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Absiract

This paper presents the MatParser tool. MatParser is an array analysis com-
piler that automatically converts an affine nested loop program into.a single as-
signment program. The nested loop programs may contain non-linear operators
like div/mod/floor/ceil and stepsizes other than one. The focus of this article is
on the software architecture used in MatParser to resolve the data dependencies.
Finding that two variables are dependent on each other and at which iteration, is
a very computational intensive procedure. MatParser employs a particular linear
programming technique to find the data dependencies, based on parametric integer
programming (PIP) as proposed by Paul Feautrier. To appreciate the implementa-
tion of MatParser, we will explain in this paper in sufficient detail the basics of the
linear programming technique used.

1 Introduction

In signal processing, many applications perform large-scale algebraic computations with
high data throughput. This can only be sustained by exploiting parallelism and pipelin-
ing in the computations. This requires a description that expresses all available paral-
lelism in the computations. Unfortunately, applications are typically written in an im-
perative language, like C or Matlab and the derivation of a parallel description from
these sequential program descriptions is a difficult and tedious task. This paper presents
the MatParser tool, which automatically converts affine Nested Loop Programs (NLPs)
into Single Assignment Programs (SAPs). SAP expresses all available data parallelism
present in terms of the parameters used in the original NLP.

MatParser employs an advanced linear programming technique to find the data de-
pendencies in an NLP as proposed by Feautrier [8]. We have extended this approach
such that non-linear operators can be handled like Div, Mod, Ceil, and Floor. In ad-
dition, For-loops with a stride other than one are allowed. This extension is imple-



mented in MatParser, but will not be discussed in this papers, as it is discussed in detail
in [13, 12, 14].

MatParser is the successor of the HiPars tool [12]. HiPars is written in ObjectiveC 3],
which is currently considered an obscure object oriented language. Instead, MatParser
is implemented in Java™ [11], making the compiler more accessible and platform in-
dependent. MatParser differs from HiPars in that its overall performance is improved
and that it has a better-engineered software architecture. The focus of this paper is the
software architecture of MatParser, however, to appreciate its implementation, we first
describe briefly the technique used in MatParser to find data dependencies.

MatParser has been developed as part of an effort to make the mapping possible of
high-performance signal processing (DSP) applications onto new emerging embedded
DSP architectures [15, 4]. These new architectures consist of a number of coprocessors,
a microprocessor, memory, and programmable interconnect. Since these architectures
differ considerably from standard parallel computer architectures, a standard compiler
framework is not able to perform the required mapping. Consequently, the focus of
MatParser is not to do data analysis on standard languages like C or Fortran in con-
text of computer architectures as done in standard compiler framework like GCC [21]
or SUTF [1]. In general, the dataflow analyses performed in these frameworks are not
exhaustive enough for our purpose. We want to know when two variables are depen-
dent, and furthermore at which iteration. The latter requirement is in general not solved
by these compiler frameworks.

This paper is organized as follows. In Section 2, the problem of finding data depen-
dencies in NLPs is described as well as the Linear Programming technique used to find
these data dependencies. Section 3 describes the basic software architecture of Mat-
Parser. Section 4 shows results obtained when running MatParser on a set of NLPs.
Section § describes conclusions. In the Appendix, the full grammar of MatParser is de-
scribes. In addition, a number of examples are given of how to write an NLP for Mat-
Parser. Finally, the options MatParser supports are described.

2 Array Dataflow analysis

The MatParser tool belongs to the class of Array Dataflow analysis tools. An Array
Dataflow analysis is the effort to find the set of all flow dependencies in a program [7].
It finds if two variables are depending on each other, but moreover, at which iteration. In
order to find these dependencies, MatParser uses linear algebra techniques. This, how-
ever, immediately limits the kind of programs that can be analyzed to the class of affine
Nested Loop Programs. Nevertheless, signal/image-processing applications are typi-
cally written as affine Nested Loop Programs. To write and develop these applications,
the Matlab™programming language [18] is frequently used.

2.1 Nested Loop Programs

Nested-loop programs (NLPs) consist of two kinds of control statements, control flow
statements and conditional statements. The For-loop statements describe the control
flow and If7Else statements describe the conditional statements. Furthermore, NLPs



contain assign statements, which take the form of a function-call. Linear expressions
used in the various statements need to be affine.

A typical example of a nested loop program is given in Figure 1(a). It shows two
For-loops with iterators i and j. The upper bounds of the For-loops are parameter-
ized in parameter N and M. This simple example does not use control statements. In-
side the two For-loops, the function Func is called, which consumes a variable a at the
Right-hand side (Rhs) and produces a new variable a on the Left-hand side (Lhs). The
function-call exposes only its input and output arguments, hiding all complexity of how
the function is realized.

The statements in the NLP are totally ordered by the sequential semantics of the
programming language, which in the case of Figure 1(a) is Matlab. However, a partial
execution order exists [2], which is given by the flow dependencies for the variable a. A
flow dependency or data dependency means that a variable is first written and later read.
If we find all data dependencies in a program, we have obtained the partial execution
order that allows for the parallel execution of the program.

The variable a describes an array in memory and individual elements are accessed
using an index function (e.g. f = i + j). The variable a is used at both the Lhs and
the Rhs of the function call. Now consider, for example, variable a (5). The func-
tion func will use this variable at an iteration (%, j), but also create one at an iteration,
say (¢, j'). Consequently, a data dependency may exist between subsequent iterations.
Finding this data dependency for all iterations and for all variables in an NLP is exactly
the problem MatParser solves.

for i=1 : 1 : W,
for j=1 : 1 : M,
[ a(i+j) 1 = func( a(i+j) );
end
end

(a) (b)

Figure 1: A Nested Loop Program in Matlab (a) and the iteration space spanned by the
two For-loops (b).

To find the solution to the given problem, observe that the For-loops in Figure 1(a)
span a 2-dimensional space, the so-called iteration space as shown in Figure 1(b). Through
the affine index function i+, specific elements of variable a (5) are accessed, either



through writing or through reading, as shown by the line  + j = 5. Now the question
is which iteration instance assigned the value to variable a(5) that is read, for example, -
at iteration (3,2). From the figure, we see three candidates: (1,4), (2,3), and (4,1). To
resolve this choice, we superimpose the order in which the For-loops of the Lhs variable
move through the iterations space, as shown by the arrows. This reveals it was iteration
(2,3) that assigned a value to a at the Lhs that is subsequently read at thie Rhs at itera-
tion (3,2). Thus the data dependency matrix M (3, j) between iteration (¢, j*) and (%, )

becomes . )
w-(10):()(3) o

2.2 Parametric Integer Programming

To find all data dependency relations in an NLP, MatParser employs an sophisticated
Linear Programming technique as proposed by Feautrier [5]. In the following para-
graph, we sketch the technique used for the example given in Figure 1(a). However,
for an in-depth discussion we refer to [S, 6}.

Both the Rhs and Lhs variables in Figures 1(a) are enclosed by For-loops that span
an iteration space. This space is described mathematically as a polytope e(I, P), where
I represents the iterators (e.g. i and j) and P represents the parameters (e.g. N and
M). Two variables can have a dependency if and only if both access the same memory
location. That is, they have the same name and access the same memory location as
given by their index functions f and g for respectively the Lhs (e.g. f = '+ ;') and the
Rhs (g = i+47) variables. As shown in Figure 1(b), more than one iteration might satisfy
this equality. Therefore, the order imposed by the For-loops is added to resolve which

“iteration was the latest one that wrote to the memory location. This order is described
mathematically by means of the lexicographical order [2], denoted as <.

Using the iterations space I and J of respectively the Rhs and Lhs variable, the index
functions and the lexicographical order, we define a new polytope Q as;

QU ={f(J)=9(I)NJg Ne(J,P) > 0}, 2)

in which iteration I needs to be a valid member in context of the polytope e(I, P) of the
Rhs variable. Because polytope @ is now lexicographically ordered, finding the “latest”
iteration that wrote to a memory location, means finding the lexicographical maximum,
denoted as;

 5(I) = maz<Q(I), ©)

in which the solution S(I) is called the Source function. This is a symbolic expression
describing the data dependency between a Lhs and Rhs variable pair in terms of the
parameters P used in the NLP. In case a solution doesn’t exist, the Source function is
considered undefined.

In defining polytope @, the lexicographical ordering is used and for an iterator vec-
tor I that contains n iterators, there may exist as many as n + 1 expansions. Each ex-
pansion leads to a different definition of Q and thus solution. To obtain one final data
dependence function, the different solutions, i.e., Sp . . . Sn41, need to be combined into



one solution. This combination process can be written as a recursive procedure [5] as
M;(I) = Mazg(Si(I), Mi—1 (1)), i=1,.,n+ 1 4)

Besides finding different source functions from the lexicographical expansion, a Rhs
variable may have a relation with m Lhs variables. Therefore, the data dependence
function M () is potentially the result of combining m * (n -+ 1) source functions.

for i=1 : 1 : N,

for j=1 : 1 : M,
if i-2>=0, M 4 6 P> :" O ]
if M-j-1>=0, a(i+))
. ~1>=0
[ in0 ] = a1(i-1,j+1); > o—o0—0—0 0j-1>
else %% if -M+j>=0; o e o '
in0 1 = a(i+j); P=® O O [
- ’ ) [TE] D wiewsn
else %% if -i+1>=0; ?RC ° ° ”
[ in0 ] = a(i+j); Ny A
end (] [} B O o b4
[ outd0 ] = func( in0 ); 1 44 PRI X
[a_1( i ,j )] = outo0; ' }
end i N
end 1 i-2>=0
@ ()

Figure 2: A Single Assignment Program (a) and the way the If/Else statements partition
the original iteration space of Rhs variable a (i+3j) into different parts with different
data dependence relations (b). ‘

2.3 Single Assignment Statement

A Single Assignment Program (SAP) is a program where every variable is assigned only
one value during execution of the algorithm [22]. It is equivalent to the Dependence
Graph of the original algorithm, which expresses all available parallelism in the algo-
rithm.

In Figure 2(a), the SAP is shown for the NLP given in Figure 1(a). In the SAP, the
For-loops and Function call haven’t changed. However, the Lhs and Rhs variable did.
The Lhs variable a (i+3j) is replaced with variable a_1 (i, j), to assure that variable
a_1 is written only once. The Rhs variable is replaced by an If/Else structure, as defined
by the data dependence function M ().

The function M () divides the original iteration space into different parts, as shown
in Figure 2(b). For each part, a specific data dependency exists, i.e. variablea_1(i-1,
j+1) describes the data dependence as given in equation 1. Thus, for all points within
the dark gray area, the same data dependence applies. Notice that point (3,2) is part of
this dark-gray area, as we had already found in Section 2.1. The function M () contains



undefined references because some source functions were undefined. These references
are replaced by definition with the original Rhs variable name, in this case a (i+3).

3 MatParser

In the remainder of this paper, we focus on the way MatParser is implemented. The tool
is completely written in Java [11], a powerful object-oriented language. To explain the
software architecture of MatParser, we use static Unified Modeling Language (UML)
diagrams [9]. The MatParser tool consists of three different parts:

1. the front-end converts a Matlab program into an internal data structure.
2. the solver finds all data dependencies relations between Rhs/Lhs variables.
3. the back-end writes out the found SAP in a particular format.

We now look at these three parts in more detail.

3.1 The Font-end, parsing NLPs in Matlab

The front-end of MatParser converts a Matlab program into an internal data structure.
The UML diagram for the front-end is given in Figure 3. For the parsing of Matlab, the
JavaCC parser [17] is used, for which we defined a grammar that is a subsét of regular
Matlab, enough to describe NLPs.

MatPersor's Data Structuro

“Irfermces dniartecan

ParssNode 1.0 Statemmnt ForStamment
i 1.1
!

JavaCCn l l‘X lls ElseStatement
Maln Parser .é i I :
Statementimp —
) [ (-] AssignSmtemem
. =1 HESmtement I
Relations nr RhsLhsPay ~urme T
an LieerExp -
] IndexStatement
statement typos

Figure 3: The front-end architecture of MatParser that consists of a parser that reads a
nested loop program in Matlab and generates the basic parse tree datastructure.



3.1.1 Data Structure

The parser builds up an internal data structure, which is a parse tree, using ParseNode
objects. Each ParseNode contains an instance of a Statement. Fromclass Statement,
we have derived subclasses to represent the different statement types that may occur in

an NLP. For example, class ForStatement defines a For-statement and class I£
Statement and class El seStatement represent respectively an If and Else state-
ment. A statement is defined in terms of one of more linear expressions. For a For state-
ment, it is the upper and lower bound expression, for an If or Else statement, it is the
condition expression of the statement.

UnearExp Armaylist
lT—— | ~Extendsy. |
TormVIisitor Term
°—-"T 0.n
DivTerm ModTerm FloorTerm . Coifferm
ti.t 11..1 T!-t ’1.1

Figure 4: The representation of the linear expressions.

3.1.2 Linear Expressions

A linear expression is represented as an array of Terms. Each term represents a signed
fractional number or variable. However, we have extended MatParser in such a way,
that it can handle the non-linear operators Div, Mod, Ceil, and Floor. To accommodate
these operators, we have extended the definition of an affine expression. To support
these non-linear operators, we derived from Term special terms. Each such term rep-
resents one of the four non-linear operators. Each non-linear operator again consists of
a linear expression, which is represented by the LinearExp. This scheme allows for
arbitrary nesting of non-linear operators.

3.1.3 Extensability

The front-end of MatParser can easily accommodate another language other than Mat-
1ab. To support, for example, NLPs written in the C language, the grammar of the parser
needs to change; however, the tree data structure remains the same.

Once the data structure is set-up, MatParser searches for all possible Lhs/Rhs vari-
able relations in the parse tree that might possibly have data dependencies. For each



valid pair found, i.e., the variables have the same name, a LhsRhsPair object is cre-
ated and stored in the Relations object.

3.2 The solver: solving the data dependency relation

The main part of MatParser is the calculation of the data dependency relation between a
Lhs/Rhs variable pair. As described in Section 2.2, this means first of all that MatParser
needs to find all the Source functions Sy . . . S;,+1 and secondly that it needs to combine
them into one data dependency function M (). The UML diagram for this part is given
in Figure 5.

Object SolveDataDependencies controls the two steps: the calculation of a
source function and the combining of the source functions into a single source function.
The objects involved in finding a source function a colored light gray and the objects
involved in combining source functions into a single source function are colored dark
gray.

«inerface»
Optimizations

RhsLhsPair
Lexicograp hicalOr der| 0.n
Relations 1.1 ~ PlpVistor
:

PipViator T

SolveDataD ependaencies| |

PlpBasket L

PlpSolver

Figure 5: The core part of MatParser that calculates individual source functions and
mergers these source function in one data dependency function M ().

3.2.1 Find a Source Function

The SolveDataDependencies object controls the calculation of the data depen-
dencies. Itbuilds up the polytope @ (See Equation 2) in terms of a list of inequalities, us-
ing object PipBasket. This object defines a Parameteric Integer Programming (PIP)
that needs to be solved. This PipBasket object is filled with the correct inequalities
using object PipVisitor, which is an instance of the so-called Visitor design pat-
tern [10]. The visitor design pattern encapsulates in one object, i.e, the visitor, how



a specific operation should behave for the various types presented in a data structure,
making the definition and maintenance of type specific operations easy.

For each statement type (See Figure 3), the PipVisitoxr describes how the lin-
ear expressions constituting a statement should contribute as linear inequality to the
PipBasket. The PipVisitor uses additionally a TermVisitor to describe how
the non-linear operators should contribute as linear inequalities to the PipBasket. As
the PipVisitor moves from a leaf node describing a Variable statement to the root of
the parse tree, it defines the polytope Q, except for the Lexicographical expansion. This
expansion is done separately by object LexicographicalOrder. The expansion
leads to potentially n + 1 different definitions of PipBasket.

3.2.2 Solving a PIP system

Each PipBasKet, that now describes a PIP system in terms of linear inequalities, is
sent to object PipSolver to find the Lexicographical maximum (See Equation 3).
Object PipSolver consists of a Solver part and a Decoder part, which are both
defined as interfaces as shown in Figure 6. This makes iteasy to use other solvers/decoders
when needed. Currently, the original PIP program of Feautrier [8] is implemented as the
solver. Alternatively, the Omega solver developed by William Pugh [19] could have
been implemented. The decoder is implemented as a JavaCC parser. It converts the
result created by PIP, into a small parse tree describing the source function S(I). The
original PIP solver is written in C and to make this program accessible from Java, with-
out much additional coding, the Java Native Interface (JNI) [16] is used.

«intedace» «JavaCC»
Decoder PIP parser
’__ 4......._....
PipSolver
«intodfaces «JNI»
Solver PP
<}——

Figure 6: How a PIP system is solved using a particular PIP solver and decoder to con-
vert the found solution back into a parse tree.

3.23 Grafting and Pruning Source Functions

The different source functions found as a result of the lexicographical expansion, are
combined by the GraftTree object (See Equation 4). This object grafts different so-
lution functions into one parse tree describing the data dependence function M (). This
grafting process is done in a straightforward way, leading very easy to huge parse trees,
consuming a lot of memory. In this new derived parse tree, there are many redundant
branches. To keep the parse tree small, the PruneTree object is used, which prunes



these redundant branches from the parse trees. The pruning of the parse tree is done
directly after the grafting process.

A branch is considered redundant when the polytope defined by the leaf node of the
branch doesn’t contain at least a single point. To determine if a polytope is not empty,
the SolveEmptyDomain object constructs for each leaf node in the solution parse
tree a PipBasket describing the polytope e(I, P). If a solution is found by PIP, it
means that e contains at least a single point. Otherwise, an empty domain is found that
is removed from the solution parse tree.

3.3 The Back-end: generating the SAP

The back-end of MatParser converts an NLP and all its data dependencies found into a
SAP description. For this purpose, MatParser uses again a visitor approach. The UML
diagram for this part is given in Figure 7. The MatlabVisitor generates the SAP.
This visitor describes for each statement type how it should be rendered in Matlab. In
case the SAP should be written in C, a CVisitor needs to be written.

WatiabVisRor

«intodaces
Visitor

Figure 7: The back-end architecture of MatParser that generates the Single Assignment
Code in various formats like Matlab or C.

3.4 Optimizations

In the process of deriving data dependence function M (), parse trees are either grafted
or pruned in a straightforward manner, allowing for ample opportunity for further op-
timizations. Hence, before the SAP is written, MatParser first applies a number of op-
timizations on the function M (). The optimizations currently supported by MatParser
are given in Figure 8. The optimizations are the removal of redundant If/Else statements
(SimplifySolution), the removal of redundant Index statements (Redundant
IndexRemoval), the removal of redundant partitions (RedundantIfElse
Statements), and the removal of redundant sub graphs (Redundant SubGraph
Removal). All these optimizations are implemented in a modular way, which means
that each optimization is self-contained; it does not depend on other code other than the
basic parse tree data structure. This makes it very easy to extend or improve the suite
of optimizations.

Before the optimizations are executed on the solutions parse tree, MatParser first
makes a clone of all the linear expressions in the statements. Until now, the parse tree
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Figure 8: The optimizations implemented in MatParser.

was only extended with partial solutions and statements could be referenced, which
save a lot of memory. However in the redundant index statements optimizations, lin-
ear expressions used in statements may change as a result of the optimizations. There-
fore, a clone is made of each statement for each parse node. This is done by object
CloneSolutionTree], in Figure 8.

In some optimizations, such isRedundant I fElseRemovaland Redundant Sub
GraphRemoval, the parse tree changes drastically while the optimization traverses
the parse tree. In this case, iterators used to walk through the parse tree, become in-
valid as the parse tree changes. To indicate that the iterators have become invalid, these
optimizations throw a InvalidateIteratorException. It ensures that the op-
timizations will start again from the root of the solution parse tree, until a complete so-
lution parse tree is processed by the optimization module.

4 Results

We have run MatParser on a number of NLPs, namely faddeev, gauss (Gaussian Elim-
ination), QR (QR decomposition) and two different versions of svd (singular value de-
composition). All these NLPs are linear algebra algorithms described in Matlab. While
compiling these NLPs into a SAP on a SUN Sparc30, we found the results as shown in
table 4.

The first two columns of the table show for each NLP how many Rhs variables are
involved that have a dependency with on average how many Lhs variables. The next
column shows the average partitioning of the original Rhs variable (See Figure 2(b)).
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Algoritm Rhs Lhs  Paritioning Solve Data Solve Empty Time per Total

name Var. Var. ofRhs Var. dependencies. test dependency. Time
QR 5 2 3 28 60 226 ms 1s
gauss 4 3 3 25 36 1875 ms Ts
faddeev 12 3 4 130 209 6299 ms 1m 15s
SVvD(1) 20 6 17 224 5787 13209 ms 4m24s
SVD (2) 39 20 12 2031 20436 49969 ms 32m28s

Table 1: Results found when running MatParser on a set of NLPs written in Matlab

The next two columns show how many PIP systems have been solved by the PIP solver
to respectively calculate a data dependence or to find an empty domain. Finally, the last
two colamns show the average time it took to find the data dependence function for a
Rhs variable and the total time it took to find all data dependencies.in the NLP.

The two SVD algorithms take considerably more time than the other examples, be-
cause they use For-loops with a stride and index statements that contain non-linear op-
erators. This introduces lattices on the dense polytopes [13] that make the grafting and
pruning of the solution functions considerable more complex and time intensive.

The results in table 4 show that finding all data dependencies is a computationally
intensive procedure. In addition, we found that MatParser is very memory intensive, as
many parse trees are created and later removed in the graft and prune process.

5 Conclusions

This paper summarizes the PIP-based array dataflow analysis as proposed by Feautrier.
Furthermore, it discusses the implementation of the MatParser tool, which implements
the PIP-based analysis in Java. MatParser performs the PIP-based dataflow analysis on
nested loop programs written in Matlab and convert these programs into single assign-
ment form.

In developing MatParser, we have used extensively modern software techniques
like design patterns [10] and UML diagrams [9]. These techniques are used extensively
in the design of the Ptolemy II software project, written at UC Berkeley. We were very
much inspired by this work [20]. As software techniques, for example, we used inter-
faces to define contracts between the various components in the architecture to separate
their dependence. In addition, we have used design patterns like the visitor, to get eas-
ily maintainable and extendable objects, needed when formatting a SAP into different
ways, for example, to support different tools that accept SAP code. Finally, we have
used UML to discuss and iterate on the basic architecture of MatParser.

We would like to conclude with a number of observations with respect to MatParser.
These observations relate to the extensibility of MatParser, its memory use, and the cor-
rectness of the obtained SAP descriptions.
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5.1 Extensability

A lot of effort has been put in building MatParser in such a way that it can easily be
extended with other solvers (for example the Omega solver [19]), or other tools (for
example the Polylib package [23] to do empty domain tests). Also, the front-end and
back-end are set up such that MatParser can accept NLPs and produce SAP output in
another language than Matlab. .

5.2 Memory Intensive

The biggest limitation we observed in MatParser is its memory use. MatParser is ex-
tremely memory intensive because the solution parse-tree is constantly extended with
new partial solutions and pruned for empty domains. The examples given in table 4 use
up to'128Mb and the second SVD example didn’t even run on 128Mb. We had to run
that example on a 512Mb machine.

We have tried to minimize the overall memory use where possible. Nevertheless,

- we found it very difficult to do memory optimizations. Because of the garbage collector °

approach in Java, it is often unclear which objects have been cleared, or whether objects
are cleared at all. Consequently, memory management is definitely an issue that needs
to be further optimized.

5.3 Correctness of the generated SAPs

We are confident that the SAP MatParser is producing is functionally correct. All the
SAP programs we obtained from MatParser have been functionally checked with re-
spect to the original NLP program, using Matlab. We found in all checked cases the
same input/output behavior.
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A MatParser Grammar

The subset of the Matlab™ language that MatParser accepts is given here in a BNR for-
mulation. Note that this subset is more restrictive then regular matlab and as a conse-
quence the Matlab MatParser accepts, needs to be rewritten a little.

A.1 Inclusion of standard Matlab code

It is possible to put at arbitrary places standard Matlab code (without any limitation).
Ffor example, this makes the testing of NLP and SAP code easy. This Matlab code,
however, needs to be placed between two limiters: a $matlab and $end statement.
The Matlab code placed between these two limiters in a NLP will be written out verba-
tim in the derived SAP.

A.2 MatParser specific statements

There are two statements that are MatParser specific. One is the %parameter statement
that defines a parameter and it’s range. For example,

Joparameter Name min_value max_value;

defines a parameter with a particular name Name, that can take any integer value be-
tween an includingmin_value and max.value. The.otherstatement is the $function
statement, For example,

%function name;

defines that function name is present in the NLP description. The use of this state-
ment is however deprecated. Itis included only to be compatiable with NLPs originally
written for HiPars. Note that both statements start with . Their are thus seen by Matlab
as comments, when evaluting a NLP.

A.3 Simple and Complex linear Expressions

A difference is made between simple and complex linear expressions. A Complex linear
expression may contain non-linear operators like Div/Mod/Floor/Ceil. A Simple linear
expression, on the other hand, may not contain non-linear operators.

A4 MatParser’s Grammar -

NLP :: [ declarations ] listOfStatements
declarations :: declaration ( declaration )*

declaration :: parameterStatement
| functionDefinitionStatement

matlabStatement :: "%matlab”
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MATLAB_.COMMENT
"%end')

parameterStatement :: "%parameter” Identifier fraction fraction ”;”
functionDefinitionStatement :: "%function” Identifier ”;”
listOfStatements :: statement ( statement )*
statement :: controlStatement

| functionStatement

| matlabStatement

controlStatement :: ifElseStatement
| forStatement

functionStatement :: indexStatement
| assignStatement

forStatement :: “for” Identifier ”=" complexExpression ”:” Integer :” complexExpression ”,”
[ listOfStatements ]
”end"
ifElseStatement :: ifStatement
[ elseStatement ]
,!end’l
ifStatement :: “if” condition ”,”
listOfStatements
elseStatement :: “else” listOfStatements
indexStatement :; Identifier "=" complexExpression ;"
assignStatement :: leftVariableList =" Identifier rightVariableList ";”
leftVariableList :: "[” [ variable ( ”,” variable )* ] ]’
rightVariableList :: (" [ variable ( ”,” variable)* ] )"
variable :: Identifier [ "(" [ simpleExpression ( ”,” simpleExpression)*]”)” ]
condition :: complexExpression relational operator complexExpression
relational_operator :: "=="
I ')! ="
l ” <n
I ” <="
I ">”
l ’)>=,1
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simpleExpression :: [ sign ] term ( inearOperator term )*
complexExpression :: [ sign ] termOrOperator ( linearOperator termOrOperator )*

sign :: "+

l ” "

linearOperator :: "+”

I ” "

termOrOperator :: specialOperator
| term
specialOperator :: "div” ”(” simpleExpression ”,” Integer )"
| “mod” ”(” simpleExpression ”,” Integer )"
| "floor” "(” simpleExpression )"
| “ceil” ”(” simpleExpression )"

term :: fraction [ ”*” Identifier ]
| Identifier { ”*” fraction ]

fraction :: Integer [ "/’ Integer ]
Identifier :: IDENTIFIER

Integer :: INTEGER_LITERAL
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B Nested Loop Program Examples

To get a feeling for what a NLP programs look like that MatParser accepts, we have included
three examples of NLPs. The first example describes the Gauss algorithm, the second example
describes the QRvr algorithm and the third example describes the SVD algorithm. All three ex-

amples were used to get the results found in table 4.

B.1 Gaussian Elimination (Gauss)

$parameter N 1 100;
$% Gauss Algorithm

$matlab
u = zeros(N,N);
$end

for k = i+1 : 1 : N,
[ u(i, k) 1 = funcA( u(j.k), u(i, k) j);
end
end
for j= i+1 : 1 : N,
for k = i+1 : 1 : N,
[ u(j,k) 1 = funcz( u(j.k), ui{i, k) );
end
end
end

for j =

for i
(s
end

end

1
ink(j,i) ] = _WriteMatrix_Rout( u(j,i)

$matlab
disp(u);
$end

B.2 QR factorization (QRvr)

$parameter N 8 16;
$parameter K 100 1000;
for 3 = 1:1:N,
for i = j:1:N,
[x(j,i)] = _ReadMatrix_Zeros_64x64();
end
end
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for k = 1:1:K,
for j = 1:1:N,
[x(k,j)] = _ReadMatrix_U_1000x16();
end
end
for k = 1:1:K,
for j = 1:1:N,

(r(j,3), x(k,j), t ) = Vectorize( r(j,j), x(k,3) );

for i = j+1:1:N,

(r(j,i), x(k,i), t] = Rotate( r(j,i), x(k,i), t };

end
end
end

for j = 1:1:N,
for i = j:1:N,
[ Sink(j,i) ] = _WriteMatrix_Rout( r(j,i) );
end
end

B.3 Singular Value Decomposition (SVD)

$parameter M 1 10;
$parameter N 1 5;
$function Pass;
$function vector;
$function thethaSac;
$function phiSAC;

$matlab

N 100;

M 6;

a magic( M };
$end

for j = 1:1:N,
for i = 1:1:N,
[A(j,i)]) = _ReadMatrix_Zeros_64x64();
end
end

B

for i = 1:1:N,

[ phi(i) ] = _ReadMatrix_zZeros_64();
end

for i = 1:1:N,
[ theta(i) } = _ReadMatrix_Zeros_64();
end . ’

for stage
for i

1:1: N,
1 :2 : M-1,

non

[phi(i), thetha(i)] = vector(a(i,i), a{i,i+l), a(i+l,i), a(i+l,i+l));

end
for i =1 : 2 : M-1,
for j =1:1:M,
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a(i,j), a(i+l,j) ] = phisac(phi(i), a(i,j), a(i+l,3));
end
end
for i =1: 2 : M-1,
for j =1 :1 : M,
{ a{j,i), a(j,i+l) ] = thethasac(a(j,i), a(j,i+1l), thetha(i));
end :
end
for i =2 : 2 : M-2,
[phi(i),thetha(i)] = vector{a(i,i), a(i,i+l), a(i+l,i), a(i+l,i+l});
end
for i =2 : 2 : M~-2,
for j=1:1: M,

[ a(i,j), a(i+l,j) ] = phisac{phi(i), a{i,j), a(i+l,3));

-end
end -
for i =2 : 2 : M-2, -

for 3 =1 :1: M,

[ a(j,i), alj,i+1) ]

thethasaC(a(j,i), a(j,i+1), thetha(i));
end
.end
end
for x-=1 : 1 : M,
fory=1:1:M,
[Sink(x,y)] = Pass{a(x,y});
end
end

$matlab
disp( Sink );
" $end
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C MatParser Options

MatParser has the following command line options:

options that take an additional argument.

--input (-f) This option is followed by a filename that describes the NLP
that needs to be read.

--output (-o) This option is followed by a filename that describes where
results, for example a SAP, need to be written. If no output file is supplied,
the result is written to standard out.

boolean options

--compile (~c) Compilethe NLP into a SAP,

--verbose (-v) Make MatParser verbose. This causes MatParser to pro-
duce output showing the progress made in the various step taken to convert
aNLP into a SAP.

--optimize (-r) Apply the set of optimizations on the solution trees de-
scribing data-dependencies. The optimizationsinclude removing redundant
if/else statements, removing redundant index statements, and removing re-
dundant subgraphs.

--panda (-p) This causes the SAP to be written in a format in which all in-
put and output statements that read or write data are written as functions of
type ipd or opd. This format is needed, when the resulting SAP is to be
processed further by the Panda tool.

~--help (-h) Gives a help text.
--version (-V) Printsout the version number of MatParser.
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