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Abstract

As shown in [7], optimal control problems with either ODE or
PDE dynamics can be solved efficiently using a setting of consistent
approximations obtained by numerical discretization of the dynamics
together with master algorithms that adaptively adjust the precision
of discretization (in an outer loop) and call finite dimensional opti
mization algorithms as subroutines (in an inner loop). An important
fact overlooked in [7] is that in many discretized optimal control prob
lems both the value and the gradient of the cost function cannot be
computed exactly because they involve the solution of a large linear
or nonlinear system at some stage. As a result, the master algorithms
presented in [7] cannot be implemented efficiently for such problems.

In [7] wefind also a master algorithm for solvingfinite dimensional
optimization problems when both the cost function value and its gra
dient can only be computed approximately. In this paper we present a
new master algorithm model that combines the features of this master
algorithm with those of one intended for infinite dimensional problems
and establish conditions for its convergence.

We implement this new master algorithm using an approximate
steepest descent method for the solution of two problems: a two point
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^LAN, University of Paris 6.
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boundary value problem where the linear system corresponding to the
ODE is solved approximately only, and a distributed control prob
lem in which the discretized dynamics are solved using a Domain
Decomposition algorithm which can be implemented on parallelized
computers.

1 Introduction

In [6], [7] a theory of consistent approximations is presented for optimization
problems as a way of dealing with infinite dimensional problems, such as
optimal control problems with either ODE or PDE dynamics. The theory
provides conditions for a set of discretized problems to be a family of consis
tent approximations together with master algorithms that adaptively adjust
the precision of discretization (in an outer loop) and call finite dimensional
optimization algorithms as subroutines (in an inner loop).

While attempting to solve some optimal control problems with distributed
dynamics (see Lions[3]) using the consistent approximations framework, we
came across a new difficulty which stems from the fact that even the dis
cretized state equation cannot be solved with adequate precision in reason
able time. In such problems there are two precision parameters to control:
the mesh size h, which defines the approximating problem, and the number
of iterations N used by a "solver" in solving the discretized state equations.
Since the parameter N seriously impacts the behavior of optimization algo
rithms as well as the total work needed to solve a problem, it is desirable to
control the two precision parameters individually. We will present an efficient
scheme for doing this in the form of a Master Algorithm Model.

To illustrate the source of the difficulty mentioned above, consider an
optimization problem of the form

(P) 51^/W 0)

where, for example, V = f/^(0,1),

r2

'0
f(v) =J(u(v),v)= f \u(v)-Udfdx, (2)
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and u(v) is the solution of an equation of the form

Cu —Bv (3)

such as

-u"(x) = u(a;)/(o,i), Wx 6 (0,2), u(0) = u{2) = 0 (4)

where Ud is given and /d is the characteristic function of the set D. ^

This problem can be approximated by a finite dimensional problem of the
form

(Pa) min/A(u) (5)
veVh

where 14 the space of piecewise constant functions defined on a mesh for
(0,2), h > 0 is the mesh size,

fh{v) = J{uhiv),Vh), (6)

and Uh{v) is the solution of a discretized equation of the form

ChUh = Bfi. (7)

It is not difficult to show that the problems (Ph.) epi-converge ^ to the
problem (P), as /i -> 0, and that if {u/i} is a sequence of points such that
Vh & Vhj h 0, and u, as /i —> 0, then gra.dfh(vh) grad/(i;) as
h—^0. These facts show that the pairs (P/,, -||grad//i(-)||) form a family of
consistent approximations for the pair (P, -||grad/(-)||), in the sense defined
in Section 3.3 of [7). The important consequence of this is that any accumu
lation point of global optimizers of the problems (P/i) is a global optimizer
of the problem (P). It also follows from the above that if {u/i} is a sequence
of points such that Vh ^ Vh, h 0, Vh v and gr&dfhivh) 0, then
grad/(u) = 0 also.

The fact that the approximating pairs (P/i,-||grad//i(-)||) are a family
of consistent approximations for the pair (P,-||grad/(-)||) lays a basis for
the solution of P by the type of algorithm outlined in Section 3.3 of [7].
Unfortunately, for large problems Ch is a large sparse matrix and it is quite

^See Sec. 3.3in [7] or chap. 7 in [8] for a definition of epi-convergence.



possible that all efficient methods for solving the linear system for Uh{v) are
iterative and, realistically, only a reasonable number of iterations of an iter
ative "solver" can be contemplated. Similar facts apply to the computation
of fh{v) and gr&dfhiv). Hence, as we have already mentioned, we have to
establish new algorithms that can use such approximations.

Wewilldenote by Uh^N{v) the result of N iterations of an iterative "solver"
appliedto the linear system, (7), and we will denote by fh,N{v) the associated
approximation to //t(u). Similarly, we will denote by gra.dj^fh{v) the result
of N iterations of an iterative "solver" applied to the defining equations for
grad//i(u). For instance, if the Gauss-Seidel relaxation algorithm is used to
solve (7), then Uh^i^(v) is the N-ih iterate of recursion

LhvF = BhV - UhU^~^, p = 1,...,N, vP given, (8)

where Lh is the lower diagonal part of C/, and Uh its upper part.

Thus we see that in this case the discretized functions fh{v) are not
computable exactly and, for obvious reasons, neither are their gradients. We
will see later that this is also the case when Domain Decomposition is used
to solve discretized PDE's. A quick reference to Section 3.3 of [7] shows that
the master algorithm models outlined there are not applicable to these cases,
because there are no standard nonlinear programming algorithms that use
approximate function and gradient values, necessitating the development of
a new computational scheme, which we will present in the next section.

2 A Master Algorithm Model

We will construct a new master algorithm model for solving problems of the
form (P), that uses only approximations fh,N(v) and grad^//i(u) to the cost
function fh(v) and its gradient grad/ft(u), by making use of some existing
results in [7]. The relevant results are as follows: First on page 406 in [7],
we find the following Master Algorithm Model 3.3.17 for solving problems of
the for (P), in (2) above, which uses the iteration functions A/, : -> 14,
h E (0, h—i].

Master Algorithm Model 1: Solves (P).

Parameters, u; E (0,1), cr > 0.



Data. h-i 6 5R+, and Vq G V-i.

Step 0. Set z = 0.

Step 1. Compute the largest hi, of the form hi/2^, and such that
hi and

6 (9)

and

- fh,W < -oht . (10)

Step 2. Replace z by z + 1, and go to Step 1. ^

Unfortunately, as we have explained in the Introduction, we may not have
explicit formulas for computing fh{v) and grad//i(z;) and hence we may be
forced to use the limited precision results of N iterations of an iterative solver
for computing these quantities. Consequently, a high precision evaluation of
even a simple iteration map Ah(v), such as

Ah{v) = v- Xgra.dfh(v) (11)

with the step-size A determined by the Armijo rule or by one-dimensional
minimization, can be prohibitively expensive.

Defining, as before. Uh,N{fj)} to be the result of N iterations of a solver
applied to the defining equation (7), we find that

fh,N{v):=J{uh,N{v),v)- (12)

As we will see later, grad//i(z;) is usually determined as a solution of an
adjoint equation. Hence grad^//i(?;) is defined as the result of N iterations
of a solver applied to the adjoint equations. This leads to an approximation
Ah,N{v) to the ideal iteration map Ah{v). For example, the ideal iteration
map Ah{v) defined in (11) has to be replaced by

Ah,N{v) = v- Agrad^/h(u) (13)

where the step-size Adetermined either by a modified Armijo rule of by one-
dimensional minimization.



There is obviously any number of ways of making the parameter N a
function of h, which result in a new approximation to the cost function

(14)

and iteration map
Ah(v) := Ah,N{v){v), (15)

which, hopefully, can be used within the structure of Master Algorithm Model
1. One can classify the rules for making N a function of /i as open-loop or
closed-loop. An example of an open-loop rule is to set N = int(l//i), the in
teger part of l//i. A closed-loop rule can be made more subtle, and designed
to produce as small a parameter iV as is compatible with the convergence of
the overall solution scheme in the form of a master algorithm.

We will now show that one iteration of Master Algorithm Model 1.2.36
in [7], which can be used for constructing algorithms for solving the finite
dimensional problem (P/i), in (5), provides a reasonable closed-loop tech
nique for defining the the number N of iterations to be used by the solver in
terms of the mesh size h. This master algorithm model has the form, with
A7:= {0,1,2,...}:

Master Algorithm Model 2; Solves (P/j).

Parameters. No,K e No > 0, a > 0, oj G (0,1), A : Re+ ->• Re+.

Data, vq G X.

Step 0. Set i = 0.

Step 1. Set N = Nq.

Step 2. Compute ay G Aft,N(v*)

Step 3. If

fh,jv(y) - (16)

set = y, replace i by i + 1, and go to Step 2.

Else, replace N hy N -hK, and go to Step 2. 0



Proceeding formally from this point on, we assume that for every h > 0
we can construct an iteration map Ah,N : 14 —> 14, of the type required by
Algorithm Model 2.

We will depend on the following assumption:

Assumption 1. We will assume as follows:

(i) The function /(•) is continuous and bounded from below, and for all
h 6 (0,hrnoxlj the functions //»(•) are continuous and bounded from
below.

(a) For every bounded set B C V, there exists /c < oo, a function N* :
9?+ A/", and functions : 9i+ x ->• A : 9?+ ->• with the
properties

Urn N*{h) = oo, (17)
h^o \ ' V

lim (p(h, N) = 0, V/i > 0, (18)
N-*oc

limMK%) = 0. ViVh > N'(h), (19)
n—^0

liniA(/i) = 0, (20)

such that for all /i 6 (0, hmax], v eVhCiB,

I/aW-/(f)l < (21)

and for all h G (0,hmaxh N eAf, v eVhHB,

\fh,N{v) - fh{v)\ < K<^(h, A^). (22)

(Hi) For every v* ^ V such that grad/(?;*) ^ 0, there exist p* > 0, (5* > 0,
h* > 0, N* < oo, such that

fh,N{^h,NM)-fhAv)<-^\ VuGl4nB(u*,p*), \/h<h\ \/N>N*
(23)

For any positive real number a, we define ceil[a] to be the smallest integer
larger than a.

Master Algorithm Model 3: Solves (P).



Parameters, ho > 0, uj e (0,1), Ci > 1, C2,C3 > 0, K eM, (p{-,')
verifying (17), (18), (19), (20).

Data. t;°.

Begin Outer Loop

Step 0. Set i = 0, h = Hq.

Begin Inner Loop (defines Nfi{v*), fh{v*) and the iteration function

Step 1. Set N = CiN'{h).

Step 2. Compute a point v* = .A/i^;v(v*).

Step 3. Compute

- h,N(y% (24)

Step 4. If

fhMv*) - > -C2ip{h, Ny, (25)
replace N by N -h K and go to Step 2.

Else, set
Nhiv') := N, (26)

and

^/i(^^*) := (27)
End Inner Loop

Step 5. If

hA^') - /a,nK) > -C3{A(h} + ip(h, NH(v'))r, (28)
replace the mesh-size h by /i/2 and go to Step 1.

Else, set

= ifc(u'), (29)
replace z by i + 1 and go to Step 1.

End Outer Loop ^



Remark 1 The main function of the test (25) is to increase N over the ini
tial value oi N = N*(h) if that is necessary. It gets reset to = N*{h)
whenever h is halved.

Note that the faster ip{h, N) 0 as N oo, the easier it is to satisfy
the test (25) at a particular value of N. Thus, when the solver is fast, the
precision parameter N will be increased more slowly than when it is slow.
A similar argument applies to the test in (19). In the context of dynamics
defined by diflferential equations, the integration mesh size will be refined
much faster when the Euler method is used for integration than when a
Runge-Kutta method is used for integration. ^

In view of the definition (26), for every h e {0,hmax] and u € V)t, we
define

fh{v) := fh,Nhiv)(v)' (30)

We can define problems

(Ph)

WA(«). (31)

It is possible to show that these problems epi-converge to (P), as h —> 0.
In order to deduce the convergence properties of Master Algorithm Model 3
from Theorem3.3.19 in [7], we need the following result.

Lemma 1

(a) For every bounded set B c V, there exists a k < oo and a. function
A : Xy —)• 3?+, such that (i) A(/i,u) —> 0, as h 0, uniformly in
Ve B, and (ii) for all h € (0,hmoi], v eVhC^B,

\fh(v) - f(v)\ < KA{h,v). (32)

(b) For every v eV such that grad/(?)) / 0, there exist p>0, S>0,h>0
such that

MAh(v))-U{v)<-S, (33)

where j4(,(«) is defined by (27).



Proof, (a) It follows from (21) and (22) that for all /i € (0, hniox], v ^ Vh
and N

\kAv)-f[v)\ < \fHA^)-h(v)\ + \SH(v)-f{v)\
(34)

< /«<^(/i, A^) 4-«A(/i).

Hence we have that

|A(") - /(")! = \fh.N„(v)(v) - f(v)\ < K{(p{h, Ni,{v)) + A{h)) = kA(/i, v).
(35)

Since

A{h,v) = ip(h,N*(h)) + A(h), (36)

and Nh(v) > N*(h)^ it follows that A{h,v) 0, as h —>• 0, uniformly in
V ^VnB.

(b) Suppose that u G V, is such that grad/(u) ^ 0. Then, by Assumption 1
(iii), there exist a p* > 0, (5* > 0, and h* > 0, and N* < oo such that (23)
holds. Let h G (0,/i'*] be such that N*(h) > N* for all h G (0,h]. Then,
because Nh(v) > N*{h) by construction, it follows from (23) that

fhi^hiv)) - fh{v) = fh,N(Ah,NH{v)(v)) - fh,Nh{v){v)
(37)

< —S*, Vu G 14 n B(u*,p*), Vh < h,

which completes our proof. 0

The following theorem is a direct consequence of Lemma 1 and Theorem
3.3.19 in [7] for the case where the cost function f{v) is strictly convex.

Theorem 1 If f{') is strictly convex and is sequence constructed
by Master Algorithm Model 3, in solving the problem (P), then it converges
to the unique solution o/(P).

Remark 2 If /(•) is not strictly convex but only continuously differentiable,
then the conclusion of Theorem 1 has to be changed to read that all accu
mulation points of the sequence ^-re stationary points. 0

10



Remark 3 The following Master Algorithm Model differs from Master Al
gorithm Model 3 in two respects: first the integer N is never reset and hence
increases monotonically, and second the test for reducing h is based on the
magnitude of the norm of the approximate cost-gradient. As a result, the
proof its of convergence is substantially simpler than for Master Algorithm
Model 3. However, convergence can be established only for the diagonal sub
sequence {v*j}j at which h is halved. 0

Master Algorithm Model 4: Solves (P).

Parameters, ho > 0, co e (0,1), e > 0, C > 0, K e fi'r)
verifying (17), (18), (19).

Data. € 14.

Begin Outer Loop

Step 0. Set i = 0, h = ho, N = N*(h).

Begin Inner Loop

Step 1. Compute a point v* = Ah,N{y^]-

Step 2. Compute

fh,N(v*) - fh,N(v^)' (38)

Step 3. If

fkAvl - fhA^') > Nr, (39)
replace N by N + K and go to Step 1.
Else, set = v*, and go to Step 4.

End Inner Loop

Step 4. If

||grad^//i(u'"^^)|| < e and iV > N*(h), (40)

replace h by h/2, e by e/2, i by z-I-1, and go to Step 1.
Else, replace z by z -h 1 and go to Step 1.

End Outer Loop ^

11



3 A Two-Point Boundary Value Control Prob
lem

Consider again the two-point boundary-value control problem first stated in
the introduction:

(P) Tmn^^f{v) := J{u{v)) := j {u —uj^dx subject to
-u"(x) = u(a;)/(o,i), Vx 6 (0,2), w(0) = u(2) = 0.

(41)
The gradient of /(•) with respect to v can be expressed in terms of p, the

solution of the adjoint equation

-p" = 2(u - Ud) p(0) = p(2) = 0. (42)

Thus,

Sf =2f (u —Ud)Su =—[ p"Su = —/ p5u" —f pSv, (43)
Jo Jo Jo Jo

which shows that grad/(u) = p.
To approximate the problem (P), we use a finite difference method with

uniform mesh of size h = 1/M, to solve the differential equation. This results
in the approximating problems

2M-1

(P/i) T^\^fh(v):= Yi l^j—'"d(i/i)P subject to
1

2uj + Uj—\) — ^~ 1} •••? 2Af 1 (^^)

Uo = U2M = 0.

where T4 is the set of piecewise constant functions on the intervals (jh, {j -H
l)/i]. Note that the coefficient uj define a piecewise constant function u(-)
on [0,2].

As in the continuous case

2M-1

Sf=Y 2(Uj - Ud(j/i))(Juj (45)

12



and if

^ ^ ~ —Udijh)), j =1,2M —1 po =P2M = 0*
(46)

then

(47)
Y>2M—1 _

hi Pj-

Therefore
M

Sf = J^PjSvj, (48)
1

and hence the gradient grad//i(v) is the piecewise constant function p/i(-)5 on
[0,2], defined by the coefficients pojPi) —,Pm-

3.1 Verification of the Hypotheses

Master Algorithm Model 3 depends on Assumption 1 to be satisfied and, in
particular, on the existence three appropriate functions 0(/i, iV), N*{h), and
A(/i), and ofan appropriate iteration map A/i,yv(-)-

We begin by showing that parts (i) and (ii) of Assumption 1 are satisfied.
When the ODE for u is multiplied by u and integrated in x, we obtain, after
an integration by parts

Applying theSchwarz inequality to themiddle integral leads to ||«'llo < IWIo.
Next, it follows from the Poincare inequality that ||u||o < C||ii'||o, for some
C < CO, and hence we conclude that u is Lipschitz continuous with respect
to V in L^:

ll«llo < Cllwllo. (50)
Now the function u —t J(u) is obviously continuous in u, and hence /(•) is
continuous in v.

Using similar arguments we find that p iscontinuous inv and hence grad/(-)
exists and is continuous.

13



For the discrete problem we note that {u\,U2,...^U2m-\Y is the solution
of a linear system with right hand side (ui, 0..,0)^ and the matrix of
the linear system is tridiagonal with 2//i^ on the main diagonal and —1/h^
on the diagonals below and above the main one. This is a positive definite
matrix so u is continuous with respect to v. Similarly, it is possible to show
that p is also continuous with respect to v.

Next, it follows from the error analysis for the finite difference scheme that
for some C < oo,

||w/i - u||o < \Jh{u^v) —J(u^v)\ <C1^ (51)

which implies that
\Ih(vh)-I(v)\<Ch^. (52)

Now the Gauss-Seidel algorithm is linearly convergent but the constant
of convergence is proportional to the condition number of the linear system.
In particular, for some C, c < oo

II"/.,w - "/.II < C(1 - ch^)" MN € M. (53)

By inspection, the bound function is ip{h,N) = (1 — However, it
contains an unknown constant. We have the choice of either guessing this
constant or replacing the function with a conservative estimate, such as
ip(h, N) = (1 — with 6^1, small, i.e, we replace c with h . In either
event, and to satisfy the hypothesis we may take

(54)

with C G (0,oo). Indeed,

(1 - =exp ^~ as /i 0. (55)
We have thus shown that parts (i) and (ii) of Assumption 1 are satisfied.

To conclude, we must show that part (iii) of Assumption 1 is satisfied. We
will derive the iteration map Ah^N{') from the the standard steepest descent
algorithm with exact step-size. We recall that for the problems (Pa), this
algorithm is defined by the following iteration function:

Ah{v) = v- X{v)gra.dfh{v), (56)

14



where

A(t;) := argrninfh{v - \gTa,dfh(v)). (57)

Note that for our problem A(^;) can be computed exactly because f{v —
Agrad//,(u)) is a quadratic function of A.

Next, we define Ah,N as follows:

A,iv(v) :=v- X{v)g[a.dj^fh{v), (58)

with

A(u) := argmm//i,A^(u - Agrad;v/A(^^)), (59)

where //i,//(u) and gi&djsffh{v) are computed using N iterations of the Gauss-
Seidel algorithm on the difference equation in (44) and the adjoint equation
(46), respectively.

Now, it follows from the properties of the method of steepest descent that
given any v* £ V such that grad/(?;*) ^ 0, there exists a p* > 0, a > 0,
A*, and an h* > 0, such that for all v € V O B{v*,p), (i) grad//i(u) / 0 and
(ii)

f{v - A(u)grad/(u)) - f{v) < f{v - A*grad/(u)) - f{v) < -S\ (60)

where A(u) is the exact step-size computed by the Steepest Descent Algo
rithm. It now follows from (18, 19, 21, 22) that there exist an h* > 0 and an
N* < 00, such that for all h < h*, N > TV*, and u 6 14 0 B{v*, p)

fh,N{v - \{v)gra.dj^fh{v)) - fh,N{v) < -S*/2, (61)

which shows that part (iii) of Assumption 1 is satisfied.

3.2 Implementation of Master Algorithm Model 3

Making use of the maps defined in the preceding subsection, we now obtain
the following

Implementation of Master Algorithm Model 3

Data. Ci > 0, C2 0, C3 > 0, c > 0, /i > 0, K G A/", i^o ^ 14-

Step 0. Set i = 0.

15



Step 1. Set M = l//i, iV = ceil(^^).
Step 2. Compute {uj} using N Gauss-Seidel iterations.
Step 3. Compute {p* } using N Gauss-Seidel iterations.

Step 4. Compute A = argmin;^//i,yv(T;* - Ap*) using N Gauss-Seidel
iterations.

Step 5. Set = Vj —ApJ, j = 1...M.

Step 6. If > -^2(1 - replace N by N-\-K
and go to Step 2.

Else, go to Step 7.

Step 7. If fh,N{v '̂̂ ^) - fh,N(v') > -C^lh^ + (1 - replace h by h/2
and go to Step 1.

Else, replace i by i + 1 and go to Step 2. 0

3.3 Numerical results

Problem (41) was solved with Ud = sin(7ra;) starting from u = 0, first us
ing the standard steepest descent method, with a fixed mesh of 256 points
and solving the linear system using 500 Gauss-Seidel iterations. Then it was
solved using an implementation of Master Algorithm Model 3.

In the second case the initial mesh had 8 points and the final mesh had
512. We have used (p{h,N) = (1 — instead of (1 — and we
set N*{h) = 0.1ceil(l//i^). Finally, we used A(/i) = 1/h'̂ . The algorithm
constants were

Ci = l C2 = 0.1 03 = 2 10"'̂ ^4 = 5 e = 0.1 K = 20.

Figure 1 shows the convergence history of the cost function for both tests
(left) and the history of the number of Gauss-Seidel iterations for the second
case (right).

16



Figure 1
Costfunction (left), mesh size and number of Gauss-Seidel iterations (right).

We have also tested a number of other values and other functions Nh, ^(h, N).
Most of the time similar computational behavior to the one describe here was
obtained, however, some time the mesh was refined too fast and some time
the number of Gauss-Seidel iterations became too large too soon, etc. Fine
tuning the values of the parameters is not an easy task but it is C3 which is
the most important.

Our overall observation is that when the parameters of our algorithm
are reasonably well selected, it computes a solution to problem P roughly
10 times faster than the algorithm that uses the same precision in all its
iterations.

4 A Distributed Control Problem

Let 5 be a given subset of the boundary F of an open bounded subset of
and consider the boundary control problem

(P) min„g£,2(5){/(u) = /n[(w - Ua)^ + |V(u - nd)p] subject to

u —Au = 0 in H, ^|s = urs = Ud
(62)

dn

17



The gradient of /(•) can be obtained by making use of the fact that

6f =2f ({u —U(i)5u-{-'V(u —Ud)'̂ 6u-^ o{\v\) = f ^{u —Ud)Sv, (63)
JQ Js

which follows from the fact that the PDE in variational form is

f (uw +Vu ' Vw) = f ^vw Viy € (64)
JSl J s

So, by inspection of (63), we see that the gradient of /(•) with respect to the
L^(5) norm is

grad„/(u) = ^(u - Ud)|5. (65)

To approximate the problem (65), we propose to use a finite Element
Method with u € 14, continuous and piecewise linear on the triangles of a
triangulation of Q. This results in the discretized, finite dimensional opti
mization problem below:

(T>\ min/ziW = I l{u- Udh)^ + |V(u - Udh)\'̂ ] subject to
"eH Jn

Jq(uw + Vu •Vw) = Jg^vw \fw e Vh

where 14 is the approximation of-ffor-s consisting ofcontinuous piecewise
linear functions on the triangulation which are zero on F—.

The gradient of the discrete cost function //i(-) can be obtained using the
fact that

% = I Udh)Sv (67)
J s

This formula is obtained exactly as in the continuous case. Therefore

grad„//,(v) = Ph{u - Ud/,)|5, (68)

where P/, is the projection operator from L^(5) into 14 HL'̂ (S).

Strictly speaking (68) holds only if Q is a polygonal domain, but this is
a standard technical problem with the finite element method which can be
dealt with easily.
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4.1 The Schwarz Algorithm

Now for some reason suppose that we want to solve the discrete Partial Dif
ferential Equation (i.e. it's equivalent sparse linear system) by a Domain
Decomposition Method.

Let n = U^2) let r = dQ, and let Py = fl The multiplicative
Schwarz algorithm for the Laplace equation starts from a guess Ui,U2 and
computes the solution of

u —Au = / in n, u\r = up

as the limit as n —> oo of the sequence Ui^nt ^ = 1^2 defined by

wi,„+i - Aui,„+i = / in fii,

^l.n+llrnQi—S — '^l,n+l|ri2 —'̂ 2,n

^2,71+1 Au2,n+1 —/ in

II fi du2 n+1 I
rnn2-s ='"r ^i2,Ti+i|r2i = ^ I5 =

4.2 The Doubly Discretized Problem

The introduction of the Schwarz algorithm leads to a doubly discretized prob
lem, as follows. Let 7a be a triangulation of Q of average edge size h such
that by removing triangles we obtain also proper triangulations {75A}j=i,2 of
Qi and ^2-
Let Via and V2A be the finite element spaces of continuous piecewise affine
functions on {Tjh}j=i,2' Let be the subspaces of continuous piecewise
linear functions which are zero on the Dirichlet boundaries P tj'

Then the doubly discretized problem is

(^)h,N rnmfh,N(v) = \\u^-UdWl: uj = 0, n = l,.N
v£Vh

(69)

(70)

u ^ e Vjh Vu; G = u] ^ /o.[u]w -I- VuJV?z;] = Js^vw,
(71)
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where N is the number of Schwarz iterations applied to the the discretized
PDE in (66).

Consider the mapping from Vih x V2/1 onto itself which defines in terms
of by means of the recursion

Viy £Vh u^ldQij =u'j ^ j [vJ^w +Vu"Vit;] = f ^vw
J Clj J s

(72)

for i = 1,2. Let {A, B, C} be the finite element matrices associated with this
operation:

Air = + CV (73)

where U denotes the vector of values of ui at the vertices of 7i/i and of U2
at the vertices of Tih and V is the vector of values of v at the vertices of S.
The doubly discretized problem (71) can now be rewritten as

mm{U^-UiYG(U'^-Ui)

0 0 . . 0 o\ /U'\ /BU^ACVx
B A 0 . . 0 0 C/2 CV

0 B A . . 0 0. CV

CV

\... B a) [u^J \ CV J
(74)

where G is the finite element mass matrix (see Ciarlet [1] for more details).

We can express the exact gradient grad//i,jv(^^) of fh,N{v) in terms of the
solution of the adjoint equation

.0 0\/pi\ / 0 \

. 0 0 0

0 0. P' = 0 (75)
... ... 0

V... 0 AJ\P"/ \2G{U-Ui)J

by makinguseof the fact that CSV. Thus we seethat grad//, n{v) =
C^PK

The interpretation is that P, like C/, is the set of values at vertices of the
Schwarz system

p" -Ap^ = 2{u'' -Ui) p"-'-Ap"-'=0 (76)
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These equations are difficult to implement because we must store all interme
diate functions generated by the Schwarz algorithm and integrate the system
for p" in the reverse order. Hence we will we will use approximations to the
gradients giadffi,N{v) defined by

grad^//,(?;) := V{^(uh,N{v) - Ud))U, (77)

where V is the interpolation operator (Vg is the piecewise linear function
which coincides with g at the vertices of S) and Uh,N is computed by N
iterations of the Schwarz algorithm with the convention that on H
Uh,N = ^{Ulh,N + y'2h,N)-

4.3 Verification of the Hypotheses

We proceed exactly as in the one dimensional case to show that Assumption
1 is satisfied.

(i) Continuity of /(•) with respect to the control is established in Lions[3].
Continuity of fh(') with respect to the control is obvious from (74).

(ii) It follows from the finite element error estimates given in [1] that
the error estimates (51, 52) hold for this case as well. Hence we can set
A(/i) = h^.

(iii) The Schwarz algorithm converges linearly with rate (1 —d/D) where
d is the diameter of Qi 0^2 and D is the diameter of $7 —2Uf2 —2, so instead
of (51) we have the bound

- «a|| < C(1 - VN € (78)

for some C 6 (0, oo), which implies that we can set ^(h,N) = (1 —•§)^.
Note that in this case ^(/i, N) is actually independent of h. In view of this,
we can take N*(h) = Cceil(l//i), where C > 0 is arbitrary.

(iv) The relation (60) obviously holds for this case as well. To show that
the relation (61) also holds, we make use of the facts that (a)

grad/ft(i;) = Ph{^{uh{v) - Udft))|5, gradj^fh{v) = Vh(^{uh,Niv) - Ud))|5,
(79)
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(b) both Ph and Vh tend to the identity operator at the rate 0(h) at least,
and (c) the bound functions A{h), (f>(h,N), and N*(h) have the required
properties.

4.4 Example

In this example f2i is the unit circle centered at the origin and Q2 is the
rectangle (0,1) x (0,1) minus the unit triangle with vertices (0,0),(0,1),(1,0)
and minus a disk of boundary S . The control boundary is S (see figures).

The function which is to be recovered by the optimization process is
Ud = e~^^sin(y). The weight on the control has been deliberately chosen to
have oscillations: ^ = sin(30*(a: —1.15))+sin(30*(2/ —0.5)). We have used an
automatic mesh generator controlled by a parameter n, the number of vertices
on the boundaries, so, for practical reasons, we initialized h = l/(8n). The
number of Schwarz iterations was initialized at 1.

The tests (25) (in Master Algorithm Model 3) and (39) (in Master Algo
rithm Model 4) for increasing the number of Schwarz iterations were deter
mined by setting 0(/i, iV) = (0.8)^, and Ci = 0.1. The mesh refinement test
(28), in Algorithm Model 3 was implemented with the right hand side being
set to —0.001 [10~^h^ + (0.8)^/^®''̂ ], which corresponds to N*(h) = 0.1/(8/1),
(p{hj N) = 0.8^, A(/i) = /i^. Naturally otherchoices ofcoefficients and bound
functions are possible.

The mesh refinement test (40) in Algorithm Model 4 was implemented
by setting e(n) = 10"", where n = 1/8/i.

We have used the code freefem+ [2] which is a matlab like environment
for partialdifferential equations developped for the purpose oftesting parallel
algorithms, among other things.
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Figure 2
In the left part of Figure 2, we plot the values of the cost function /(•)

v/s the iteration number for two cases. The first corresponds to optimization
using a fixed mesh and a fixed number of Schwarz iterations, i.e., without
adaptive precision refinement (curve 'criterO'), and the second one was ob
tained using adaptive refinement based either on the norm of the gradient
(case (i), curve 'criterl'), or on the decrease of the cost function (case (ii),
curve 'criter'). The right part of Figure 2 shows the number of Schwarz iter
ations N and the mesh parameter n versus the iteration number for case (i).
After 30 iterations the gradient is 10~® times its initial value, while without
mesh refinement it is only 10"^ times its initial value (multigrid eflfect).

\

Figure 3
Figure 3 shows the computed solution u (left) and the error u —Ud (right).
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Figure 4
Figure 4 shows the second finite element mesh on the left and the 7th

finite element mesh (the last is the 9th) on the right. Both are generated
automatically by a Delaunay-Voronoi mesh generator from a uniform distri
bution of points on the boundaries.

5 Conclusion

It is a well known rule in optimization that, in solving infinite dimensional
problems via discretization, one must use the exact gradient of the discretized
problem rather than the approximate gradient of the exact problem. In this
paper, we have shown that mesh refinement within the optimization loop
enables us to relax the above rule. Our motivation is two fold: first, there
are problems where the exact gradient of the discretized problem cannot
be easily computed; secondly there is a multi-grid effect in combining mesh
refinement with a descent algorithm which results in an order of magnitude
in speed-up.
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