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Abstract

In a communication network a good rate allocation algorithm should reflect the utiUties of

the users while being fair. We investigate this fundamental problem of achieving the system

optimal rates in the sense of maximizing aggregate utility, in a distributed manner, using only the

information available at the end hosts of the network. This is done by decomposing the overall

system problem into subproblems for the network and for the individual users, by introducing a

pricing scheme. The users are to solve the problem of maximizing individual net utility, which is

the utility less the amount they pay. We provide algorithms for the network to adjust its prices

and the users to adjust their window sizes such that at an equilibrium the system optimum is

achieved. Further, the equilibrium prices are such'that the system optimum achieves weighted

proportional fairness. It is notable that the update algorithms of the users do not require any

explicit feedback from the network, rendering them easily deployable over the Internet. Our

scheme is incentive compatible in that there is no benefit to the users to lie about their utilities.



1 Introduction

As the Internet explodes in size a.nd in the number of users, one of challenging questions network

designers face is how to provide a fair and efficient allocation of the available bandwidth. To this

end researchers have proposed many different rate allocation mechanisms. In the current Internet,

most connections use variants of the Transmission Control Protocol (TCP), which is a window-

based congestion control mechanism. It is widely recognized, however, that TCP does not generally

lead to a fair or efficient allocation of bandwidth among the connections [3, 17, 5]. The fact that
the Internet is now in the public domain, and thus in a potentially noncooperative environment,
has stimulated much work on pricing mechanisms to ensure that users do not misbehave and to

provide quality ofservice in accordance withusers' willingness to pay. Researchers in this area have

proposed different schemes based on time and volume measurements [11] or on per-packet charges

[20]. Furthermore, research has shown that flat rate charging leads to inefficiency, where a large
number oflow-usage users end up subsidizing a small number ofhigh-usage users [4]. This argues

that usage-based pricing is desirable. Agood discussion on the market structure is given in [15].
They present several different possible market structures for network pricing, such asa competitive

market and monopoly, and provide insight as to how pricing schemes should be designed based on

the market structure.

Recently Kelly [9] has suggested that the problem ofrate allocation should be posed as one of

achieving maximum aggregate utility for the users. Since the solution needs to be decentralized

and should be incentive compatible in that users should have no incentive to lie about their true

utilities, Kelly proposes using pricing todecompose the overall system problem into subproblems for

the network and for the individual users, with the goal ofdesigning algorithms such that a system

optimum is achieved when users' choices ofrates they are willing to payfor and the network's choice

ofallocated rate are in equilibrium. Kelly et a/. [10] have proposed two classes ofalgorithms which

can be used to implement proportionally fair pricing and solve a relctxation of system optimum

problem.

The algorithm in [10] requires explicit feedback from the switches inside network. Due to the

size of the Internet, an algorithm that requires an extensive modiflcation inside the network may

not be suitable for deployment. Further, many connections in the Internet use TCP to control their

transmission rates. In this paper we investigate the fundamental problem of achieving the system

optimum that maximizes the aggregate utility of the users, using only the information available

at the end hosts. We introduce two algorithms that can be deployed over the Internet without

significant modification within the network. These algorithms can be thought of as a natural



extension of an algorithm introduced in [18]. These algorithms effectively decompose the system

problem into a network problem and a problem for each user, by introducing a pricing mechanism.

In the first algorithm, while the users solve the user optimization problems on a larger time scale,

the underlying window-based transmission rate control mechanism solves the network problem on

a smaller time scale. The second algorithm does not require users to solve the user optimization

problem. Instead, it incorporates the user optimization problem into the window size updating

rules. The unique fixed point of the mapping defined from these algorithms is proven to result in

the system optimal rates. Further, the price a user pays equals the delay cost it imposes on the

other users^. We show that our algorithms do not require any explicit feedback firom the network,

and can be easily deployed in the current Internet. We also demonstrate that these algorithms

are incentive compatible: it is always in users' own interest to tell the truth about their utility

functions.

The rest of the paper is organized as follows. We first motivate the problem and describe the

model used in the analysis and the methodology adopted, followed by some related work. Section

4 explains the pricing scheme, which is followed by the algorithms in sections 5 and 6. We present

two numerical examples in section 7. We briefly discuss how the backlog in the network can be

controlled using our pricing scheme in section 8 and then finish by drawing some conclusions and

indicating some directions for future research in section 9.

2 Motivation, Background & Model

In this section we first motivate our problem by describing some of the currently most popular

congestion control mechanism used in the Internet. We discuss some of the problems with the

current congestion control mechanisms. We then formulate our problem of maximizing the total

utility of the users and describe the model we use to present our congestion control proposal.

2.1 Motivation

From its advent the Internet has been decentralized, relying on disciplined behavior firom the users.

Without a centralized authority, the network users have a great deal of freedom as to how they

share the available bandwidth in the network. The increasing complexity and size of the Internet

renders centralized rate allocation control impractical. In view of these constraints, researchers have

proposed many rate allocation algorithms to be implemented at the end hosts in a decentralized

manner [10, 18, 14, 8]. These algorithms can be roughly categorized into two classes: rate-based

^This can be also interpreted as an externality cost imposed on the network.



algorithms and window-based algorithms. Arate-based algorithm directly controls thetransmission

rate ofthe connection, based on either feedback from the network [10] oron measurements taken at

theend host. Awindow-based algorithm adjusts thecongestion window size, which is themaximum

number ofoutstanding packets, in order to control the transmission rate and backlog inside the

network associated to the connection.

The most widely deployed flow/congestion control mechanism in the cmrent Internet is the

Transmission Control Protocol (TCP), which is a window-based congestion control mechanism.

TCP however does not necessarily lead to a fair or efficient rate allocation of the available band

width. It is well known that TCP^ as currently implemented suffers from a high packet loss rate

and a delay bias [13, 17, 2]. The high packet loss rate is a consequence ofperiodic oscillation of the

window sizes and aggressive slow start, while thedelay bias is the result ofa discrepancy in window

update rates among different connections. In order to address these issues Brakmo et al.[2] have

introduced another version ofTCP, named TCP Vegas, with a fundamentally different bandwidth

estimation scheme. They have demonstrated that TCP Vegas results in a lower packet loss rate,

which in turn leads to higher efficiency, and have suggested that TCP Vegas does not suffer from a

delay bias, which leads to a more fair rate allocation^ ofthe bandwidth. This was later proved by

Mo et ai.[17] in the case that there is a single bottleneck in the network.

Mo and Walrand [18] in another paper, have proposed and studied another fair window-based

end-to-end congestion control mechanism, which is similar to TCP Vegas but has a more sophis

ticated window updating rule. They have shown that proportional fairness'̂ can be achieved by

their (p, l)-proportionally fair algorithm and that max-min fairness can be achieved as a limit of

(p, a)-proportionally fair algorithms as a goes to oo [18].

Clearly fairness is a desirable property for a rate allocation mechanism. There is, however,

another aspect ofa rate allocation problem that hasnot beenaddressed bythe previous mechanisms.

Dueto the various requirements ofdifferent applications it is likely that the users will have different

utility functions. For instance, users running video conferencing tools are likely to receive a higher

utihty than another user surfing the World-Wide Web (WWW) on its free time. This suggests

that although fairness is a desirable property, fairness alone may not be a good objective. We

suggest that a good rate allocation mechanism should not only be fair, but should also allocate

the available bandwidth in such a way that the overall utility of the users is maximized. In this

paper we describe a pricing mechanism that achieves these goals without requiring knowledge of

^The most popular versions of TCP in the Internet are TCP Tahoe and Reno.

^Fairness refers to max-min fairness that is discussed in section 2.2.

Proportional fairness is introduced by Kelly in [9], and is discussed in the next subsection.



the users' utility functions and without requiring any explicit feedback from the network.

2.2 Model and Background

We consider a network with a set J of resources or links and a set X of users. Let Cj denote the

finite capacity of link j 6 J. Each user has a fixed route Ji, which is a non-empty subset of

We definea zero-onematrix A, where Aij = 1 if link j is in user ?'s route J7i and Aij = 0 otherwise.

When the throughput of user i is Xi, user i receives utility Ui{xi). We assume that the utility Ui(xi)

is an increasing, strictly concave and continuously difierentiable fimction of Xi over the range Xi >

0.® Furthermore, we assume that the utilities are additive so that the aggregate utility of rate

allocation x = (xi,i e X) is ^ ^ ^ind C = {Cj,j G J). In this

paper we study the feasibility of achieving the maximum total utility of the users in a distributed

environment, using only the information available at the end hosts. Under our model this problem

can be formulated as follows.

SYSTEM(U,A,C):

maximize ^2Ui{xi) (1)

subject to A^x < C

over rc > 0

The first constraint in the problem says that the total rate through a resource cannot be larger

than the capacity of the resource. Given that the system knows the utility functions U of the users,

this optimization problem may be mathematically tractable. However, in practice not only is the

system not likely to know U, but also it is impractical for a centralized system to compute and

allocate the users' rates due to the large scale of the network. Hence, Kelly in [9] has proposed to

consider the following two simpler problems.

Suppose that given the price per unit fiow Aj, user i selects an amount to pay per unit time, pi,

and receives a flow Xi = Then, the user's optimization problem becomes the following [9].

USERi{Ui;Xi) :

7}'

maximize Ui{-^)—pi (2)
Xi

®We assume that there is a routing mechanism and do not discuss the issue of routing in this paper.

®Such a user is said to have elastic traffic.

^This is equivalent to selecting its rate Xi and agreeing to paypi = Xi •Xi.



over Pi > 0

The network, on the other hand, given p= (pi,i €I), attempts to maximize the sum of weighted
log functions EiexPi log(a:i). Then the network's optimization problem can be written as follows [9].

NETWORK(A,C;p) :

maximize ^Pilog(a;i) (3)
iei

subject to A^x < C

over a; > 0

Note that the network does not require the true utility functions (Ui(-),i €X), and pretends that
user z's utility function is pi •log(re,) to carry out the computation. It is shown in [9] that one
can always find vectors A* = (AJ,i 6 X),p* = (pf,i 6 X), and x* = (x\,i GX) such that p\
solves USERi{Ui;X*i) for all i £ X, x* solves NETWORK{A,C\p*), and pj = x\ •AJ for all
26 X. Further, the rate allocation x* is also the unique solution to SYSTEM{U,A^C). This
suggests that the problem of solving SYSTEM{U^A^C) can be achieved by an algorithm that
solves NETWORK(A,C\p(t)) for a given p{t) at time t on a smaller time scale, and drives p{t)
to p* on a larger time scale.

Another important aspect of a rate allocation mechanism is fairness. There are many different
definitions for fairness, the most commonly accepted one being max-min fairness. Arate allocation

is max-min fair if a user's rate cannot be increased without decreasing the rate of another user

who is already receiving a smaller rate. In this sense, max-min fairness gives an absolute priority
to the users with smaller rates. However, often in order to achieve a max-min fair allocation the

optimality ofthenetwork needs to besacrificed as discussed in [16]. Inorder to handle this tradeoff

between fairness and optimality Kelly [9] has proposed another definition of fairness. A vector of

rates x' = (rcj, i 6 X) is said to be weighted proportionally fair^ with weight vector p ifx' is feasible,
i.e., a; > 0and Ai^x' < C, and for any other feasible vector a;, the following holds:

EXi Xi
i6l *

Note that a rate allocation xsolves NETWORK(A, C\p) ifand only ifit is weighted proportionally
fair with weight vector p.

Let us demonstrate the differences between max-min and proportional fairness by an example.
Clearly max-min and proportional fairness are the same in a single link case. Thus, we consider a

®This is called rates per unit charge are proportionally fair in [9]



User 1 User 2

User 3

Figure 1: Max-min and proportional fairness.

multiple link case. Consider the example in Figure 1. There are three users that share the network

with two links. One can easily see that the unique max-min fair allocation in this example is

(a;i,a;2,a;3) = (5,5, 5), and every user receives the same rate. By solving NETWORK(A, C; 1),

where 1 is a vector, whose elements are all 1, one can show that the proportionally fair allocation

is (a;i,a;2,2:3) = (|, j). Note that the sum of rates received from all links is the same for all users

under the proportionally fair allocation.

3 Related Work

In this section we briefly describe some of the past work we draw upon and discuss how it is related

to the problem we address in this paper.

3.1 Rate-based Algorithms

Based on the idea of proportional fairness Kelly et a/.[10] have proposed two classes of rate-based

algorithms that solve a relaxation of SYSTEM{U^A^C) problem. These algorithms are based on

the idea of shadow price charged at a resource, which is a function of the total rate going through

the resource. We describe one of the algorithms, which they call the primal algorithm^ in this

subsection.

Suppose that every user adopts a rate-based flow control. Let Wi and Xi{t) denote user i's

willingness to pay per unit time and its rate at time t, respectively. Now suppose that at time t

each resource j € J charges a price per unit flow of fjLj{t) = Pj(E,i:jeJi^iW)^ where pj{-) is an

increasing function of the total rate going through it. Consider the system of differential equations

d
—Xi(t) = «(u;i - rciW (4)

where

dt . _
3^Ji

=Pi( Z!



These equations can be motivated as follows. Each user first sets a price per unit time it is willing

to pay. Then, every user adjusts its rate based on the feedback provided by the resources in the

network in such a way that at an equilibrium the price it is willing to pay equals its aggregate

cost. The feedback from a resource j ^ S can be thought of as a congestion indicator, requiring a

reduction in the flow rates going through the resource.

Kelly et al. show that, for fixed Wi, under some conditions onpj(-),j GJ, the above system of

differential equations converges to a point that maximizes the following expression

= Pj{y)dy.
i j -'o

Further, if the users update their willingness to pay Wi{t) according to

Wi{t) =Xi{t) •Ul{xi{t))

while Xi{t) evolves according to (4), then x{t) converges to a unique stable point that maximizes

the following revised expression

Note that the first term in (5) is the objective function in our SYSTEM(U, A, G) problem. Thus,

the algorithm proposed by Kelly et al. solves a relaxation of the SYSTEM{U,AjC) problem.

UM =E - E F""'" Piiy)<iy- (5)
« jt ^ 0

3.2 TCP and a Fair End-to-end Congestion Control Algorithm

Unlike a connection with a rate-based congestion control algorithm, a TCP connection adjusts

its rate by updating its window size, based on the estimated congestion state of the network.

There are several different versions of TCP, which can be categorized into two classes, based on

their bandwidth estimation schemes. TCP Tahoe and Reno use packet losses as an indication of

congestion in the network, while TCP Vegas [2] and the algorithm proposed by Mo and Walrand

[18] use the estimated queue size to adjust the congestion window size®.

Over the years researchers have observed that the most widely used versions of TCP, which are

TCP Tahoe and Reno, exhibit several undesirable characteristics such as a delay bias and a high

packet loss rate [5, 6, 17]. In order to deal with these issues Mo and Walrand [18] have investigated

the existence of a fair window-based end-to-end congestion control algorithm that updates the

congestion window size more intelligently.

®We call these loss-based and queue-based TCP, respectively.



We first present a fiuid model of the network that describes the relationship between the window

sizes, rates, and queue sizes. Throughout the paper we assume that the switches exercise the first-

in-first-out (FIFO) service discipline. This model can be represented by the following equations:

A'''x-C < 0 (6)

QiA^x-C) = 0 (7)

X{AC'q+ d) = w (8)

> 0, (9)

where

C=(Ci,...,Cj)^,g = (gi,...,gj)^,

d = (Ji,...,J/)^,iy = (iui,...,it;/)^,

X = diag(x), C = ^..., Q —diag[q)^

Wi is the congestion window size ofuser i, ^ is the propagation delay ofroute not including the

queueing delay, and qj denotes the backlog at link j buffer. For simplicity of analysis we assume

that the buffer sizes are infinite. The first condition in (6) represents the capacity constraint. The

second constraint says that there is backlogged fiuid at a resource only if the total rate through it

equals the capacity. The third constraint follows from that the window size of connection i should

equal the sum of the amount of fiuid in transmit and the backlogged fluid in the buffers, i.e.,

Wi=Xi'di-{- q\

where q^ denotes connection i's total backlog in the buffers.

Let W = [O.wi^rnax] X • • • X [0,wj^max], where Wi^rnax is connection i's maximum conges

tion window size announced by the receiver and is assumed to be sufficiently large, and X =

[0,minjgj^ (7j] X• • • X[O^minj^j^ Cj]. It has been shown in [18] that the rate vector a: is a well

defined function of the window sizes w, and we can define a function W that maps a window size

vector 10 G W to a rate vector x e X.

Under the (p,l)-proportionally fair algorithm by Mo and Walrand [18] each connection has a

target queue size Pi > 0 and attempts to keeppi packets at the switch buffers. Let di{t),Wi{t)^ and

Xi{ty^ denote the round trip delay, the congestion window size, and the rate of connection i at

time t, respectively. Suppose that each connection i has a fixed target queue size pj. Connection i

updates its window size Wi{t) according to the following differential equation

—w(t) =
dt * di{t)wi{t)'

^We use Xi{t) to denote x,•(«;(<)) when there is no confusion.



where « is some positive constant, and Si{t) —Wi{t) —Xi{t) •di —pi. Under this algorithm the
window sizes converge to a unique point w* such that for alH € I

w* - Xi{w*)' di = Pi,

where Xi(w*) is connection i's throughput when the window sizes are w*. They show that at the

unique stable point w* of the algorithm the resulting allocation x('w*) is weighted proportionally
fair.

Suppose that users update their window sizes according to the following system ofdifferential

equations

d
—= -KXi(t)si(t)ui(t),

where

and

Si(t) = Wi(t) -Xi(t)'di- Pi

PiUi(t) = di - (a-1)
feW + 1)"*

This algorithm is called a (p, a)-proportionally fair algorithm. They prove that the above algorithm

converges to a unique stable point of the system for all fixed a and the max-min fair allocation is

achieved as a limit as a oo. However, since their work is motivated by the fundamental question
of the existence of a fair end-to-end congestion control mechanism, they have not considered the

problem ofmaximizing the aggregate utility of the users, while maintaining fairness.

4 Pricing Scheme for Charge-Sensitive TCP

The algorithms suggested in [10, 7] are based on the assumptions that the network can provide the

necessary feedback to the users, and users adjust their rates based on the feedback information.

However, in the current Internet, many, ifnot most, connections use TCP, which isa window-based

congestion control mechanism, to control their rates. Thus, users control the rates only through

the window sizes.

There are several arguments for a window-based congestion control algorithm in the Internet

over a rate-based algorithm. One of the arguments is the stability of the Internet. Suppose that

users use a rate-based congestioncontrol algorithm. If they have incorrect estimates of the available

bandwidth and release packets into the network at a rate that is much higher than they should, the



network could temporarily experience an extremely high packet loss rate due to buffer overflows

and may take a long time to recover from it. A window-based congestion control algorithm not

only controls the transmission rate, but also limits the maximum number of outstanding packets

according to the congestion window size. This helps alleviate the long term effect of the inaccurate

estimation of the available bandwidth by the users. This is an important advantage of a window-

based algorithm. In an open system such as the Internet, it is important to control the number of

packets the connections can keep within the network for stability and to ensure that no users can

arbitrarily penalize other users by increasing their rates during congestionperiods due to incorrect

estimates.

4.1 Pricing Scheme

Section 3.2 tellsus that, given (pi, zGX), the users canreach a solution to NETWORK(A,C;p) ViSiXig

a window-based congestion control mechanism, namely the (p, l)-proportionally fair algorithm of

Mo and Walrand. Throughout this subsection, we refer to this (p, l)-proportionally fair algorithm

when we say TCP. The challenge now is to design a mechanism that drives the users to the right

p* where the resulting rate allocation solves SYSTEM(U,A^C). In this subsection we describe a

simple pricing mechanism that can achieve this. Weshow that the price a user pays can be directly

computed by the user without any feedback from the network, by using the same mechanismalready

built into TCP.

When the total rate through a link is strictly smaller than its capacity there is no congestion,

as each user receives its desired rate without contention from other users. However, when the total

rate reaches the link capacity, any increase in a congestion window size by a user i in an attempt

to increase its own rate results in increased backlog at the resource. This leads to higher queueing

delay at the resource. If the users are delay sensitive this increase in queueing delay represents

an increase in the implicit^^ cost the users pay through larger delay. Prom the perspective of the

network, this increase in queueing delay may be interpreted as an increase in undesirabledelay cost

for the system. In other words, the queueing delay caused by a user can be interpreted as the delay

cost it imposes on other users [15].

Suppose that the network attempts to recover the increase in system costdue to queueing delay

through a pricing mechanism as follows. Let qjJ 6 J, denote the backlog at resource j. When

the total rate through the resource is strictly smaller than its capacity, we assume that there is

no backlog, from (7). When resource j e J is congested, i.e., the total rate through it equals its

say the cost is implicit because the users do not necessarily have to pay in monetary form.

10



capacity, the resource charges a price, where the price per unit flow gj is the queueing delay at

the resource, i.e., gj = Hence, the total price per unit flow for a user with route Ji C J is

9j, and the total price per unit time user i pays is re,- • gj. Then, thenet benefit or the
objective function of the user is given by

Ui{xi) -Xi-Y^gj =Vi(xi) -Xi- ^ (10)
jeJi jeJi

We have, however, claimed that no information is explicitly fed back to the end hosts from the

network. Hence, the switches are not allowed to send any information regarding the current price

per unit flow back to the end users.

Inorder to maximize the objective function in (10) given the current prices per unit flow^ a user

only needs to know the totalprice perunit flow ofits route, but not the price at each resource. We

now show that users using TCP can compute their prices per unit flow without any help from the

network. Suppose that each connection knows the propagation delay of its route. In practice this

is done by keeping track of the minimum round trip time of the packets [2, 17]. Suppose that the

target queue sizes ofthe users are given by p = (pf, i GX), and the users' window sizes converge to

the stable point of TCP, where the resulting rates are weighted proportionally fair with the weight
vector p. Then, the price per unit time user i pays, hi, can be computed as follows:

= X) •^= X! S 9i =Pi. (11)
jeJi jej, j£ji

where gJ- is connection i's queue size at resource j. Here we have implicitly assumed that the queue
size of each connection at a congested resource is proportional to its rate, which is a consequence
of the assumption that the switches exercise FIFO service discipline. Therefore, at the stable point
ofTCP for a fixed p, theprice ofa user equals its target queue size, and the user can infer its own

price from its target queue size. This eliminates the need for any feedback from the network. One

thing to note is that the rate of a user depends not only on its own target queue size, but also on

those ofother users. Hence, the prices per unit flow at the resources depend on the congestion level
in the network.

One important aspect of a pricing scheme is fairness. The price a connection pays for using

resource j E J should be proportional to its rate. In other words, the price per unit flow for each

connection at a resource, should be the same. This is obviously the case with the above pricing
scheme. Moreover, it is easy to see that when a new user comes into the network, the price thenew

user pays is exactly the increase in the total system cost, i.e., the increase in the total queueing

delay experienced by the packets. This can be seen from that the price user i pays per unit time

11



equals its target queue size pi and the total system cost per unit time is given by

= EQ|- = E® =EPi-
3^j jeJ jeJ iex

Therefore, the fairness of the pricing scheme is automatically guaranteed.

In the following two sections, based on this pricing mechanism, we propose two algorithms that

can be deployed over the current Internet without an extensive modification inside the network. All

that is required is a modification of the already existing TCP at the end hosts. We demonstrate,

using a fluid model, that at an equilibrium of the algorithm the resulting rates are the optimal

rates that solve SYSTEM{U,A,C).

5 Algorithm I

In the previous section we have analyzed the case where users have fixed their target queue sizes

P— (Pi)i € X). However, as more intelligence is embedded in end systems in the future, the users

may be able to vary the parameters pi,i € X, to maximize their net utility given by (10). In this

section we propose a user algorithm and show that this algorithm has a unique equilibrium, at

which it yields the optimal rates that solve SYSTEM(U, A, C).

For the rest of this paper we assume that the utility functions satisfy the technical assumptions

of Appendix A. These assumptions are satisfied by the most commonly used utility functions such

as U(x) = a • log(a; + 6) and U(x) = c - x*^, where o > 0, 0 < 6 < 1, c > 0, and 0 < d < 1 are

arbitrary constants.

Suppose that e is some small positive constant and users update their willingness to pay or price

Pi, i 6 X, at time t according to

PiA^) =
Pi(Ai(t )) ifpi(Ai(i ))>€

{12}
e otherwise

where Ai(t~) is the price per unit flow along user i's route at time t~ andPt(A) = argmaxp,. Ui(^) —

Pi. We assume that the price updates take place on a much larger time scale, while users allow their

window sizes to converge to a point close to the imique stable point of TCP for fixed (pi(t), 2 GX).

This is a natural assumption since the window sizes typically take only seconds to converge and

users are not likely to keep changing their parameters before estimating the cmrrent throughput.

The intuition behind the updating rule is as follows. At time t, based on the price per unit flow at

time t~, user i computes its optimal price that maximizes its net utility. If the current price per

unit flow is too high user i prefers to wait till the price per unit flow is lower. In such a case user

12



i needs to probe the network for the available bandwidth and price per unit flow along its route.
In order to measure the residual bandwidth not used by the other users, if there is any, and the
price per unit flow, user i needs to set its window size large enough so that it utilizes all residual

capacity not taken by the other users. Hence, we assiune that user i sets the target queue size,
which is its willingness to pay in our model, to some small positive constant e that is arbitrarily
small, so that each user can estimate its well defined price per unit flow along the route, which is

strictly positive. We now consider the limit as e4. 0, where (12) can be written as

Pi{t) = axgm^Uiij^^) - Pi
^ I 0, if Ai(r) >Ul(0)

Pi such that = Ai(r), if 0< Ai(r) < 17/(0)

where C//( ) = The updating rule in (13) can be motivated as follows. If the price per unit
flow Ai is larger than or equal to 17/(0), then user i receives a negative net utility from any positive

Pi. Thus, user i should wait till the price per unit flow is smaller than 17/(0). If the price per
unit flow Ai is strictly smaller than 17/(0), then there exists a unique solution to the USERi(Ui\ A,)
problem in (2). This solution is the unique pi such that U[{^) = Aj, which maximizes user i's net
utihty. Hence, user i should set its price to suchpj.

Equation (13) implicitly assumes that a user does not anticipate the efiect of its own action on

prices [10] and updates its parameter in a myopic manner. This is a reasonable assumption when
the size of the network is large and each user occupies at most a small fraction of a resource in the

network or when a user cannot correctly compute the price per unit flow as a function of its own

Pi. In some simple cases, however, users may be able to correctly estimate the effect of their own

actions on the prices. This is discussed in [12].

Let us define a mapping T :V-^Vtohe

Ti{p) =argm^ ~Pi (14)

where V = and A(p) is the price per unit flow vector at the unique stable point ofTCP with

price vector p. Afixed point p* ofthe mapping T is a vector inVsuch that T(p*) = p*.^^

(13)

12rThe fixed point of this mapping should be interpreted as the limit of a sequence of fixed points p(n) of the
mappings Te(„), where

T()(p) =/ P<.«('>)(Ai(p)) if P<(A<(P)) >€(n)
( 6(n) otherwise

and e(n) J, 0.
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Theorem 1 There exists a uniquefixedpoint p* of the mapping T, and the resulting rate allocation

from p* is the optimal rate allocation x* that solves SYSTEM{UyA,C).

Proof: The proof is given in Appendix B. •

Theorem 5 tells us that when the users adopt the algorithm given in this section, at an equilibrium

where no user i changes its parameter pi the resulting rate allocation coincides with the system

optimal rate allocation. This demonstrates that solving SYSTEM{U, A, C) could be accomplished

using a simple window-based TCP algorithm in a distributed environment with no additional

feedback from the network.

Figure 2: Single bottleneck case.

A natural question that arises now is whether or not the user prices GI, converge to the

unique fixed point of the mapping T. Due to the complex relationship between the price vector

and the resulting rate allocation, showing the convergence of users prices in a general network is a

challenging problem. In this section we only show the convergence of user prices in the case of a

single bottleneck fink, i.e., every user has only one and the same bottleneck link. In such a single

bottleneck case the price per unit flow is same for all users. Hence, each user updates its price

based on the current price per unit flow of the system. Suppose that the current price is p 0 and

P*' = JliPi- Let

Piip^) = arg m^ Ui{-^) - pi,
Pi€Ti A

n' - . • • •whereA= ^, C is the capacityof the bottlenecklink,and Vi = [0,Pmax]- HerePmax representsuser

i's budget constraint, which is assumed to be sufficiently large so that the constraint is not active at
pi

the equilibrium. We assume that there exists at least one i EX such that 17/(0) > Xmax —

and that the initial price vector is such that p*(0) = SiPi(O) > 0. This ensures that p(n) ^ 0 for

all n > 1.

Consider the following update scheme. We first assume that all users are synchronized and

model the user updates with a discrete-time model. At each period n > 1, every user i updates its

price based on its rate Xi{n —1) and price Pi{n —1) as follows:

+ (15)
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where pi(n) = argmaxp,e^. Ui(j^^) - A(n - 1) = and p\n - 1) = EiPi(n - 1)-
Once every user finishes updating its price, they wait long enough till the window sizes converge.
After window sizes converge, the users repeat the above update procedure, based on the new rate

allocation and prices Pi(n). This is called the Jacobi update scheme.

The following theorem tells us that the user prices p(n) converge to p* under the Jacobi update
scheme.

Theorem 2 In a single bottleneck case the user prices p{n) = (pi(n), ...,p/(n)) converge to p* =
as n ^ GO under the Jacobi update scheme, i.e.,

lim p(n) = p*.
n-^oo

Proof; The proof is given inAppendix C. ^

In practice, however, the network users are almost never synchronized. Hence, it is important to
show the convergence of user prices under an asynchronous update scheme with possibly delayed
information. In other words, users do not necessarily update their prices simultaneously and some
users may not have an access to the most recent value ofthe price per unit flow (possibly due to
still fluctuating window size) and may decide to use an old value instead.

Let Ti be the set ofperiods at which user i updates its price, and

Pi(n + 1) = pi(n) + ^ ^

where 0 < ri(n) < n. We assume that the sets T\i 6 X, are infinite and if {71^} is a sequence of
elements in T* that tends to infinity, then

lim Ti(nk) = 00.
4oo

The update scheme described here is called a totally asynchronous update scheme [1].

Theorem 3 In a single bottleneck case the user prices p{n) = (pi(n), ...,p/(n)) converge to p* =

(Pij ••••>?}) as n 00 under the totally asynchronous update scheme.

Proof: The proof is given in Appendix D. n

Anumerical example of the convergence of user prices to the unique fixed point of the mapping
r with utility functions of 17(xj) = ai •log(xi + bi),ai > 0 and 0 < fej < 1 is given in section 7.
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6 Algorithm II

The algorithmdescribed in section 5 assumes that the users^^ explicitly computethe optimal prices

based on the cinrent prices per unit flow and use the (p, l)-proportionally fair algorithm to solve

the NETWORK(A, C; p) problem with the given prices p = (pi,« G X). In other words, the

problem is formulated as a discrete model where, given the prices per unit flow from the previous

period n— 1, users solve USER{Ui; Xi{n —1)) for period n. Then the (p, l)-proportionally fair

algorithm is used to drive the users to the solution of NETWORK(A, C; p(n)). However, there

are a few implementation issues that need to be addressed. First, since (p, l)-proportionally fair

algorithm converges asymptotically, the users need to know how long they should wait before

updating their prices again or how often they should update their prices. Second, even with

increasing computational power, it may still require non-negligible amount of CPU time to solve

USER{Ui;Xi).

In this section we introduce an algorithm that does not require a computation of the optimal

prices, but the users' preferences are implicitly reflected in the window size updating rule. Suppose

that the users update their window sizes according to the following system of differential equations:

= -K •Mi(t). nit) (16)

where

^ di H- Ui(xi(t)) Xi(t)' Ui'(xi(t))
* di{t)

^i(*) = di(t) = = di + is the backlog at resource

j at time t, and

= zim
_ , _ Xi{t)di ^ Xi{t)Ul{xi{t))

Wi{t) Wi{t) •

Note that user i's utility function appears in both Mi{t) and ri{t).

The following theorem states that the algorithm given by (16) - (18) converges to the unique

stable point, where the resulting rates solve the SYSTEM(U, A, C) problem.

Theorem 4 Let V(w) = Then V is a Lyapunovfunction for the system of differential

equations (16) - (18). The unique value minimizing V is a stable point of this system, to which all

trajectories converge.

practice an agent at the end host may carry out the computation on behalf of the user.
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Proof: The proof is given in Appendix D. ^

Insections 5and 6for the purpose ofanalysis we have assumed that users are delay insensitive.

However, if the users are sensitive to delay and the cost due to queueing delay is given by hi in

(11), then the algorithm does not require any pricing mechanism. Recall that the purpose of the
pricing mechanism is to impose the system cost due to queueing delay on the users in an incentive-

compatible way. In this case when users maximize their utihty functions with explicit delay cost,

the resulting rate allocation at an equiUbrium is the optimal rate allocation.

7 Numerical Examples

In this section we give a numerical example of a simple network and demonstrate the convergence
of users parameters through simulations. The simulations are run using the Network Simulator

(NS) developed at Lawrence Berkeley Laboratory (LBL) and UC Berkeley.

7.1 Algorithm I

Although the convergence results for the first algorithm have been proved only for single bottleneck
cases, the simulation results indicate that the user rates converge to the system optimal rates even

in general networks with the utihty functions satisfying the assumption 1 in the previous section,
convexity ofPi(Xi) in Aj, and an appropriate damping constant M.
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Figure 3: Topology of the simulated network and the users' routes.

The topology of the simulated network is shown in Figure 3. There are 11 users that share the

network. The source-destination pairs ofthe users are given in the figure, and the capacities and
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user Ui(xi) x\ (Mbps) Pi

1 5 log(x + 1) 0.584 4.932

2 7 log(a; + 1) 0.283 6.808

3 9 log(x + 1) 0.521 8.864

4 6 log(a; + 1) 0.724 5.934

5 8 log(a; + 1) 1.076 7.941

6 10 log(a: + 1) 0.424 9.815

7 4 log(x + 1) 0.459 3.931

8 7 log(a; + 1) 1.500 6.963

9 10 log(a: + 1) 1.175 9.932

10 12 log(x + 1) 0.492 11.808

11 9 log(x + 1) 0.521 8.864

Table 1: Utility functions of the users and the optimal rates and prices.

the delays of the links are indicated by the numbers next to the links. The utility functions of the

users are given in Table 1. Each connection updates its price after it receives the acknowledgement

for the fci-th packet after the previous update. Hence, the price updates are not synchronized due

to different round trip delays. For the simulation we have set /sj = 25, «; = 0.1, and the damping

constant M = 5 for all connections. Packet sizes are fixed at 1,000 bytes.
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Figure 4: Convergence of user prices and rates.

The prices and rates of some of the users are plotted in Figure 4. The dotted lines in the

plots represent the optimal rates and unique equilibrium prices, respectively. These plots clearly
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demonstrate the convergence of the users' prices and, thus, the rates to the system optimum.

7.2 Algorithm II

I: c^B^B3•B4•B5«S

2:c^B^B9•B10•B6-c6
3:el-Bl'B9.Bll.B5^
4:cl-Bl-B8-B7-B6^
5:e3.B3-B9.B10-B7.«7
6:e^B2.B^B»«8
7:el-Bl.B2^
8:e3>B3-B4.S«5
9:e2•B^B3.4.B5H:S

SI,S9

IO:e2.B2-B9-B10-B6.c6
11:c1.B1.B9-B1I-B545
12:e4-B4.B5-B6.B7-e7
13:e4.B4.BII-B10.B8<8
14:e2.B2-Bl-BS-B7.e7
I5;el-Bl-B8-B747

I6:e3-B3-B2-Bl-B8.c8
l7:e3-B3-B4-BS-B6.c6
I8:e4-B4-BU.BI0-B848

DI,D9

Figure 5: Topology of the simulated network and the users' routes.

The topology of the second simulated network is given in Figure 5. There are 18 users that

share the network, and the routes ofthe users are as listed in Figure 5. The capacities and delays

of the links are given next to the links in the figure. Table 2 has the utilities functions of the users.

In this simulation each connection computes iWi(t) and 7'x(t) after receiving the acknowledgement

for each packet and updates its window size according to (16). The parameter k is set to 0.1 for

all connections. Packet sizes are fixed at 1,000 bytes. The simulation is run for 500 seconds.

The evolution of the prices and the rates ofusers 1, 3, 5, 7, 9, and 11 are plotted in Figure 6.

Although the optimal rates and the equilibrium prices axe not plotted, one cansee that users' rates

converge to a region around the optimal rates and the prices converge to the unique equilibrium.

Since the users use instantaneous values of the rates and the queueing delays, their rates oscillate

slightly axound the optimal rates.

The convergence rates of the algorithms obviously depend on the parameters such as k emd

the damping constant M. The examples in this section indicate that it could take several minutes

before the users converge to the equilibrium. This slow convergence is, however, due to the fact
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user Uiixi) user Ui(xi)

1 0.7a;0-35 10 0.7a;°-32

2 0.7a;0-28 11 0.7x0-29

3 0.7a;0-39 12

p

P

to

4 0.7a;0®5 13 0.7x0-39

5 0.7a:0-50 14 0.7x0-82

6 15 0.7xO-'̂ 9

7 0.7a;0-42 16 0.7x0-50

8 17 0.7x0-^9

9 O.7a;0'*o 18 0.7x0-49

Table 2: Utility functions of the users.

Figure 6: Convergence of user prices and rates.

that all users staxt from the initial condition together. Suppose that a user enters a network with

many users that is already in an equilibrium with the existing users. Then, the simulation results

suggest that the system takes only a few seconds to converge to the new equilibrium because the

arrival of a new user does not perturb the existing users too much. This allows the new user to

quickly estimate the price per unit flow of its route and reach the equilibrium. Due to the size of

the Internet and a large number of users, if the arrivals and departures of the users are reasonably

frequent, we expect the system to remain close to an equilibrium at any given time.
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8 Controlling the Backlog and Queueing Delay in the Network

In the previous sections for simplicity of analysis we have assumed that the buffer sizes at the

resources are infinite. In the real network, however, the buffer sizes are finite and there may be

packet losses due to temporary buffer overflows. In this section we discuss how our pricing scheme

and algorithms can be extended to cope with these packet losses.

Inour pricing scheme we have assumed that theprice perunit flow charged by a resource j is the

queueing delay at the resource. Suppose that the price per unit flow at a resource isproportional to

the queueing delay, i.e., gj = a •^, where a > 0, but not necessarily equal to the queueing delay.
In this case the users face the same user optimization problem, except that now the target queue

size should be set to its willingness to pay divided by a. More specifically, in the first algorithm

the target queue size pi ofthe (p,l)-proportionally fair algorithm should be set to a~^ 'Pi(X), where

Pi(A) = argmaxp. -pi, and in the second algorithm Ul(xi(t)) and Ul'{xi{t)) in (17) and (18)
need to be replaced by •Ul{xi{t)) and •C7/'(xi(t)), respectively. One can show that under

this more general pricing scheme and modified algorithms, there exists a unique equilibrium ofthe

algorithms, and at the equilibrium the resulting rates are the optimal rates that solve SYSTEM(U,
A, C). In other words, the equilibrium prices and resulting rates are invariant under change of a.
One consequence of this is the following. Because the equilibrium prices are the same for all a >

0, the target queue sizes of the users are inversely proportional to a. Therefore, by increasing a we
can arbitrarily reduce thetarget queue sizes ofthe users and, hence, thebacklog inside the network.

Further, as a goes to oo, one can see that the queueing delay goes to 0 for all users because the

target queue sizes of the users go to 0. What this means in practice is that a can be chosen to

ensure that packet losses are negligible even when the buffer sizes are finite.

9 Conclusions

In this paper we have investigated the fundamental problem of the existence of an algorithm that

achieves the system optimum in a distributed network without any explicit feedback from the

network elements to the end hosts. We have described a pricing scheme and two algorithms that

solve the system problem at the unique equilibrium point ofthe algorithms. We have demonstrated

that our algorithms are incentive compatible and do not require any feedback from the network,

making them easy to deploy. Moreover, they achieve weighted proportional fairness. We have

proved the convergence of the first algorithm to the optimal rates in a single bottleneck case under

both synchronous and asynchronous update schemes under some mild technical assumptions on the
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utility functions. The second algorithm is proven to converge to the system optimum in any general

network. A few numerical examples are given to demonstrate the convergence of the algorithms in

simple networks.

In this paper we have assumed that the routes of the users are fixed. However, if the network

charges the users based on the congestion level along the route of the connection, the network

should ensure that no users get preferential treatment or penalized through the selection of the

routes. For instance, the routing has to be done in such a way that no user is routed through a

path that has the highest price per unit fiow among the available paths, while other connections

are routed through the cheapest path.

We are currently attempting to design a mechanism that uses measured packet loss rates to

solve the SYSTEMfU, A, C) problem, instead of the queueing delays. We are also working on

how one can solve a system problem with a different objective function, such as the total revenue,

using a distributed window-based algorithm. Another interesting question that remains is how the

algorithm described in this paper can be extended to provide different quality of service (QoS).
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A Assumptions on the Utility Functions

Assumption 1 pi{Xi) is decreasing in Af > 0, where Pi(Xi) —argmaxp. Ui{^) —pi.

\ 2Mp*'-2(M-l) p'

Figure 7: Assumption 2.

Assumption 2 There exists M > 0 such that

(i) for all p^ < p*^,p^(p^) < 2Mp*^ —(2M —l)p^

(ii) for all p^ > > 2Mp*^ —(2M —l)p'

where p^ =T,iPuP*^ =EiK= HiPiiP^), and pi{p^) =argmaxp/ Ui(^) -pj,

Assumption 3 Utility functions of the users satisfy the following:

U[{xi) + Xi •U"(xi) >0, Xi G[0, C*],

where = miuj-gj; Cj.

B Proof of Theorem 1

At an equilibrium p* of the algorithm, where user prices stay constant, we have the following:

1. pj = • AJ, where x* and A* are the resulting weighted proportionally fair allocation with

weight vector p* and the price per unit flow vector, which is strictly positive.

2. X* solves NETWORK{A,C]p*).

3. Pi solves USERi{Ui] A*) for all z GI.

4. Pi solves USERi{Ui\ A|) for all z GX.
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(1) follows trivially from that pl = x\ •AJ by definition. (2) holds at the unique stable point of

TCP with fixed p* [18]. (3) is true by the construction ofthealgorithm. Furthermore, any p* with

its corresponding A* and x*, that satisfies (l)-(3) is an equilibrium of the algorithm. By Theorem

2 in [9], the existence ofsuch p* is guaranteed and the resulting rate allocation x* is the unique

solution to SYSTEM(U,A,C).

The uniqueness of equilibrium point can be shown as follows. First, recall that there ex

ists unique x* that solves SYSTEM(U,A,C), from the strict concavity of the utility functions.

From the Kuhn-Tucker conditions, which are the necessary and sufficient conditions, pi solves

USERi(Ui\Xl) if and only if it satisfies

Pi >0 => Ul(^) =K
Pi = 0 =t> (7/(0) <A^ (19)

Hence, at any equilibrium p* one ctin see that

xt>0 ^ = UUxn = A?

xj = 0 [7/(0) <AJ. (20)

This immediately tells us that there exists a unique fixed point from

ifa:f>0
p:=X* •a;

0 if x; = 0

C Proof of Theorem 2

Note that, in a single bottleneck case, updating scheme of the users depends only on the current
price and price per unit flow A(n) = where C is the bottleneck link capacity. Hence,
in order to show the convergence of p(n), it suffices to show the convergence of p^{n) = SjPi(n) to

= ZiPl

Since we have assumed that Ui{'),i GX, are continuously dffierentiable, one can see that p^{p^)
is a continuous function ofp^. Thus, it suffices to show that ifp(n- 1) ^ p*,

p\n) <|p'(n - 1) for all n>1. (21)

This can be easily shown as follows. Let us discuss two separate cases.

1. A(n) < A*, i.e., p^{n) < p*^ :

In this case we have from (15)

p'(nH-l)=p'(n)-b '̂<"-;;;?^7'<")>p'(n),
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where the last inequality follows from assumption 1. Now we show that

p*(n) < p*(n + 1) <

as follows.

. Pi(n + 1)-Pi{n)p(n + l) = 2^Pi(n) + ——

t/\ 1 •'t / IX•p (n) + ^P (n + 1)
J\^f + 1 M -|-1^

= p".

where the inequality in (22) follows from assumption 2.

2. A(n) > A*, i.e., p^(n) > p*^ :

Using a similar argument, one can show that

p*^ < p^{n + 1) < p^(n).

The convergence ofp(n) follows from that p^{p) is a continuous function of p and assumption 2.

D Proof of Theorem 3

We first show that there is a sequence of nonempty sets {V{n)} with

••• CV{n + l) CV{n) C ••V(0) CP,

where V = Vi x • • • x P/, satisfying the following two conditions:

1. Synchronous convergence condition : we have

T(p) G P(n+1) for all n and p G V{n).

Furthermore, if {p*^} is a sequence such that p^ GP(A:) for every k, then every limit point of

{p*^} is the unique fixed point of the mapping T.

2. Box condition : for every n, there exist sets Pi(n) C Pj such that

P(n) = Pi (n) X • • • XP/(n).
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From the assumption there exists at least one i € J such that 17/(0) > Xmax = . Thus,

we know that p^(k) > 0 for all A; > 1.

Let V(0) = [inin{pi(0),pi(A„jai)}, pLxI- Define for all n > 1, V'{n) = {T'{p) \p e V(n - 1) },

where

Ti{p)-Pi+ •

Take the projection for each i GX

'PiM = {Pi IPi is the i-th element ofp GV'{n)},

and define

V{n) - Xi^xViin).

Then, V'in) C V'in - 1) and, hence, V{n) C V{n - 1). Further, one can show that V{n) satisfies

the synchronous convergence condition. From its construction V{n) satisfies the box condition. The

theorem follows from [1].

E Proof of Theorem 4

We first define interior and boundary points. An interior point is defined to be a window size

vector, around which we can find an open ball such that all the points in the ball have the same

set of bottlenecks. A window size vector, for which we cannot find such an open ball is said to be

a boundary point. One can show that the boundary regions are linear and divide the window size

space into a finite number ofconvex regions. Hence, ifw{t) isan interior point, then for sufficiently

small e > 0, w{t + e) is in the same region as w{t). If uj(t) is a boundary point, then for any

sufficiently small e > 0 w{t + e) is in one ofthe neighboring regions ofthe boundary point.

Recall that V{t) = where

^ /.X _ Mt) - Xi(t){di + Ui(xi(t)))
1 ~ TTT •Wi{t)

We show that for small € > 0,

V{t + e)-V{t)= r'̂ {t)Jr{t)(w{t + e) - w{t)) + o(e), (23)

where Jr{t) is the partial derivative

Jr{t) —
dri . .

which depends on the region in which w{t + e) is.

We first state a claim that will be used in the proof.
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Claim 1 At an interior point wthe partial derivative Jx = [^,i,J €xl is given by

Jx = D-\I - XAb(AIxD-^Ab)-^AID-^). (24)

Proof: We first show that the mapping W from the window sizes to the rates is difierentiable

at the interior points. Suppose that lo is an interior point and x = W{w). Let B be the set of

bottlenecks at w. We consider two cases.

Case (1) Ab has full rank, i.e., rank(AB) = B = |B|, where Ab is the submatrix of A with columns

corresponding to the bottlenecks. Let

9B(q'BM = - C'b, (25)

where

%i) *

and Ai. is the i-th row oi Ab- We use q'̂ to denote the queueing delays, not queue sizes that are

denoted by 95. We define

where

'̂ 9q -

uqj oqj ^

= -A
"'''{dm + EkAm,kq'k)^

- •^rn,iAm,j T / / x i
m "mWB/

where dm (9b) —dmAm- •9b- written in a matrix form as

Jg, = -AIXD-^Ab, (27)

where D —diag(di, •••, d/).
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Onecan easily show that Jg^ is nonsingular because As is positive definite. Therefore,

by the implicit function theorem, differentiable [19], and so is x{(^g,w) from (26). Further,

from the implicit function theorem.

Jq{w) =

'̂ gw —

dwi

where

jJ 1, • • •, B, j G X

dg, .

= A^D~^ from (25).

Thus,

J,H = (AIxD-^Ab)-'AId-K (28)

Case (2) rank(AB) = 7 < B. Let BC Bsuch that rankiA^) = 7 and \B\ = 7. Then, applying the

implicit function theorem to Qq as defined in (25) yields the difierentiability oix{q'g,w). One can
show that x(q'g,w) is the unique solution of gs as follows. Since we delete dependent rows from

ifXis a solution ofA^x —Cq, then it is a also a solution of AlqX = Cb- Since the solution is

unique, x{^g,w) is the solution ofgB- Therefore, the diflferentiability follows.

We proceed to prove the claim with the assumption that Ab has full rank. If not, we can take

Aq as described before and prove the claim. Since Ab has full rank, we know that the queueing

delays are well defined from [18]. First, from (8) for all i e X we have

Wi = Xi{w) •di + Xi(v})Ai.q'Q(w). (29)

If we differentiate (29) with respect to Wj,j GX,

kj = {^iQBM+(k){Jx)i,j-\-Xi{w)(Ai.{Jg).j).

Again, note that Jq is well defined from (28). In a matrix form this is given by

I = DJx + XAbJq^

which yields

Jx = D-\l-XABJq).

Since Jq = (A^jD~^XAb)~^A^jD~^ from (28), we get

Jx = D-\i - xab(aId-^xab)-^aId-^).
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We continue the proof of the theorem. If w{t) is an interior point, then from the algorithm and

that x{w) is differentiable at interior points from the above claim, we have

Jr = DXW-''-DW-^J^ + XU'W-^-W-\U' + XU")Jx

= DXW-'^-DW-^D-^

+DW-^D-^XAb(AIxD-^Ab)-^AID-^

+XU'W-'^ - W-'(i7' + XU")D-^

+W-'-(U' + XU")D-^XAb(.AIxD-^Ab)-^aId-^ (30)

= -W-^XU"D-^ + {D + U' + XU")D-^Ab{A%XD-^Ab)~^AId-'-, (31)

where W = diag(ui(t)), X = diag(a:(t)), D = diag(6!i(t),• ••,d/(t)), D = diag(di,• •• ,d/), U' =

diag(i7{(a:i(t)), •••, Ui{xi(t))), U" = diag(JI{'(xi(t)), •••, U"(x[{t))), and Ab is the submatrix of A

with columns that correspond to bottlenecks at in(t)'^. If w(t) is a boundarypoint, then Ab is the

submatrix of A with columns that correspond to bottlenecks at w(t + e). The second inequality in

(30) follows from that = D-^(I - XAb(A^XD-'^Ab)-^A^D-'^).

Fix e > 0. Define Sw(t,€) = _ Then, since Jr( ) is well defined in (f,t + e] if the

path w(t') follows the straight line between u;(t + e) and w(t) and V(-) is a continuous function of

window sizes, one cem see that

i+c

V{t-h€) —V{t) = J r^{s)Jr{s)Sw{t,e)ds
t

t+e

= J (r(t) +Ar(s))^[JrW+AJr{s)]Sw{t, e)ds,
t

where Ar(s) = r(s) —r(i), AJr(s) = Jt{s) —Jrit)^ s G [<,f + e], and Jr(') is defined as described

above. Then,

t+e

V{t +e) —V{t) = J r^{t) Jr{t) 5w{ty€) ds
t

t+e

+j r^{t) AJr(s) Sw{t^e) ds
t

t+C

+J Ar^(s) Jr{t) 6w{t,e) ds

'For suificiently small e > 0, w{t + e) has the ssmie bottlenecks as w{t).
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Hence, from (32) if r{t) 0,

t+t

+

t

jr

t+e

J Ar^{s) AJr{s) Sw{t^e) ds
r^(t) Jr(t) (iy(f + €) -iu(<))

t+C

+r^(i) •J AJr{s)ds •5w{t,e)
t

t+e

+J Ar^{s)ds •Jj.(t) •6w{t,e)
t

t+C

J Ar^{s) AJr{s)ds •Sw{t, e)+

t

jr= r {t) Jr{t) {w{t -he)- w{t)) + o(e). (32)

40 e e;o e e

= r^{t)Jr{t)w{t)

= -Kr'̂ {t)Jr{t)M{t)r{t) < 0, (33)

where M(t) = D~^{D -hU'-hX •U"). The last inequality follows from that Jr{t)M(t) is a positive
definite matrix for (30). Note that for a boundary point w{t) such that w{t) lies along a boundary
region r {t)Jr{t)w{t) is the same for all Jr{i) with different of the neighboring regions. Hence,
the limit is well defined. Since (33) is true for all t unless Ti(t) —0 for all i GI, the convergence
follows.
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