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Abstract

This paper presents the MatParser tool. MatParser is an array analysis com
piler that automatically converts an afiine nested loop program into a single as
signment program. The nested loop programs may contain non-linear operators
like div/mod/floor/ceil and stepsizes other than ono. The focus of this article is
on the software architecture used in MatParser to resolve the data dependencies.
Finding that two variables are dependent on each other and at which iteration, is
a very computational intensive procedure. MatParseremploys a particular linear
prograrruningtechnique to And the data dependencies,basedon parametric integer
programming (PIP) as proposedby Paul Feautrier. To appreciate the implementa
tion of MatParser, we will explainin this paper in sufficientdetail the basics of the
linear programming technique used.

1 Introduction

In signalprocessing,manyapplications performlarge-scale algebraiccomputationswith
high data throughput. This can only be sustainedby exploitingparallelism and pipelin
ing in the computations. This requires a description that expresses all available paral
lelism in the computations. Unfortunately, applicationsare typically written in an im
perative language, like C or Matlab and the derivation of a parallel description from
these sequential program descriptionsis a difficultand tedioustask. This paper presents
the MatParser tool, which automatically converts afhne NestedLoop Programs (NLPs)
into Single AssignmentPrograms (SAPs). SAP expresses all available data parallelism
present in terms of the parameters used in the original NLR

MatParser employs an advanced linear programming technique to find the data de
pendencies in an NLP as proposed by Feautrier [8]. We have extended this approach
such that non-linear operators can be handled like Div, Mod, Ceil, and Floor. In ad
dition, For-loops with a stride other than one are allowed. This extension is imple-



mented in MatParser, but will not be discussed in this papers, as it is discussed in detail
in [13,12,14].

MatParser is the successor of the HiPars tool [12]. HiPars is written in ObjectiveC [3],
which is currently considered an obscure object oriented language. Instead, MatParser
is implemented in Java™ [11], making the compiler more accessible andplatform in
dependent. MatParser differs from HiPars in that its overall performance is improved
and that it has a better-engineered software architecture. The focus of this paper is the
software architecture of MatParser, however, to appreciate its implementation, we first
describe briefly the technique used in MatParser to find data dependencies.

.MatParser has been developed as part of an effort to make the mapping possible of
high-performance signal processing (DSP) applicationsonto new emerging embedded
DSP architectures [15,4]. These new architectures consist of a number ofcoprocessors,
a microprocessor, memory, and programmable interconnect. Since these architectures
differ considerably from standard parallel computer architectures, a standard compiler
framework is not able to perform the required mt^ping. Consequently, the focus of
MatParser is not to do data analysis on standard languages like C or Fortran in con
text of computer architectures as done in standardcompilerframeworklike GCC [21]
or SUIF [1]. In general, the dataflow analyses performed in these frameworks are not
exhaustive enough for our purpose. We want to know when two variables are depen
dent, and furthermore at which iteration. The latter requirementis in general not solved
by these compiler frameworks.

Thispaper is organized as follows. In Section2, theproblemof finding datadepen
dencies in NLPs is described as well as the Linear Progranuning technique used to find
these data dependencies. Section 3 describes the basic software architecture of Mat-
Parser. Section 4 shows results obtained when running MatParser on a set of NLPs.
Section 5 describes conclusions. In the Appendix, the full granmiar of MatParser is de
scribes. In addition, a number of examples are given of how to write an NLP for Mat-
Parser. Finally, the optionsMatParser supports are described.

2 Array Dataflow analysis

The MatParser tool belongs to the class of Array Dataflow analysis tools. An Array
Dataflowanalysis is theeffort to findthe set of all flow dependencies in a program[7].
It finds if two variablesaredependingon each other,butmoreover,at whichiteration. In
order to findthese dependencies, MatParseruses linearalgebratechniques. This, how
ever, immediately limits the kind of programs that can be analyzed to the class of afhne
Nested Loop Programs. Nevertheless, signal/image-processing applications are typi
cally writtenas affineNested LoopPrograms. Towriteanddeveloptheseapplications,
theMatlab™programining language [18] is frequently used.

2.1 Nested Loop Programs

Nested-loop programs(NLPs) consistof two kindsof controlstatements, controlflow
statements and conditional statements. The For-loop statements describe the control
flow and If/Else statements describe the conditional statements. Furthermore, NLPs



contain assign statements, which take the form ofa function-call. Linear expressions
used in the various statements need to be affine.

A typical example ofa nested loop program is given inFigure 1(a). It shows two
For-loops withiterators i and j. The upper bounds of the For-loops are parameter
izedin parameter N and M. This simple example does notusecontrol statements. In
sidethe twoFor-loops, thefunction Func is called, which consumes a variable a at the
Right-hand side(Rhs) andproduces a new variable a ontheLeft-hand side(Lhs). The
function-call exposes onlyits inputandoutputarguments, hidingallcomplexity ofhow
the function is realized.

The statements in the NLP are totally ordered by the sequential semantics of the
programming language, which in thecase ofFigure 1(a) is Matlab. However, a partial
execution order exists [2], whichis given by the flowdependenciesfor the variablea. A
flowdependency ordata dependency means thata variable isfirst written andlaterread.
If we And all data dependencies in a program, we have obtained the partial execution
order that allows for the parallel execution of the program.

The variable a describes an array in memory and individual elements are accessed
using an indexfunction (e.g. / = i + i). The variable a is used at both the Lhs and
the Rhs of the function call. Now consider, for example, variable a (5). The func
tion func will use this variableat an iteration (i, j), but also create one at an iteration,
say(i'j /). Consequently, a data dependency may exist between subsequent iterations.
Findingthis datadependency forall iterationsandforall variables in an NLPis exactly
the problem MatParser solves.

for i°l : 1 : H,

for j»l : I : H,
t a(i+j) ] = func( a(i+j) );

end

end

(a)

M --

i+|:=5

(b)

Figure 1: A Nested Loop Program in Matlab (a) and the iteration space spanned by the
two For-loops (b).

To find the solution to the given problem, observe that the For-loops in Figure 1(a)
span a 2-dimensionalspace, the so-callediteration space as shownin Figure 1(b). Through
the affine index function i+j, specific elements of variable a (5) are accessed, either



through writing or through reading, as shown by the line z+ j = 5. Now the question
is which iteration instance assigned the value to variable a(5) that is read, for example,
at iteration (3,2). From the figure, we see three candidates: (1,4), (2,3), and (4,1). To
resolve this choice, we superimposethe order in which the For-loops of theLbs variable
move through the iterations space, as shown by the arrows. This reveals it was iteration
(2,3) that assigned a value to a at the Lbs that is subsequently read at the Rhs at itera
tion (3,2). Thus the data dependency matrix Af(z,j) betweeniteration{i'J') and (z, j)
becomes n / v / v

2.2 Parametric Integer Programming

To find all data dependency relations in an NLP, MatParser employs an sophisticated
Linear Programming technique as proposed by Feautrier [5]. In the following para
graph, we sketch the technique used for the example given in Figure 1(a). However,
for an in-depth discussion we refer to [5,6].

Both the Rhs and Lbs variables in Figures 1(a) are enclosed by For-loops that span
aniteration space. Thisspace isdescribed mathematically asa polytope e(/, P), where
I represents the iterators (e.g. i and j) and P represents the parameters (e.g. N and
M). Two variables can have a dependency if and only if both access the same memory
location. That is, they have the same name and access the same memory location as
given bytheirindexfunctions / andg forrespectively theLbs(e.g. f = i'-\-j*)andthe
Rhs(flr = zH-j)variables. As shown in Figure 1(b), more than one iteration might satisfy
this equality. Therefore, the order imposed by the For-loops is added to resolve which
iteration was the latest one that wrote to the memory location. This order is described
mathematically by means of the lexicographical order [2], denoted as -C.

Using the iterations space I and J of respectivelythe Rhs and Lbs variable, the index
functions and the lexicographicalorder,we define a new polytope Q as;

Q{I) = {/(J) = g{I) A Ae(J, P) > 0}, (2)

in whichiterationI needs to be a validmemberin contextof thepolytopee(J, P) of the
Rhs variable. Becausepolytope Q is nowlexicographicallyordered, findingthe "latest"
iteration that wrote to a memory location, means finding the lexicographical maximum,
denoted as;

S{I) = max^Q{I), (3)

in which the solution S{I) is called theSourcefunction. Thisis a symbolic expression
describingthe data dependency between a Lbs and Rhs variable pair in terms of the
parameters P used in the NLR In case a solution doesn't exist, the Source function is
considered undefined.

In definingpolytopeQ, the lexicographical orderingis usedand for an iterator vec
tor I that contains n iterators, there may exist as many as n -|-1 expansions. Each ex
pansionleads to a differentdefinition of Q and thus solution. To obtainone finaldata
dependence function,the different solutions, i.e..So ... Sn+i, needto becombinedinto



one solution. Tliis combinationprocesscan be writtenas a recursiveprocedure[5] as

Mi{I) = Max^{Si{I),Mi-i{I)), i= (4)

Besides finding different source functions from the lexicographical expansion, a Rhs
variable may have a relation with m Lhs variables. Therefore, the data dependence
function M{) is potentially theresult of combining m * (n + 1) source functions.

for i=l : 1 : N,

for j=l : 1 : M,
if i-2>=0,

if M-j-l>=0,
[ inO ] = a_l(i-l,j+1);

else %% if -H+j>=0;
[ inO ] = a(i+j);

end

else X% if -i+l>=0;
[ inO ] = a(i+j);

end

C outO ] - func( inO );
Ca_l( i ,j )] = outO;
end

end
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M+1>=0

Figure 2: A Single Assignment Program (a) and the way the If/Else statements partition
the original iteration space of Rhs variable a (i+j ) into different parts with different
data dependence relations (b).

2.3 Single Assignment Statement

A SingleAssignment Program (SAP) is a program where every variable is assigned only
one value during execution of the algorithm [22]. It is equivalent to the Dependence
Gr£q>h of the original algorithm, which expresses all available parallelism in the algo
rithm.

In Figure 2(a), the SAP is shown for the NLP given in Figure 1(a). In the SAP, the
For-loops and Function call haven't changed. However, the Lhs and Rhs variable did.
The Lhs variable a (i+j ) is replaced with variable a_l (i, j ), to assure that variable
a.l is written only once. The Rhs variable is replaced by an IfiElse structure, as defined
by the data dependence function M().

The functionMi) dividesthe originaliterationspaceinto differentparts,as shown
in Figure 2(b). For each part, a specific data dependency exists, i.e. variable a.l {i-1,
j+1) describes the data dependence as given in equation 1. Thus, for all points within
the dark gray area, the same data dependence applies. Notice that point (3,2) is part of
this dark-grayarea, as we had alreadyfound in Section2.1. The functionMi) contains



undefined references because some source functions were undefined. These references

are replaced by definition with the original Rhs variable name, in this case a (i+j ).

3 MatParser

In the remainder of this paper,we focus on the wayMatParser is implemented. The tool
is completely written in Java [11], a powerful object-orientedlanguage. To explain the
software architecture of MatParser, we use static Unified Modeling Language (UML)
diagrams [9]. The MatParser tool consists of three different parts:

1. the front-end converts a Matlab program into an internal data structure.

2. the solver finds all data dependencies relations between Rhs/Lhs variables.

3. the back-end writes out the found SAP in a particular format.

We now look at these three parts in more detail.

3.1 The Font-end, parsing NLPs in Matlab

The front-end of MatParser converts a Matlab program into an internal data structure.
The UML diagram for the front-end is given in Figure 3. For the parsing of Matlab, the
JavaCC parser [17] is used, for which we defineda grammar that is a subset of regular
Matlab, enough to describe NLPs.
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Figure 3: The front-end architecture of MatParser that consists of a parser that reads a
nested loop program in Matlab and generates the basic parse tree datastructure.



3.1.1 Data Structure

Theparser buildsupaninternal datastructure, which isaparse tree,using ParseNode
objects. EachParseNode containsaninstance ofa Statement. From class Statement,
wehavederived subclasses to represent thedifferent statement typesthatmay occurin
an NT .P. For example, classForStatement defines a For-statement andclass If
Statement and class ElseStatement represent respectively an If and Else state
ment. A statement is defined in terms ofone ofmore linear expressions. For a For state
ment, it is the upperand lowerbound expression, for an If or Else statement, it is the
condition expression of the statement.

TemiVlritar Taria

UnsatExp •<Exiencb|̂
ArrayLlit

O-nt o.n

DIvTarm ModTarm FbeiTann CailTarcn

h .1 Ti..1 Ti 1

Figure 4: The representationof the linear expressions.

3.1.2 Linear Expressions

A linear expressionis represented as an array of Terms. Eachterm represents a signed
fractional number or variable. However, we have extended MatParser in such a way,
that it can handle the non-linear operatorsDiv, Mod, Ceil, and Floor. To acconunodate
these operators, we have extended the definition of an affine expression. To support
these non-linear operators, we derived from Term special terms. Each such term rep
resents one of the four non-linear operators. Each non-linear operator again consists of
a linear expression, which is represented by the LinearExp. This schemeallows for
arbitrary nesting of non-linear operators.

3.1.3 Extensabiiity

The front-end of MatParser can easily accommodate another language other than Mat-
lab. To support, for example, NLPs written in the C language, the granunar of the parser
needs to change; however, the tree data structure remains the same.

Once the data structure is set-up, MatParser searches for all possible Lhs/Rhs vari
able relations in the parse tree that might possibly have data dependencies. For each



valid pair found, i.e.. the variables have the same name, a LhsRhsPair object is cre
ated and stored in the Relations object.

3.2 The solver: solving the data dependency relation

TTie main part of MatParser is the calculation of the data dependency relation between a
Lhs/Rhs variable pair. As described in Section 2.2, this means first of all that MatParser
needs to find all the Source functions So • • •Sn+i and secondly that it needs to combine
them into one data dependency function M(). The UML diagram for this part is given
in Figure 5.

Object SolveDataDependencies controls the two steps: the calculation of a
source function and the combining of the source functions into a single source function.
The objects involved in finding a source function a colored light gray and the objects
involved in combining source functions into a single source function are colored dark
gray.

Optbnbttlon*

mphlulOrd»r|

« apa nd aneiaa

Figure 5: The core part of MatParser that calculates individual source functions and
mergers these source function in one data dependency function M().

3.2.1 Find a Source Function

The SolveDataDependencies object controls the calculation of the data depen
dencies. It builds up the polytope Q (See Equation 2) in terms of a list of inequalities, us
ing object PipBasket. This object defines a Parameteric Integer Programming (PIP)
that needs to be solved. This PipBasket object is filled with the correct inequalities
using object PipVisitor, which is an instance of the so-called Visitor d&sign pat
tern [10]. The visitor design pattern encapsulates in one object, i.e, the visitor, how



a specific operation should behave for the various types presented in a datastructure,
makingthe definitionand maintenance of type specific operations easy.

For each statement type (See Figure 3), the PipVisitor describes how the lin
ear expressions constitutinga statement should contributeas linear inequality to the
PipBasket. The PipVisitor uses additionallya TermVisi tor to describe how
the non-linear operatorsshould contributeas linear inequalities to the PipBasket. As
the PipVis i tor moves from a leaf node describing a Variablestatement to the root of
theparsetree,it defines thepolytopeQ, exceptfortheLexicographical expansion. This
expansion is done separately by objectLexicographicalOrder. The expansion
leads to potentially n -fl different definitions of PipBasket.

3.2.2 Solving a PIP system

Each PipBasket, that now describes a PIP system in terms of linear inequalities, is
sent to object PipSolver to find the Lexicographical maximum (See Equation 3).
Object PipSolver consistsof a Solver part and a Decoder part, whichare both
definedasinterfaces as showninFigure 6. This makesit easy touse other solvers/decoders
when needed. Currently,the originalPIP programof Feautrier[8] is implementedas the
solver. Alternatively, the Omega solver developed by William Pugh [19] could have
been implemented. The decoder is implemented as a JavaCC parser. It converts the
resultcreated by PIP, intoa small parsetree describing the source function S{I). The
originalPIP solver is writtenin C andto make thisprogramaccessible fromJava, with
out much additional coding, the Java Native Interface (JNI) [16] is used.

PipSolver

<3- —

•Inteifaoeo
Decoder

olnteifaoo"
Solver

tOavaOCx
PIP parser

«JNI>

PIP

Figure 6: How a PEP systemis solvedusing a particularPIP solverand decoderto con
vert the found solution back into a parse tree.

3.2.3 Grafting and Pruning Source Functions

The different source functions found as a result of the lexicographical expansion, are
combined by the GraftTree object (See Equation 4). This object grafts different so
lutionfunctions intooneparsetreedescribing thedatadependence function M(). This
grafting process is done in a straightforward way, leading very easy to huge parse trees,
consuming a lot of memory. In this new derived parse tree, there are many redundant
branches. To keep the parse tree small, the PruneTree object is used, which prunes



these redundant branches from the parse trees. The pruning of the parse tree is done
directly after the grafting process.

A branch is considered redundant when the polytope defined by the leaf node of the
branch doesn't contain at least a single point. To determine if a polytope is not empty,
the SolveEmptyDomain object constructs for each leaf node in the solution parse
tree a PipBasket describing the polytope e{I, P). If a solution is found by PIP, it
means that e contains at least a single point. Otherwise, an empty domain is found that
is removed from the solution parse tree.

3.3 The Back-end: generating the SAP

The back-end ofMatParser converts an NLP and all its data dependencies found into a
SAPdescription. For this purpose,MatParser uses againa visitorapproach. The UML
diagramfor this part is given in Figure7. The MatlabVisitor generates the SAP.
This visitor describes for each statement type how it should be rendered in Matlab. In
case the SAP should be written in C, a CVisitor needs to be written.

•inteilaoB.

VMtar

HatbbVisftor

3

CVisSor

L_.

Figure7; The back-endarchitectureof MatParserthat generates the SingleAssignment
Code in various formats like Matlab or C.

3.4 Optimizations

In the process of deriving datadependence function M(), parsetreesareeithergrafted
or pruned in a straightforward manner, allowing for ample opportunity for further op
timizations. Hence, before the SAP is written, MatParser first applies a number of op
timizationson the function M{). The optimizationscurrently supportedby MatParser
aregivenin Figure8. The optimizationsaretheremovalof redundant If/Elsestatements
(SimplifySolution), the removal of redundant Index statements (Redundant
IndexRemoval), the removal of redundant partitions (RedundantifElse
Statements), and the removal of redundant sub graphs (RedundantSubGraph
Removal). All these optimizationsare implementedin a modularway, whichmeans
thateachoptimization is self-contained; it doesnot dependonothercodeotherthan the
basic parse tree data structure. This makes it very easy to extendor improvethe suite
of optimizations.

Before the optimizations are executed on the solutionsparse tree, MatParser first
makes a clone of all the linear expressions in the statements. Until now, the parse tree
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Figure 8: The optimizations implemented in MatParser.

was only extended with partial solutions and statements could be referenced, which
save a lot of memory. Howeverin the redundant index statements optimizations, lin
earexpressions used in statements may change asa result oftheoptimizations. There
fore, a clone is made of each statement for each parse node. This is done by object
CloneSolutionTree], in Figure 8.

Insomeoptimizations, suchisRedundantI f ElseRemoval andRedundantSub
GraphRemoval, the parse tree changes drastically while the optimization traverses
the parse tree. In thiscase, iterators used to walk through theparse tree, become in
validas theparsetreechanges. Toindicate thattheiterators have become invalid, these
optimizations throw a invalidatelteratorException. It ensures thattheop
timizations will start againfromtherootof thesolution parsetree,untila complete so
lution parse tree is processed by the optimization module.

4 Results

We have run MatParser on a number of NLPs, namely/addeev, gauss (Gaussian Elim
ination), QR(QR decomposition) and two differentversionsof svd (singularvalue de
composition). All theseNLPs arelinearalgebra algorithms described inMatlab. While
compiling theseNLPsinto a SAPona SUNSparc30, we found the results as shown in
table 4.

The first two columns of the table show for each NLP how many Rhs variables are
involvedthat have a dependency with on average How manyLhs variables. The next
column shows the average partitioningof the originalRhs variable(See Figure 2(b)).
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Algoritm Rhs Lbs Paritioning Solve Data Solve Empty Time per Total

name Var. Var. of Rhs Var. dependencies. test dependency. Time

QR 5 2 3 28 60 226 ms 1 s

gauss 4 3 3 25 36 1875 ms 7s

faddeev 12 3 4 130 209 6299 ms Im 15s

SVD(l) 20 6 17 224 5787 13209 ms 4m 24s

SVD (2) 39 20 12 2031 20436 49969 ms 32m 28s

Table 1: Results found when running MatParser on a set of NLPs written in Matlab

The next two columns show how many PEPsystems have been solved by the PIP solver
to respectively calculate a data dependence or to find an emptydomain. Finally, the last
two colomns show the average time it took to find the data dependence function for a
Rhs variable and the total time it took to find all data dependencies.in the NLP.

The two'SVD algorithms take considerably more time than the other examples, be
cause they use For-loops with a stride and index statements that contain non-linear op
erators. This introduces lattices on the dense polytopes [13] that make the grafting and
pruning of the solution functions considerable more complex and time intensive.

The results in table 4 show that finding all data dependencies is a computationally
intensive procedure. In addition, we found that MatParser is very memory intensive, as
many parse trees are created and later removed in the graft and prune process.

5 Conclusions

This paper summarizes the PIP-based array dataflow analysis as proposed by Feautrier.
Furthermore, it discusses the implementation of the MatParser tool, which implements
the PIP-based analysis in Java. MatParser performs the PIP-based dataflow analysis on
nested loop programs written in Matlab and convert these programs into single assign
ment form.

In developing MatParser, we have used extensively modem software techniques
like design pattems [10] and UML diagrams [9]. These techniques are used extensively
in the design of the Ptolemy II software project, written at UC Berkeley. We were very
much inspired by this work [20]. As software techniques, for example, we used inter
faces to define contracts between the various components in the architecture to separate
their dependence. In addition, we have used design patterns like the visitor, to get eas
ily maintainable and extendable objects, needed when formatting a SAP into different
ways, for example, to support different tools that accept SAP code. Finally, we have
used UML to discuss and iterate on the basic architecture of MatParser.

We would like to conclude with a number ofobservations with respect to MatParser.
These observations relate to the extensibility ofMatParser, its memory use, and the cor
rectness of the obtained SAP descriptions.
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5.1 Extensability

A lot of effort has been putin building MatParser in such a way that it can easily be
extended withothersolvers (forexample the Omega solver [19]), or other tools (for
example the Polylib package [23] todoempty domain tests). Also, the front-end and
back-end are setupsuch that MatParser can accept NLPs and produce SAP output in
another language dian Matlab.

5.2 Memory Intensive

The biggest limitation weobserved in MatParser is itsmemory use. MatParser is ex
tremely memory intensive because thesolution parse-tree isconstantly extended with
new partial solutions and pruned forempty domains. Theexamples given intable 4 use
upto l28Mb and thesecond SVD example didn't even runon128Mb. We had to run
that example on a 512Mb machine.

We have tried to minimizethe overall memory use where possible. Nevertheless,
wefound it very difficult todomemory optimizations. Because of thegarbage collector
approach inJava, it isoften unclear which objects have been cleared, orwhether objects
are cleared at all. Consequently, memory management is definitely an issue thatneeds
to be further optiniized.

5.3 Correctness of the generated SAPs

We are confidentthat the SAP MatParser is producingis functionally correct. All the
SAP programs we obtained from MatParser have been functionally checked withre
spect to theoriginal NLP program, using Matlab. We found in all checked cases the
same input/output behavior.
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A MatParser Grammar

The subset oftheMatlab™language thatMatParser accepts isgiven here ina BNR for
mulation. Note that this subset is more restrictive then regular matlab and as a conse
quence the Matlab MatParser accepts, needs to be rewritten a little.

A.l Inclusion of standard Matlab code

It is possible to put at arbitrary placesstandardMatlab code (withoutany limitation).
Ffor example, this makes the testing of NLP and SAP code easy. This Matlab code,
however, needs to be placed between two limiters: a %matlab and %end statement.
The Matlab code placed between these two limiters in a NLP will be written out verba
tim in the derived SAP.

A.2 MatParser specific statements

Thereare twostatements thatareMatParser specific. Oneis the^parameter statement
that defines a parameter and it's range. For example,

%parameter Name min_value max_value;

defines aparameter withaparticular name Name, thatcantakeany integer value be
tween an includingmin_value and max_value. The.otherstatement is the %f unc t ion
statement. For example,

%function name;

defines that function neune is present in the NLPdescription. The useof thisstate
ment is however deprecated. Itis included only tobecompatiable with NLPs originally
written for HiPars. Note that both statements start with %. Their are thus seen by Matlab
as comments, when evaluting a NLP.

A.3 Simple and Complex linear Expressions

Adifference ismade between simple andcomplex linearexpressions. AComplex linear
expression may contain non-linear operators like Div/Mod/Floor/Ceil. ASimple linear
expression, on the otherhand, may notcontain non-linear operators.

A.4 MatParser's Grammar

NLP:: [ declarations ] listOfStatements

declaiations:: declaration (declaration )*

declarationparameterStatement
I functionDefinitionStatement

matlabStatement:: "%matlab"
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MATLAB.COMMENT

"%end"

parameterStatement:: Identifier fraction fraction

fiinctionDefinitionStatement:: "%function" Identifier

listOfStatements :: statement (statement )*

statement:: controlStatement

I fimctionStatement
I matlabStatement

controlStatement:: ifElseStatement

I forStatement

fimctionStatement:: indexStatement

IassignStatement

forStatement;; "for" Identifier "=" compiexExpression Integer complexExpression'
[ listOfStatements ]

"end"

ifElseStatement:: ifStatement

[ elseStatement ]
"end"

ifStatement:: "if* condition ","

listOfStatements

elseStatement"else" listOfStatements

indexStatement:: Identifier "="complexExpression*';"

assignStatement:: leftVariableList **=" Identifier rightVariableList **;"

leftVariableList:: **[" [ variable (",** variable )* ] **]*'

rightVariableList:: "CI variable (",** variable)* ] **)"

variable:: Identifier [ "(** [ simpleExpression (",** simpleExpression)* ] **)" ]

condition:: complexExpression relational-operator complexExpression

relational-operator:: **==**
I **! =**
I "<**
I "<="
I ">"
I **>="
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simpleExpression:: [ sign ] term (inearOperatorterm )*

complexExpression:: [ sign ] termOiOperator (linearOperator termOiOperator )*

,, 99 , 99
Sign:: +

99 99

iineaiOperator:: "+"
I tl 99

termOiOperatorspecialOperator
I term

specialOperator:: "div" "C* simpleExpression Integer ")"
I "mod" "C* simpleExpression "," Integer")"
I "floor""C simpleExpression ")"
I "ceil" "C simpleExpression ")"

term fraction [ "*" Identifier ]
I Identifier ("♦" fraction•]

fraction :: Integer ["/" Integer ]

Identifier:: IDENTIFIER

Integer:: INTEGERXITERAL
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B Nested Loop Program Examples

To get a feeling for what a NLP programs look like that MatParser accepts, we have included
three examples of NLPs. The first example describes the Gauss algorithm, the second example
describes the QRvr algorithm and the third example describes the SVD algorithm. All three ex
amples were used to get the results found in table 4.

B.l Gaussian Elimination (Gauss)

%paraineter N 1 100;

%% Gauss Algorithm

%inatlab

u = zeros(N,N);

%end

for j = 1:1;N,
for i = 1:1:N,

[u(j,i)] = _ReadMatrix_Zeros_64x64();
end

end

for i=l : 1 : N,
for j=l : 1 : i-1,

for k = i+1 : 1 : N,

[ u(j,k) ] = funcA( u(j,k), u(i,k) );
end

end

for j= i+1 : 1 : N,
for k = i+1 : 1 : N,

t u(j,k) ] = funcZ( u(j,k), u{i,k) );
end

end

end

for j = 1:1:N,
for i = j:l:N,

( Sink(j,i) ] = _WriteMatrix_Rout( u(j,i) );
end

end

%inatlab

disp(u) ;
%end

B.2 QR factorization (QRvr)
%parameter N 8 16;

%parameter K 100 1000;

for j = 1:1:N,
for i = j:1:N,

t r(j,i)] = _ReadMatrix_Zeros_64x64();
end

end
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for k = 1:1:K,

for j = 1:1:N,

(x(k,j)] = _ReadMatrix_U_1000xl6();
end

end

for k = 1;1:K.

for j = 1:1:N,

[r(j,j), x(k,j), t ] = Vectorize( r(j,j), x(k,j) );
for i = j+l:l:N,

[r(j,i), x(k,i), t] = Rotate( r(j,i), x(k,i), t )
end

end

end

for j = 1:1:N,
for i = j:l:N,

[ Sink(j,i) ] = _WriteMatrix_Rout( r(j,i) );
end

end

B.3 Singular Value Decomposition (SYD)
%parameter M 1 10;

%paraineter N 1 5;

%function Pass;

%function vector;
%function thethaSAC;
%function phiSAC;

%inatlab

N = 100;

M = 6;

a = magic( M );
%end

for j = 1:1:N,
for i = 1:1:N,

[A (j,i)J = _ReadMatrix_Zeros_64x64();
end

end

for i = 1:1:N,

[ phi(i) ] = _ReadMatrix_Zeros_64();
end

for i = 1:1:N,
( theta(i) ) = _ReadMatrix_Zeros_64();

end

for stage = 1 : 1 : N,
for i = 1 : 2 : M-1,

[phi(i),thetha(i)] = vector(a(i,i), a(i,i+l), a(i+l,i), a(i+l,i+l))
end

for i = 1 : 2 : M-1,
for j = 1 : 1 : M,
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a(i,j), a(i+l,j) ] = phiSAC(phi(i), a(i,j), a(i+l,j));
end

end

for i = 1 : 2 : M-1,
for j = 1 ; 1 : M,

[ a{j,i), a(j,i+l) ] = thethaSAC(a(j,i), a(D,i+l), thetha(i));
end

end

for i = 2 : 2 : M-2,
[phi(i),thetha(i)] = vector(a(i,i), a(i,i+l), a(i+l,i), a(i+l,i+l))

end

for 1=2:2; M-2,

for j = 1 : 1 : M,

[ a{i,j), a(i+l,j) ] = phiSAC{phi(i), a(i,j), a(i+l,j));
.end

end

for i = 2 : 2 : M-2,
for j = 1 : 1 : M,

[ a(j,i), a(j,i+l) ] = thethaSAC{a(j,i), a(j,i+l), thetha(i));
end

• end

end

for x-= 1 : 1 : M,

for y = 1 : 1 : M,
[Sink{x,y)] = Pass{a(x,y));

end

end

%matlab

disp( Sink };
%end
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C MatParser Options

MatParser has the following command line options:

options that take an additional argument.

—input (- f) This option is followed by a filename that describes the NLP
that needs to be read.

—output (-o) This option is followed by a filename that describes where
results, for examplea SAP, need to be written. If no output fileis supplied,
the result is written to standard out.

boolean options

—compile (-c) Compile the NLP into a SAP.

—verbose (-v) Make MatParser verbose. This causes MatParser to pro
duce outputshowingtheprogressmade in the variousstep takento convert
a NLP into a SAP.

—optimize (-r) Apply the set of optimizations on the solution trees de
scribingdata-dependencies. Theoptimizations includeremoving redundant
if/elsestatements, removing redundant indexstatements, andremoving re
dundant subgraphs.

—panda (-p) This causes the SAP to be written in a format in which all in
put and output statements that read or write data are written as functions of
type ipd or opd. This format is needed, when the resultingSAP is to be
processed further by the Panda tool.

—help (-h) Gives a help text.

—version (-V) Prints out the version number of MatParser.
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