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Abstract

Optimization problems with maximum eigenvalue or singular eigenvalue cost
or constraints occur in the design of linear feedback systems, signal processing,
and polynomial interpoUation on a sphere. Since the maximum eigenvalue of
a positive definite matrix Q{x) is given by max||y||_i(j/,Q(a:)2/), we see that
such problems are, in fact, semi-infinite optimization problems. We will show
that the quadratic structure of these problems can be exploited in construct
ing specialized first-order algorithms for their solution that do not require the
discretization of the unit sphere or the use of outer approximations techniques.

Keywords: maximumeigenvalue cost/constraints, singular valuecost/constraints,
min-max algorithms.

1 Introduction

Optimization problems with maximum eigenvalue or singular eigenvalue cost or con
straints occur in a number of disciplines. For example, in the design of linear feedback
systems, the suppression of disturbances can be modeled as the minimization of the
norm of the disturbance transmission transfer function matrix Gd(x,ju) over a spec
ified range of frequencies, where x € K" is the design vector and a; 6 R is a frequency
variable (see, e.g., [2], [1]). Since the norm of Gd(x,ju) is its maximum singular
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value, we see that the minimization of this norm can be expressed as the semi-infinite
optimization problem:

®ex wen ||y||=i

where X C K" is a constraint set, = {a;i, is a grid of firequencies, and
Q(xJuj) = Gd{xJu)*Gd{x,ju}).

In a wide variety of signal processing applications, such as beam forming [4] and
radar imaging[7], it is desirable to form an estimate of a covariance matrix from
samples of a process. The true covariance matrix is known to be positive definite and
Hermitian Toeplitz.

Let {^1... zm} denote the set of iV x 1 observation vectors of the process. Then
the sample covariance matrix S is given by

1 ^
^ ~ (2)

771=1

where denotes the complex conjugate transpose of z. The desired estimate is then
the N X N positive definite Hermitian Toeplitz matrix R given by

R=arg m^{—ln(det R) —tr(iJ ^5)} (3)

where T"*" is the set of all AT x iV positive definite Hermitian Toeplitz matrices, and
tr(-) is the trace operator.

Now, any Hermitian Toeplitz matrix R can be parametrized in terms of a pair of
vectors x = (xr^xj) G x as follows:

N

i2(x) = ^ ^{pRynQR,n "t" j^T,nQl,n) (4)
n=l

where -\-jxT,u ••• Jxi^n] is the first row of R (with real and imaginary
parts shown explicitly), and Qr^ji and (n = 1,... ,iV) are symmetric matrices
and skew symmetric matrices respectively.

Hence, problem (3) can be recast as a constrained semi-infiniteoptimization prob
lem, as follows:

4 = arg max {-ln(deti?(a:))-triJ(a:)-'5) I nun (y, JJ(i)j/> > (r > 0,
x={xR^i)^n^y.n^ ||y||=i

N \

= zJ + jXl,nQl,n) >• (5)
n=l J



The constrained maximum likelihood covariance estimate is then given by

N

R —^ ] {^RynQR,n "1" j^I,nQl,n) • (6)
n=l

Our final example comes from the problem of choosing points on the unit sphere
to minimize a bound on the norm of the polynomial interpollation operator [11], [9].
This bound is minimized by finding the m points on the unit sphere in R® whici
maximizes the smallest eigenvaXue of a symmetric gram matrix G, which is a nonlinear
function of of the angles between these points. For polynomials of degree at most p,
a fundamental system of points on the unit sphere in consists of (pH-1)^ points
for which the only polynomial of degree at most p vanishes at aU points is the zero
poljmomial. For any fundamental system, G is a symmetric positive definite m by m
matrix where m = (p + 1)^. Since a fundamental system can be parametrized using
n = 2m —3 variables, the problem of minimizing the smallest eigenvalue of G can be
expressed as the following semi-infinite min-max problem

min max(2/, —G(x)y). (7)
xgR»||yl|=l'

In this paper we will present two new specialized algorithms for the types of
problem described above. These algorithms appear to have serious advantages over
existing algorithms (such as thosedescribed in [6], [10], for example) when the matrix
in the quadratic form is very large (say at least 1000 x 1000)^.

2 An Implementable First-Order Algorithm for Semi-
Infinite Min-Max Problems.

We begin by considering problems of the form

where

min tbix) (8)
s€R"

il){x) = m^<i>(x,y), (9)
yeY

where Y C is compact and phi : R" x R"* -> R is continuously differentiable. In
particular, we will consider the case where

4>{x,y) = {y,Q{x)y), K = {y € r"|||j/|| = l}. (10)

^Private communication: Dr. R. S. Womersley, Dept. of Applied Mathematics, University of
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Referring to [8], Section 3.1, we find a first-order optimality condition for (8) in
terms of the set-valued map

Gil){x) = conv <

where conv denotes the convex hull of the indicated set.

Theorem 1[8].

(a) The set-valued map G^(rc), from R" to the subsets o/R"+^ is continuous in the
Painleve-Kuratowski sense.

(b) Let the elements o/R"+i be denoted by with 6 R, and, with 6>0,
let

(11)

and let

Then

9(D =f° + |̂|?|P. (12)
26

let the optimality function

%)=- min g(D, (13)
f€GV(x)

h{x) = (ft"(x), h(x)) = - arg.min g(D. (14)
ieGilt{x)

(i) The functions 9(-) and /i(-) are continuous, and for all x € 6(x) < 0.
(ii) For any x the directional derivative

dil){x; hix)) <6(x) - |̂|/i(a;)p. (15)
(ill) If X is a local minimizer ofil}['), then

06 Gil){x), 9[x) = 0, h{x) = 0. (16)

Furthermore, (16) holds if and only ifOE dip{x).

In [8], Section 2.4.1, we find the Pshenichnyi-Pironneau-Polak minimax algo
rithm for finite min-max problems. This algorithm also has the following, non-
implementable form for the problem (8).

Algorithm 1(Generalized Pshenichnyi-Pironneau-Polak Algorithm)
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Parameters, o;, /? € (0,1), 5 > 0

Data, xo G M".

Step 0. Set 2 = 0.

Step 1. Compute 9i = 6{xi) and hi = h{xi).

Step 2. If 9i = 0, stop. Else, compute the step-size

\i = max{/?*' I + P^hf) —tlf(xi) - P^a9i < 0}, (17)
fcSN

where N = {0,1,2,3,...}.

Step 3. Set

Xj+i —Xi Aj/lj, (1®)

replace i by i-\-\ and go to Step 1.

The reason Algorithm 1 is non-implementable for the problem (8) is that nei
ther 9(xi) nor h(xi) can be computed exactly in reasonable time. To obtain an
implementable version of Algorithm 1, we must modify it so as to be able to use ap
proximations to 9{xi) and h{xi). We will now develop such an implementation which
makes sense when (i>{x,y) is of the form (10) and, possibly a few other cases as well.
The success of the new algorithm depends on the following observation:

Theorem 2. Suppose that x GE" is such that 0 ^ Gip(x), 7 € (0,1) and GGil){x),
^ Gtj){x) are such that

(i) a > 0;

(ii) {V9(|,.),|- f..) > 0for all ( € Gtpix);

(iii) q{i,) - < 7g(f..).

Then,

(a) < -9(.x) < 9(1,);

(b) -1^79(0:) < 9(f.,) < -9{x);

xuith

^(x;/i„) = m^[(^(x,2/) - ^(x)] + (Va;<^(x,2/), h) -H < -g(?«). (19)
yev z

and

#(x; /i„) <-g(f,,) - |||/i„|p (20)



Proof, (a) Clearly, since g(-) is convex, it follows that

where

which proves (b).

ff={(e I(Vq(i,.), ^ -1.) > 0}.

Now, it follows from assumption (ii) that Gtplx) C JI, and hence that

= imn g(D < g((,),
€€G^(x)

which proves (a).

(b) It follows from assumption (iii) and (23) that

Hence it follows directly that

=argming(f).

< 9(1..) <

(21)

(22)

(23)

(24)

(25)

(c) Let /9 > 0 be such that G^(x) CB(0,p) C1"+' (where B(0,p) = | ||̂ || < p})
and let

Then,

s = If n B(o,p).

maxmin-$° +(f,/i) + |̂|/i||2 = max-^° - ^l|£|p
ies heR" ' 2" " ies 2(^"^"

= -^in9(^)
fes

= 9(i»)

(26)

(27)



because the unconstrained min above yelds that

and, by definition, /i*» = —
Now, with h** as above.

max[^(x,y) - ipix)] + (Vx<^(a;,2/),/i„> + |||/i„|p
y&Y

which proves (19).

f€G^(x) 2

{€S 2

Next, let Y{x) = {y \ <j>(xyy) = fp(x)}. Then we see that

#(x,/i»«) + |||/i»*|p = max (Vx0(x,2/),/i„) +
y6y(x) ^

= max [(j>{x, y) - ^(x)] + (Vx«^(a;, y), /i„) + -||/i„l|'
yey(x)

< m^[(j>{x,y) - ^(x)] + {Vx<l>{x, y), /i„) + -||/i»»|
y^Y

(28)

(29)

(30)

which proves (20). •
Later, we will show that given a point x e M", points ?♦,!»♦ as specified in The

orem 2, can be computed using either the Prank-Wolfe Algorithm [3] or the much
more efficient Higgins-Polak Algorithm [5]. We will also show that for the case where
^(x,y) and Y are defined as in (10), these algorithms can be efficiently impementing
using the fact that eigenvalues of a symmetric positive-semidefinite matrix are rel
atively easy to compute. However, first we state an implementable modification of
Algorithm 1 which uses such points:

Algorithm 2(Modified Generalized Pshenichnyi-Pironneau-Polak Algorithm)
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Parameters. Q!,/?7 6 (0,1), (J > 0

Data, xo € .

Step 0. Set z = 0.

Step 1. Use the Higgins-Polak or Frank-Wolfe algorithm to compute 6 Gij){xi),
i**i i GV'(xi) are such that

(i) > 0;
(ii) ?„i) > 0 for all ^ 6 Gil;(xi);

(iii) - 9(|„i) < 79(1.^).

and set hi =

Step 2. Compute the step-size

Xi = I i^ixi + P%) - ip{xi) + < 0}. (31)

Step 3. Set

Xi Xihij

replace i hy i-{-l and go to Step 1.

Lemma 1. Suppose that V^(-, •) is Lipschitz continuous on boundedset^. Then for
ali Xi GM" such that 0{xi) < 0, Xi is well defined by (31).

Proof. Suppose that 6(xi) < 0 and that L < oo is a Lipschitz constant for a
sufficiently large neighborhood of Xj. then for any A€ [0,min{l,5/L},

V'(xi + Xhi) - i^ixi) = m^0(xi, y) - ^(xj) + A(V(^(xi, y), hi)

+ /o^(Wfe + sXhi, y) - ^(l>(xi, y), hi)ds
\2l< T^^{xi,y) - tp^Xi) +X{V<l){xi,y),hi) +-^\\hif

< \ra^{<ti{Xi,y) - il>{xi) + {V<p(xi,y),hi) + -||fti|p

(33)

^The assumption of local Lipschitz continuity can be relaxed to continuity, but the proofof the
Lemma is then a bit more difficult.



Hence, for all AG [0,min{l,(J/L},

i)(xi + Xhi) - il)[xi) + < -A(l - a)9(f„i) < 0, (34)

from which we deduce that the step-size Aj > )3min{l, (J/L}, which completes our
proof. •

We will prove that Algorithm 2 is convergent, we will show that it has the MUD
property (see [8], p. 21) and then make use of Theorem 1.2.8 in [8].

Lemma 2. Suppose that V^(-, •) is Lipschitz continuous on bounded sets and that
X is such that 6(x) < 0. Then there exists a p > 0 and a « > 0, such that for all
Xi G B{x,p) and Xj+i constructed by Algorithm 2,

tp(xi+i) - ip{xi) < -K. (35)

Proof. Let p > 0 be such that 9(xi) < 9(x)l2 for all Xi GB(x,p) and let L < oo be
a Lipschitz constant for V<^(*, ♦) on B(x,p). Then it follows from Lemma 1 and part
(b) of Theorem 2 that for all Xi GS(x, p)

V'(xi+i) - 'il)(xi) < Xiaq(^^^i)

a;/?min{l,f}g(f„i)

^min{l,f}0(xi)

2^min{l,f}0(x)

=

(36)

which completes our proof. •

The following theorem is a direct consequence of Lemma 1, Lemma 2 and Theo
rem 1.2.8 in [8].

Theorem 3. If{xj}go ^ sequence constructed by Algorithm 2, then every accumu
lation point X of this sequence satisfies the hrst-order optimality condition 0(x) = 0.

3 Rate of Convergence of Algorithm 2

To establish rate of convergence we will the following hypotheses:

Assumption 1. We will assume that



(a) For every y GYj y) is convex.

(b) Thesecond derivative matrix <j>xx(Xi y) exists and is continous.

(c) There exists 0 < m < M such that for all x in a suShciently largeset, ally gY
and all h

m\\h\\^ < {h, <l>xx(x, y)y} < M\\h\\^. (37)

(d) 6 G [m,M] holds.

In [8], p. 225, we find the following result:

Lemma 3. Suppose that Assumption 1 is satished. Let x be the unique minimizer
of ^(•). Then, for any x GR",

ip{x)-il;(x) > —0{x). (38)
771

Theorem 3. Suppose that Assumption 1 is satished. If {a;i}go a sequence con
structed by Algorithm 2, then

tl^jxi+i) - ipjx)
ip{xi) - if(x)

Proof. First, it follows from Lemma 3 and Theorem 2 (b), that for all i GN,

il){x) - ^(i|) >;^e(a:i) >-i.(i +•y)q{^„i). (40)
777 777

Next, in view of (37) and (19), for any Xi and A€ [0,5/M],

<Xy)- il!(xi) +{V^phi(xi,y), A,) + |̂|/ij||='
^ A^(^j»,j).

(41)

Hence, for any Xj and AG [0,5/M],

ipixi + Xhi) - Tpixi) + Aag(^«i) < A(1 - a)g(f„i) < 0, (42)
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which proves that Af > ^. Hence we have that

- ipixi) < (43)

Now, it follows from (40) that

— 7TL

(44)

Combining (43) and (44), we obtain that

^(ij+i) - ^(ij) < ~ (45)

Subtracting ipix) —xp(xi) from both sides of (45), we finally obtain

- ijiix) ^(i - ~
which completes our proof. Q

Remark 1. Note that when 7 = 0, we revert to the conceptual form of the algorithm
for which the rate of convergence is given in Theorem 2.4.5 of [8]. We see that when
7 = 0, the expression (46) coincides with the corresponding expresssion given in
Theorem 2.4.5 of [8]. •

4 Minimization of the Maximum Eigenvalue of a
Symmetric Matrix

We now return to the special case where ^(•, •) and y are as given in (10), with the
matrix Q(-) at least once continously differentiable. To show that Algorithm 2 is
implementable for this case, we only need to show how to compute the points
and can be computed using either the Prank-Wolfe algorithm [3] or the much
more efficient Higgins-Polak algorithm [5], [8] to minimize the function g(f), defined
in (12) over the set G^(a;), defined in (11). Both of these algorithms depend on the
computation of "support points" to the set Gil){x) defined in (11), but the Frank-
Wolfe algorithm is much simpler to explain, so we will restrict itself to it.

Modified Frank-Wolfe Algorithm (Computes points and

Parameters. 7 € (0,1).

Data, fo € Gtl){x).

Step 0. Set i = 0.

11



step 1. Compute a support point Ci ^ Giplx) according to

Ci € arginin{(V9(^i),C - fi> IC€ (47)

Step 2. compute the point

Cl = argmin{g(0 | f € W(Ci)}, (48)

where

nCi) = {c e I (c - Ci, V9(S)> = 0}. (49)

step 3. If Ci° > 0 and

(50)

set f#, = Ci and exit.

Else, set fji = ft - Ci and go to Step 4.

Step 4. Compute the step-length

Ai = argmin{g(fi + A^i) | A€ [0,1]}. (51)

Step 5. Update: Set

Ci+l ~ Ci "1" ^iVi (52)

and go to Step 1.

The following result is a direct consequence of the fact (see Theorem 2.4.9 in [8])
that if the Frank-Wolfe does not exit in Step 3, above, then the sequence {Ci}£o
converges to the unique minimizer of q(') on Gip(x).

Theorem 4. Suppose that x e E" is such that 9{x) < 0, then the Modihed Frank-
Wolfe Algorithm will compute the required points f#, f** in a Bnite number of itera
tions.

Proof. Suppose that x e 1" is such that ^(x) < 0 and that the Modified Prank-
Wolfe Algorithm does not exit in Step 3 after a finite number of iterations. Then it
follows from Theorem 2.4.9, in [8] that the sequence {Ci}So converges to the unique
minimizer f* of 9(-) on Gip(x) and the same holds for the sequence {Ci}So- Hence
the hyperlanes 'H(Ci) converge to the hyperplane KiC) and therefore the sequence
{fOSo 2dso converges to f*. Since this implies that q(^i) —q{Ci) -> 0, as i ^ oo, we
have a contradiction, which completes our proof. •

Clearly, neither the minimization of the quadratic function 5(') on the hyperplane
?{(Ci) in (48), nor the step-length calculation in ((51) pause any difficulty. The only

12



difficult operation in the Modified Prank-Wolfe Algorithm seems to be the compu
tation of the support (contact) point Ci> according to (47). We will now show that
becauseof the quadratic form of the function <^(x, y) this computation is quite simple.

Now, when ^(x, y) and Y are as in (10), the set Gip(x) assumes the specific form:

' ( Hx) - {y,Q{x)y) \ '
{y,Qi{x)y)

Gtbix) = conv

1 {y,Qn(.x)y) )
>

where Qj(x) = dQ(x)/dx^,

(53)

5 A Numerical Example

6 Conclusion
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