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Abstract

Single-electron tunneling junctions (SETJs) have intriguing properties which make
them a primary nanoelectronic device for highly compact, fast, and low-power

circuits. However, standard models for SETJs are based on a quantum mechanical

approach which makes them very impractical for the analysis and design of SETJ-

based circuitry, where a simple, preferably deterministic model is a prerequisite.

We verify by physics-based Monte Carlo simulations that the tunneling junction

can in fact be modeled by a piecewise linear voltage-charge relation, which, from

the circuit-theoretic perspective, is a nonlinear capacitor.

1 Single-Electron Tunneling Junctions

To explain single-electron effects, an "orthodox theory" based on a phenomenological

Hamiltonian approach with a tunneling term and the electrostatic energy has proved

successful. To analyze circuits with single-electronjunctions (SETJs), however, simplified
models of the junction characteristics are required. One example is the Monte Carlo

model in which classical electrons tunnel through the junctions stochastically with a

probability that is a function of the temperature and the change in electrostatic energy.

In the limiting case of zero temperature and small average current, it further reduces to

a deterministic model where electron tunneling occurs as soon as it decreases the overall

electrostatic energy of the system.

Based on these considerations, a deterministic model for the junction characteristics

has been proposed which avoids any unnecessary complexities due to the stochastic na

ture of quantum mechanics and thermal fluctuation [1].
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Figure 1: Linear-periodic voltage-charge relation for a SETJ.

In this model, it is assumed that an electron tunnels when the junction voltage Vj
reaches the tunneling voltage

Vt =
2Ci (1)

The behavior of the junction can therefore be modeled by a single-valued piecewise
linear voltage-charge relation (Fig. 1). This model has been applied for the investigation
of phase-locked single-electron tunneling elements [1, 2], but has not been verified so
far. In this note, we confirm the model by simulations and put it in a new perspective:
we demonstrate that it can be interpreted as a nonlinear capacitor - a viewpoint which
greatly simplifies the analysis and design of SETJ-based circuits.

2 Simulation of a Current-Biased Single-Electron Tunneling
Junction

To verify the validity of this piecewise linear model, we use a very simple test circuit
(Fig. 2) consisting of a constant current source and a SETJ characterized by its tunneling
resistance Rt and its junction capacitance Cj. For our calculcations, we use SIMON2.0,
which is the latest version of a single-electron circuit simulator based on a Monte Carlo

simulation of tunneling events. Note that Rt does not have an influence for these simu

lations provided that its value is larger than h/e^ « 25.8kQ. The current is assumed to

Ij /\

e Rt
Ci

Figure 2: Current-biased SET junction.

be zero for t < 0 and constant for t ^ 0, and the charge is therefore proportional to the
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Figure 3: Simulation of a single tunneling junction (SIMON2.0).

time, i.e., Q(t) = Ijt. This allows us to establish a charge-voltage relationship for the
tunneling junction.

For the graphs in Fig. 3, we used a junction capacitance of Cj =laF, which leads to a
tunneling voltage of Vr « O.OSV. Note that the horizontal axis does not represent the
actual junction charge but the integrated current through the junction, i.e..

Qit) =f
J —O

ij{T)dT (2)

Based on the physics of the SETJ, the device is a linear capacitor until the voltage reaches

the threshold Vr- Hence, the actual junction charge is given by qj{t) = CjVj{t)^ where
Vj is the junction voltage, \vj\ < Vt- Observe that qj cannot grow larger than e/2 since
this is the threshold junction charge for tunneling. The simulation in Fig. 3 (b) shows the
relationship between Q and qj and confirms the proportionality between junction charge
and junction voltage. Mathematically, the junction charge can be described by

Qj —f{Q) = Q -ne for e < Q <
1

"+2 Vnez (3)

As expected, = 1 except at the discontinuities {n-\-l/2)e, and f(Q) does not depend
on the junction capacitance.

Since the junction charge cannot be measured directly, it is desirable to express the

junction voltage as a function of the integrated current Q:

'Q 1
Vj{Q) =[

Joa
•dq

C{q)

We use the letter C to emphasize that the integrand's denominator is, in fact, a capaci

tance, i.e., the ratio between charge and voltage.

(4)



Taking the derivative of (4) yields

dvj _ 1
dQ C{Q)'

and, together with (3) and Fig.3, we get

C{^ - ^ -2'5((n +̂ )e -Q)Vr, n={0, ±1,±2,...}
and

C(Q) = Cj

l-2CjS(^{n +^)e-Q^Vi , n = {0,±l,±2,...},

(5)

(6)

(7)

where 5(.) denotes the Dirac delta function.
Eq. (7) demonstrates that the tunneling junction is, in fact, nothing else than a nonlinear
capacitor whose capacitance C{Q) depends on the integrated current flowing through it.
Its value isequal to the tunneling capacitance Cj except at points Q = (n+1/2)e, "in

3 Simulation of a Voltage-Biased Single-Electron Tunneling Junc
tion

For practical circuits such as in [1], the SETJ is often voltage-biased. In this section,
we investigate the circuit shown in Fig.4. The bias voltage H is O.IV, the value of the
resistor is i? = IMQ, and the junction capacitance is again Cj =IaF. We expect the

o

R
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Figure 4: Voltage-biased tunneling junction.

"time constant" of the system to be in the ps range, since RCj =lps, which is confirmed
by the simulations in Fig. 5. Att = 0, when the voltage source is assumed to be switched

on, the current is 2j(0) = Vb/R^ and it decays exponentially to zero, proportional to
exp{—t/RCj). However, when the junction voltage reaches Vr, the capacitance (7) be
comes discontinuous, and the current jumps to a value of about 2ij{0).
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Figure 5: Simulation of a voltage-biased single tunneling junction (SIMON2.0),

For our last experiment, we replace the constant bias voltage by a pulsed source (cf.
dashed curve in Fig. 6 (a))

Vn € No : Vb(t) = <
O.IV for n20ps ^ t < {n-\-1) 20ps
OV for (nH-20ps ^ t < (n+ 1) 20ps

(8)

The graphs in Fig. 6 prove, once again, the validity of the nonlinear capacitor model.
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Figure 6: Simulation ofa pulsed voltage-biased single tunneling junction (SIMON2.0).

For periods with Vb{t) = 0, the junction capacitance is discharged like a conventional
capacitor, causing a negative current ij.



4 Concluding Remarks

The foundation of nonlinear circuit theory is based on the axiomatic definition of 4 basic

(two-terminal and multi-terminal) circuit elements [3, 4] from which all electronic devices
are modeled. A 2-terminal circuit element defined by a relationship between the voltage

v{t) and the charge q(t) is called a two-terminal capacitor. Hence the model presented
in this note for a SETJ is precisely a 2-terminal nonlinear capacitor with a "sawtooth"

V—q characteristic.

It is important to bear in mind that in the axiomatic definition of circuit elements, the

charge q{t) is defined by the time integral of the current fiowing into the terminal of the
element, namely, q{t) = z(T)dr. Observe that if we apply a constant dc current Iq
across an initially uncharged capacitor, we will get

q(t) = lot, t^O. (9)

Hence, the unbounded charge

l^m q{t) —> oo (10)

should be interpreted merely as a dc current flowing over the infinite time interval [0, oo),
and not as the amount of physical charge stored in the junction, as would have been in
the case of a linear capacitor.
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