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1. Introduction

1.1 Ptolemy II

The Ptolemy II software package [1] provides an environment for simulation of
concurrent systems composed of actors, which communicate with each other by
receiving and sending data through ports. Ports are contained within actors, and may be
used for input, output, or both. Ports may have a variable number of channels that may
be connected to channels of other ports. All data sent through ports are encapsulated by
tokens, of which there are many kinds. The exact semantics of corrununication are
determined by the domain in which a system executes. For example, in the
Communicating Sequential Processes (CSP) domain, each actor executes in a separate
thread, and communication is done through rendezvous (an actor sending data to a port
must block until another actor attempts to receive data from the port, and an actor
receiving data from a port must block until another actor attempts to send data to the port,
at which time the data can be exchanged). Another domain, which is the focus of this
project, is the Synchronous Dataflow (SDF) domain, in which all actors may be executed
sequentially according to a static schedule. Port I/O requires no blocking and really
comes down to reading or writing a buffer.

Actors may also have parameters, which may be configured at run-time for more
flexibility. Parameters can be queried for and set with token values. Since parameters are
public fields of actors, they can be queried and set from outside of the actor class.

An executable system in Ptolemy consists of instances of actors that are contained
in an instance of a composite actor. A composite actor contains a director, which
invokes the following execution methods of actors:

• preinitialize (), which is invoked exactly once before simulation begins.
• initialize!), which is invoked exactly once after preinitialize!) is

called.

• prefire!), which is invoked once per iteration.
• fire!), which is invoked several times per iteration, after prefire!) is called.
• postfire!), which is invoked once per iteration, after the last fire!) is called.
• wrapup!), which is invoked exactly once after simulation begins.

Typically, the majority of simulation time is spent invoking f ire !) which does most of
the work of an actor. During the invocation of initialize!), prefire!),
fire !), and postf ire !), the actor may read a token from a channel of a port by
calling port .get !ch), where ch is the channel number. It may write a token to a
channel of a port by calling port. send !ch, t), where ch is the channel number,
and t is a token. Finally, it may write to all channels of a port by calling
port. broadcast! t), where t is a token.

The environment Ptolemy II is rich enough so that systems using the different
domains still use the same basic kernel. This richness allows for heterogeneous
simulation, in which two or more domains may be used simultaneously in the same



system, and domain-polymorphic actors, which are actors that may be used as valid
actors in more than one domain. In addition, because data is encapsulated in tokens,
actors may also be type-polymorphic, meaning that the actor may receive or send more
than one kind of token to one of its ports. Token objects are also able to perform
elementary operations with other kinds of tokens and convert other kinds of tokens, so
actors that do not fully specify the meaning of their operations still may be useful. As an
example of polymorphism, consider the AddSubtract actor. The actor executes the
following steps in its fire () method:

1) Read token(s) from the plus port, and "add" them to the initially "zero" result.
2) Read token(s) from the minus port, and "subtract" them from the result.
3) Write the result token to the output port.

The above sequence of actions is legal in most domains, including SDF, so the actor is
domain-poljmorphic.

In step 1), instances of Token are read from a port. These tokens may encapsulate
integers, double precision floating-point numbers, integers, matrices, or even strings. The
addition operation provided by the subclass of Token supplies the real meaning of
addition. For tokens that are numbers, arithmetic addition is performed. For tokens that
are strings, string concatenation is performed. It is therefore legal to receive different
kinds of tokens, making the actor type-polymorphic.

1.2 Motivation for Code Generation for Ptolemy 11

While type and domain polymorphism allow for maximum code reuse (an SDF
adder actor is not required, nor is an adder that specifically adds matrices of complex
numbers), they have the disadvantage of run-time overhead during simulation. A method
call to send() on a port is undoubtedly slower than directly writing to a buffer. A
method call to the add () method of a kind of token is undoubtedly slower than directly
adding two integers. Herein lies the potential for performance improvements through
code transformations of actor source code, if the domain is known and the kinds of tokens
can be resolved.

Another reason for code transformation of actor source code is standalone synthesis
of code that does not depend (or depends less) on the code in the Ptolemy II software
package. The transformed code, while still in the language that the actor was written in,
can be converted to C by generic Java to C converters that do not have to understand
Ptolemy semantics. This C code could then be compiled and executed efficiently in
embedded systems.

2. Related Work

In Ptolemy Classic [2], the predecessor of Ptolemy II, a very different approach to
code generation was taken. Code generation was done as a separate domain. Each actor
(or star as they were called then) was responsible for generating its own code, by
supplying additional source code. The source code was allowed to reference special
macros. Therefore, the simulation source code and code generated source code were two



different pieces of code. Inherent problems in this approach are additional effort required
to use a star in a code generated system and decreased maintainability of each star's
source code.

The MathWorks Real-Time Workshop [3] also generates C code from a block
diagram specified in Simulink. Simulink, built on top of Matlab, provides a variety of
built-in data types including complex numbers, fixed-point numbers, and matrices. Real-
Time Workshop can generate code that may be used in single and multi-tasking
environments. The code generation process consists of two steps: generation of "C MEX
S-functions" from a Simulink block diagram, and generation of C code from these
functions. Between these steps, custom C code can be specified by the user to avoid the
use of the C MEX S-functions. For each block in the block diagram, the behavior of the
code generator can be customized for efficiency. Such behavioral changes are described
in another language and compiled by the "Target Language Compiler". By combining
automatically generated code based on the existing code used for Simulink blocks,
additional code specified by the user, and behavioral changes to the code generator
specified by the user, Real-Time Workshop is flexible and able to generate highly
optimized code.

3. Code Generation Strategy in Ptolemy II

The goal of this project is to make code generation as painless as possible to users.
A user who writes an actor should not need to know how to generate code for it. It should
be possible to generate efficient code for polymorphic actors if the configuration of the
actor in the system is analyzed. Therefore, the approach taken in Ptolemy n consists of
the following steps:

1) The system is configured as usual in preparation for ordinary execution.
2) Each actor is analyzed, in relation to other actors in the system.
3) The source code for each actor is parsed andstatic semantic analysis is performed,

yielding a decorated abstract syntax tree (AST).
4) Declarations of tokens are "specialized", i.e. declarations of instances of abstract

tokens are transformed into declarations of instances of concrete tokens. This is
done by solving inequalities on the most specific type of token allowable for each
declaration.

5) The resulting abstract syntax tree is transformed in a domain-specific way to an
intermediate abstract syntax tree, which has extended type rules and conversions.
Tokens are replaced with their encapsulated data, and token operations (which are
method calls) are replaced with ordinary addition, subtraction, etc. Reads and
writes of tokens to port are replaced in a domain-specific way.

6) The AST is reverted back to ordinary Java by adding conversions that widen
types and method calls that implement matrix addition, etc.

7) Finally, Java source code is regenerated from the transformed AST.



These steps are shown in the following diagram, which uses as an example a multiplier in
SDF:

OriginalActor Source Code

Token tl = in.get(0);

Token t2 = in.get(l);

out.send(0, tl.i»ultipl?(t2));

Specialization of Token Declarations

/-

Actor Source Code with Tokens Specialized

IntMatrixToken tl ° in.get(O);

IntHatrixToken t2 = in.get(1);

V

N

j

/

Transformation of Ptolemy Semantics

Extended Java Source Code with Ptolemy
Semantics Replaced

int[] [] tl = _cg_in_Jouf [•]
[_cg_in_off3et = (_cg_in_offset + 1) % 5];

// ... siinilarly for t2
_cg_out_buf[_cg_out_offset =

( eg out offset +1) % 8] = tl » t2;

Conversion to Ordinary Java

Code Generated Output in Ordinary Java
int[] [] tl = __cg_in_buf [0]

[_cg_in_offset = (_cg_in_offset + 1) H 5];
// ... similarly for t2
_cg_out_buf[_cg_out_offset =

(_cg_out__offset + 1) % 8] =
IntegerHatrixHath.multiply(tl, t2);

The code generation process is written entirely in Java.



4. General Compiler Tools

Step 3 of the code generation process requires that compilation be performed on
the source code of each actor. The compilation process, however, does not need to
generate machine code. Because Ptolemy H actors are written in Java, in particular, code
for compilation of Java is required. However, in this project, we attempt to separate code
that could be used in any compiler from code that is used only for the Java compiler. It is
our hope that the general compiler code would be used in compilers for other languages.
The general compiler code is found in the ptolemy. lang package.

The Java compiler in Ptolemy 11 was based on the source code for the Titanium
compiler [4]. Titanium is a superset of Java that allows constructs that may be used to
optimize programs executed in high-performance environments. The source code for the
Titanium compiler itself is written in C-H-, so we were not able to use the source code
without making a few changes because all Ptolemy n packages are written in Java. In
addition, a major design change was made. In Titanium, each type of node in the abstract
syntax tree is responsible for dealing with itself during each stage of the compilation
process. For example, a node representing the addition of two expressions is responsible
for figuring out the resulting expression type in the third stage of static resolution, and for
generating corresponding Split-C code in the code generation stage. This approach has
the following disadvantages:

1) The code to do one coherent operation is spread over all node classes, making
the code difficult to maintain and debug. While in C++, the code can be
collected in a single file, in Java, it must be placed in the node class definition
file.

2) Additional operations can only be added by modifying the source code for
each node.

A crucial step of the Ptolemy II code generator is to transform an AST. If the above
approach were taken, the source code for each type of node would need to contain
general static semantic analysis code as well as code to do operations to do
transformations that would only be applicable to analyzing Ptolemy 11 actors. However,
as a general design principle, we want the general Java compiler code to be unpolluted by
code for unrelated operations.

We solve this problem with the Visitor pattern [5]. Each node contains only a few
access methods, and an _acceptHere () method. The _acceptHere () method
takes as an argument an instance of the interface IVisitor, and passes the node to the
appropriate method of the visitor. Each type of IVisitor is responsible for one coherent
operation, and has one method for each of the types of nodes that may appear in the AST.
Because the nodes have only access methods and the _acceptHere () method, the
code for each type of node may be generated automatically. Doing automatic generation
of subclasses of TreeNode allows the node class hierarchy to be specified in one file,
allowing changes in hierarchy to be made more easily.

To illustrate the Visitor pattern more clearly, let us consider a toy language that
has only two constructs: a reference to a variable and addition. Assuming both types of
nodes extend ExprNode, which extends TreeNode, the node representing addition might
look like



class PlusNode extends ExprNode {
public PlusNode(ExprNode exprl, ExprNode expr2) { ... )
public getExprlO { return _exprl; }
public getExpr2() { return _expr2; }

public void setExprl(ExprNode exprl) { _exprl = exprl; }
public void setExpr2(ExprNode expr2) { _expr2 = expr2; )

protected Object _acceptHere(IVisitor visitor, LinkedList args) {
return ((ToyVisitor) visitor).visitPlusNode(this, args);

}

protected ExprNode _exprl;
protected ExprNode _expr2;

}

The code for a variable reference might look like

class VarNode extends ExprNode {
public VarNode (String neime) { ... }

public String getName() { return _name; }
public void setName(String name) { _ncime = name; }

protected Object _acceptHere(IVisitor visitor, LinkedList args) {
return ((ToyVisitor) visitor).visitVarNode(this, args);

}

protected String _name;

}

The visitor base class for the language would look like

class ToyVisitor extends IVisitor {
public ToyVisitor0 {}

public int traversalMethod() { return TM_CUSTOM; }

public Object visitPlusNode(PlusNode node, LinkedList args) {
return null;

}

public Object visitVarNode(VarNode node, LinkedList args) {
return null;

}

}

Visitors in the toy language would then extend ToyVisitor to do some operation on the
AST. When the accept () method of a node is called, it may call accept () on the
nodes in its child list either before or after it calls _acceptHere () on itself. The
_acceptHere () method then calls the appropriate method of the visitor.



The disadvantage of the Visitor pattern is that operation code is no longer
implicitly inherited if one node class extends another. When such behavior is desired,
code reuse can be achieved by manually calling a method that handles an abstract tree
node in each visitation method of a node that extends the abstract tree node class.

Based on the Titanium compiler source code, we have converted the following
classes for use in compilers:

• Decl encapsulates a declaration of some kind. Each declaration has a name and a
category. The Decl class extends the class TrackedPropertyMap. Instances of Decl
are intended to be unique; for every actual declaration there is exactly one instance of
Decl. When referring back to a declaration, a pointer reference to the original instance
of Decl must be used instead of copies.

• Environ encapsulates an environment containing declarations. Each environment
may recursively contain other environments. Methods are provided for searching for
declarations non-recursively (i.e. properly) and recursively in an environment. These
methods return instances of Decl or Environlter.

• Environlter represents an iterator over declarations that match some criteria for their
names and categories. When an Environlter is created, no attempt is made to find all
matches within an environment. Instead, the matching process is done lazily as the
iterator is advanced. For convenience, Environlter implements java.util.Iterator.

• TreeNode represents a node in an abstractsyntax tree. All node classes that appear in
an abstract syntax tree should eventually derive from TreeNode. Each node contains
one child list. A child list is a list whose members may be instances of TreeNode or
other child lists. The child list is implemented by ArrayList, which provides constant
time access to list members. Therefore, in subclasses of TreeNode, it is not necessary
to declare explicit fields for child nodes or lists of nodes. TreeNode accepts an
instance of IVisitor, and invokes the corresponding method in the visitor class. The
accept () method also performs automatic visitation of the child list if desired, and
eventually calls _acceptHere {). In addition, TreeNode provides a toString ()
method that uses reflection to retum a meaningful String representation of any
subclass of TreeNode. Finally, the clone () method is overloaded so that a deep
copy of TreeNode is made (nodes or lists in the child list are also cloned). The reason
that a deep copy is necessary is that each instance of TreeNode in the AST should be
unique and contained by at most one TreeNode, except for special singleton nodes.
TreeNode extends the class TrackedPropertyMap, and implements the class
ITreeNode.

In addition to the code converted from the Titanium compiler, the following
classes are also part of the ptolemy. lang package:

• ApplicationUtility contains methods useful for reporting errors, wamings, trace
messages and doing assertions for command-line applications such as compilers. The
action taken when encountering an error, warning, or assertion failure can be chosen.

• FropertyMap allows properties to be put and retrieved. A property is specified by an
instance of Integer, and property values may be any user type. Properties are typically



used to store the result of the operation of a single visitor. Later, a property may be
retrieved by another visitor.
TrackedPropertyMap keeps track of which visitors have "visited" the object. By
visitation, we mean that either the object is a node in the AST and it has accepted a
given type of visitor, or the visitor has in some way dealt with the object already.
Visitation is manually marked by calling addVisitorO with the Class object
associated with a specific type of visitor. TrackedPropertyMap extends the class
PropertyMap.
TNLManip provides group of methods that provides convenience methods for
constructing and visiting child lists.
ITreeNode is an interface that all TreeNodes must implement. This interface is
provided so that interfaces that extend it may be used just as TreeNodes. For example,
the interface StatementNode in the Java compiler extends ITreeNode, and therefore
instances of StatementNode can also accept visitors (all nodes eventually derive from
TreeNode anyway).
IVisitor is an interface that node visitors should implement. TreeNodes accept
visitors of type IVisitor, instead of concrete visitor classes that have methods that
depend on the language being compiled.
Objectlnterrogator is a static class that contains an interrogate () method
which uses reflection to determine fields, method return values, and properties of
objects, during ordinary execution of a program. A user inputs what he/she wants to
inspect, and the resulting value is displayed on the screen. The resulting value is then
recursively interrogated. This class can be useful for the "just-in-time debugging" of
compilers, if calls to interrogate () are made at strategic places in the code to be
debugged, jdb provides similar capabilities (without support for properties), but
executes the entire program slowly.
GenerateVisitor is a standalone program that reads a node class definition file,
generates the source code for the nodes and a base class for visitors of the nodes. This
class is further described in Appendix A.



The following UMLdiagramshows the relationships between the key classes:
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In this diagram, only two concrete subclasses of TreeNode are shown for simplicity. The
diagram also shows classes used in the Java compiler, described next.
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5. Java Compiler Front End

This section is heavily influenced by the work in Titanium compiler, as most of
the static semantic analysis code was just a conversion of the Titanium compiler source
code to Java.

The Java compiler is found in the sub-package ptolemy. lang. java. Nodes
and the concrete visitor class for a Java AST, JavaVisitor, were generated by
GenerateVisitor, and placed in the sub-package ptolemy. lang. j ava. nodetypes.
The descriptions of all node types are found in Appendix B.

A subclass of Decl, JavaDecl provides ^nctionality common to declarations in
Java, so declarations found as properties of nodes all derive from JavaDecl. The
following are the types of declarations in Java:

Description Class name Allowed categories Container Modifiers Environ Source

Package PackageDecl CG_PACKAGE X X

Class or

Interface

ClassDecI CG.CLASS,
CG„INTERFACE

X X X X

Method or

constructor

MethodDecI CG.METHOD,
CG.CONSTRUCTOR

X X X

Class field FieldDecl CG„nELD X X X

Local

variable

LocalVarDecl CG.LOCALVAR X X

Parameter FormalParameterDecl CG FORMAL X X

Statement

label

StmtLabelDecl CG.STMTLABEL X

If present, the container, modifiers, environment, or source tree node associated with a
declaration can be queried and set using methods like getContainer () and
setContainer () which are present in JavaDecl. If a subclass of a declaration does
not have a given attribute, an exception will be thrown when getContainer () is
called on a local variable declaration, for example. In addition, a JavaDecl can be queried
to see if it has an attribute by calling a method like hasContainer {).
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5.1 Parser and Lexical Analyzer

As mentioned previously, the source code for the Java compiler was taken from
the Titanium project, with some modifications. Because we intended to write the Java
compiler in Ptolemy n entirely in Java, the lexical analyzer and the parser also had to be
generated in Java. However, the tools to generate the lexical analyzer and parser in
Titanium, flex [6] and bison [7], respectively, only produce C-H- code. Therefore,
JLex [8] was chosen as the lexical analyzer generator, and BYACC/J [9] was chosen as
the parser generator because they generate Java code. BYACC/J was also chosen because
the grammar file is of the same format as yacc, with which bison is compatible. We
were able to create a valid Java grammar definition by making some changes to the
bison grammar file for Titanium. Titanium-specific rules were deleted, and additional
rules for Java 1.2 were added (new uses for modifiers, inner classes, anon3mious classes
and arrays, . class access, and the strictfp keyword).

JavaCC [10] and ANTLR [11] were also considered for parser generators but
were rejected because the format of each respective grammar file is different. In addition,
JavaCC does not handle LALR(l) rules, which the Java Language Specification [12] uses
to describe the grammar. The quality and features of ANTLR were found to be high, and
it has the advantages of being written in Java, with the source code freely distributed, and
having a built-in lexical analyzer.

Nevertheless, BYACC/J was chosen because the time required to convert a
bison grammar file to an ANTLR grammar file was estimated to be too long. BYACC/J
was written in C, and two major modifications to the source code had to be made so that
the generated parsers would work correctly.

The first change was that parser tables had to be stored in extemal files instead of
inlined in the source code. The reason is that Java class files have a size limitation of 64
kilobytes, which is acceptable for parsers of trivial languages, but not for a Java parser.
The modified BYACC/J writes to extemal files when generating the parser, and the
modified parser code reads from these extemal files. The problem with this approach is
that the parser does not know where to look for the extemal files, exceptfor the directory
in which the parser class file resides. Consequently, any use of theJavacompiler mustbe
initiated from the ptolemy/lang/j ava directory.

The second change to the BYACC/J source code was that parser values had to be
cloned so that each instance of parser retum value is only used once. It seems
unbelievable that this bug could exist in BYACC/J, but nevertheless making this change
was necessary so that the parser would work correctly. Both of these changes have been
mentioned to the author of BYACC/J.

BYACC/J does not have a built-in lexical analyzer, so JLex was chosen to
generate the lexical analyzer. JLex takes as input a file very similar in syntax to definition
files for flex. Since the Titanium source code includes such a file, it was relatively
trivial to convert it into an input file for JLex by removing Titanium-specific lexemes and
making minor syntactic changes.

Once a source file is parsed, the AST can be displayed on the screen by mnning
the standalone class PrintTree. An example of the textual representation of an AST is
shown below:
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CompileUnitNode
DefTypes: list

ClassDeclNode

Interfaces: <einpty list>
Members: list

ConstruetorDeclNode

Modifiers: 1

Name: NcimeNode

Ident: OneFM

Qualifier: AbsentTreeNode (leaf)
END NameNode

Params: <enpty list>
ThrowsList: <empty list>
Body: BlockNode

Stmts: list

ExprStmtNode

Expr: AssignNode
Exprl: ObjectNode

Name: NameNode

Ident: x

Qualifier: AbsentTreeNode (leaf)
END NameNode

END ObjectNode
Expr2: IntLitNode

Literal: 1

END IntLitNode

END AssignNode
END ExprStmtNode

END list

END BlockNode

ConstruetorCall: SuperConstructorCallNode

Args: <empty list>
END SuperConstructorCallNode

END ConstructorDeclNode

MethodDeclNode

Modifiers: 1

Name: NameNode

Ident: get
Qualifier: AbsentTreeNode (leaf)

END NameNode

Pareums: <empty list>
ThrowsList: <empty list>
Body: BlockNode

Stmts: list

ReturnNode

Expr: Obj ectNode
Name: NameNode

Ident: x

Qualifier: AbsentTreeNode (leaf)
END NameNode

END ObjectNode
END ReturnNode

END list

END BlockNode

ReturnType: IntTypeNode (leaf)
END MethodDeclNode

MethodDeclNode (Shown infollowing picture)
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Modifiers: 1

Name: NameNode

Ident: set

Qualifier: AbsentTreeNode (leaf)
END NameNode

Params: list

ParameterNode

DefType: IntTypeNode (leaf)
Modifiers: 0

Name: NameNode

Ident: y
Qualifier: AbsentTreeNode (leaf)

END NameNode

END ParameterNode

END list

ThrowsList: <empty list>
Body: BlockNode

Stmts: list

ExprStmtNode
Expr: AssignNode

Exprl: ObjectNode
Name: NameNode

Ident: x

Qualifier: AbsentTreeNode (leaf)
END NameNode

END ObjectNode
Expr2: ObjectNode

Name: NameNode

Ident: y
Qualifier: AbsentTreeNode (leaf)

END NameNode

END ObjectNode
END AssignNode

END ExprStmtNode

END list

END BlocJcNode

ReturnType: VoidTypeNode (leaf)
END MethodDeclNode

FieldDeclNode

DefType: IntTypeNode (leaf)
Modifiers: 1

Name: NameNode

Ident: x

Qualifier: AbsentTreeNode (leaf)
END NameNode

InitExpr: AbsentTreeNode (leaf)
END FieldDeclNode

END list

Modifiers: 0

Name: NameNode

Ident: OneFM

Qualifier: AbsentTreeNode (leaf)
END NameNode

Superclass: AbsentTreeNode (leaf)
END ClassDeclNode

END list

Imports: <erapty list>
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Pkg: NameNode
Ident: test

Qualifier: NameNode
Ident: java
Qualifier: NameNode

Ident: lang
Qualifier: NameNode

Ident: ptolemy
Qualifier: AbsentTreeNode

(leaf)

END NameNode

END NameNode

END NameNode

END NameNode

END CompileUnitNode

which is the representation for the following source code:

package ptolemy.lang.java.test;

class OneFM {

public OneFM0 {
X = 1;

)

public int get() ( return x; }

public void set(int y) { x = y; >

public int x;
}

To be more clear, the following is a graphical representation of the set () method in the
above class:
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5.2 Static Semantic Analysis

After parsing an input source file, the next step is to perform static semantic
analysis on the AST returned by the parser. Mostly, static semantic analysis is the
resolution of names to the declarations to which the names refer. We say resolution has
been performed on a node in the AST if the contained NameNode has its DECL_KEY
property pointing to the corresponding declaration.

The static class StaticResolution provides methods for performing static semantic
analysis. Static semantic analysis is divided into three passes:

1. Pass 0: Package resolution, done by PackageResolutionVisitor consists of three
steps:

a. Creation of type environments, done by ResolvePackageVisitor. These
environments are members of class declarations (ClassDecl), which are
created during this step.

b. Resolution of imports, done by ResolvelmportsVisitor.
c. Resolution of type names, done by ResolveTypesVisitor.

Additional classes may be read in during pass 0.
2. Pass 1: Building of class and interface environments, done in two steps:

a. Adding proper class and interface members to the respective
environments, done by ResolveClassVisitor. All source files known to the
compiler must undergo this step before the next step.

b. Adding inherited class and interface members to the respective
environments, done by ResolvelnheritanceVisitor.
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Additional classes may be read in during pass 1.
3. Pass 2: Resolution of names in statements, done in two steps:

a. Resolution of references to local variables, parameters, and statement
labels, done by ResolveNameVisitor.

b. Resolution of fields, constructor calls, and method calls, done by
ResolveFieldVisitor. Resolution of constructor calls and method calls

requires that the types of the parameter expressions be known. These
types are computed by TypeVisitor.

Additional classes may not be read in during pass 2.

Static semantic analysis using the Titanium compiler and in this project requires
that all the source code files for the classes encountered be available in the correct

location relative to the CLASSPATH environmental variable. As a result, code that

represents the class structure for the j ava package is required.
It is worth mentioning that in most cases full resolution only needs to be

performed on a small subset of the source files that the compiler reads in. Pass 0 and 1
are required to resolve the class structure (contained constructors, methods, fields) of user
types, and must be run on all referenced source files if a compile unit that uses (directly
or indirectly) user types is to be pass 2 resolved. Pass 2, which is the resolution of names
used in statements, does not need to be run on a CompileUnitNode if its statements are
not of interest. For example, a user might want to perform pass 2 resolution on a source
file that uses the class java.io.StringTokenizer, perhaps to do a later optimization pass.
The source code for java.io.StringTokenizer would have to undergo pass 0 and pass 1
resolution, but since its statements are irrelevant to the user, it would not have to undergo
pass 2 resolution.

As a result, pass 0 and 1 resolution are automatically performed on all files that
have been read in if pass 2 is initiated on any file, but pass 2 is not automatically
performed on any file.

In the case of a normal compiler, all of the files that are to be fiilly resolved are
known from the start (they are usually specified on the command-line). However, in the
case of this specialized code generation project, pass 2 may be invoked on the same file
more than once. By caching the resolved AST after pass 2 is completed on a source file,
the entire static semantic analysis procedure does not need to be redone. Actually, there
are caches for passes 0, 1, and 2 that contain all ASTs that have undergone at least pass
0, 1, and 2 resolution, respectively. Thus invocation of
StaticResolution. load (String filename, int pass) with 2 as the
pass number argument, for instance, will check if the associated AST has undergone pass
2. If it has, load {) returns the AST immediately. If not, it checks the cache for pass 1
resolved files. If a matching AST is found, StaticResolution. resolvePass2 ()
is invoked on the AST, and the AST is added to the pass 2 resolved cache.

Though the caches are useful for improving performance, when code is
transformed, they may need to be invalidated. This is done with the
StaticResolution. invalidateCompileUnit () method.

A second optimization that was applied to the Java compiler is the use of skeleton
code sources. A skeleton code source is a source file that has had the vast majority of
statements removed, but retains the same public and protected classes, constructors.
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methods, and fields so that its classes and interfaces may still be referenced by other
source files. The use of skeleton code sources has the advantage that the time and
memory required for lexical analysis, parsing, and static semantic analysis are greatly
reduced over that of the original source file. Unfortunately, due to a subtle problem, some
skeleton-ized source files are not legal Java, and will cause an error to occur if pass 2 is
invoked on them. Nevertheless, as long as the statements in skeleton-ized source files are
irrelevant to the application, pass 2 never needs to be invoked on skeleton source files.
By default, the Java compiler favors skeleton files (with extension . jskel) over
original source files. Skeletons can be generated by the standalone class Skeleton.
Actually, instead of using the actual source code for the java package, skeletons are
used to improve performance.

The standalone class Main may be used to do full static resolution of Java source
files. After resolution is performed, the nodes in an AST are numbered with the visitor
NumberNodeVisitor. The user may then select a node by its number, and inspect the node
using Objectlnspector.

A feature of the Java compiler in Ptolemy n is that rules for determining types
can be changed. This is accomplished by the use of the following classes:

• Typeldentifier identifies types, and assigns an integer value to different kinds of
TypeNodes.

• TypePolicy contains methods used to make decisions regarding types. It uses a
contained instance of Typeldentifier to identify types.

• TypeVisitor is an AST node visitor that uses its contained instance TypePolicy to
determine the types of expressions. Types are lazily evaluated and cached in the value
of the property TYPE_KEY, in nodes that represent expressions.

By default, the above three classes are used to do type resolution, but by providing an
instance of a subclass of TypeVisitor to the method setDefaultTypeVisitor () in
StaticResolution, the type "personality" of the compiler can be changed at runtime. One
such personality is that of Extended Java, which knows about special Ptolemy math types
and overloads operators between matrices, Ptolemy math types, and primitive types.

5.3 Java Compiler Back End

Unlike a traditional compiler, the Java compiler in Ptolemy n does not generate
machine code, or even virtud machine code. Instead, Java source code can be
regenerated from the AST by the visitor JavaCodeGenerator. This process is relatively
trivial, and does not even use the information discovered by static semantic analysis. The
reasoning behind this decision is that the purpose of the code generator in this project is
not to translate code from one language to another, but to transform code in the same
language, using information about the Ptolemy system.

The implementation of JavaCodeGenerator is a bit interesting. Each node
visitation returns a string list, which is a list that may contain strings or other string lists.
Each member of a string list represents a code fragment. Code fragments are assembled
by building string lists instead of string concatenation. String concatenation only occurs
when the entire string list is assembled for one source code file.
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Used as a testing utility, the standalone class RegenerateCode takes a source file,
parses it, and regenerates the source code from the AST.

Although regeneration of Java code is the only "back-end" to the Java compiler
currently present in Ptolemy H, it should be a relatively straightforward task to write a
visitor that converts the code into another language.

6. Generic Code Generation for Ptolemy n

The Ptolemy n code generator, found in the package ptolemy. codegen, uses
the Java compiler to build a decorated AST, and then does transformations of the code for
each actor. These transformations may be domain-independent, as in the case of token
operations, or domain-specific, as in the case of port I/O. The overall code generation
process consists of three passes:

1. Specialization of token declarations.
2. Transformations having to do with Ptolemy semantics into "Extended Java".
3. Conversion from Extended Java back into ordinary Java.

The class ActorCodeOenerator performs these passes with the help of some classes that
may depend on the domain:

• ActorCodeGeneratorlnfo contains information about the actor whose code is to be

transformed. Depending on the domain, it may be extended to contain additional
information.

• PtolemyTypeldentifier identifies valid tjrpe names of actors, tokens, exceptions,
parameters, and ports. It should be extended by domain-specific classes so that the
different types of valid actors, exceptions, and ports in a domain are correctly
identified. PtolemyTypeldentifier extends the class Typeldentifier.

• PtolemyTypePolicy is used to make decisions regarding types in Ptolemy, and it in
turn uses an instance of PtolemyTypeldentifier, which it contains.
PtolemyTypePolicy extends the class TypePolicy.

• FtolemyTypeVisitor computes the types of expressions, and extends TypeVisitor,
which is the ordinary visitor for computing types. PtolemyTypeVisitor ensures that
the type of certain token operations is resolved to the most specific actual return type
instead of the type declared by the method signature. For example, the method
add () in the class DoubleToken is declared to have retum type Token, but the
method will retum an instance of DoubleToken if it is called with an IntToken

parameter. PtolemyTypeVisitor would then resolve the type of the method call
expression to be DoubleToken instead of Token. This behavior is necessary to
provide more detailed type information to SpecializeTokenVisitor. Each instance of
PtolemyTypeVisitor contains an instance of PtolemyTypePolicy, and uses the
instance of PtolemyTypeldentifier contained by it.

• ActorTransformerVisitor does the transformation of step 2 above. The base class
can do transformations of token operations, but not port I/O calls. Such calls must be
transformed by subclasses of ActorTransformerVisitor, which depend on the domain.
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Domain-Specific behavior by the domain-independent class ActorCodeGenerator
is achieved by the use of an Abstract Factory [5]. Each domain provides a subclass of
CodeGeneratorClassFactory, which creates (possibly subclassed) instances of the above
classes. Each subclass of CodeGeneratorClassFactory provides a consistent set of classes
that may mutually assume each other's existence. For example, SDFTransformerVisitor,
which extends ActorTransformerVisitor, contains a constructor that takes as an argument
an instance of ActorCodeGeneratorlnfo. It may assume that this argument is also an
instance of SDFCodeGeneratorlnfo so it can access the SDF-specific information in it.
ActorCodeGenerator is given an instance of CodeGeneratorClassFactory, and uses the
factory to create classes on an as-needed basis.

Before ActorCodeGenerator can begin transforming code, domain-specific
information must be gathered about each actor. Therefore, the main code generation
starting point is left for domain-specific classes. After domain-specific information is
gathered, ActorCodeGenerator gathers domain-independent information and stores it in
instances of ActorCodeGeneratorlnfo, one instance per actor. The domain-specific main
code generation class drives the three passes of transformations by invoking methods in
ActorCodeGenerator.

ActorCodeGenerator generates code for each instance of an actor in a composite
actor. Actor code, in general, cannot be shared even if two or more actors are instances of
the same class. This is because the input and output ports are connected to different ports,
and may be of different type. For each actor, the code for all classes that the actor class
deeply extends, up to but not including the actor classes that are known in a specific
domain, needs to be transformed. For example, consider the actor class RaisedCosine,
which extends the class FIR, which extends the class SDFAtomicActor. In the SDF
domain, SDFAtomicActor is a known actor class. As a result, the source code for both
RaisedCosine and FIR would need to be transformed. By transforming a set of actor
classes, the code for each actor class can still reference fields and methods of its
superclasses. A more efficient, but more complicated alternative would be "flattening" all
classes, i.e. putting all of the methods and fields of the set of classes into one class. Class
flattening was not implemented in this project.

Classes are renamed so that there are no name conflicts between the code for each

actor class and its subclasses. All instances of actors in a Ptolemy system have a unique
name, which is used to name the classes of the transformed code. The format of the name
is

"CG_" + <Class name> + + <Ptolemy name>

In the previous example, if the Ptolemy name of an instance of RaisedCosine was
"channel", two source files named CG_RaisedCosine_channel. java and
CG_FIR_channel. j ava would be generated.

6.1 Assumptions Made by the Code Generator

Throughout the code generator, the following assumptions are made:
• There are no topology changes (changes in the relation of ports to each other,

removal or insertion of actors, etc.) made during execution.
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• Parameters do not change value during execution. In the generated code, the
value assigned to Parameters is the value of data contained by the token retrieved
by calling getTokenO on the Parameter after the preinitialize ()
method of the containing composite actor completes. Typically, this poses no
limitation except for the Expression actor, which parses a string in the Ptolemy n
expression language and produces tokens with different values during run-time.

• There is no aliasing of ports or parameters. For example if an array was declared
containing ports, the code generator cannot handle operations to the port such as
portArray[2] .get(O). Any operations to ports and parameters must be
performed on the public field variables that represent the ports and parameters
directly.

• Arrays of tokens are not supported (neither Token [ ] nor ArrayToken).

6.2 Specialization of Token Declarations

One goal of code generation is to use the resolved type of tokens to replace token
operations with operations on the data that are contained by the tokens. For example, the
sequence of statements

int X = doSoraething();
IntToken tl = new IntToken(x);

DoubleToken t2 = new DoubleToken(4.5);
t2 = (DoubleToken) t2.add(tl);

should be transformed into

int X = doSomething();
int tl = x;
double t2 = 4.5;

t2 = (double) (4.5 + x) ;

This is relatively easy to do, because IntToken maps directly to int, and DoubleToken
maps directly to double. In the final statement, the original type of t2 resolved to
DoubleToken and the type of tl resolved to IntToken, so the meaning of the add{)
method call is well defined. However, consider the sequence

Token tl = input.get(0);
Token t2 = new DoubleToken(4.5);
output.put(0, tl.add(t2));

where input is an input port and output is an output port. The transformer cannot
directly transform the two declarations because Token may map to any of the supported
data types in Ptolemy. Moreover, because the resolved types of tl and t2 are both
Token, the meaning of add () method call is unknown. It might be ordinary arithmetic
addition, matrix addition, or even string concatenation.

However, since the types of the ports are known, a more specific type can be
inferred for tl and t2. For example if input is of Ptolemy type BaseType. INT, the
type of tl can be specified to IntToken. The type of t2 can be specified to DoubleToken
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by examining the assignment to a new instance of DoubleToken. So the code sequence
can be transformed into

IntToken tl = input.get(0);
DoubleToken t2 = new DoubleToken(4.5);
output.put(0/ tl.add(t2));

which later (in pass 2)can befurther transformed as in the first example.
It is the task of the first pass is to specialize declarations of tokens. The above

example is trivial; more sophisticated analysis needs to be done in the general case. For
example, consider the following code sequence:

Token tl = inputl.get(0);
Token t2 = input2.get(0);
Token t3 = tl.add(t2);

Here the specialization of t3 requires knowing the specialized types of tl and t2. In
general, each expression of type Token or its subclasses canbe represented as a node in a
directed graph. Assignments, for example, would add edges from the right hand side to
the left hand side, indicating that the left hand side is at least as general as the right hand
side. The general solution can be obtained by representing the specialized type of each
declared token as a variable. Constraints are put on these variables, and using a partial
ordering in the form of a type lattice, the variables are solved together for the most
specific types allowable. This is the same approach used to resolve the types of ports in
Ptolemy, but applied instead to declarations of tokens. The implementation uses the same
set of classes to solve inequalities as are used in Ptolemy. These classes are contained in
the ptolemy. graph package.

The type lattice for token declarations differs slightly from the type lattice for port
types:
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In this modified type lattice, nodes represent t)rpes that can actually be used in
declarations. Therefore, MatrixUpperBound, MatrixLowerBound, and Numerical from
the original type lattice are omitted. The top of the lattice represents the most general
type; the bottom of the lattice represents the least general type. In between the top and the
bottom is a partial order in which any two nodes have a lower bound and an upper bound.

The implementation of token specialization uses a visitor for the AST,
SpecializeTokenVisitor. First, variable terms are created for all declarations. Then,
constraints are added to an InequalitySolver. The retum value for each type of expression
AST node is optionally an InequalityTerm that may be used as one of two
InequalityTerms needed to form an Inequality. After all InequalityTerms have been
added to the InequalitySolver for an actor class and the actor classes it inherits from, the
InequalitySolver solves for the most specific type allowable for all variables.

The overall assumption for this scheme to work is that the most specific type of a
Token variable remains constant. For example, a legal, concrete token type for tl cannot
be solved for in the following legal code fragment:

Token tl = new DoubleToken{4.5);
Token t2 = new IntMatrixToken(new int[l][l]
tl = t2;

{{42}));

because tl changes from a DoubleToken to an IntMatrixToken, which are
incomparable in the type lattice (their common lower bound is DummyLowerBound).
The most specific token type for tl would therefore be Token, which is not a concrete
type.
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As mentioned previously, SpecializeTokenVisitor uses an instance of
PtolemyTypeVisitor to get more specific type information on retum values of operations
such as add (). In addition, SpecializeTokenVisitor also uses the information in
ActorCodeGeneratorlnfo to get the types involved in port I/O calls and the types of
tokens contained in Parameters. To identify what classes are tokens, parameters, and
ports, SpecializeTokenVisitor uses an instanceof PtolemyTypeldentifier.

The following rules are used to form inequalities:

Description Example Retum value Inequalities added
Declarations a t; N/A type(0 < a

Assignments

II

type(rf) type(r2) < type(r7)

Casts (a) t2 type(t2) type(/i) < a

Method calls tl .op {t2) moreGeneral(type(t7),
type(/2))

type(tl) < retval
type(r2) < retval

tl. zero (),

tl. one ()

type(/i)

tl. convert {t2) type(t7) type(f2) < type(r7)
param. getToken () type(contained token)
port.g^t {chan) iyptiport)
port. send (chan, t) ; N/A type(r) < iypc(port)
por/.broadcast (r) ; N/A type(r) < type(port)

a is any of the token types in the t5q)e lattice.
t, tl, t2 are expressions with type Token or its subclasses that appear in the modified type
lattice.

op e {add, subtract, multiply, divide, modulo, addReverse,
subtractReverse, multiplyReverse, divideReverse, moduloReverse}.
port is a public port of the actor.
chan is an expression with integertype, representing the channel number.
param is a public parameter of the actor.

After all these inequalities are added to the InequalitySolver, the "least solution"
is found. The least solution is the solution in which variable terms are given a type as
specific as possible, i.e. asclose to the bottom of the type lattice as possible. It is possible
that the least solution for some declarations is DummyLowerBound. This typically
happens when a variable is declared but never actually assigned (assignments to
port. get (channel), where port is an unconnected port add no constraints - they
will be eliminated in pass 2). In such a case, the declaration type is converted to Token,
allowing error-free static resolution in preparation for the next pass. Assignments and
operations involving the variable will be fixed in pass 3.

A limitation of the implementation of SpecializeTokenVisitor is that the
relationship of a token being the element of a collection is not expressible as a normal
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inequality, and so the information that can be inferred from such relationships is not used.
For example, if t2 is an instance of a subclass MatrixToken, the expression

tl = t2.getElementAsToken(row, col)

can be used to infer the type of tl if the specialized type of t2 is known to be, for
instance, DoubleMatrixToken. Then type tl would be known to be DoubleToken, if the
containment relationship could be expressed. It would be possible to infer the type of tl
after the type of t2 is found, but no constraint on the type of t2 would be considered, if
for example, tl was used as a DoubleToken.

Another, probably more deleterious, example is the use of the getArray ()
method in SDF, which writes an array of tokens of the same type as the port:

Token[] tokenArray = new Token[1en];
port.getArray(channel, tokenArray);

Even if the type of port is known, the above declaration cannot be specialized by the
current implementation of SpecializeTokenVisitor. To solve these problems, the notion of
containment could be added to InequalitySolver.

6.3 Transformations of Ptolemy Semantics

After token declarations are specialized, there should be no abstract Token
declarations remaining in the AST for each actor. At this point, we can begin to do
transformations of Ptolemy semantics. During transformation, only subclasses of
supported actor classes are transformed.

So far, we have not described how transformation actually works. During normal
replacement, when a node is visited, its return value is set to whatever node will take its
place. That return value then replaces the node in its parent after visitation is complete.
However, a more robust strategy is required for the removal of nodes and more
complicated replacement of nodes. In the transformation process for this project,
expressions embedded inside expression statements may signify that the expression
statement should be replaced with a different statement. For example, in SDF, the
expression statement

out.broadcast(t);

needs to converted to a for loop that iterates over the channels of out.
visitMethodCallNode () is allowed to return an instance ForNode, although it is
not even an expression. Based on the return value of accept () on the embedded
expression node, ExprStmtNode may either replace the embedded expression with its
return value and return itself, or return the return value of the embedded expression node.
A more general replacement strategy that allows such functionality, implemented in this
project, can be summarized as follows:
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• A visitation of a member node of a class or interface may return a member node,
NullValue.instance, or a list of member nodes. A return value of

NullValue. instance indicates that the member is to be removed.

• A visitation of a MethodCallNode to a method with return type void may return
an expression node, NullValue.instance, a statement node, or a list of
objects. A return value of NullValue. instance indicates that the expression
statement containing the expression is to be removed. A return value of a
statement node signifies that expression statement node containing the expression
node should be replaced with the returned statement node. A return value of a list
of objects may contain expression nodes, statements, or
NullValue.instance. Each expression node in the list is checked if it
represents an expression that may have side effects. If so, it is placed in an
ExprStmtNode. The list of objects is thus converted to a series of statements.
These statements are wrapped in a BlockNode, which replaces the expression
statement node that contains the MethodCallNode.

• A visitation of a ExprStmtNode node must handle the return value of the
embedded expression node (which may be a MethodCallNode) appropriately.

• A visitation of a statement node may return a statement node,
NullValue. instance, or a list of objects. A return value of
NullValue. instance indicates that the statement is to be removed. A return

value of list of objects is converted to a BlockNode as above, which replaces the
statement node.

• Visitation of nodes that contain statement nodes must handle the return value of

the embedded statement nodes appropriately.

To preserve side effects for all method calls, a more robust replacement strategy
would allow all expressions to return lists of objects. For example, consider the statement

ht = out.hasToken(chan = x);

which, in SDF, is transformed into

ht = true;

if out is a connected port. If the expression chan = x is not preserved, its side effect
will be lost. In general, a MethodCallNode (which is a type of an expression node) may
contain a list of more than one argument expressions, and these expressions may each
have side effects. The AssignNode that contains the MethodCallNode must propagate
these side effects up to the ExprStmtNode that contains it. Therefore, to preserve these
side effects, all expressions nodes must be able to return lists of expressions nodes that
can be converted to statements nodes that follow the expression statement node that
contains the expression node. In this project, we have not yet attempted to do this; code
that contains such side effects is rare.

Now that we have a replacement strategy that more or less works, let us consider
transformations of token declarations and operations. Each token declaration is
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transformed into a declaration of the type of the data contained by the token. For
instance,

IntToken t;

is transformed into

int t;

but Token variables that could not be specialized in pass 1 remain type Token in pass 2.
Creation of new tokens is replaced by the value that is contained by the created

token. For instance,

double[][] z = {{1.0, -1.0}, {4.3, 0.5}};

X = new DoubleToken{z);

is transformed into

double[][] z = {{1.0, -1.0}, {4.3, 0.5}};
X = z;

Access of the data contained by tokens is transformed into a reference to the
former token variable. For instance,

IntMatrixToken im = new IntMatrixToken(new int[][] {{5, 7}});
doublet] {] dm = im.doubleMatrixO ;

is transformed into

int[][] im = new int[][] {{5, 7}};
double[][] dm = im;

This is not legal Java; a conversion from int [ ] [ ] to double [ ] [ ] must be added in
the next pass.

Most operations on tokens are transformed into ordinary arithmetic expressions.
For instance,

a = b.subtract(c);

is transformed into

a = b - c;

Note that b and c may be expressions of non-primitive type. If, for example, b and c are
both of the type Complex, the above statement would not be legal in ordinary Java. Such
statements are transformed again in the next pass.

The methods one (), oneRight (), and zero () methods must be dealt with
in a special way. Given a DoubleToken type tl.
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DoubleToken t2 = tl.one{);

is transformed into

double t2 = 1.0;

but if tl is a matrix or fixed point token type, a special static method in the
ptolemy. math package must be called. For instance,

DoubleMatrixToken t2 = tl.one();

is transformed into

double[][] t2 = CodeGenUtility.one(tl);

where CodeGenUtility .one () is a static method that retums an identity matrix
with the same number of rows as the argument matrix. It is overloaded for all matrix
types and fixed point numbers. oneRight () and zero () are similarly transformed.

Now let us consider transformations dealing with parameters. Parameters are
public fields of actors. These fields are replaced with the value contained by the token
returned by calling getToken () on the parameter after the preinitialization phase is
completed. For instance, consider the following field declaration:

public Parameter pmf;

If the parameter value is set to a DoubleMatrixToken containing a matrix of doubles
{{0.65,0.35}}, the code is transformed into

public final double[][] pmf = {{0.65, 0.35}};

When the getToken () method call is encountered, it is transformed into a
reference to the parameter. For instance,

DoubleToken pmfToken = pmf.getToken{);

is transformed into

doublet}[] pmfToken = pmf;

Attempts to set the types or values of parameters are discarded, because it is
assumed that parameters do not change value during run-time.

During the course of the simulation of a Ptolemy model, certain exceptions may
be thrown. These exceptions are typically not thrown unless an error is made in the usage
of an actor. Therefore, in pass 2 of the transformer, all statements that throw Ptolemy
exceptions are converted into statements that throw run-time exceptions. All clauses that
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catch Ptolemy exceptions are discarded. Finally, Ptolemy exceptions that appear in the
declared list of exceptions that a method or constructor may throw are removed.

Method calls to ports and actors are also performed in this pass, but the
transformations are domain-specific. ActorTransformerVisitor provides the following
methods that subclasses may override to perform domain-specific transformations:

• _actorClassDeclNode () is called when the class declaration node of the

actor class is found.

• _actorMethodCallNode () is called when a node representing a method call
to an actor is found.

• _portFieldDeclNode () is called when a node representing a field
declaration of a port variable is found.

• _portMethodCallNode () is called when node representing a method call to
a port is found.

These methods are provided to encourage reuse of the code in ActorTransformerVisitor,
but actually, any visitation method in ActorTransformerVisitor can be overridden.

Finally, there are a few miscellaneous transformations that
ActorTransformerVisitor performs. One transformation worth mentioning is that the actor
class hierarchy must be cut at the point where an actor class inherits from a known actor
class in a domain. Again consider the example of the actor class RaisedCosine, which
extends the class FIR, which extends the class SDFAtomicActor. The transformed class
CG_FIR_channel would extend java.lang.Object instead of SDFAtomicActor. Calls to
super. fire {), etc. in CG_FIR_channel need to be removed. Also, default execution

methods preinitialize (), initialize (), etc. need to be added to
CG_FIR_channel if they do not already exist.

6.4 Conversion of Extended Java to Java

"Extended Java" is the name we have given to a superset of Java that has
extended type rules dealing with complex numbers, fix point numbers, and two-
dimensional matrices. Just as a integer may be "widened" to a double in Java, a matrix of
integers can be "widened" to a matrix of doubles in Extended Java. Just as an integer can
be added to a double in Java, a matrix of integers can be added to a matrix of complex
numbers in Extended Java. The type rules follow the Ptolemy type lattice.

Extended Java would be a very convenient programming language, especially for
scientific purposes, but because there are no Extended Java compilers, we revert
Extended Java ASTs back to ordinary Java ASTs in pass 3 of code generation. The
conversion process is a straightforward case analysis of expressions and their types. In
order to convert matrices into different types of matrices and to perform operations
among complex numbers, fix point numbers, and matrices, nodes that represent method
calls to methods in classes in the ptolemy .math package are created quite frequently.

Another task of pass 3 is to transform nonsensical code resulting from token
variables that cannot be specialized by SpecializeTokenVisitor. Those variables are
declared as type Token, which is changed in pass 3 to Object. Any assignment to such
variables is converted to an assignment from null.

Expressions that involve operands of type Token need to be converted to legal,
ordinary Java. Because these expressions are never actually executed (they are embedded
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insidepiecesof dead code), it is acceptable to convertall such operands to any expression
that satisfies the type rules of ordinary Java. In this project, a consistent dummy value is
chosen based on the target type.

To illustrate what pass 3 does, consider the following fireO method of the
AddSubtract actor. This particular instance of the actor is responsible for adding two
double matrices, which are taken from the plus port. The minus port is unconnected so
this instance does not actually perform subtraction. After pass 2, the fire() method is
transformed into

public void fireO {
double[][] sum = null;
for (int i = 0; i < 2; i++) {

if (true) {
if (sum == null) {

sum = this._cg_plus_chan_buffer[this._cg_chan_temp_r = i]
[this._cg_plus_offset[this._cg_chan_temp_r] =

(this._cg_plus_offset[this._cg_chan_temp_r] + 1) %
this._cg_plus_chan_buffer_len[this._cg_chan_temp_r]];

} else {

sum = sum +

this._cg_plus_chan_buffer[this._cg_chan_temp_r = i)
[this._cg_plus_offset[this._cg_chan_temp_r] =
(this._cg_plus_offset[this._cg_chan_temp_r] +1) %
this._cg_plus_chan_buffer_len[this._cg_chan_temp_r]];

// not legal Java

}

// the following loop is the result of the unconnected minus port
// it's all dead code

for (int i = 0; i < 0; i++) {
if (false) {

Token in = null;
if (sum == null) {

sum = null;

}

sum = sum - in; // not legal Java

}

(The complicated expressions involving cg_plus_chan_buff er are the result of the
SDF transformation of plus. get (i). See the next section for details.) After pass 3,
the fire () method is transformed into

public void fire() {
doubled [] sum = null;

for (int i = 0; i < 2; i++) {
if (true) {

if (sum == null) {
sum = this._cg_plus_chan_buffer[this._cg_chan_temp_r = i]
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}

[this._cg_plus_offset[this._cg_chan_temp_r] =
(this._cg_plus_offset[this._cg_chan_temp_r] +1) %
this._cg_plus_chan_buffer_len[this._cg_chan_temp_r]];

else {

sum = DoubleMatrixMath.add(sum,
this._cg_plus_chan_buffer[this._cg_chan_temp_r = i]

[this._cg_plus_offset[this._cg_chan_temp_r] =
{this._cg_plus_offset[this._cg_chan_temp_r] +1) %
this._cg_plus_chan_buffer_len[this._cg_chan_temp__r]]);

for (int i = 0; i < 0; i++) {
if (false) {

Object in = null;
if (sum == null) {

sum = null;

}

sum = DoubleMatrixMath.subtract(sum, null);

}

Note that the + operator is overloaded between double matrices in Extended Java, and the
operation was converted to a call to DoubleMatrixMath. add (). Also note that in,
for which a specific token type could not be found, was transformed to null so that it
can be passed as an argument to DoubleMatrixMath. subtract ().

An additional step to handle expressions involving unspecified token variables
might be to convert any expression involving a Token operand into a dummy value. In
the above example, DoubleMatrixMath. subtract (sum, null) might as well
be replaced with null. Morever, the assignment to sum might as well be eliminated.
However, since the code is never executed, and could be eliminated by an optimizing
compiler, such a step is not really necessary.

The code that does conversion from Extended Java to Java is found in the

ptolemy. lang. java.extended sub-package. To compile a program written in
Extended Java, the type personality of the compiler must be changed to use instances of
ExtendedJavaTypePolicy and ExtendedJavaTypeldentifier. ExtendedJavaConverter can
then transform a resolved AST that follows the Extended Java type rules to ordinary Java.

7.0 Code Generation for SDF

In the synchronous dataflow (SDF) domain, actors can be run sequentially and
read and write tokens from/to fixed sized, circular, FIFO buffers. The order in which
actors execute is determined by the scheduler. A schedule can be computed because each
actor declares rates at which it receives and sends tokens. In general, there is more than
one valid schedule for a SDF system. Different schedules may result in better code [13],
but in this project we have focused on generating code given a fixed schedule. However,
we note that the current schedule is flattened, i.e. it supports no loops. For example, the
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looped schedule A(2 BC)(2 C), where A,B» and C are actors is flattened to ABCBCCC in
Ptolemyn. It is likelythat using loopedschedule wouldresult in moreefficientgenerated
code compared to the flattened schedule.

This implementation of the SDF code generator assumes that each input channel
is connected to at most one output channel.

The first step of the SDF code generator is to figure out the size of the required
buffers. In this implementation, a one-dimensional array is allocated for each output port
that has only one channel. Atwo-dimensional array is ^located for each output port with
more than one channel, with the number of rows equal to the number of channels. The
length of each one-dimensional array (or row of each two-dimensional array) is
conservatively set to

(initial production)+ (appearances in schedule) * (tokens produced per appearance)

Here "initial production" refers to the number of tokens produced before execution
according to the schedule begins. The number of "appearances" refers to the number of
times the actor containing the port appears in the schedule. The buffer is used circularly,
so increasing offsets into the buffer must be taken modulo the buffer size.

Buffers are public, static fields of the main class, CG_Main, so that they may be
accessed for input and output by the transformed actors. If an output port out has type
LongMatrixToken, 5 channels, and the buffer length is computed to be 10, the following
field declaration will appear in CG_Main:

public static final longt][][][] _cg_out_2 = new long[5][10][][];

The "2" in _cg_out_2 is an artifact of the buffer namer, which ensures names do not
conflict.

Since we assume that each input channel is connected to at most one output
channel, there is one one-dimension array used to store the data for each output channel
to input channel connection. For each channel, the position in the buffer must be stored.
Actually, the last position read from / written to is used to simplify transformations (the
update of the position can be done without additional statements). If a port out with one
channel is present, the following field is added to the actor class:

protected int _cg_out_offset = -1;

If a port out with three channels is present, the following field is added to the actor
class:

protected int[] _cg_out_offset = {-1, -1, -1};

With the previous variables, the send () method called on a port with one
channel can be transformed from

out.send(0, t);

to
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CG_Main._cg_out_2[_cg_out_offset = (_cg_out_offset +1) % 10] = t;

and in the case of a port with more than one channel,

out.send(1, t);

is transformed into

CG_Main ._cg_out_3 [ 1 ] [_cg_out_off set [ 1 ] =
(_cg_out_offset[1] + 1) % 10] = t;

In the case in which the channel number is not constant (constant folding helps,
especially after loops are unrolled), a temporary variable must be used to avoid side
effects. So

out.send(whatCh(), t);

is transformed into

CG_Main._cg_out_3 [_cg_chan_teinp_w = whatChO]
[_cg_out_offset[_cg_chan_temp_w] =

(_cg_out_offset[_cg_chan_temp_w] + 1) % 10] = t;

Transformation of the method call broadcast (), which writes the same token
to all channels of an output port, is transformed by placing similar statements in a loop.
Thus,

out.broadcast(t);

is transformed into

for (int _cg_chan_temp = 0;
CG_Main._cg_out_3[_cg_cha

(_cg_out_offset

>

i_temp = 0; _cg_chan_temp < 3; _cg_chan_temp++) {
:_3 [_cg_chan_temp] [_cg_out_offset [_cg_chan_temp] =
it[_cg_chan_temp] + 1) % 10] = t;

if out is an output port with three channels.
For input ports, the buffer associated with each channel is not contained in the

same two-dimensional array. To support channel expressions that are not constant, a table
of buffers associated with each channel is required to resolve which buffer from which to
read. In addition, a table of the lengths of the buffers is required. These tables are added
to actor classes, and may look like:

protected final double[][][][] _cg_in_chan_buffer =
{CG_Main._cg_output_4, CG_Main._cg_output_5};

protected final int[] _cg_in_chan_buffer_len = {16, 32);
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where in is an input buffer with two channels. Now,

in.get(0)

can be transformed into

CG_Main._cg_output_4[_cg_plus_offsGt = (_cg_plus_offset + 1) % 16]

if in is a port with one channel, whose associated buffer length is 16.
In the case of a port with multiple channels, if the channel expression is constant,

and the associated buffer and buffer size are known at transformation time. Then,

in.get(1)

can be transformed into

CG_Main._cg_output_5 [_cg_in_offset [ 1 ] =
(_cg_in_offset[1] + 1) % 32]

If the channel expression is not a constant, we have our most complicated
transformation, which needs to lookup the buffer and buffer size associated with the
channel while avoiding side effects:

in.get(whatCh())

is transformed into

_cg_in_chan_buf fer [_cg_chan_temp_r = whatChO]
[_cg_in_offset[_cg_chan_temp_r] =
(_cg_in_offset [_cg_chan_teinp_r] +1) %
_cg_in_chan_buffer_len[_cg_chan_temp_r]]

In the case where the channel expression is not constant, the transformed code
seems quite complicated. However, such code typically occurs in loops where the
channel number increases uniformly between two known values. If such loops are
unrolled by an optimizing compiler, the code can be reduced in complexity to that of
constant channel numbers.

A number of optimizations might be applied to the method in which buffers are
allocated and used. If the buffer sizes are constant among a connected group of input and
output channels, there is no need to look up the length of the buffer. If buffer sizes are
rounded to the next power of two, costly modulo operations can be replaced with cheaper
bitwise AND operations. If the buffer size is one, the same location in the buffer is
always used, and no update of the offset into the buffer is required. As of yet, none of
these optimizations have been implemented in this project.

The generation of the main () method in SDF simply places sequential method
calls to preinitialize (), initialize (), etc. according to Ptolemy semantics
and the scheduler.

34



The above code generation process is performed with the following classes, found
in the ptolemy. domains. sdf. codegen sub-package:
• SDFCodeGenerator is the top-level class which gathers SDF specific information

for each actor and places it in instances of SDFActorCodeGeneratorlnfo. It then
drives the three passes of ActorCodeGenerator, creating the CG_Main class between
the second and third pass.

• SDFActorCodeGeneratorlnfo extends ActorCodeGeneratorlnfo, and contains
information about buffers and the number of times an actor appears in the schedule.

• SDFTypeldentifier identifies the additional port type and actor type found in SDF,
and extends PtolemyTypeldentifier.

• SDFActorTransformerVisitor transforms port method calls as described above, and
extends ActorTransformerVisitor.

• SDFCodeGeneratorClassFactory extends CodeGeneratorClassFactory and creates
instances of SDFActorCodeGeneratorlnfo, SDFTypeldentifier, and
SDFActorTransformerVisitor to be used by ActorCodeGenerator.

8. Example system

SDF code generation was successfully performed on the following system, which
does the transmission and detection of discrete-time, orthogonal signals. One of two
orthogonal signals is selected based on the input bit, which is generated by a Bemoulli
process with p = Vi. The signal is then connpted by additive white Gaussian noise before
reception. The received signal is correlated with the two orthogonal signals by
performing the dot product operation. The waveform with the maximum correlation
corresponds to the decision made on which waveform was transmitted. The following is
the block diagram of the system:
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signal! and signal! output double matrices representing eight samples of a signal. All
ports in the diagram have a consumption or production rate of one, except for the output
port of the Gaussian noise source. The noise samples are packed into a matrix by the
noisePacker actor. The difference between the input bit and the output bit is printed to
standard output by the outputBitDisplay actor.
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This composite actor is a reasonably good test case for the code generator because
it tests the following features:

• Input from multiple channels
• Output to multiple destinations
• Non-unity token production rate of output port
• Addition of DoubleMatrixTokens

• Unconnected port
• Use of both domain-polymorphic and SDF-specific actors

All calls to the Ptolemy actor, kernel, data, and domains. sdf. kernel
packages were eliminated. However, additional dependencies on the Ptolemy math
package were added due to the addition of DoubleMatrixTokens.

The code generated version exhibits a significant performance improvement over
the original simulated version, especially in the latency to get the first output sample.
Normal iterations also execute faster. In general, the periformance improvement ofa code
generated system versus the simulated system will depend on the ratio of time spent
performing token and I/O operations to the total execution time.

9. Lessons Learned

From a compiler builder's perspective, we learned that the Visitor pattern
provides a simple, modular altemative to the traditional architecture in which nodes
contain code for doing all sort of operations. In addition, we learned that generating the
node classes from a single definition file saves considerable effort, especially when the
design of the node hierarchy is not stable. Now that the GenerateVisitor program has
been completed, the savings of effort in the next compiler project should be even greater.

We also learned that the use of skeletons saves considerable memory and time
during the compilation.

As Java programmers, we learned from this project to be careful using the
implementations of collections in java.util. In our design, we use HashMaps and
HashSets liberally; each node in the AST contains a HashMap and a HashSet, due to the
fact that TreeNode extends PropertyMap and TrackedPropertyMap. By using the default
constructors for HashMap and HashSet without specifying a capacity, extraneous space
was allocated for buckets in the form of Object arrays. By default, the number of buckets
seems to be 16, which is much more than the number of properties or visitors that a node
could reasonably have. Before this problem was discovered (using the JProbe profiler
tool), the memory used by Object arrays was 80% of the total memory used by the code
generator. As a result, the code generator frequently ran out of memory and could not
complete. The solution to this problem is trivial: specifying a smaller capacity to the
constructors of HashMap and HashSet. With this fix, the memory used by Object arrays
was reduced to 30% of the total memory. The total memory usage was reduced by a
factor of two, allowing the code generator to complete without running out of memory.
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10. Future Applications

There are a number of applications that may use directly use parts of the source
code of this project. The ptolemy. lang package provides a number of classes that
enablea programmerto quicklywrite a compiler for a different language. In addition, the
GenerateVisitor program may be used to generate a visitor and tree nodes for that
language.

A full Java compiler may be completed using the Java compiler front-end found
in the ptolemy.lang. java package. Back-ends and optimizers could be easily
implemented as visitors of a Java AST. Also, a number of utility programs might be
implemented using visitors. An example of such a program is one that removes
extraneous import statements from source code. For such an application, dealing with
the resolved ASTthat represents the source code is probably the onlygoodsolution.

It would also be possible to implement a Java to C converter using visitors, but
there are already a number of programs that do this conversion. A more interesting
application would be to generate hardware descriptions (such as VHDL) that would
perform the same actions as found in an AST.

Using the existing Java compiler, extensions to Java that simply change typing
rules, such as Extended Java, could be further developed to ease scientific or engineering
programming by overloading operations between special types likematrices. The purpose
of Extended Java is just to be an intermediate language for code generation, but it can
actually be used as a general-purpose programming language because it can be converted
to ordinary Java.

The actor code transformer is probably limited to Ptolemy n systems because it
assumes Ptolemy semantics throughout. However, within Ptolemy U, there are many
more domains besides SDF that might benefit from code generation, so that code
generated systems may be run without the Ptolemy 11 software infrastructure in memory
or performance constrained environments.

The code generator for SDF might be modified to generate code executable in
parallel processing environments. However, the existing scheduler for SDF would have
to modified to find a suitable parallel schedule.

11. Obtaining the Source Code

It is the hope of the author that the code to do Java compilation and actor
transformation for SDF will be included in the next release of Ptolemy 11. At present, the
code is part of the development tree. Current releases of Ptolemy II can be found at
httD://ptolemv.eccs.berkelev.edu/.
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Appendix A: The GenerateVisitor Program

The GenerateVisitor program takes as input a node definition file describing all
nodes of a language, and outputs the following in source code form:

• The base visitor class for the language.
• The classes for all nodes in the language.
• An interface containing node class identifiers for all nodes in the language.

GenerateVisitor uses the StringTokenizer class to scan the input file, so a complicated
syntax is not possible.The following is the syntax of the node definition file:

// comments start with double slash

<cheader>

Common headerfor visitor, nodes, and interface containing class ID's.
</cheader>

<vheader>

Headerfor visitor,appended after the common header.
</vheader>

<nheader>

Headerfor node types, appended after the common header.
</nheader>

<iheader>

Headerfor interface containing class ID's, appended after the common header.
</iheader>

// more comments here are ok

// between each node class description, white space and comments are ok

NodeClassDescriptions

<end offile>

Each node classes or interfaces is described with a NodeClassDescription, which has the
following syntax:

NodeClassDescription -> Name FullNodeKind Name Implementsopt Membersopt
<newline>

The desciption should contain no newline characters except for the final character.

The first Name is the name of the node class or interface.

The second Name is the name of the class or interface the node class or interface extends.
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FullNodeKind describes the kind of node and whether or not it appears in the parse tree.
It has the following syntax:

FullNodeKind -> NodeKindliio^x

If Nappears at theend of FullNodeKind^ the node typeis assumed not to appear in the
parse tree.

NodeKinddescribes the kind of node, and has the following syntax:

NodeKind -> A (abstract class)
-> S (singleton - automatically concrete)
-> C (concrete class)
-> I (interface)

A concrete class is assigned a integer class ID, which is added to the interface containing
class IDs. Each concrete class is given a method

public final int classIDO;

The purpose of the class ID is to be used in switch statements that have cases that
depend of the kind of node. Concrete classes that are assumed to be in the parse tree have
a corresponding

Object •vLsLt.NodeName {NodeName , LinkedList args) ;

method in the visitor class for the language, and override the
_acceptHere (IVisitor v, LinkedList args) method of TreeNode to call
the visitation method.

Singletons are classes that have only one global instance, accessed by
!

NodeName. instance

Singletons have only a private constructor and may not contain members. They override
the isSingleton () method of TreeNode, returning true.

The class or interface may implement zero or more interfaces:

Implements -> i Names i

Names are names of interfaces that the class directly implements, separated by spaces.

A class or interface may contain zero or more members:

Members -> DefiningConstructor
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-> NormalConstructor

-> MethodStub

A defining constructor adds the constructor parameters to the child list of TreeNode if the
argument is not a primitive Java type or String; otherwise the parameter is made an
ordinary member of the node class. The following is the syntax of a defining constructor:

DefiningConstructor -> k superArgNum Parametersoptk
Parameter -> Type Name

superArgNum is an non-negative integer.
Type is a string describing the type of the parameter.
Name is the name of the parameter.

The constructor passes superArgNum number of arguments to the super () constructor
call; the rest of the arguments are added to the node class.

Each parameter up to and including the superArgNumi\i parameter must match those of
the superclass exactly. For each parameter after the first superArgNum-l parameters, the
following access methods are added, with appropriate implementations:

Type getCapName () ;
void setCapNameiParameter) ;

where CapName is Name with the first letter capitalized.

A normal constructor is like a defining constructor, but does not add variables
corresponding to parameter names to the class or access methods:

NormalConstructor -> c superArgNum Parametersoptc

For a class, a method stub represents a method that returns a dummy value for the given
return type. For an interface, no implementation of the method is required. The following
is the syntax for a method stub:

MethodStub-> mRetumType Name Parametersoptm

RetumType is the return type of the method, which may be void.
Name is the name of the method.

Parametersopt are the optional parameters of the method, separated by spaces.

The following definition file illustrates the syntax:

<cheader>

/* Copyright Taco Software, 2000. */
</cheader>

43



<vheader>

package com.taco.toy;

11 the following imports should always be included
import java.util.LinkedList;
import java.util.List;
import ptolemy.lang.IVisitor;
import ptolemy.lang.TreeNode;

// need to reference the output package for the nodes
import com.taco.toy.nodetypes.*;

/** A visitor for AST's for Toy code. */
</vheader>

<nheader>

// this should reference the package you put the nodes in
package com.taco.toy.nodetypes;

// the following imports should always be included
import java.util.ArrayList;
import java.util.LinkedList;
import java.util.List;
import ptolemy.lang.IVisitor;
import ptolemy.lang.ITreeNode;
import ptoleny.lang.TreeNode;
import ptolenv^.lang.java.JavaVisitor;

/** A specific type of node in the AST for Toy code. */
</nheader>

<iheader>

// this should reference the package you put the nodes in
package com.taco.toy.nodetypes;

/** An interface containing the class ZD's of all concrete node types.
*/

</iheader>

// interfaces

NamedNode X ITreeNode m NameNode getName m m void setName NameNode name
m

NameNode C TreeNode k 0 String ident k

// abstract

TypeNode A TreeNode c 0 c
ExprNode A TreeNode c 0 c

BinaryArithNode A ExprNode k ExprNode exprl ExprNode expr2 k
VarDeclNode A TreeNode i NamedNode i k 0 TypeNode defType NameNode \

name k

LiteralNode A ExprNode k 0 String literal k

// literal

IntLitNode C LiteralNode c 1 String literal c

// type
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IntTypeNode S TypeNode

// expressions
PlusNode C BinaryArithNode c 2 ExprNode exprl ExprNode expr2 c
VarNode C ExprNode k 0 NameNode name k

// local variable declaration

LocalVarDeclNode C VarDeclNode k 2 TypeNode defType NameNode name \
ExprNode initExpr k

In the above definition file, the \ character is used to indicate a continuation of the line,
but this is not actually legal. Each node description must be contained in exactly one line.
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Appendix B: Java AST Node Type Descriptions

Most of these descriptions were takenfrom Professor Paul Hilfinger'sCS164
Javacompiler class project, which seems to be thebasisof the Titanium compiler.

Interfaces

NamedNode

Extends: ITreeNode

Attributes: NameNode name

Represents:
A TreeNode with a name.

ModifiedNode

Extends: ITreeNode

Attributes: int modifiers

Represents:
A TreeNode with a name.

StatementNode

Extends: ITreeNode

Represents:
A statement.

Abstract Classes

TypeNodeO
Parent type: TreeNode

Represents:
The base type for all ASTs that represent types

PrimitiveTypeNode()
Parent type: TypeNode

Represents:
The base type of all primitive types

ReferenceTypeNode()
Parent type: TypeNode

Represents:
The base type of all reference types

VarDeclNode(int modifiers, TypeNode defType, NameNode name)
Parent type: TreeNode
Implements: NamedNode, ModifiedNode

Represents:
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Base type of declarations of a variable.

VarInitDeclNode(int modifiers, TypeNode defType, NameNode name,
TreeNode initExpr)
Parent type: VarDeclNode

Represents:
The base type of declarations of a variable with an initializer.

UserTypeDeclNode(int modifiers, NameNode name. List interfaces. List members)
Parent type: TreeNode
Implements: NamedNode, ModifiedNode

Represents:
The base type of declarations of user t3^es (classes and interfaces).

InvokableDeclNode(int modifiers, NameNode name. List params. List throwsList)
Parent type: TreeNode

Represents:
The common base type for declarations of invokable entities (constructors and

methods).

ConstructorCallNode(List args)
Parent type: TreeNode
Implements: StatementNode

Represents:
A constructor call with the argument list ARGS.

IterationNodeO
Parent type: TreeNode
Implements: StatementNode

Represents:
Base class for loops.

JumpStmtNode(TreeNode label)
Parent tj^e: TreeNode
Implements: StatementNode

Represents:
Base class for jump statements.
LABEL may be a NameNode or AbsentTreeNode. instance if absent.

ExprNodeO
Parent type: TreeNode

Represents:
The base type for all expressions.

FieldAccessNode(NameNode node)
Parent type: ExprNode
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Implements: NamedNode
Represents:

Base class for field accesses.

SingleExprNode(ExprNode expr)
Parent type: ExprNode

Represents:
An expression containing one embedded expression.

SingleOpNode(ExprNode expr)
Parent type: SingleExprNode

Represents:
An expression that operates on one embedded expression.

IncrDecrNodefExprNode expr)
Parent type: SingleOpNode

Represents:
The common base type for pre/post increment/decrement expressions

UnaryArithNode(ExprNode expr)
Parent type: SingleOpNode

Represents:
The common base type for unary +/-

DoubleExprNode(ExprNode exprl, ExprNode expr2)
Parent type: ExprNode

Represents:
An expression containing two embedded expressions.

BinaryOpNode(ExprNode exprl, ExprNode expr2)
Parent type: DoubleExprNode

Represents:
An expression representing an operation between two embedded expressions.

BinaryArithNode(ExprNode exprl, ExprNode expr2)
Parent type: BinaryOpNode

Represents:
Base class for binary arithmetic operators

BinaryOpAssignNode(ExprNode exprl, ExprNode expr2)
Parent type: DoubleExprNode

Represents:
An expression representing an operation between two embedded expressions, where
the first expression takes the result value.

BinaryArithAssignNode(ExprNode exprl, ExprNode expr2)
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Parent type: BinaryOpAssignNode
Represents:

Base class for assignment nodes-= *= /= %=.

ShiftNode(BxprNode exprl, ExprNode expr2)
Parent type: BinaryOpNode

Represents:
Base class for binary shift operators.

ShiftAssignNode(BxprNode exprl, ExprNode expr2)
Parent type: BinaryOpAssignNode

Represents:
Base class for «= »= »>=.

RelationNode(ExprNode exprl, ExprNode expr2)
Parent type: BinaryOpNode

Represents:
Base class for relations (i.e., < > <= >=).

EqualityNode(ExprNode exprl, ExprNode expr2)
Parent type: BinaryOpNode

Represents:
Base class for equality relations, == ! =.

BitwiseNode(ExprNode exprl, ExprNode expr2)
Parent type: BinaryOpNode

Represents:
Base class for binary bitwise operations.

BitwiseAssignNode(ExprNode exprl, ExprNode expr2)
Parent type: BinaryOpAssignNode

Represents:
Base class for &= | = '̂ =.

LogCondNode(ExprNode exprl, ExprNode expr2)
Parent type: BinaryOpNode

Represents:
Base class for && | |.

LiteralNode(String ident)
Parent type: ExprNode

Represents:
Base class for literals.

OuterClassAccessNode(TypeNameNode type)
Parent type: ExprNode
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Represents:
Base class for TYPE. this or TYPE. super.

Singletons

AbsentTreeNode.instance

Parent type: TreeNode
Represents:

A node that has been omitted in the tree.

BoolTypeNode.instance
Parent type: PrimitiveTypeNode

Represents:
The type boolean.

CharTypeNode.instance
Parent type: PrimitiveTypeNode

Represents:
The type char.

ByteTypeNode.instance
Parent type: PrimitiveTypeNode

Represents:
The tj^e byte.

ShortTypeNode.instance
Parent type: PrimitiveTypeNode

Represents:
The type short.

IntTypeNode.instance
Parent type: PrimitiveTypeNode

Represents:
The type int.

FloatTypeNode.instance
Parent type: PrimitiveTypeNode

Represents:
The type float.

LongTypeNode.instance
Parent type: PrimitiveTypeNode

Represents:
The type long.

DoubleTypeNode.instance
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Parent type: PrimitiveTypeNode
Represents:

The type double.

VoidTypeNode.instance
Parent type: TypeNode

Represents:
The type void.

NullTypeNode.instance
Parent type: ReferenceTypeNode

Represents:
A tree representing the "type" of null. This node does not appear in the AST.

Concrete classes

NameNode(TreeNode qualifier, String ident)
Parent type: TreeNode

Represents:
A name of the form QUALIFIER. IDENT, or, if QUALIFIER is absent, the name
IDENT. When QUALIFIER is absent, this is called a simple name.

TypeNameNode(NameNode name)
Parent type: ReferenceTypeNode
Implements: NamedNode

Represents:
A type denoted by the NAME.

ArrayTypeNode(TypeNode elementType)
Parent type: ReferenceTypeNode

Represents:
The type ELEMENTTYPE [ ].

ArraylnitTypeNode
Parent type: TypeNode

Represents:
The "type" of an array initializer. This node does not appear in the AST.

DeclaratorNode(int dims, TreeNode name, TreeNode initExpr)
Parent type: TreeNode

Represents:
A declarator of the form

NAME [][]... = INITEXPR

where there are DIMS [ ] s.

INITEXPR is an expression; it may be AbsentTreeNode. instance if absent.
NAME is a simple name (see NameNode).

51



DeclaratorNodes must NOT appear in the AST produced by the parser. Instead,
a declaration such as

int X, y[] [] , z = 2;
is represented by the same trees that would represent

int x;
int [][] y;
int z = 2;

(three FieldDeclNodes, Lx)calVarDeclNodes, etc.). The DeclaratorNode definition
is here merely to aid the parser ~ as a temporary data structure in which to
hold a list of declarators.

CompileUnitNode(TreeNode package. List imports. List types)
Parent type: TreeNode
Implements: NamedNode

Represents:
The compilation unit

PACKAGE

IMPORTS

TYPES

PACKAGE is AbsentTreeNode. instance if absent, otherwise a NameNode.
IMPORTS is a list of hnportNode and ImportOnDemandNodes.
TYPES is a list of ClassDeclNodes and InterfaceDeclNodes.

ImportNode(NameNode name)
Parent type: TreeNode
Implements: NamedNode

Represents:
The single type import declaration

import NAME;

ImportOnDemandNode(NameNode name)
Parent type: TreeNode
Implements: NamedNode

Represents:
The declaration

import NAME. * ;

ClassDeclNode(int modifiers, NameNode name. List interfaces. List members,
TreeNode superclass)

Parent type: UserTypeDeclNode
Represents:

The class declaration

MODIFIERS class NAME extends SUPERCLASS implements

INTERFACES {

BODY

}
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MODIFIERS is a combination (logical or) of values defined in Modifier.
NAME is a simple name (see NameNode).
SUPERCLASS is AbsentTreeNode. instance if the extends clause is absent;
otherwise it is a TypeNameNode.
MEMBERS is a list of declarations of fields (see FieldDeclNode), methods (see
MethodDeclNode), constructors (see ConstructorDeclNode), static initializers (see
StaticInitNode), and instance initializers (see InstancelnitNode).

FieldDeclNode(int modifiers, TypeNode defType, NameNode name,
TreeNode initExpr)

Parent type: VarlnitDeclNode
Represents:

A declaration of a field in a class or interface declaration of the form

MODIFIERS DEFTYPE NAME = INITEXPR;
or

MODIFIERS DEFTYPE NAME;
MODIFIERS is a combination (logical or) of values defined in Modifier.
NAME is a simple name (see NameNode).
INITEXPR is an ExprNode or AbsentTreeNode. instance if absent.

LocalVarDeclNode(int modifiers, TypeNode dtype, NameNode name,
TreeNode initExpr)

Parent type: VarlnitDeclNode
Implements: StatementNode

Represents:
A declaration of a local variable in a method body of the form

MODIFIERS DTYPE NAME = INITEXPR;
or

MODIFIERS DTYPE NAME;
MODIFIERS is a combination (logical or) of values defined in Modifier.
NAME is a simple name (see NameNode).
INITEXPR is an ExprNode or AbsentTreeNode. instance if absent.

MethodDeclNode(int modifiers, NameNode name. List params. List throwsList,
TreeNode body, TypeNode retumType)
Parent type: InvokableDeclNode

Represents:
A method declaration of the form

MODIFIERS RETURNTYPE NAME (PARAMS) throws THROWSLIST
BODY

MODIFIERS is a combination (logical or) of values defined in Modifier.
RETURNTYPE is a type (any [ ] s that follow the formal parameter list
must be incorporated into the RETURNTYPE).
NAME is a simple name (see NameNode).
PARAMS is a list of formal parameters (see ParameterNode).
THROWSLIST is a list of type names (see TypeNameNode).
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BODY is a block (see BlockNode). If abstract is one of the MODIFIERS, then
BODY may be AbsentTreeNode. instance.

ConstructorDeclNode(int modifiers, NameNode name. List params. List throwsList,
ConstructorCallNode constructorCall, BlockNode body)
Parent type: InvokableNode

Represents:
A declaration of a constructor of the form

MODIFIERS IDENT ( PARAMS ) throws THROWS

{
CONSTRUCTORCALL;
BODY

}
MODIFIERS is a combination (logical or) of values defined in Modifier.
PARAMS is a list of formal parameters (see ParameterNode).
THROWS is a list of type names (see TypeNameNode).
CONSTRUCTORCALL is an explicit call to a constructor in this class or the
superclass (see ThisConstructorCallNode and SuperConstructorCallNode). This may
not be AbsentTreeNode. instance. If the source program does not contain an
explicit constructor call, the parser must insert the equivalent of super () ; here.

ThisConstructorCallNode(List args)
Parent type: ConstructorCallNode
Implements: StatementNode

Represents:
An explict call to a constructor:

this (ARGS) ;

where ARGS is a list of argument expressions.
The DECL_KEY property should be set to the appropriate constructor.

SuperConstructorCallNode(List args)
Parent type: ConstructorCallNode
Implements: StatementNode

Represents:
An explict call to a constructor in the superclass:

super (ARGS) ;
where ARGS is a list of argument expressions. The DECL_KEY property should be
set to the appropriate constructor.

StaticInitNode(BlockNode block)
Parent type: TreeNode

Represents:
A static initializer of the form

static BLOCK

InstanceInitNode(BlockNode block)
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Parent type: TreeNode
Represents:

An instance initializer of the form

BLOCK

InterfaceDecINode(int modifiers, NameNode name, List interfaces, List members)
Parent type: UserTypeDeclNode

Represents:
The interface declaration

MODIFIERS interface NAME extends INTERFACES {

BODY

}
MODIFIERS is a combination (logical or) of values defined in Modifier.
NAME is a simple name (see NameNode).
INTERFACES is an empty list when there is no extends clause.
BODY is a list of declarations of fields (see FieldDeclNode), and methods
without bodies (see MethodDeclNode).

ParameterNode(int modifiers, TypeNode defType, NameNode name)
Parent type: VarDeclNode

Represents:
A formal parameter:

DEFTYPE NAME

DEFTYPE is tree representing a type (see nodes with base type TypeNode). Any []s
that follow NAME in the concrete syntax are folded into DTYPE. For example, if the
text of a certain parameter is

int x[]

it is represented by the same tree as
int [ ] X

NAME is a simple name (see NameNode).

BlockNode(List stmts)
Parent type: TreeNode
Implements: StatementNode

Represents:
A statement of the form

{ STMTS }

STMTS is a list of statements.

EmptyStmtNodeO
Parent type: TreeNode
Implements: StatementNode

Represents:
The empty statement (;)

LabeledStmtNode(NameNode name, StatementNode stmt)
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Parent type: TreeNode
Implements: NamedNode

Represents:
A statement of the form

NAME: STMT

IfStmtNode(ExprNode condition, StatementNode thenPart, TreeNode elsePart)
Parent type: TreeNode

Represents:
A statement of the form

if (CONDITION) THENPART else ELSEPART

ELSEPART may be AbsentTreeNode. instance if absent.

SwitchNode(TreeNode expr. List switchBlocks)
Parent type: TreeNode
Implements: StatementNode

Represents:
A statement of the form

switch (EXPR) {
SWITCHBLOCKS

}

SWITCHBLOCKS is a list of SwitchBranchNodes.

CaseNode(TreeNode expr)
Parent type: TreeNode

Represents:
A clause of the form

case EXPR:

in a branch of a switch statement. Represents a default: entry if
EXPR is AbsentTreeNode. instance.

SwitchBranchNode(List cases, List stmts)
Parent type: TreeNode

Represents:
A portion of a switch statement of the form

CASES

STMTS

where CASES is a non-empty list of CaseNodes (representing case and default
labels in a switch statement) and STMTS is a list of following statements.

LoopNode(TreeNode foreStmt, TreeNode test, TreeNode aftStmt)
Parent type: IterationNode

Represents:
A loop of the form

while (true) {
FORESTMT
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if (!(TEST)) break;

AFTSTMT

>

By making FORESTMT be an EmptyStmtNode, this is a while loop.
By making AFTSTMT be an EmptyStmtNode, this is a do-while loop.

ExprStmtNode(ExprNode expr)
Parent type: TreeNode
Implements: StatementNode

Represents:
A statement of the form

EXPR;

ForNode(List init, ExprNode test. List update, StatementNode stmt)
Parent type: TreeNode
Implements: IterationNode

Represents:
A loop of the form

for {INIT; TEST; UPDATE) STMT

INIT is a list of declarations or statement expressions.
TEST is a boolean expression.
UPDATE is a list of statement expressions.

BreakNode(TreeNode label)
Parent type: JumpStmtNode

Represents:
The statement

break LABELS-

LABEL is AbsentTreeNode. instance when absent.

ContinueNode(TreeNode label)
Parent type: JumpStmtNode

Represents:
The statement

continue LABEL;

LABEL is AbsentTreeNode. instance when absent.

RetumNode(TreeNode expr)
Parent type: TreeNode
Implements: StatementNode

Represents:
The statement

return EXPR ;

EXPR is AbsentTreeNode. instance when absent.

ThrowNode(ExprNode expr)
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Parent type: TreeNode
Implements: StatementNode

Represents:
The statement

throw EXPR ;

SynchronizedNode(ExprNodeexpr, BlockNode block)
Parent type: TreeNode
Implements: StatementNode

Represents:
The statement

synchronized (EXPR) BLOCK

CatchNode(ParameterNode param, BlockNode block)
Parent type: TreeNode

Represents:
The clause

catch (PARAM) BLOCK

TryNode(BlockNode block.List catches, TreeNode finally)
Parent type: TreeNode

Represents:
The statement

try

BLOCK

CATCHES

finally FINLY
BLOCK and FINLY are blocks (seeBlockNode). FINLY maybe
AbsentTreeNode. instance if absent.

CATCHES is a list of CatchNodes.

IntLitNode(String ident)
Parent type: LiteralNode

Represents:
A literal constantof type int whose external (written) representation
is IDENT.

LongLitNode(String ident)
Parent type: LiteralNode

Represents:
A literal constant of type long whose external (written) representation
is IDENT.

FloatLitNode(String ident)
Parent type: LiteralNode

Represents:
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A literal constant of type float whose external (written) representation
is IDENT.

DoubleLitNode(String ident)
Parent type: LiteralNode

Represents:
A literal constant of type double whose external (written) representation
is IDENT.

BoolLitNode(String ident)
Parent type: LiteralNode

Represents:
The literal constant of type boolean whose external (written) representation
is IDENT. IDENT is either "false" or " true".

CharLitNode(String ident)
Parent type: LiteralNode

Represents:
A literal constant of type char whose external (written) representation
is IDENT (a single character).

StringLitNode(String ident)
Parent type: LiteralNode

Represents:
A literal constant of type char whose external (written) representation
is IDENT (a String of 0 or more characters).

NullPntrNodeO
Parent type: ExprNode

Represents:
The null pointer, null.

ThisNodeO
Parent type: ExprNode

Represents:
The expression this.

ArrayInitNode(List initializers)
Parent type: ExprNode

Represents:
An expression of the form

{ INITIALIZERS }

used to initialize an array.
INITIALIZERS is a list of expressions (possibly including other
ArraylnitNodes).
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ArrayAccessNode(ExprNode array, ExprNode index)
Parent type: ExprNode

Represents:
The expression

ARRAY [INDEX]
where ARRAY and INDEX are expressions.

ObjectNode(NameNode name)
Parent type: ExprNode
Implements: NamedNode

Represents:
A reference to variable NAME (see NameNode) in an expression. This is used in all
places where a name may be a reference to a variable (e.g., the expression x+y is
represented by two ObjectNodes that contain NameNodes for x and y, respectively.)
In cases like x. y, the context-free grammar cannot tell whether x denotes a class --so
that x.y is simply a (static) variable, which should be represented as ObjectNode(N),
where N is a NameNode for x.y —of x denotes an object, so that x. y is a field
access, which should be represented as ObjectFieldAccessNode(Y, X), where X is an
ObjectNode for the simple variable x and Y is a NameNode for the simple name y.
Therefore, the parser encodes x.y as a simple ObjectNode, and later parts of the
compiler figure out whetherto replaceit with an ObjectFieldAccessNode.

ObjectFieldAccessNode(NameNode name, TreeNode object)
Parent type: FieldAccessNode

Represents:
A reference to a field of a general object of the form

OBJECT. NAME

See the documentation for ObjectNode.
NAME is a simple name (see NameNode).
OBJECT is an ExprNode.

SuperFieldAccessNode(NameNode name)
Parent type: FieldAccessNode

Represents:
A reference to a field or method in the superclass of the form

super. NAME
NAME is a simple name (see NameNode).

TypeFieldAccessNode(NameNode name,TypeNameNode fType)
Parent type: FieldAccessNode

Represents:
A reference to a static field or method of a class of the form

TYPE. NAME

NAME is a simple name (see NameNode).

MethodCallNode(ExprNode method. List eirgs)
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Parent type: ExprNode
Represents:

A method call of the form

METHOD (ARCS)
METHOD is an ObjectNode or field access (FieldAccessNode).
ARGS is a list of expressions.

AllocateNode(TypeNameNode dtype, List args)
Parent type: ExprNode

Represents:
An allocation of an instance of a class of the form

new DTYPE (ARGS)
or

ENCLOSINGINSTANCE . new DTYPE (ARGS).

ARGS is a list of expressions.
ENCLOSINGINSTANCE is a ExprNode or AbsentTreeNode. instance if
absent.

The DECL_KEY property identifies the constructor to be used.

AllocateAnon5anousClassNode(TypeNameNode superType, List superArgs, List
members, TreeNode enclosinglnstance)

Parent type: ExprNode
Represents:

An allocation of an anonymous class of the form
new SUPERTYPE (SUPERARGS) {

MEMBERS

}

or

ENCLOSINGINSTANCE . new SUPERTYPE (SUPERARGS) {
MEMBERS

>
ARGS is a list of expressions.
MEMBERS is a list of declarations of fields (see FieldDeclNode), methods (see
MethodDeclNode), static initializers (see StaticInitNode), and instance initializers (see
InstancelnitNode).
ENCLOSINGINSTANCE is a ExprNode or AbsentTreeNode. instance if
absent.

The DECL_KEY property identifies the constructor to be used.

AllocateArrayNode(TypeNodedtype. List dimExprs, int dims, TreeNode initExpr)
Parent type: ExprNode

Represents:
An expression of the form

new DTYPE DIMEXPRS [][]... INITEXPR

where there are DIMS [ ] s.
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DIMEXPRS is a list of expressions (it looks like [EXPRO] [EXPRl ]... in an actual
program).
INITEXPR is an ArraylnitExpr or AbsentTreeNode. instance if absent.

PostIncrNode(ExprNode expr)
Parent type: IncrDecrNode

Represents:
The expression

EXPR ++

PostDecrNode(ExprNode expr)
Parent type: IncrDecrNode

Represents:
The expression

EXPR —

UnaryPlusNode(ExprNode expr)
Parent type: UnaryArithNode

Represents:
The expression

+ EXPR

UnaryMinusNode(ExprNode expr)
Parent type: UnaryArithNode

Represents:
The expression

-EXPR

PreIncrNode(ExprNode expr)
Parent type: IncrDecrNode

Represents:
The expression

++ EXPR

PreDecrNode(ExprNode expr)
Parent type: IncrDecrNode

Represents:
The expression

— EXPR

ComplementNode(ExprNode expr)
Parent type: SingleOpNode

Represents:
The expression

-EXPR
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NotNode(ExprNode expr)
Parent type: SingleOpNode

Represents:
The expression

! EXPR

CastNode(TypeNode dtype, ExprNode expr)
Parent type: ExprNode

Represents:
The expression

(DTYPE) EXPR

MultNode(ExprNode exprl, ExprNode expr2)
Parent type: BinaryArithNode

Represents:
The expression

EXPRl * EXPR2

DivNode(ExprNode exprl, ExprNode expr2)
Parent type: BinaryArithNode

Represents:
The expression

EXPRl / EXPR2

ReniNode(ExprNode exprl, ExprNode expr2)
Parent type: BinaryArithNode

Represents:
The expression

EXPRl % EXPR2

PlusNode(ExprNode exprl, ExprNode expr2)
Parent type: BinaryArithNode

Represents:
The expression

EXPRl + EXPR2

MinusNode(ExprNode exprl, ExprNode expr2)
Parent t5^e: BinaryArithNode

Represents:
The expression

EXPRl - EXPR2

LeftShiftLx)gNode(ExprNode exprl, ExprNode expr2)
Parent type: ShiftNode

Represents:
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The expression
EXPRl « EXPR2

RightShiftLx)gNode(ExprNode exprl, ExprNode expr2)
Parent type: ShiftNode

Represents:
The expression

EXPRl »> EXPR2

RightShiftArithNode(ExprNode exprl, ExprNode expr2)
Parent type: ShiftNode

Represents:
The expression

EXPRl » EXPR2

LTNode(ExprNode exprl, ExprNode expr2)
Parent type: RelationNode

Represents:
The expression

EXPRl < EXPR2

GTNode(ExprNode exprl, ExprNode expr2)
Parent type: RelationNode

Represents:
The expression

EXPRl > EXPR2

LENode(ExprNode exprl, ExprNode expr2)
Parent type: RelationNode

Represents:
The expression

EXPRl <= EXPR2

GENode(ExprNode exprl, ExprNode expr2)
Parent type: RelationNode

Represents:
The expression

EXPRl >= EXPR2

InstanceOfNode(ExprNode expr, TreeNode dtype)
Parent type: ExprNode

Represents:
The expression

EXPR instanceof DTYPE

EQNode(ExprNode exprl, ExprNode expr2)
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Parent type: EqualityNode
Represents:
The expression

EXPRl == EXPR2

NENode(ExprNode exprl, ExprNode expr2)
Parent type: EqualityNode

Represents:
The expression

EXPRl ! = EXPR2

BitAndNode(ExprNode exprl, ExprNode expr2)
Parent type: BitwiseNode

Represents:
The expression

EXPRl & EXPR2

BitOrNode(ExprNode exprl, ExprNode expr2)
Parent type: BitwiseNode

Represents:
The expression

EXPRl I EXPR2

BitXorNode(ExprNode exprl, ExprNode expr2)
Parent type: BitwiseNode

Represents:
The expression

EXPRl EXPR2

CandNode(ExprNode exprl, ExprNode expr2)
Parent type: LogCondNode

Represents:
The expression

EXPRl && EXPR2

CorNode(ExprNode exprl, ExprNode expr2)
Parent type: LogCondNode

Represents:
The expression

EXPRl I I EXPR2

IfExprNode(ExprNode exprl, ExprNode expr2, ExprNode exprS)
Parent type: ExprNode

Represents:
The expression

EXPRl ? EXPR2 : EXPR3
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AssigiiNode(ExprNode expri, ExprNode expr2)
Parent type: DoubleExprNode

Represents:
The expression

EXPRI = EXPR2

MultAssignNode(ExprNode exprl, ExprNodeexpr2)
Parent type: BinaryArithAssignNode

Represents:
The expression

EXPRI *= EXPR2

DivAssignNode(ExprNode exprl, ExprNode expr2)
Parent type: BinaryArithAssignNode

Represents:
The expression

EXPRI /= EXPR2

RemAssignNode(ExprNode exprl, ExprNode expr2)
Parent type: BinaryArithAssignNode

Represents:
The expression

EXPRI %= EXPR2

PlusAssignNode(ExprNode exprl, ExprNode expr2)
Parent type: BinaryArithExprNode

Represents:
The expression

EXPRI += EXPR2

MinusAssignNode(ExprNode exprl, ExprNodeexpr2)
Parent type: BinaryArithAssignNode

Represents:
The expression

EXPRI -= EXPR2

LeftShiftLogAssignNode(ExprNode exprl, ExprNode expr2)
Parent type: ShiftAssignNode

Represents:
The expression

EXPRI «= EXPR2

RightShiftLogAssignNode(ExprNode exprl, ExprNode expr2)
Parent type: ShiftAssignNode
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Represents:
The expression

EXPRl »>= EXPR2

RightShiftArithAssignNode(ExprNode exprl, ExprNode expr2)
Parent type: ShiftAssignNode

Represents:
The expression

EXPRl »= EXPR2

BitAndAssignNode(ExprNode exprl, ExprNode expr2)
Parent type: BitwiseAssignNode

Represents:
The expression

EXPRl &= EXPR2

BitXorAssignNode(ExprNode exprl, ExprNode expr2)
Parent type: BitwiseAssignNode

Represents:
The expression

EXPRl EXPR2

BitOrAssignNode(ExprNode exprl, ExprNode expr2)
Parent type: BitwiseAssignNode

Represents:
The expression

EXPRl | = EXPR2
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