. In the deprotection

phase, these H+ ions attack the side chains (t-BOC) of the polymer and generate more H+

ions, thus making the resist even more soluble (Fig 4.4). This takes place inthe presence of
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heat. In thequenching stage, theH+ions areslowly quenched byanything more basic than

the acid, such as the additives and the by-products of the reaction. The cleaved t-BOC is

volatile and evaporates, causing film shrinkage in the exposed areas. The extent of this

exposed photoresist thinning isdependent onthe molecular weight ofthe blocking groups.

C=0 + H
+ heat

C=0 + Ft +

OH

OH
OH

Figure 4.4. DUV Chemically Amplified Resist Mechanism during the Exposure and Post
Exposure Bake Steps.

An experiment was performed to correlate the deprotection of the resist as mea

sured by aFourier Transform Infrared Spectroscopy tool to the observed volume shrinkage

(Fig 4.5). The results showed that the intrinsic reaction mechanism occurring in the resist

during the bake could be observed through the volume shrinkage.
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Figure 4.5. Thickness loss as a function ofthe deprotection, measured by monitoring the
normalized ester absorbance.
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Next we study this shrinkage and attempt to understand the reaction mechanism

occurring inthe resist. This leads to the static and dynamic models described inthe subse

quent sections.

4.8. Static Model for Thickness Loss

Static models are useful in cases when only asingle macroscopic output is measur
able practically, rather than detailed 1-, 2- or 3-dimensional measurements ofaphenome
non. In this example, deprotection is easily observed through thickness loss measurements,
whereas 1-d measurements ofthe deprotection through depth into the resist would be prac
tically impossible. The deprotection induced thickness loss at different doses can be used

in conjunction with astatic model ofthe PEB process to extract relevant simulation param
eters such as the Dill's Cparameter, the relative quencher concentration [g], the amplifi
cation reaction rate (E^mp, A^^p), etc.

Currently there exists no model for the bake process that can account for the com

monly observed initial delay in the increase ofthe deprotection vs. dose atdifferent tem

peratures. In this section, a novel model for the PEB process isderived.

The effective exposure dose is first calculated by accounting for the reflectivity at
the air-resist interface and this is converted into acid as in Eq. (4.6).

(4.6)

where Dose is the effective exposure dose, calculated by accounting for the reflectivity at
the air-resist interface, \PA(j\q is the initial concentration ofthe photoacid generator and C
is the rate of photoacid formation in cm^/mJ.

During the PEB process, the t-BOC blocked polymer undergoes acidolysis to gen
erate the soluble hydroxyl group in the presenceof acid and heat. The conventional mod

elingof the PEBprocess [3] is givenas

—k
amp

1 -e

^loss
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where mis the normalized concentration ofunreacted blocking sites, is the acid ampli
fication rate insec and isthe acid loss factor insec'̂ . Both these factors are modeled

using a temperature7dependent Arrhenius relationship.

However, the combined exposure and PER models Eq. (4.7) do not account for the

commonly observed initial delay in the increase of the deprotection vs. dose at different

temperatures. We think that this is due to the quencher designed into most chemically
amplified resists. Thus, we propose a corrected model for the PER to account for the rela

tive quencher concentration [Q]. In this model, we assume that during the PER process,
acid is lost in neutralization reactions with bases that are either designed into th :sist, or
exist as unreacted portions of the polymer. This indicates that the bases will. o corre

spondingly reduce with time, and the difference between the acid and base concentrations
will remain constant throughout the PER process. We model the above mechanism through
Eq. (4.8) and Eq. (4.9).

^[Acid] =-a[Acid][Q] (4.8)

[Acid\ - [Q\ = [Acid]^ - [Q\ (4.9)

where a is the neutralization reaction coefficient modeled by an Arrhenius flmction of
temperature, [Q] is the relative quencher concentration (relative to [PAG\o) and [Acid\ is
the acid concentration as defined in (2). The initial value for quencher [Q]q is aparameter
that can be extracted from the fitting procedure described in the following section, while
the initial acid concentration [Acidlg is obtained from Eq. (4.6). Solving the above equa
tions yields the following analytical solution Eq. (4.10) for the acid concentration as afunc
tion of the PER time, t.

^ " ~~Wo
1 - j^j^exp(-a([^cW]o- IQW)

67



Chapter 4
Meanwhile, the deprotection reaction is typically modeled by Eq. (4.11), where

^amp reaction amplification rate in sec"', modeled by an Arrhenius temperature rela
tionship, and [M\ is the concentration ofprotected sites remaining at time t.

= -kamp\.^C'd\[M\ (4.11)

Substituting Eq. (4.10) in Eq. (4.11), and solving for the normalized m(hormalized
concentration of unreacted blocking sites), weget

mt
Trrr = m =
[^0 [Acid]Q-[Q]^ (4.12)

The model depicted inEq. (4.12) differs from previous work inthat it accounts for

the fact that the quenchers (both parasitic and designed) are consumed inthe neutralization

reaction. This allows better modeling ofthe initial delay in deprotection increase with expo
sure dose than existing models, and hence provides an estimate ofthe relative quencher

concentration [Q]q.

4.9. Dynamic Model for Thickness Loss

4.9.1. Physical Models

One ofthe underlying assumptions in modeling the latent image through continuity

equations has been that the resist volume remains constant. Ignoring the volume shrinkage

obviously affects the accuracy ofexisting models. The goal ofthis work is to describe the

physical processes occurring in the resist during the PEB step for 1-dimensional (flood)
exposures, in the presence of the volume shrinkage. We begin with a description of the

physical mechanisms occurring in the process, and then provide mathematical equations to

represent these physical processes.

We propose the following mechanism: During the exposure step, the photo-acid

generators produce acid onreaction with photons. This is represented asa normalized acid

concentration (u), normalized to the initial photoacid generator concentration. The initial

1-d distribution of the acid within the resist depends onthe optical constants of the resist
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and ofthe underlying film at the exposure wavelength. With sufficient energy (in the form
of temperature), the acid molecules begin to diffuse around (Z)J and attack the polymer
side-chains at acertain rate {k2\ which has an Arrhenius relationship to temperature, thus
causing deprotection (v). The acid diffusion is widely believed to be free-volume depen
dent, and is modeled using an exponential {D^o^a) [4]. The deprotected molecule (w) is vol
atile and begins to diffuse {D^) through the resist till it escapes the resist bulk from the top.
The amount ofmolecules that escape would depend on the partial pressure in the wafer
track. In the meanwhile, the escaped volatile 'lecule leaves behind avacancy or hole Qi)
that begins to collapse at arate specific to t Jticular polymer {k^). This is the polymer
relaxation process that eventually causes the volume shrinkage in the resist (tu). Deprotec
tion refers to anormalized quantity between 0and 1, and hence scaling factors are needed
to convert the deprotection into corresponding volatile group concentrations {kj). Simi
larly, a scaling factor is needed to convert the hole concentration into a corresponding
volume shrinkage factor to take into account the area of the flood-exposed site. In the
case of low activation energy resist systems, this mechanism begins during the exposure
step itself, while in the case ofhigh activation energy systems, this process begins to occur
only during the PEB step.

The mechanism described above can be described with the following six equations;

= V»(Z)„Vt/)ra (4,13)

£>„ = Z)„oexp(aA) (4.14)

l; =^2«('-v) (4.15)
dt

gpCwm) = [£>„V2M' +^,^2M(l-v)]tij (4.16)

^hts) =[-D„V^w-k^h]m (4.17)

If =-k^k^hm (4.18)

69



Chapter 4
Eq. (4.13) suggests that the rate ofchange ofacid at any point in the resist is gov

erned by the non-linear acid diffusion within the resist caused by the acid gradient that

exists at that point. This gradient in turn exists due to changing exposure conditions in the

film caused by internal reflectance of light and absorbance of light by the resist film during
exposure. The acid diffusion ismodeled by Eq. (4.14). Eq. (4.15) represents the rate ofnor

malized deprotection reaction and is proportional to the amount of acid and the amount of

unreacted sites. Eq. (4.16) indicates that the rate of change of volatile groups within an

infinitesimal volume element is proportional to the number ofvolatile groups diffusing
through the volume element and the generation rate is proportional to the normalized

deprotection rate. Eq. (4.17) represents the rate ofchange ofholes (or free volume). The
generation rate ofholes within any infinitesimal volume element depends on the number of

volatile groups diffusing out of that volume element while the destruction rate of holes

within that same volume element is dependent on the polymer relaxation rate constant. Eq.
(4.18) models the volume shrinkage within each volume element and is proportional to the

free volume relaxation rate. The tu term is included in all the equations that deal with con

centrations, to account for the changing volume at each time instant.

4.9.2. Boundary Conditions

The equations defined above do nothave a closed form analytical solution due to

the inter-dependencies of the various differential equations on one another. Hence they

must be solved numerically, subject to the boundary conditions for this problem. They

P =0
z~ a

w , = 0
z = d

«Uo = "o(^)

"o(^) = 1 - exp(-C£)(z))

(4.19)

(4.20)

(4.21)

(4.22)
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D(,z) - +W^exp(-a(2(^-z))-2Hexp(-ac/)cos(^^(<i-z)^ (4.23)

where Dq is the applied dose in mJ/cm2, corrected by the reflectivity atthe air-resist inter

face, a is the linear absorbance ofthe resist film in pm"', dis the film thickness in pm, nis
the real part ofthe refractive index, Xis the exposure wavelength in pm, Cis the acid pro
duction rate in cm^/mJ and r is the reflectivity coefficient ofthe resist/substrate interface.
This exposure process in chemically amplified resists has been modeled by Byers, et. al.
[3] using a simplified version ofthe full wave equation solution.

Eq. (4.19) indicates that there is no acid loss due to evaporation atthe resist surface.

However, this condition can easily be modified to model T-topping or environmental con
tamination. Eq. (4.20) indicates that the volatile group escapes fi-om the resist only at the
resist-air interface, and this gradient is facilitated by maintaining the volatile group concen
tration at the resist-air interface at zero. Eq. (4.21) states that the initial acid distribution

during the exposure is determined by the aerial image and the optical properties of the
resist.

= (4.24)

^Uo = 0 (4.25)

Eq. (4.24) refers to the presence ofan initial free volume concentration inthe resist

which is afunction ofthe spin-on and soft bake process [5]. Eq. (4.25) states that the depro-
tection and volatile group concentrations at the beginning of the PEB process are zero (for
low activation energy resist systems, this would be avalue greater than zero).

4,9.3. Computational Approach

Afinite difference system was set up for the equations and boundary conditions
described above. Asimple forward difference technique (explicit method) was used to
progress the equations in time with sufficient time and space steps to avoid numerical insta
bility problems [6].
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We divide the one dimensional space domain (z direction, which is perpendicular

to the surface ofthe resist) and the time domain into many discrete steps, and use the fol
lowing formulae toapproximate the divergence inone dimensional case and the time deriv-

ativeof a function numerically

V«(z. t) = /)« ^[«(z +A, 0-«(z -K/)]

1V2m(z, t) = u(z, t)« +h,t)- 2u{z, t) +u(z -h,t)]
dz h

^u{z, t+dt)« +
at dt

(4.26)

(4.27)

(4.28)

After doing calculations for each time step, the size ofeach ofthe grids decreases
due to the volume shrinkage in each element. At the end ofeach time step, we adjust the
grid sizes to their original sizes h, and interpolate with the spline method [6] to get the fimc-
tion values at the new grid points. Aindication variable is used to record the change ofthe
total thickness as simulation progresses, and adjust the total number ofgrids accordingly,
as shown in Fig 4.6

Az

z+L

z-h.

to

adjust grid
sizes to h

grid sizes
shrink at
the end of
each step

•

Figure 4.6. Simulation Approach for the Moving Boundary Problem.
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We used 200 space steps (1 step = 3.25 nm) atthe beginning ofthe simulation and

5000 time steps (1 step =16 ms) in our computation, yielding 10 seconds for simulating
one thickness loss versus time set for one dose, on a 350 MHz Pentium-II processor. An
implicit method such as the Crank-Nicholson method Eq.(6) would have allowed for fewer

time and space steps but would require matrix computations to solve simultaneous equa
tions.

4.10. Optimization Framework

The block diagram for the optimization process is shown in Fig 4.7. The optimiza
tion was carried out for both the static as well as the dynamic models. The effective acid in

the resist is calculated using Eq. (4.23). This initial acid distribution is fed along with the
first set ofresist parameters generated by the optimization engine, to the 1-d volume shrink

age simulator. The output ofthe simulator is compared with the experimental data, the
resulting error is fed to SA and anew set ofparameters is generated. This process continues
until the sum squared error between the model prediction and the experimental data reduces
below a pre-determined threshold value.

Dose distribution

Simulation

D(z) Dose to Acid

Converter

Optimization
Engine

(SA)

u(z)

Resist Parameters

Experimental Volume Shrinkage
Data

Thickness Loss vs. PEB Time

Simulator

Figure 4.7. Block diagram for resist parameter extraction using the dynamic model and
experimental data.
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4.11. Results and Discussion

We begin with results ofthe static model fitting tothe experimental data for UV-5,

AZ 2549. Fig 4.8 shows the results offitting the static model to experimental data for UV-

5 while Fig 4.9 shows the results offitting the static model to experimental data for AZ-

2549. The results for the static cases had an error less than 0.01 deprotection units, 1-a.

The results for the dynamic model are presented next. Fig 4.10 shows intermediate results

for the acid concentration, deprotection, volatile group concentration and free volume con

centration as afunction ofdepth at5different time steps. Fig 4.11 shows the results for UV-

5while Fig 4.12 shows the results for AZ 2549. The results offitting to the dynamic model
seem better for UV-5 than for AZ 2549. One possible reason is that in the case ofUV-5,

the measurements were made off-line, thus allowing for a more accurate measurement. In

the case ofAZ 2549, the setup did not allow for very accurate placement ofthe reflectome-

ter spot size within the exposed areas. This caused measurements that were made on the

boundary ofunexposed and exposed areas, thus providing inaccurate results for the thick

ness loss. In some cases, it took between 4-5 seconds to correct this misalignment ofthe
spot, thus causing an offset between the measured and simulated results (as seen in
Fig 4.12).
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simulation while stars denote experimental data.
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Figure 4.10. Intermediate results for acid concentration, deprotection, volatile group

concentration and free volume concentration as a function ofdepth at5
different time steps
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Figure 4.11. Measurementsof thickness loss versus time for UV-5. Simulated loss in
bold; measured loss in star.
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Figure 4.12. Measurements of thickness loss versus time for AZ 2549.

We tabulate the results for UV-5 and AZ-2549 below.

TABLE 1. Results of Parameter Extraction

Parameter UV-5 AZ-2549

^amp 0.3406 0.3673

Ka 1.16 2.06

C .059 0.0798

Q .177 0.367

Chapter 4

4.12. Summary

Inthis paper we have proposed both dynamic and static physical models for volume

shrinkage in chemically amplified resists. The proposed dynamic model successfully pre
dicts the volume shrinkage observed in resists and could be used to gain insight into the
resist mechamsm. The static model successfully models the quenching action in the resist

across the complete exposure dose spectrum and in the process, extracts critical resist

parameters useful for "what-if analysis in lithography simulation.
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Chapter 5 Lithography Simulation

5.1. Introduction

Traditionally, lithography process development has relied on short-loop and pilot-
lot experiments to imderstand the effects ofparticular process control factors. However,

high experimental costs and increasing complexity oflithographic patterns and processes
is such that one must resort to simulation. Technology Computer-Aided Design (TOAD),
focusing on predictive simulation, is becoming very important for lithography process

development and control. An efficient development process would reduce the number of

characterization experiments devoted to developing a new recipe, will reduce time-to-

marketand will drastically cut development costs.

Technology Computer-Aided Design (TCAD) tools are playing an important role

inthe design and manufacturing ofICs. As the cost ofcomputation decreases and the cost

of experimentation and equipment increases, TCAD tools are becoming essential cost

effective alternatives. Sophisticated TCAD packages that simulate the entire lithography

process include SAMPLE [35], PROLITH^ SOLID-C^, etc.

Developing an effective TCAD simulation environment depends on accurate pro

cess models, as well as on correct model parameters. Simulatorscontain a set ofdifferential

equations that attempt to model real systems. These equations are physical or chemical in

nature, and are usually derived from first principles. While most of the DUV lithography

process steps are fairly accurately modeled, certain critical process steps, such as post-

1. FINLE Technologies, P.O. Box 162712, Austin, TX 78716
2. Sigma-C GmbH, 901 Campisi Way, #248,Campbell, CA 95008
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exposure bake (PEB), still suffer from modeling inadequacies. This problem has been

addressed in the earlierchapter.

All the models require the use ofconstants. These may be parameters that represent
either the chemical or physical constants of the phenomena involved. There are also con

stants that are empirical in nature. While some parameters are well known, many ofthem
are not known accurately, so a lot ofexperimentation isdevoted to extracting their values.

However, the large number of the unknown parameters, and the non-linear nature of the

models, renders traditional optimization techniques, such as steepest descent, useless for

parameter extraction. Manual optimization procedures, wherein the parameters of the

model are changed one at a time to fit experimental data, are erroneous, because they
neglect interaction effects between the different parameters. Thus, process simulation engi
neers spend a very large amount oftime to calibrate a model and after that, only use the

model to study general process trends due to the lack of confidence in its results.

In this chapter, an efficient methodology isproposed for extraction of information

from standard unpattemed and patterned resist characterization experiments, to be ulti
mately used for the calibration of lithography simulation tools.

5.2. Simulator Calibration Framework

5.2.1. Process Models

Accurate process models for the lithography sequence have been developed in

chapter 4. Here, the updated models for the exposure, PEB and develop step are presented
together for completeness.

5.2.1.1. Thin Film Interference

Dose(z) = Dose(0) x +(5.1)

where the Dose(0) is the applied dose in mJ/cm^, corrected by the reflectivity at the air-
resist interface, z isthe depth into the resist inpm, yisthe attenuation within the resist film

in pm"^ dis the film thickness in pm, nis the real part ofthe refractive index, Xis the expo
sure wavelength in pm,andr is the reflectivity coefficient of the resist/substrate interface.
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5.2.1.2. Exposure & PEB Process Model

m =

(a([^ciar]Q-[0]Q)/)
-[Q]q

[Acid]Q-[Q]Q

k
amp

a (5.2)

where misthe normalized concentration ofunreacted blocking sites, a isthe neutraliza

tion reaction coefficient modeled by an Arrhenius function oftemperature, [Q\q is the rel
ative quencher concentration (relative to [PAG\o), is the reaction amplification rate in

sec"^ modeled by an Arrhenius temperature relationship and [Acid\Q is the acid concentra
tion calculated as:

[^cWlo = (5.3)

5.2.1.3. Develop Process Model

R(m) = R + ^
^ ' max „ '^min

A + {\-m)
(5.4)

where is the maximum development rate, is the minimum development rate,
is the value ofmatthe inflection point ofthe data, called the threshold PAC concentration,

and nisthe dissolution selectivity parameter, which controls the contrast ofthe photoresist.

5.2.2. Estimating the valuesof the model parameters

Some of the coefficients in the process models represent either the chemical or

physical characteristics ofthe materials and equipment involved. Others are empirical in
nature. One needs accurate estimates ofthe values ofthese process and equipment param

eters in order to do predictive simulation. In this study, we classify these parameters into

three categories, depending on the accuracy with which they are initially known.
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The first category (Category I) consists of parameters that are obtained through

direct, well recognized measurements, such as the numerical aperture and partial coherence
of a projection system or the refractive index andthickness of thinfilms. Thesecond cate

gory (Category II) consists ofparameters whose values are extracted by running unpat-
temed wafer experiments, such as the DRM for development related parameters (maximum
and minimum development rate, resist contrast, etc.) and fourier transform infrared spec-
troscopy (FTIR) for PEB related parameters [36] (amplification rate coefficient, acid loss

rate, etc.). These parameters are extracted by fitting the physical models described in the

preceding section to the raw data. This approach provides parameter values that are subject
to both experimental error as well as model-bias errors, due to model inaccuracies. Hence,
the values of the parameters inthis category are not aswell known as those inthefirst cat

egory.

Finally, the third category (Category III) consists ofempirical parameters such as
the focus offset between the stepper focal plane and the simulator focal plane. In the same
category are physical parameters that are very difficult to obtain experimentally, such as
the diffusion coefficient and the amplification reaction order in chemically amplified resist
systems.

While the parameters in the first category are fixed at known values, those in the

second and third categories are obtained through optimization. The category II, or the
parameters subject to experimental and modeling errors, go through atwo step optimization
process. In the first step, rough estimates ofthese parameters are obtained by fitting phys
ical models to experimental data from unpattemed resist experiments. The second step is
to fine-tune these parameters by fitting to cross-sectional resist profiles available from pat
terned resist experiments. This second step is also used to tune the category III parameters
that must be inferred indirectly.

The following are examples ofimportant DUV lithography process and equipment
parameters thatare listed by category, as defined above.
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Category I: Well Known Parameter Values.

Resist Refractive Index (Real part)

Resist Refractive Index (Imaginary part)

ARC Refractive Index (Real part)

ARC Refractive Index (Imaginary part)

Category II: Parameters subject to experimental and modeling errors

Amplification Rate(Pre-exponent)

Amplification Rate (Activation Energy)

Neutralization Rate (Pre-exponent)

Neutralization Rate (Activation Energy)

Dill's A parameter

Dill's B parameter

Dill's C Parameter

Relative Quencher Concentration

Maximum Develop Rate

Minimum Develop Rate

Developer Selectivity

Developer threshold PAC

Category III: Parameters that must be inferred indirectly

PEB Difflisivity (Pre-exponent)

PEBDifflisivity (Activation Energy)

Focus offset betweenstepper and simulator

5.2.3. Experimental Methodology for Parameter Extraction through Profile
Matching

As mentioned earlier, there isa need to cut time to market and toreduce high devel

opment costs. Thiscalls fora more efficient development process that reduces the number

of unpattemed and patterned characterization experiments devoted to extracting process

parameters, soas to gain maximum possible information from minimum amount of exper-
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imentation. There have been numerous experimental procedures proposed in the literature
for thispurpose, as shown in theprevious section.

Values of thin film optical constants, such as refractive indices and thicknesses of

organic and inorganic materials, are obtained very accurately by using spectroscopic ellip-
sometry. This technique has the ability to provide the optical constants for each individual

film in a multi-layer stack. Measurement of resist parameters, such as the photospeed,
amplification rate, acid loss rate and normalized acid quencher concentration are typically
obtained through either FTIR or Deprotection Induced Thickness Loss (DITL) [36] studies.
In these techniques, wafers are subjected to multiple exposure and thermal doses, and the

deprotection or volume shrinkage is observed in flood-exposed areas. While an exposure
meander (a serpentine trail ofincrementally increasing exposure doses) is done on every
wafer, the number ofwafers required is the same as the number ofPEB temperatures used.

Measurement ofthe develop rate parameters, such as the maximum and minimum develop
rates, developer selectivity and developer threshold, is achieved using either the standard

DRM or the Poor Man's DRM [37]. In the former technique each wafer is exposed with a

different exposure dose, and the resist thickness is monitored in real time during the devel
opment process. This data is then converted into develop rate vs. deprotection and is used

for extracting develop rate parameters, such as the minimum and maximum development
rate, developer selectivity and the deprotection threshold. In the latter technique, each

wafer is processed with an exposure meander and is developed at different development
times. The remaining resist thickness is measured at each exposure dose and development
time after the development process, and is converted into develop rate vs. deprotection and
used for extracting development parameters.

The standard patterned characterization experiment involves processing a focus-

exposure matrix (FEM) on each wafer. In this technique, wafers are exposed with a FEM
and the profile is then measured in each die with either a cross-section scanning electron

microscope (SEM) or an atomic force microscope (AFM). Figure 5.1 illustrates the exper
imental flow described in this section.
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Figure 5.1. Experimental flow forparameter extraction.

5.2.4. Formulating an optimization problem for estimating the unknown variables

Simulated Annealing was used as the optimization engine in this problem. For con

tinuous variables, the continuity has to be taken into account by suitably selected discreti

zation steps: very small steps result in an incomplete exploration of the variation domain

with small and frequent function improvements; very large steps may produce too many

unacceptable function variations. This particular problem optimized a continuous variable

space. Hence, we chose to use step sizes that were between 0.001% and 1% of the initial

parameter values, depending on how sensitive the simulation was to the particular param

eters.
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Extensive work has been done in extending simulated annealing ideas from combi

natorial problems tocontinuous functions [38], [39], etc. In this work, we use acommercial

package as the optimization kemeP.

5.2.5. Framework for Parameter Extraction through Profile Matching
In this section, amethodology is proposed that ties the process models, parameter

categories, experimental data and the optimization technique together to form an efficient
simulator calibration framework. The framework employs two steps. In the first step, the
unpattemed characterization experiments are carried out. The process engineer then uses
the optimization routine to tune the parameters in the unpattemed process models based on
the experimental results. This step yields the value of the parameters subject to
experimental and modeling errors (Figure 5.2).

Global Optimizer
Iteration

No

Initial Category II
Values

Unpattemed Process
Models

Simulated Data

Stoppinj

Yes

Coarse Category II Values

Experimental Data

Figme 5.2. Finding initial estimates for category II parameters (parameters
subject to experimental and modeling errors)

In the second step, the process engineer runs a FEM and measures the cross-sec-

tional profiles using either an AFM or across-section SEM. In the former case, the profile
is already in ascii format and can be compared directly to the simulator output, while in the

3. Timbre Technology, Inc., 2000 Walnut Ave., #H-103, Fremont, CA 94538.
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lattercasetheSEMprofile is in JPEG format andthusneeds to beconverted to asciiformat

before it canbecompared to thesimulator output.

Ax=5 nm

Ay=5 nm

cost = S(ri-Si)

Figure 5.3. Computing the sum-squared error between simulated and digitized SEM
images

This conversion process is done using a standard graphics package, such asAdobe

Photoshop. The process engineer assigns ranges for the parameters subject to experimental
and modeling errors (category II) and the parameters that must be inferred indirectly

(category III), while fixing the values for the well known parameter values (category I). The

ranges for the parameters depend onthe confidence the process engineer has intheir accu

racy; this would typically depend on the accuracy of the metrology associated with the

unpattemed experiments. The optimization routine is now run, varying the parameters

subject to experimental and modeling errors and the parameters that must be inferred
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indirectly, until the simulated profile sufficiently matches the experimental profile
(Figure 5.4).

Category I
Updated Category II

Values

Updated Category III
Values

o
Simulator Process

Models

Global Optimizer
Iteration

Simulated Data Experimental
Data

No /Stopping
Criterion?/

Final Category I, II and III Values

Figure 5.4. Flowchart ofunpattemed characterization experiments (Update Category
II and III).

The stopping criterion used is the value.

—I_ ^meas, i -Ftheoretical,
' ^meas, i~ymeas^

(5.6)

where i is the number of steps the height of the resist profile is divided into, v
'• ' meaSy t

is the measured CD at height step i, ytheoretical, / is the simulated profile CD at the same
height step i and is average ofthe measured CDs over all height steps.

The parameter values obtained at the end of this phase are the final calibrated

parameter values for the simulator and given materials. The larger the range ofsettings cov
ered by the experimental data, the more global and hence predictive the simulation calibra

tion procedure is. Thus, we now have an efficient method for feeding back experimental
profile information to calibrate simulators.
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5.3. Experiments for Parameter Extraction through Profile Matching

The experiments utilized flood exposures as well as patterned wafers, done using a
FEM at standard resolution patterns. All the wafers were coated with Shipley's UV-5 resist
at the standard processing conditions. An FTIR tool and aspectroscopic ellipsometer were
used for allthe thin film measurements, while a cross-section SEM and anAFM were used

for all the profile measurements.

5.3.1. Unpatterned Experiments

We employed Ellipsometry and FTIR spectroscopy to extract the final values for

category I parameters and initial values for the category II parameters using the exposure
and PEB models shown in(5.2) and (5.4). This involved three wafers that were each flood-

exposed with twenty-five different exposure doses in ameander ranging from 0to 7.6 mJ/
cm^. These wafers were then subjected to 3different PEB temperatures from 120 to 135
degrees Celsius. Before the exposure step, the anti-reflective coating and the resist were
each measured for thickness and optical constants (real and imaginary part ofthe refractive
indices) using a spectroscopic ellipsometer, such as the KLA-Tencor 1250 SE. The thick

nesses on all the 25 sites was measured again after the PEB step, thus yielding the DITL
[40]. These wafers were then measured with a QS-1200 FT-IR System from Bio-Rad. The

deprotection was measured by tracking the ester bond (1150 cm"^ peak). This experiment
yielded deprotection vs. dose and temperature, as well as raw ellipsometry signals contain
inginformation on the thin film optical constants.

The Poor Man's DRM [37] experiment was performed using ten wafers at different

exposure doses and development times. This yielded develop induced thickness loss versus

exposure doses, which was converted into develop rates versus concentration ofunreacted

sites using the DITL model [37].

5.3.2. Patterned Experiments

An experiment was earned out on awafer with different layout designs. There were

a total of 10 layouts, each exposed at 2 focus settings that were 0.3 pm apart. The layout
geometry isshown inFigure 5.5. There were 7geometric parameters, defin

ing each layout. The geometric parameters ofthe 10 layouts are shown inTable 5.1. The
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wafers were then cleaved and measured with a cross-section SEM. Figure 5.6 shows one of

the cross-section SEM images. The outer line profiles were digitized and compared to the

simulation output using Prolith v5.07

Profile of Interest

Figure 5.5. The mask layout design for the experiment.

^1 ^2 ^3 ^4 ^5 ^6
layout 0 0.22 0.26 0.22 0.26 0.22 0.26 0.08

layout 1 0.24 0.24 0.24 0.24 0.23 0.26 0.08

layout 2 0.26 0.22 0.26 0.22 0.24 0.26 0.08

layout 3 0.20 0.28 0.20 0.28 0.21 0.26 0.08

layout 4 0.18 0.30 0.18 0.30 0.20 0.26 0.08

layout 5 0.22 0.28 0.22 0.28 0.22 0.28 0.08

layout 6 0.24 0.26 0.24 0.26 0.23 0.28 0.08

layout 7 0.26 0.24 0.26 0.24 0.24 0.28 0.08

layout 8 0.20 0.30 0.20 0.30 0.21 0.28 0.08

layout 9 0.18 0.32 0.18 0.32 0.22 0.28 0.08

Table 5.1. Geometric Definition ofthe Layout in the Experiment (in pm)
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profile of interest

Figure 5.6. An example ofa cross-sectional SEM image.

5.4. Results ofParameterExtraction through Profile Matching

5.4,1. Category I parameters

Spectroscopic ellipsometry measurements made onphotoresist onananti-reflective

coating on silicon, provided values for the refractive index n, the extinction coefficient k

and the thickness for each ofthe films. These values were measured with very high confi

dence (intervals <0.1%, as specified by the commercial metrology tool), and were hence

kept fixed for the rest of the study. Their valuesare shownin Table 5.2.

Parameter

ResistRefractive Index (Real part)

Resist Refractive Index (Imaginary part)

ARC Refractive Index (Real part)

ARC Refractive Index (Imaginary part)

1.8038

0.01036

1.4525

0.4028

Table 5.2. Category I; Well Known Parameter Values
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5.4.2. Category II parameters

The PEB model was used to extract the Dill's Cparameter, the relative quencher
concentration [Q], the pre-exponent for acid amplification A^^p, the exponent for acid
amplification Ea^p, the pre-exponent for the neutralization reaction and the exponent
for the neutralization reaction E^. However, unlike existing models, this model explains the
data over the entire range ofdoses, and hence provides good estimates ofall ofthe above

parameter values. Using (5.2), the SA optimization procedure provided the fit to the exper
imental data obtained from the FTIR experiment, and the corresponding parameter values
are shown in Figure 5.7. The values ofall the extracted parameters were very close to the

values obtained using alternate chemical tests, such as the colorimetric titration procedure
[41], and activation energy studies commonly performed to study chemical reactions. The

FTIR experimental data was optimized over 6parameters and took less than one minute of

CPU time on a450 MHz P-II processor to converge to the error limit specified (R^ of0.95).

0.9

03

E 0.7

U 0.5

O

Q.
u

a

OA

03

03

O.I

/

Exposure Dose (mJ/cm^)
Figure 5.7. Experimental and Fitted Values for Deprotection vs Exposure Dose as a

function of3different PEB temperatures (120,130,135 degrees C)

The Mack develop model was used to extract the dissolution parameters. Figure 5.8
shows the fit to the experimental data, and the corresponding parameter values are shown
to the right of the figure. Once again, the optimized parameter values were compared to
those obtained from alternate tests, such as monitoring the dissolution rate in unexposed

91

'n(Aan,p)= 48.063 1/s

^-amp ~ 39.629 cal/mole
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Q = 0.191
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areas and high exposure areas in order to determine the minimum and maximum develop

rates, respectively. The values obtained were similar inall cases. The DRM experimental

data was optimizedover 4 parametersand took less than one minute ofCPU time on a 450

MHz P-II processor to converge to the error limit specified (R^ of0.95).

Rraax ~ 2636 A/sec

Rmin = 30.99 A/sec

ns = 11.04

o

5 2000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

Normalized Concentration of unreacted sites (m)

Figure 5.8. Develop rate versus the normalized concentration ofunreacted sites. Figure
shows the fitting of the Mack develop model to thedata.

It should be noted that, while the initial values for the parameters in this category

were extracted using the framework shown inFigure 5.2, the final optimized parameter val

ues, shown inTable 5.3, were extracted using the framework shown inFigure 5.4.

5.4.3. Category III parameters

The framework in Figure 5.4 was used to extract the parameters that must be

inferred indirectly (Category III), and to also refine estimates ofthe parameters (category

II). It was difficult tovalidate the estimates inthis category with any alternate methods due

to the nature of the parameters. The final Category III parameter values are shown in

Table 5.4.

Inthis particular problem, since all the patterned experiments were done ata single

PEB temperature, we could not extract the pre-exponent and the activation energy simulta

neously. Hence, we assumed the pre-exponents to be the values obtained from the unpat-

temed resist experiments that were done at multiple PEB temperatures, and we optimized

niti, = 0.188

i
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Parameter Value

Amplification Rate (Pre-exponent) 47.65 1/s

Amplification Rate (Activation Energy) 39.623 Kcal/mole

Neutralization Rate (Pre-exponent) 49.809 1/s

Neutralization Rate(Activation Energy) 39.605 Kcal/mole

Dill's A parameter 0.00 /pm

Dill's B parameter 0.4683 /pm

Dill's C Parameter 0.065 cm^/mJ

Relative Quencher Concentration 0.15065

Maximum Develop Rate 3664.5 A/sec

Minimum DevelopRate 6.06 A/sec

Developer Selectivity 9.8164

Developer threshold PAC 0.1433

Chapter 5

Table 5.3. Category II: Parameters subject to experimental and modeling errors

Parameter Value

PEB Difftisivity(Pre-exponent) 50.453 nm^/s

PEBDiffiisivity (Activation Energy) 39.623 Kcal/mole

Relative Focus -0.55pm

Table 5.4. Category III: Parameters that must be inferred indirectly

only for the activation energies. If there were more than one temperature used inthe pat

terned experiments, one could have extracted both parameters simultaneously.

Overall, the patterned data optimization was done over 12 parameters, and the pack

age used for the simulations was Prolith v5.07. The optimization procedure took approxi

mately 20 hours of CPU time ona 400 MHz P-II processor to converge to the error limit

specified (R of 0.95). There were 4 different layouts at2 different focus settings used as

training data for the simulator calibration procedure. Having calibrated the simulator, the

next step was totestitspredictive capabilities. The cross-sectional profile information from

the other 6 layouts at2 different focus settings were used as testing data. Figure 5.9 shows
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the fit betweenprofiles measured by the cross-section SEM and those derived from simu

lation for the training data while Figure 5.10 shows the same for the testing data..

Focusl Focus2 Focusl Focus2

I \Maskl

Training

Mask3

I

PEB Temperature = 130®C
FEE time = 90 sees
Exposure Dose = 13.5mJ/cm^

r

f
Mask!

MasU

Focusl = 0.0 (im
Focus2 = 0.3 |i.m
Resist Thickness = 655 nm

i

Develop Time = 60 sees
NA = 0.57
a = 0.5

Figure 5.9. Fitted versus simulated profiles across different focus-layout combinations for
training data.
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Focusl Focus2 Focusl Focus2

Masks Mask)

Testing
Mask?

Mask9

Figure 5.10. Fitted versus simulated profiles across different focus-layout combinations
for testing data.

5.5. Summary

Themain goal of thiswork wasto develop anefficient simulator calibration frame

work that increases the confidence ofthe process engineer inthe simulation tool, and sub

sequently reduces reliance on experimentation. By transferring the burden of process

development fi*om hardware (process equipment) into software (simulation), the process

engineer will benefit fi-om both reduced development costs and faster time to yield.

We presented the experimental work done, both in unpattemed and patterned char

acterization experiments, along with the mask layouts and dimensions used fora state-of-

the-art process. The results demonstrate excellent predictive capabilities. We believe that

this framework can potentially improve yield ramp rates and hence reduce development
costs.
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Chapter 6 Run-to-Run Control in the
DUV Lithography Sequence

Chapter 6

6.1. Introduction

Feature dimensions in semiconductor manufacturing are continually decreasing,

while die and wafer sizes are increasing. As the critical feature size decreases below 0.25

^m, Deep Ultraviolet (DUV) lithography remains the key technology driver in the semi

conductor industry, accounting for approximately 35% ofprocessed wafer cost. However,

submicron DUV photolithographic processes present significant manufacturing challenges
due to the relatively narrow process windows often associated with these technologies. The

sensitivity ofthe process to small upstream variations in incoming film reflectivity, photo

resist coat and softbake steps as well as the bake plate temperature can result in the final

critical dimension (CD) going out ofspecifications. Further, CD problems are usually not

identified until the end of the lot. The high costs associated with the manufacture of Inte

grated Circuits necessitates higher yields and throughput, requiring a reduction inprocess

variability. One approach to reducing process variability isto use asupervisory system that

controls the process on a real time or run-to-run basis [1]. Real time control involves the

collection ofsensor signals during the processing ofawafer and adapting the process recipe

during the course of the wafer. Run-to-run control involves adapting the process recipe

between wafers. Real time control is more aggressive and more involved than run-to-run

control in general.

High end devices such asmicroprocessors require aconsiderable number ofprocess

steps. Therefore, it is becoming increasingly important to have an accurate, quantitative

description ofthe submicron structure after each step. Currently the lithography process is

monitored before photoresist spin on (index, thickness and uniformity measurement of
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incoming stack) and after development (linewidth and profile measurement). Inspection at
the initial and final stages ofthe process, however, provides only a measurement ofthe
cumulative effects of all the upstream process steps. To isolate the effect of each process
step, monitoring at each step is necessary. This need for wafer process monitoring requires
in-line sensors and real time algorithms to facilitate real time analysis of sensor signals.
Algorithms and sensors for this purpose have been described in the preceding chapters. In
line metrology is preferred to off-line metrology due to increased throughput and possibly
yield.

The need for in-situ and/or in-line process monitoring must however be balanced
with critical manufacturing issues such as possible adverse effects on throughput, cost,
sensor integration into an overall control strategy, possibly limited sensor reliability, etc.
Most commercial metrology equipment is either too slow or too complex to be imple
mented in an in-line arrangement. The sensors and algorithms described in the preceding
chapters can satisfy the requirement ofmaking measurements that are sufficiently accurate,
repeatableand rapid at a low cost.

Run-to-run control on a lot to lot time scale has already been successfully imple
mented at Motorola, implementation and results ofwhich are discussed in [24 from John].
This study showed that avery simplistic control algorithm and CD-SEM measurements on
a lot-to-lot scale, reduced the pre-etch CD standard deviation from 9.4 nm to 6nm and the

post-etch CD standard deviation fi'om 11.1 nm to 7.1 nm. While this study reduced the vari
ability occuring on alot-to-lot time scale, we believe that the use ofthe more sophisticated
control algorithms working in unison with in-line/in-situ sensors will reduce this process
variability even further, by reducing both the wafer-to-wafer variability in addition to the
lot-to-lot variability. Musacchio [Thesis] showed that slightly more sophisticated algo
rithms, such as the EWMA with robust drift cancellation, provided afurther 40% reduction
in lot-to-lot CD variability.

6.2. Sources ofVariability in the Lithography Sequence
As described in detail in chapter 1, the DUV lithography sequence consists ofthe

spin-coat and soft-bake steps followed by the exposure and post-exposure bake steps and
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finally the development step.There have been quite a few studies discussing the sources of

variability inthe lithography sequence [Sturtevant][Crid]. These studies, along with discus

sions with fab managers, provide uswith the most likely sources ofvariation. The sources

ofvariationat each processstep are given below:

6.2.1. Incoming Thin Film

Variations in the incoming thin film stack optical properties, such as the complex

index of refraction and thickness, change the reflectance as seen by the stepper/scanner.

This changes the effective exposure energy that gets coupled into the resist. The changes in

the optical properties ofthe underlying thin film could be due to achange in the deposition

conditions, such as temperature, gas flow, etc.

6.2.2. Spin Coat and Soft Bake

Typically, there is a 5-10% variation from batch-to-batch in chemically amplified

resist systems. This variation could occur inthe viscosity orthe quencher concentration. A

variation in the former leads to different resist thicknesses atthe same spin speed, thus caus

ing a change in the effective exposure energy coupled into the resist. A variation in the

latter acts to neutralize less ormore ofthe generated acid, effectively changing the effective

exposure energy coupled into the resist. Variation in the soft bake time or temperature

affects the decomposition rate and the amount of solvent left in the resist, both of which

change the effective exposure dose and diffusivity of the acid during the post-exposure

bake step.

6.2.3. Exposure

The light source in a stepper/scanner is an excimer laser, which provides the

required exposure energy through a discrete number of laser pulses. Each laser pulse has

random variations in its energy and hence the final exposure energy is typically controlled

to within +/- 2%. This difference in the set vs. actual dose plays contributes significantly

due to the chemically amplified resist systems.

6.2.4. Post-Exposure Bake (PEB)

The PEB is probably the single biggest contributor to CD variability due to the

chemicallyamplifiedresistsbeing very sensitiveto the thermaldose. Variationsin the bake
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plate temperature affect both the deprotection rate as well as the acid diffusion, causing
variation in the CDs.

6.2.5. Development

Variation in the develop step isfound to be minimal ifa correct recipe is used that

optimizes the combination between the spray step and the puddle step.

6.3. Metrology Schemes

Having outlined the possible sources ofCD variation, the next step is to identify the

metrology schemes that could be used to measure the intermediate steps. The different
metrology systems for the incoming reflectance, deprotection induced thickness loss

(DITL) and the CD have been described inchapter 2. We will devote this section to deter

mining possible in-line/in-situ configurations for the different metrology systems as well
as studying the measurement frequency that each system iscapable of.

Wafer reflectance measurements, both before and after the spin-coat and soft-bake

step, can be made with an normal incidence reflectometer as described in chapter 2. There

are a number of commercial reflectometers, both single wavelength and spectroscopic,
such as the SC Technology and the Ocean Optics systems, that can be integrated on the chill

plates ofsome wafer track systems that have enough open space above the chill plate. In
wafer tracks that do not have the luxury ofthe open space above the chill plate, reflectom-

etry systems have been successfully installed on the robotic arm that moves the wafer

between the different modules. It is the simplicity and the low cost ofthe reflectometry
system that allows it to be relatively easily integrated in-line and this measurement could

therefore possibly be made on every wafer.

The DITL measurements, as described in chapter 2, can be made using a standard

spectroscopic reflectometer. In an in-line configuration, DITL measurements would be

made during the chill step (after the PEB step). Hence, the reflectometer could bemounted

in the same way as described in the preceding paragraph. In an in-situ configuration, for
end-pointing the bake step, a more compact version of the reflectometer would need to be

set up since the bake plates are usually very tightly sealed in order to maintain tight tem
perature control. Commercial reflectometers that allow precise positioning and pattern rec-
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ognition are now being introduced into the market through companies like Nanometric, Inc.

and Nova. Once again, these measurements could possibly be made on every wafer due to

the above stated advantages of reflectometry.

The use ofoptical tools, such asspectroscopic ellipsometers, for in-line CD metrol

ogy have been described earlier. The footprint required for ellipsometers is typically more
than that required for reflectometry, due to the larger number ofoptical elements required
to polarize the light. One concept for in-line CD metrology that is being investigated is a

metrology end-station. This could be placed between the lithography and the etch equip
ment, thus allowing CD measurements to be made on every wafer both before and after

etch.

In this chapter, we discuss an algorithm that allows information from one or more

ofthein-line sensors tobeintegrated atdifferent time scales. This isknown assensor fusion

and has been used ina plethora offields [References]. Sensor fusion allows better estima

tion ofthe process noise and hence a better controller performance.

6.4. In-line RtR Controller Design

6.4.1. Experiments

The first step is to determine the relationships between the different critical process

parameters, such as the exposure energy, PEB time (interchangeable with the PEE temper
ature), and the process observables, such as the DITL and the CD. This involved carrying
out a designed experiment and was performed at National Semiconductor Corporation's

class 1 fab in Sunnyvale, CA.

The experiment was carried out as follows. Four bare silicon wafers were spun on
with660A ofananti-reflective coating andthen baked atthestandard soft-bake conditions.

After chilling the wafers, they were spun on with Shipley UV5, a commercially available

chemically amplified resist, toa thickness of6550A. After spin on, the wafers were soft-

baked at the standard conditions to remove solvent and chilled again. All the wafers were

then measured for thickness using aKLA-Tencor UV1250SE, asingle angle spectroscopic

ellipsometer. The wafers were then sent to a DUV stepper, where two exposure passes
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were made. In the first pass, the standard product mask was used with exposure doses rang

ing from 12.2 mJ/cm^ to 13.8 mJ/cm^ in steps of0.2 mJ/cm^ , centered around the nominal
O

exposure dose to size of 13 mJ/cm . The focus was set to the best focus, obtained by run

ning a send ahead test wafer. The goal of the first pass was to print CDs that could be mea

sured with a CD-SEM. The second pass was used to print blanket exposures in order to

measure the DITL. This was done by exposing the wafers using doses ranging from 4.6 mJ/

cm to 5.4 mJ/cm in steps of 0.1 mJ/cm . The nominal dose was centered around the dose

to clear, i.e. 5 mJ/cm . The exposure doses for the blanket areas were chosen so as to main

tain the ratio ofdose to size to dose to clear for all the die. This accounted for their different

diffraction efficiencies thus ensuring that the blanket and adjacent pattemed areas received

the same effectiveexposure dose. Figure shows the details of how each die was exposed.

5.0 5d5^25J>^

12.2 ^2-4^12^ 12.8 aO U.2 n.4 13.6 13.8 [~~| Blanket Exposure: 3replicates

12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 CD Test Patterns: 4 replicates

,6 4.7 4.8 4.9 5.0 5.1 5.2 5.3

Figure 6.1. Blanket and Pattemed Exposure Pattem for the CD control model
experiment

The waferswere then post-exposure bakedat 135 degreesCelsiusat 75, 90, 90 and

105 seconds. After being cooled on the chill plate, the four wafers were measured on the

KLA-Tencor spectroscopic ellipsometer for remaining resistthickness in the floodexposed

areas, thus providing the DITL as a function of exposure dose and PEB time. The wafers

were then developed for 60 seconds and taken to KLA 8100 CD-SEM for CD measure

ments in the pattemed die. The details of the experiment are listed in Table 6-1.



Process Recipe Value / Range of Values

Resist Thickness 6550 (Angstroms)

ARC Thickness 660 (Angstroms)

Exposure Dose (Blanket) 4.6 : 0.1 : 5.4 (mJ/cm^)

Exposure Dose (Patterned) 12.2 : 0.2 : 13.8 (mJ/cm^)

PEB Time 75,90,90,105 (seconds)

PEB Temperature 130 (degrees Celsius)

Develop Time 60 (seconds)

Chapter 6

Table6-1. Experimental Conditions used in Process Model Building

6.4.2. Process Models

Regression models were built to model the DHL, the CDs and the process inputs.

Transformations wereintroduced in someof the terms in orderto improve the fit of linear

models to theexperimental data. The results aresummarized inTable 6-2 [22 of John]. The

first and the second models relate DITL and CD (respectively) to the process inputs i.e.

bake time and exposure dose. The last model relates CD to DITL and the PEB time. The

rationale forhaving bothDITLandPEBtimein the model to predictCDis thatwhileDITL

captures the deprotection behavior, it does not effectively capture the diffusion of acid

within the resist during the PEB. Studies have shown that the diffusion is a fairly linear

flmction of the PEB time [Neureuthers paper]. It should be pointed out that although the

CDsin thisexperiment were measured witha CD-SEM, they would ideally have beenmea

sured with the specularspectroscopic scatterometry technique since that would allow both

the observables (CD and DITL) to be measured in-line. .

# Model Adj. R^ Std. Error

I JDITL = - 23.4615 + 2.5176 x Dose + 0.0334 x Time 0.9802 0.22A"='

II CD = -0.016 XDose + 0.0906 x jTime - 0.0052 x Time 0.9996 3.837 nm

III CD ^ - 0.0029 X Time + 0.0508 x jTime - 0.000255 x DITL 0.9995 4.216 nm

Table 6-2. Modeling Experiment Results
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6.4.3. Drift Model

Having found static models relating the inputs and outputs oftheDUV lithography

process, it is now necessary to develop a model of how the process drifts. The issue

addressed in this section is whereinourprocess model should weaccount for thisvariation.

Insection 6.2 we surveyed the likely sources ofvariability inthe DUV lithography

sequence. We attributed theCDvariability to incoming wafer reflectivity variation, batch

to batchresistvariation andexposure andthermal dosevariation. Thesesources of variabil

ity as well as others have been modeled to first order with additive noise on the process

inputs - exposure dose and PEB time [John thesis].

Dose^jy = +Noise (6.1)

Time^jy = +Noise (6.2)

Here, we have introduced the terms Dosegff and Timegff todenote the sum ofeach

input setting and noise term. Our final models for DITL and CD will be those summarized

inTable 6-2, but with Dose^ff and Timegffsubstituted wherever Dose and Time appear.

aJDITL = - 23.4615 +2.517 xDose^yy^ 0.0334 xTime^yy (6.3)

CD = - 0.016 XDose^yy+ 0.0906 x jTime^yy- 0.0052 xTime^yy (6.4)

Finally, we assume that some measurement noise occurs in measuring both the

DITL as well as the CD.

+ ^^ise (6.5)

^^meas = ^^true + (6-6)

6.4.4. RtR Control Architecture

6.4.4.1. Scenario I

In this scenario, the in-line reflectometer measures the resist thickness before and

after the exposure and PEB steps, in order to calculate the DITL. This DITL value is used

toestimate the post-develop CD which isthen used inconjunction with a standard RtR con

trol algorithm, to prescribe a recipe for the subsequent wafer. A schematic of the control
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architecture is shown in Figure 6.1, and a summary of the notation used in the controller

development is presented in Table 6-3 [Johns thesis]..

Lithography Process

Noisedos&

Noisetime

Dose Time

RtR Controller

CD Target 4

CD = f(Doseeff, Timegff)

DITL = g(Doseeff Timegff)

CD

DITL

CD Estimator

^ = h(DITL, Time)

CD Estimate

Figure 6.1. RtR Control Architecture for DUV Lithography in Scenario I

Definition Explanation

T=CD Target Desired CD

CD, True CD of wafer k

yk = CDk CD estimate of wafer k

=

u

yk-yk CD estimation error of wafer k

"it =
Dose,

Time,
Input vector for wafer k

Table 6-3. Control Architecture Notation

The CD estimation block of Figure 6.1 takes a presumably noisy DITL measure

ment and the wafer's PEB time and applies Model III of Table 6-2 to arrive at an estimate

for CD.

= CDk = - 0.0029 x Time^ + 0.0508 x - 0.000255 x DITL^ (6.7)
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ThetargetCDandCDestimate of theprevious wafer are fedintotheRtRController

block of Figure 6.1. Musacchio [thesis] has shown that the useof the additive noise terms

tothe exposure dose and PEB time inthe drift model makes the sensitivities to the process

inputs fixed to first order. He uses an EWMA technique to handle this offset drift problem.

Jakatdar, et.al. [src98report]

6.4.4.2. Simulation

White.
Noise

White.
Noise

Noise,

Noise

)5££f££^ITHOGRAPHY PROCESS ^
Bme,- CD=f{Dose,g, PEBtime,^

^ Thloss =g{DoseQgJPEBtimeQ^

Ii Thloss

No''eThloss_.j\

EWMA CONTROL BLOCK
Offset = a{Offset, CD)

Target = q{Dose, Time, Offset)

CD ESTIMATOR
CD = h{Thloss, Time)

Figure 6.1. Simulation Architecture

Figure 6.1 outlines the simulation architecture. The Simulator simulates three

blocks: the drifting lithography process, the CD estimator, and the EWMA controller. The

CD estimator and EWMA Control blocks are implemented with the equations given in

Section 5.4.4. Simulating the lithography process block also requires specifying a stochas

tic driftmodel, whichis the purpose of this section.

The lithography process block takes exposure dose and PEB time asinputs, and out

puts CD and Thickness Loss. The model for the lithography process is that described by

Section 5.4.3. Thus,y(,) andg(,) of Figure 5.9are the models for CDand thickness loss
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found from the modeling experiment, with the substitution ofaDose^ffrnd PEBtimegfffor
Dose and PEBtime.

We must assume that Noiseand Noisehas some autocorrelation structure

between runs. Because we do not know the exact autocorrelation structure we will encoun

ter in the real lithography process, by defaultweassume the simplest model possible, a first

order AR. The modeling technique is that illustrated in Section 2.3.1**. We define

Xk =

{Noiscpi-B]
(6.8)

Now suppose we expect the variance of Noise^ose ^ be cr dose and the variance of

Noisepp^g to be a peb . Also suppose we expect the autocorrelation coefficient between

successive runs to be and Pd^2 Noiseppg respectively. With the fol

lowing definitions:

K =
2

O" Dose

0
2

CT PEB

the stochastic process forxpis

F = /. 0

0/2
,G = Jk-fkf* (6.9)

+ (6.10)

Where is a 2 dimensional gaussianrandomvectorwith identitycovariance. As indicated

by Figure 5.9, the random process generated by (6.10) canbe generated by passing white

noise through two filters, eachwith a poleatyj anda zero at 0.

The thickness loss measurement error, Noiseis assumed to be white and nor-

mally distributed with variance a moss.
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Noise

Time

Noise

Lithofiraohv Pro cess

CD = f(Eff.Dose, Eff.Time)

Thloss =• g(Eff.Dose, Eff.Time)

Thickness

Metrolog7
Error

CD

Thickness Loss

N

Chapter 6

Measure ^very
Nth wafer

CD Metrology
Error

RtR Controller

Recipe Generator

CD Estimator by estimating

bake noise and dose noise

CD Estimate

CD Target
Figure 1.RtRControl Architecture forthe DUV Lithography Process

Figure 6.2. RtR Control Architecture for DUV Lithography in Scenario II
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Chapter 7 Conclusions

7.1. Thesis Summary

The history ofthe semiconductor industry has been characterized by Moore's Law

thatpredicts the exponential scaling factorfor integrated circuitdensity. To keepthe indus

try on its historic 25-30% / year reduction in cost/function despite the escalating factory

costs (20% / year), greater synergy must be developed between the areas of metrology,

modeling, simulation andcontrol. Thisthesishaspresented a framework that integrates the

metrology ofwafer level observables with physical models for the same, in order to achieve

enhanced predictive simulation as well as to facilitate run-to-run controlof the lithography

process.

Metrology was developed for the intermediate steps of the pattern transfer

sequence, from unpattemed thinfilms to the latentimage in thephotoresist during exposure

and PEB to the final patterned CD. The development of a metrology scheme for eachstep

was characterized by first identifying the observable at that step and its correlation to the

final CD, followed by identifying the appropriate sensorand then presenting an algorithm

that rapidly analyzes the sensor data. While some of the algorithms used in this thesis are

in their original incamation, some others, such as the NN-ASA, have been modified to

overcome the drawbacks of the original algorithms. Finally, experimental results for each

metrology scheme were presented.

This thesis also introduced the concept of deprotection induced thickness loss or

DITL, as a means of providing information on the state of the resist through the measure

ment of a simple observable. Both static and dynamic models were presented that help to

get a better estimate of important model coefficients, such as the diffusion coefficient and
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the acid quencher concentration. The computation of the DHL was a moving boundary

problem that needed to be solved.The experimental results show the validity and impor

tance of using such a concept to extract the model coefficients.

A lithography simulation framework is presented that provides a hierarchical

method for determining the model coefficients of lithography simulation models. These

coefficients are determined using experimental data from both unpattemed and patterned

wafers, undergoing a coarse optimization loop followed by a finer optimization loop. The

results demonstrate that this technique could dramatically reduce the time to develop apro

cessthrough increased predictive simulation capabilities.

Finally, a run-to-run controller ispresented that attempts to correct for process drift

at the different process steps in the lithography sequence. The controller uses a Kalman

Filter to provide estimates ofthe noise and uses process models based on astatistical design
ofexperiments technique. Two scenarios are considered, differing in the type ofmetrology

as well as the frequencyofmeasurementsavailable.The simulationresults indicate the effi

cacy ofusing such a scheme for a real-world lithography sequence.

7.2. Future Work

While this thesis has focused on the building blocks for a completely automated

process development and manufacturing sequence, there has been more emphasis placed

on the experimental verification of the metrology, modeling and simulation blocks with

only simulation results being presented for the control block. The experimental verification

of the run-to-run control scheme presented here could be an important area of future

research, with the emphasis being on the integration ofsensors with the processing equip

ment as well as studying the efficacy of thedifferent control algorithms in actual drift con

ditions.

Also,whilethe reduction of variability on a wafer-to-wafer and lot-to-lot timescale

has been the goal ofthis run-to-run controller, the spatial components ofvariability, viz.

die-to-die and within die components have not been addressed. The spatial component of
variability is becoming an increasingly bigger source ofvariability in the lithography pro
cess. Dealing with this problem would require schemes for spatially resolved actuation,

109



Chapter 7

such as field-varying exposure doses and a spatially resolved bake plates [47]. This multi

ple input, multiple output would be a complex control problem.

Inthe area ofmetrology, the specular spectroscopic scatterometry (SSS) technique

can be extended to other processing steps as well, such as multi-material gratings as in

Chemical Mechamcal Polishing (CMP). The migration ofSSS toCMP would require some

novel theoretical work since previous grating work has attacked the problem of single

material gratings with air. In addition to being used for multiple applications, not enough

is understood about the sensitivity ofthis technique to the different spectroscopic ellipsom-

etry configurations and incident angles. This could prove to be an important area of

research in the near future.

An interesting area of future research insimulation would be to identify the sensi

tivity of the photoresist profile to the various lithography model coefficients. Determina

tion of their sensitivities would provide a means of model coefficient reduction in the

optimization problem, thus significantly enhancing the speed ofsimulator calibration.
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Appendix A Symbols Used

Parameter Description Units

a Neutralization Reaction Coefficient

^hi Linear Combination of the inputs to the ithnode in

the hth layerusedin Logistic Sigmoid Functions

X Wavelength of light nm

cj Partial Coherence

0/„ Bias term for the ithneuron in the hth layer

tu Volume Shrinkage Element |xm^

Outputof the hth layerfor a given inputx

Fitting Parameter in the Forouhi-Bloomer Equation

Fitting Parameter in theForouhi-Bloomer Equation

^cost Cooling Scaling Factor for Tgost

C Rate of Photoacid Formation cm^/mJ

Q Fitting Parameter inthe Forouhi-Bloomer Equation

d Minimum Inter-cluster Distance
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D Deprotection

DITL Deprotection Induced Thickness Loss lun

Dm Dimensionality of parameters

Diameter of the kth cluster

Acid Diffusivity pm^/sec

Dyv Volatile Molecule Diffusivity pm^/sec

E Sumsquared error

Dg Optical Energy Band-Gap eV

S(^) Probability Density ofstate space ofDparameters

h(b(E, T^) Acceptance Probability ofa new cost-function

k Extinction Coefficient

Scaling Factor to convert deprotection into corresponding

volatile group concentration

ks Hole Collapse Rate sec"^

k4 Scaling Factor to convert hole concentration into volume

shrinkage

Kmp Acid Amplification Rate sec'̂

kcost Number of acceptances

kioss Acid Loss Factor sec"^

I Thickness nm
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m

mth

M

n

^0

ns

N

Nk

[PAGJo

Q

max

mm

"a

Sh

Number ofTransitions in SA

Repetition Function

normalized concentration ofunreacted blocking sites

Value of m at the inflection point of the DRM curve

Characteristic Matrix for Reflectance Calculations

Refractive Index

Number of cluster centers

Developer Selectivity

Complex Index of Refraction

Number ofpoints in cluster k

Initial Concentration ofPhotoacid Generator

Normalized Acid QuencherConcentration

Reflection Coefficient for TM wave

Reflection Coefficient for TE wave

Relative Reflectance

Maximum Deveop Rate

Minimum Develop Rate

Temperature Anneal Scale

Cost Parameter Scale Ratio

Number of neurons in thehth layer
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mol/cm^

A/sec

A/sec
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St Temperature Ratio Scale

t PEB time

T Cost Temperature

^loss Thickness Loss orVolume Shrinkage nm

T„ Temperature Function orCooling Schedule

Tcost Initial Temperature of theAcceptance Function

u Normalized Acid Concentration

V Deprotection

w Normalized Deprotected Concentration

Wj Optimization Weight

Optimization weight from the ith node to the jth node

x'k State ofthe ith parameter at annealing time k

z Depth into the resist
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