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Abstract

As the Internet rapidly evolves, a growing number of Web services begins to emerge, and the

demand for accessing them through extremely diverse end devices increases. Furthermore, a

need to create novel functionality (e.g., personalized speech-enabled mailbox) by composing ex-

isting services is growing. This presents an emerging opportunity for a middleware service that,

given end-point speci�cations and desired QoS metrics, automatically composes services in a

fashion similar to plugging together tinkertoy-like elements to allow service access through het-

erogeneous devices and networks. Services in our context are any strongly-typed, network-, and

programmatically accessible applications.

In this report, we present the architectural design of such a system, the implementation and

performance evaluation of a prototype. We identify the key requirements of a service composi-

tion platform: automation, scalability, and fault-tolerance. We achieve these goals through use

of cluster computing platforms, identi�cation of common patterns of ad-hoc, application-speci�c

compositions, classi�cation of services into a strongly typed system, redundant control mecha-

nisms for monitoring and recovery, and a continuous optimization process with feedback. One

important contribution of our work is to enable creation of new functionality from existing ser-

vices with minimal e�ort. In addition to service reuse, our system also achieves good resource

utilization in the wide area by strategically placing and locating services and dynamically adapt-

ing to resource variations. We prove its usability by demonstrating the ease with which novel

functionality results from existing services and good scaling performance of the system.

1 Introduction and Motivation

New services are appearing every day in the Internet. Popular examples include various search

services for people and maps, entertainment services for watching movies or listening to radio
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or even \attending" live concerts, and E-commerce services such as stock-trading and online-

shopping. To enable ubiquitous access to these services, service providers must accommodate

heterogeneous end-user devices, access networks, and protocols. For instance, end devices can

have vastly di�ering capabilities ranging from simple ones such as a Palm Pilot with limited

computational power and memory due to size and power constraints to a powerful desktop

machine with a high-resolution color display, plenty of memory and CPU processing power, as

well as access to high network bandwidth. The challenge is to overcome these variations to allow

any user to have access to services from any end device.

Similarly, users with di�erent access networks (GSM, pager, PSTN, ATM, and gigabit Ethernet)

require the necessary transcoding be done on the data before the service is readily available.

Transcoding is needed here because of the di�erences in these network characteristics. Wired

and wireless networks, for instance, have drastically di�erent properties in terms of data format,

packet error rate, loss rate, jitter, and bandwidth that must be considered when disseminat-

ing service data. In terms of protocol di�erences, one prominent example is diverse security

protocols. A Palm Pilot cannot support heavy-weight security operations involved in SSL [12]

due to the lack of CPU power and memory space; therefore, a simpli�ed security protocol such

as shared key encryption is used. Sensitive information from the service output consequently

needs to be �ltered out before delivered to the end-user. Furthermore, heterogeneities exist at

the levels of trust. Important data crossing di�erent trust domains before reaching the end-user

need to encrypted to prevent compromising security.

In addition to the demand for service access from arbitrary end points, another natural conse-

quence of the explosive increase of Internet services is that novel and interesting functionality

can be easily created by composing existing services in a UNIX pipeline fashion rather than

building from scratch a complex one. For instance, to access a Web map service using a cell

phone, the service output should go through in sequence �rst a content-extraction service to ex-

tract the driving directions from the HTML response. Then it would ow through an optional

language translation service to adapt to end-user's language preference. Finally it would pass

through a text-to-speech translation service before being �nally delivered to the user. In this

particular example, four services are composed to achieve the desired functionality.

All the above concerns demand a general software infrastructure service1 that enables service

access from diverse clients, automated composition of services, data ow optimization, and data

path adaptivity. We de�ne services to be any strongly-typed, network-, and programmatically

accessible applications. Service Composition means that a service's output data feeds as

input to another service, which in turn may get input from more than one service's output data

ow. As a result, the functionality of the services are composed. We identify the requirements

of a service composition platform to be providing guarantees of scalability, fault-tolerance, and

1Infrastructure service: usually a service within the network providing speci�c functionality for simpli�cation

of service constructions. Examples are service discovery services and service composition services such as APC.
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automation. In addition, it makes service placement decisions for resource optimization. In

contrast, existing Web services have until now accommodated heterogeneity by adding new

functionality for each novel device, resulting in monolithic, complex, and unmanageable systems.

This application-speci�c, \vertical" approach, unfortunately, does not scale well with the rapidly

increasing variety of devices and requires unnecessary duplication of existing functionality. To

guarantee extensibility, it forces services to adapt their content and access protocols for not

only all current but also future devices. It is unreasonable to assume that future devices will

adopt the standards provided by existing services. One such example is the WAP [8] protocol-

speci�c access of services from wireless devices. Existing approaches do not allow quick and easy

deployment of new services when rapid service development is crucial.

Furthermore, vertical approaches generally have worse fault-tolerant properties due to the extra

complexity. Rather than having simple, manageable software modules with a specialized func-

tionality and cleanly de�ned interface for interaction with other components, the traditional

approach is much more prone to failures and more diÆcult to guarantee high availability.

Therefore, a framework is needed for quick and exible service deployment through \horizon-

tal" or modular composition of existing and new services. Our solution uses the powerful path

concept to achieve this goal. A path is a ow of Application Data Units (ADUs2) [4] through

multiple services and transformational operators across the wide area. The need for the latter

is to adapt the data into the acceptable format or protocol speci�cations expected by the sub-

sequent service or device along the compositional chain. Automatic composition is possible by

changing services when needed to export strongly-typed, programmatically accessible interfaces,

as opposed to untyped, unstructured user interfaces common to many existing services. Legacy

services are adapted to this framework through the classi�cation of their input/output format

or the construction of simple wrapper services.

We clearly separate computation from transportation for ease of composition by introducing

operators and connectors. An operator or an Internet service instance has a clearly de�ned

input and output type. It is only responsible for computation and is mostly agnostic of the

actual data transport mechanism used by a connector for delivery to the user. Thus, one single

operator can use di�erent connectors as appropriate for the network conditions and requirements

of the end-user. This separation of data computation from delivery allows failures due to network

transport to be handled cleanly, which can be independent of computational errors (e.g., wrong

input data). Another bene�t is that optimization decisions are cleanly separated. For instance,

load-balancing decisions only relate to operators and are closely associated with their placement.

Connectors, on the other hand, deal with the communication protocol and adapt to the network

characteristics to achieve the level of reliability appropriate for the application semantics.

To demonstrate the usefulness and applicability of our solution, we have deployed it in the

following contexts. In the ICEBERG [33] project, with the goal of personalized integration of

2ADU: the smallest application speci�c data that can be operated on independently.
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communication devices across heterogeneous networks to enable any-to-any communication, our

mechanism, Automatic Path Creation service (APC), plays an essential role by seamlessly

supporting any new communication device in the infrastructure through merely introducing the

appropriate data format conversion services [37]. It takes less than 100 lines of Java code to write

such a service using o�-the-shelf software. In the Interactive Voice Room Control application [19],

APC enables the control of a room's A/V resources such as light and camera via multiple modes

such as a microphone attached to a desktop, a cell phone, a Palm Pilot or a text window.

Currently, we plan to use APC in the post-PC security proxy infrastructure [28], where secure

multimodal access to Internet services requires various data transformations, content �ltering,

security protocol translation services. In addition to successful usage experience of APC within

our own research group, we also received good feedback from outside people who downloaded

the �rst release of our software. Those feedback came from a research group at Technical

University at Berlin and the Networks and Infrastructure Research group at Motorola Labs in

Schaumburg, Illinois. Outside users were able to e�ortlessly install and use our software with our

sample applications as well as extend APC with new kinds of operators for di�erent applications.

The rest of the report is organized as follows. We begin with related work to highlight contribu-

tions of our work. Section 3 illustrates the architecture overview of APC. We then describe the

local area path design (Section 4) to lay the foundation for subsequent discussion of wide area

design of paths. Implementation details of our prototype are covered in Section 7. We present

the performance evaluation in Section 8. The remaining section summarizes and discusses future

work.

2 Related Work

We briey examine related e�orts focusing on seamlessly interconnecting Internet services and

resource-constrained devices. The main distinction is that our architecture provides fault-

tolerant, wide-area, and scalable composition automation of both legacy and novel services

with dynamic optimization of resource utilization. The resources we consider include compu-

tational, memory, and network resources. The optimization criteria (e.g., latency, jitter, data

throughput) are either de�ned by the service authors or deduced from the type of the service.

Our emphasis is on reusing existing services and enabling a quick and easy way to obtain new

service functionality from existing ones rather than building a very complex and diÆcult-to-

evolve service accommodating a �xed set of protocols and devices. Existing work addresses only

speci�c aspects of the problem space. Additionally, one of our contributions is to provide a well-

de�ned framework for Internet service composition and a taxonomy of computation paradigms

to provide di�erentiated quality of service (QoS).

Our work is inuenced by exible middleware systems supporting distributed computing across

heterogeneous resources. For example, Corba [32] provides platform-independent, object-based
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network communication. DCOM [7] is an equivalent of Corba for the Windows platform. How-

ever, neither system directly supports optimal placement of computations. Jini [22] is a Java-

centric view exploiting bytecode mobility to deliver stub code implementing a private commu-

nication protocol between client and service. Nevertheless, it is mainly designed for use on a

much smaller scale than wide area, e.g., workgroup. HP's e-Speak [18] does target for wide area

operation but does not address service scalability and fault-tolerance; nor does it provide access

from simple devices that are incapable of running java-based communication protocol.

Our work is heavily inuenced by projects (e.g., [1, 20, 29, 30, 31, 41, 40]) that transcode to

adapt service content to better suit impoverished small devices. However, these approaches are

vertically integrated. They do not use composition as a way to easily extend system functionality.

Furthermore, quite a number of works have tried to develop a single interface for large classes

of devices (e.g., WAP protocol [8]). The success of our work, however, does not depend on

the adoption of a single standard. We provide bridging of multiple standards by providing

translational elements across them by designing an extensible architecture to adapt to future

standards.

On the surface, our design goals are similar to active networks [38], which allow code injection

into network routers to deploy new network protocols, implement traÆc shaping, and perform

packet �ltering. Our architecture allows placing computation within the network with the goal of

performance and resource usage optimization. The distinction is that for active networks, data

processing occurs at transport or packet level rather than using application semantics. In our

work, operators are application-oriented and process application data rather than router-level

packets.

The idea of path or composition, similar to UNIX pipeline-like chaining of di�erent com-

mands, existed in many previous works. For example, Scout [23] uses the path as an explicit

communication-oriented abstraction in operating system design. In Scout, path facilitates OS

specialization by enabling con�gurability and exposing global context that optimization tech-

niques can exploit. Path also assists resource allocation and management by being a single unit

of scheduling entity. Infospheres project [16], as another example, focused on building com-

positional systems from interacting components. MPLS (Multiprotocol Label Switching) [13]

de�nes the abstraction of a label-switched path to provide QoS in IP networks. Here, we extend

this idea of composition to wide-area, independent Internet services. The extension includes

automatic path formulation as well as runtime path maintenance.

Our work can be considered as an extension to the TACC programming model [11] with addi-

tional design of wide area service placement, continuous resource optimization through feedback,

and generalized load balancing. TACC model provides composition of stateless data transfor-

mation and content aggregation with uniform caching of data. The composition model is static

and inexible. We are exploring a completely automated composition model and programmable

compilation of composition chain. Furthermore, services considered in our framework are quite
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general, including continuous latency-sensitive stream services such as live audio and video as

well as support for mobile wireless clients. These are not addressed by TACC.

3 Automatic Path Creation Service Architecture Overview

In this section, we introduce the overall architecture of the APC service by �rst illustrating the

design goals, bene�ts of the APC, and then describing the individual components of the service

architecture and �nally the path construction process.

3.1 Design Goals

The main design goal of Automatic Path Creation is to simplify service authorship by making

it easy to compose services and guarantee good performance of the resulting composed service

entity. There are three key properties that the APC must have to achieve this goal. We illustrate

how these goals are achieved in subsequent sections.

Automation. To facilitate service composition, the APC service should attempt to automate

as many parts of the path creation process as possible to reduce unnecessary user involvement.

Our design automates discovering paths between system components, �ne tuning and optimizing

the performance of the data ow dynamically during execution, and handling error conditions.

The details of these mechanisms are described in the implementation Section 7.

Fault-Tolerance. Whenever possible, the APC service should protect users from the failure of

individual path components or communication links between them. It must provide the illusion

that user is accessing a single robust service entity providing the composed functionality.

Scalability. The APC service should be able to handle large numbers of concurrent users. In

addition, the path construction algorithms must scale well with the increase of services. This

is particularly diÆcult, as the number of possible paths grows exponentially as components are

added.

3.2 Bene�ts of the APC

The bene�ts of a sophisticated path creation and maintenance mechanism are far reaching.

In addition to enabling component reuse and simplifying service creation, the APC service

also provides interesting new points for dynamic performance optimization. These bene�ts are

described below. The complexity of path construction mechanism does not necessarily imply

high overhead, because our search algorithms are eÆcient and we use caching for speedup. We

argue that intelligent path maintenance and optimization are indispensable to provide high

availability and guaranteed quality of service of the resulting composed service.
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Service Access from Diverse Clients. As discussed in Section 1 as motivations for the APC

service, such a facility detects when to insert operators to transform the content of the service to

make it suitable for the end clients. It is similar to the system implemented in [10]. For exam-

ple, image distillation operators and HTML-to-text transformation operators are automatically

inserted to display the Web content on a Palm Pilot.

Composition of Services. The APC service can be used to create new services by combining

functionality from existing Web services. In addition, the dynamic nature of the APC e�ec-

tively allows the creation of services on-the-y, without requiring explicit service setup by a

programmer or a system administrator. For example, given an MP3 jukebox service and a GSM

transcoding service, the APC service could immediately create a service allowing users to listen

to MP3 songs on their cell phones.

Data Flow Optimization. The APC service examines many potential paths before deciding

on a particular one. During the course of this examination, it can weigh the costs of the various

paths, and choose one that optimizes for quality of service as speci�ed by the user, resource

consumption, or some other desired metric.

Data Path Adaptivity. By allowing the optimization process to continue throughout the

lifetime of a given path, the APC service can dynamically adapt the path to the changing

characteristics of the execution environment. For example, if a network link becomes overloaded

while data is owing through the path, the APC service could redirect this ow through a

di�erent channel, to improve the quality of service. If a network link suddenly becomes lossy,

then FEC operators can be dynamically inserted to increase data goodput.

End Client
Application Service Provider

1.

2. 3.

4.

GSM Service Provider APC Service Provider Resource Provider

Figure 1: Example path request scenario: This �gure shows the sequence of events that occur for

a cell phone user to access a Yahoo Map Service.
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3.3 Example Path Scenario

We revisit our motivating example in Section 1 for service composition. The example is using

a cell phone to access a Web map service, providing HTML-formatted driving directions in

response to a user's query. The following sequence of events occur for path creation as indicated

by the arrows and numbers in the Figure 1.

1. First, the End Client sends a request for accessing the Yahoo Map Service to its Network

Service Provider by dialing a number or selecting the menu on the screen. In this case,

the End Client sends that request to his GSM Service Provider.

2. Then, the GSM Service Provider sends a data path creation request to the APC Service

Provider in the network to request for the path to be built between the Map Service and

the client.

3. The APC, given end point information, determines the data path and its physical locations

using its path creation algorithms (Section 7.4). It subsequently contacts the corresponding

Resource Provider of these physical locations to place the computation in the network. If

the operator is already running, the APC sends a request to it.

4. The Resource Provider creates the necessary computations in the network. Thus, a data

ow is established between the End Client { cell phone user and the Application Service

Provider { Yahoo Map Service.

We now describe the actual paths created by the APC in this example scenario. Given user's

speci�cations of the desired service and access device, the APC creates the following two paths

as shown in Figure 2. The �rst one going from the cell phone to the map service is used to

send the request to the service using voice command. The request transcoder converts phone

input into an HTML form submission acceptable to the map service. The second path in the

reverse direction returns the map answer to the user. The map service response in HTML format

�rst goes through a content extractor that extracts driving directions. Then it goes through

a text-to-speech translator to convert it to audio data. Finally, the speech output needs to

be changed to GSM format before it is returned to user's cell phone. This example illustrates

the composition of the map and a content extractor service on the Internet. It also shows how

transformational operators for protocol or data format conversion (e.g., text-to-speech converter)

can be dynamically created as needed.

3.4 Operators and Connectors

Now we formally de�ne the key concepts of path. A path is comprised of a sequence of op-

erators that perform computation on data joined by connectors that provide data transport
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Request TranscoderRTP Connector:
TCP Connector:

Map Service

GSM Encoder Content Extractor

HTML

TextSun audio

Translator

GSM 

GSM 
HTML

Text-to-speech

Figure 2: Example path scenario: This �gure illustrates the two paths created for requesting map

directions using a cell phone from a Web map service. Each circle denotes an operator which can be

either a long-lived service instance (e.g., Map Service) or a dynamically created one (e.g., GSM Encoder).

Each arrow in the �gure indicates a connector and the direction of data ow.

between operators. The goal of creating these two distinct abstractions is to enable easy-to-

use and semantically correct composition of tinkertoy-like elements that result in new service

functionality.

A connector is an abstraction of the ADU transport mechanism between two operators. This

abstraction encapsulates various properties of the transport such as reliability, order of delivery,

and drop policy. Application Level Framing (ALF) [4] can be easily supported to allow service

authors to assert application-speci�c control instead of simply choosing between TCP and UDP

transport. The key advantage of this abstraction is that a connector hides the potential dif-

ferences in network protocols from the operators and allows them to communicate as long as

the output data type of the downstream operator matches the input data type of the upstream

operator. Each connector is characterized by a speci�c transport protocol. In the above exam-

ple, there is an RTP-based audio connector from the cell phone to the request transcoder and a

TCP-based reliable stream connector to the map service.

Operators perform the actual computation tasks required by the path. Their input and output

are strongly typed. Strong typing not only enables dynamic composition and automatic optimal

path creation, but also reduces runtime errors. Operators also have various attributes, such

as communication protocols they support, computational requirement, special external input

data (e.g., a remote database) and other application speci�c ones. In addition, operators have

associated cost metrics, which describe the run-time performance of the operators. They are

used as optimization criteria during path selection. The type and attributes (Section 3.7)

for each operator are combined to form an XML description of the operator. Operator XML

descriptions conform to a Document Type De�nition (DTD) de�ning the general set of operator

properties. This description determines which combinations of operators could make a valid

computation path and which is the optimal one.
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The APC supports both long-lived and dynamically created operators. The former includes

standard Web services. These can be registered with and located through a Service Discovery

Service [5]. Dynamically created ones are light-weight, short-lived transformation elements cre-

ated by the APC as required. They have only soft-state, and hence can be restarted transparent

to the user in the case of a node or process failure. If a long-lived service instance fails, the APC

automatically �nds another instance and redirects the data ow.

While the reliability of both kinds of operators helps guarantee that a path is reconstructed

when a failure occurs, this does not safeguard against the loss of data that was already in the

path when the failure occurred. Thus, application-level retransmission using acknowledgment

in addition to connectors with reliable transport is needed for guaranteed data delivery.

3.5 Operational Model of the APC architecture

Before describing the detailed steps of the path construction process (Section 3.6), we �rst

introduce the operational model of the APC and answer questions such as who constructs a

path and how the APC �ts in the existing model of the Internet. In this model, �ve classes of

entities exist: APC Service Providers, Network Service Provider, Application Service Providers,

Resource Providers, and End Clients. APC Service Providers are responsible for running

APC service instances. They accept path creation requests, construct paths, maintain paths,

and tear down paths. Network Service Providers are the ISPs for the di�erent networks,

providing services to the clients. For example, Sonera is a GSM Service Provider in Finland.

Application Service Providers maintain application services such as Yahoo! Map Service,

various E-entertainment sites and E-commerce sites. Network Service Providers typically request

to have paths built on behalf of their End Clients. The request can be triggered by a number

of events, e.g., data format mismatch between the service and the end client, the need for new

functionality. After the paths have been created, APC Service Providers maintain the paths

until they receive a tear-down request from Application Service Providers. The APC service

itself is advertised at a well-know IP address, which is the virtual IP address of a Web switch

for server load balancing (e.g., [9]), behind which a large number of the APC service instances

exist for purposes of scalability, fault-tolerance, and availability. Resource Providers o�er

locations in the network and computational resources for running services. For example, data

hosting centers in the current Internet are a class of Resource Providers. Application Service

Providers can use these resources to host their applications. APC Service Providers can also

utilize such resources to create short-lived operators on demand. They can also potentially use

these resources to run their own APC service instances. Before a physical machine can be used

to run operators, a Connection Manager service needs to be spawned by the APC service. It

is responsible for starting and maintaining the operators on the physical node. The �nal class

of entities { End Clients are average consumers who use the service provided by Application

Service Providers. They do not have knowledge of the existence of APC Service Providers which
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operate transparently to the End Clients.

Operators have the following operational model. They are located using a wide area Service

Discovery Service (SDS) (e.g., [5]), which maintains a searchable database of all the XML de-

scriptions its corresponding operators. SDS is advertised at a well-known IP address. It also

takes care of operator registration, discovery, and querying. Only trusted Application Service

Providers are allowed to register new operators with SDS for security reasons. After the APC

determines where to place an operator, it contacts the Connection Manager Service running on

that machine to place the computation and establish the network connections to neighboring

operators.

1

3

1.1

2 2.1

2.2

Logical Path Creation

Physical Path Creation

Path Instantiation, Execution, Maintenance

Path Tear-down

Figure 3: Path construction process: Path execution is an iterative process of optimization. The APC

service guarantees the availability and fault-tolerance of a constructed path by rebuilding its physical or

logical path when components fail. The following information is passed between each stages corresponding

to the arrows in time sequence: 1: Logical path description and user QoS metric, 1.1: Operators that do

not satisfy the QoS metric. 2: Physical path description. 2.1 and 2.2: Failed operators or connectors. 3:

Physical path description and running status.

3.6 Path Construction Process

To construct a path, the Network Service Provider for the service whose content is to be com-

posed sent a request to the APC along with the information pertaining to the endpoints of

the required path, any speci�c operators that must be included in the path, the optimization

metric, and an acceptable range of costs for the path. Both the metric and the cost are ap-

plication speci�c and can be one of the following: data latency, data throughput, and output

data characteristics (e.g., audio/video quality, image resolution). This information is needed to

construct an optimal path.

The path construction process consists of four steps. As shown in Figure 3, it is an iterative

process of continuous feedback and optimization.
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Step 1: Logical Path Creation. A logical path consists of an ordered sequence of operators

joined by connectors. During the logical path creation, the APC searches through the XML

descriptions of the operators available to �nd valid sequences that could perform the computation

requested by the Application Service Provider. The result is a list of possible operator sequences

ordered by decreasing cost on the user's input parameters for optimization (e.g., latency, data

throughput, voice quality). The search is performed using shortest path search on the graph of

operator space. Optimization criteria are application speci�c. One goal of the APC is to adapt

to application requirements to optimize resource utilization.

Note that since some operators may be commutative (e.g., image format transcoders), the space

of all possible logical paths can be huge given a large number of services. Hence, as a heuristic,

only a small number of logical paths are generated initially. As indicated in Figure 3, additional

logical paths can be produced as needed if the physical paths for the �rst set of selections are not

optimal (i.e. cannot satisfy user's speci�ed QoS metric or do not have acceptable performance).

Thus the tradeo� for better response time does not compromise the degree of optimization for

quality of service.

Step 2: Physical Path Creation: A physical path is a logical path, along with a choice

of actual nodes (i.e. physical machines) on which to run the operators. Nodes for long-lived

operators are chosen from the known service instances' locations that provide the desired func-

tionality based on application dependent criteria such as response time, data throughput, and

image resolution. Nodes for dynamic operators are selected according to the computational

capabilities, the cost of using that node in the path, and various other criteria. Some of these

operator placement decisions include operator computational requirement, software/hardware

requirement, output/input properties (e.g., data location, data volume, delay-sensitivity, degra-

dation properties), network characteristics (e.g., bandwidth, delay, packet loss rate, and jitter

characteristics). The APC constructs a physical path from a logical path by �nding the low-

est cost nodes that meet the requestor's requirements. Please refer to Section 7 for detailed

algorithms of both logical and physical path search.

During physical path creation, optimization operators such as FEC and compression operators

are inserted for performance enhancement. FEC operators are added between a wireless link

to reduce packet loss rate. Compression and decompression operators are added between links

with heavy data throughput to avoid overloading the network.

Step 3: Path Instantiation, Execution, Maintenance, and Querying: Once the physical

path has been determined, the APC starts any required dynamic operators and sets up appro-

priate connectors between communicating operators. After all the nodes in the path are set up,

the data ow is started. In addition, a control path is established between the operator nodes

and the APC. It is used for both reporting of error conditions and performance information.

During the lifetime of the path, the APC actively monitors the operator nodes to make sure that
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they are functional. Any operator can also report problems to the APC about its neighboring

operators, so that the path can be repaired when necessary. The control path also plays an

important role in enabling operator repair, deletion, and insertion. It is used for exception han-

dling, controlling parameters of path components, monitoring and analyzing path performance.

Therefore, it needs to be highly robust and una�ected by the data path's failures. However,

a control path can overlap the data path: each path operator can have a handle to its two

neighboring operators. The APC thus monitors the performance of the path and reroutes the

data path if new conditions make the original path suboptimal by going back to the physical or

logical path creation stages. Please refer to Section 6 for details of path adaptivity.

Step 4: Path Tear-Down: When a path is no longer needed, the Application Service Provider

informs the APC. The APC service then stops the data ow, removes connectors, shuts down

any dynamic operators, and frees other relevant resources. As a performance optimization, the

APC caches the logical and physical information of commonly used paths for reuse at a later

time.

3.7 Operator Properties

To eÆciently accommodate diverse application requirements, the APC needs to consider operator

properties in the following dimensions. Based on this taxonomy, we also discuss a�ected design

decisions in path and operator construction, operator fail-over mechanism.

� Latency Sensitivity: real-time, interactive (e.g., PCM-to-GSM encoder) vs. o�-line,

bulk-data operation (e.g., Postscript-to-PDF converter). The former must be light-weight

with low startup overhead. The operator author should reuse computation results to

speed up processing. Similarly, as an optimization, path search results such as logical

or physical paths can be reused. Admission control and continuous monitoring of the

physical machines should be used to guarantee high throughput. Furthermore, fast failure

recovery is desired to minimize disturbance to the end-user. Bu�ering is implemented

by the operators to hide failures and minimize fault recovery overhead. Paths consisting

of real-time operators must be highly aware of changes in network characteristics (e.g.,

jitter, loss rate, delay, and throughput). Flow control mechanisms are built into the

connectors and operators (Section 7). Dynamic insertion of error correction codes (e.g.,

FEC operators) to adapt network changes are desirable.

O�-line operators on bulk data are much simpler to construct. No timing constraints exist

in paths consisting entirely of this type of operators. In case of faults, the entire path can

be restarted if necessary.

� Computation Requirement: compute-intensive (e.g., MPEG Encoder) vs. light-weight

(e.g., sound format converter). The �rst type of operator is usually long-lived and shared
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among di�erent path instances. It is thus always reused rather than created on demand.

The second type must have low startup overhead, since it is usually created on the y. If

the startup latency becomes unacceptable, then such operators are reused or \prefetched"

by creating in advance.

� Location Dependence: location aÆnity vs. location-independent. Location dependence

can be due to the need of special hardware/software or data input locations (e.g., a remote

database). During physical path creation, locations of this kind of operators need to be

predetermined to satisfy these constraints.

� Data Output Size: large operator data output vs. small. The former kind has large

bandwidth requirement; therefore, placing it closer to its subsequent operators is preferred

to avoid overloading the network when network resources are scarce. If that is not possible

in practice, a compression operator can be inserted after it to reduce the data size.

� Operator State: stateless vs. stateful. The former kind can be restarted as needed

for failure recovery. The latter kind needs special mechanisms such as checkpointing for

fault-tolerance and robustness.

3.8 Operator Functional Classi�cation

To automate the logical path construction process, the APC needs to be aware of all supported

operators. It is thus useful to have a meaningful categorization of operators in their functionality

to aid the operator selection process. Both the functional classi�cation and the operator property

in the previous section are included in the operator XML description. We classify operators into

the following four categories.

� Data Format Translation Operators. This type of operator performs conversions

between di�erent data formats; e.g., GIF to JPEG, PCM to GSM, powerpoint to HTML.

� Protocol Conversion Operators. These include translation between di�erent security

protocols. For example, an operator that converts between the heavy-weight security

handshake protocol such as SSL [12] to simple shared-key encryption and decryption falls

into this category. Another example would be UI interface conversion. Obviously, the

graphical user interface of an application running on the desktop would be completely

di�erent from that running on a Palm Pilot. Necessary conversion needs to be done.

� Content Transformation Operators. This type of operator �lters or aggregates the

information produced by the previous operator based on user preference, e.g., �ltering out

action movies. Another example would be a language translation operator from English

to Chinese. or an operator giving a summary of a paragraph.
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� Optimization Operators. This category of operators does not change the semantic

content of the data. Instead, they modify the properties such as data size and security

features. These can be lossy or lossless compression or decompression operators to optimize

bandwidth usage, encryption or decryption operators, and FEC operators to lower data

error rate. The tradeo� of adding these operators is improved resource utilization but

more operation complexity and potentially increased latency.

4 Local Area Path Construction

The APC service is designed to accommodate Internet service composition across the wide area.

A result of this path abstraction is that a path becomes a single unit of resource allocation,

scheduling and error-handling. To e�ectively tackle this problem, we �rst examine our design

for local area service compositions and then generalize it to the wide area case in the next

section.

4.1 Cluster Computing Platform

Within the local area network, the APC's execution environment is a cluster of workstations.

We leverage several desirable properties of a cluster computing platform: incremental scala-

bility, fault-tolerance, high availability through redundancy, and high network bandwidth [3].

A cluster allows incremental scalability, as new machines are added to increase computational

and storage capacity. By creating multiple service instances when existing ones are overloaded,

the APC service can easily scale with increasing number of operators and clients. Each APC

service instance can handle any path creation requests. Furthermore, each instance represents

an independent failure boundary; there is no single point of failure in the service architecture.

When one instance fails, another instance takes over its task due to the distribution of compu-

tation and persistent service state. To achieve strict consistency of state information, we use

a distributed data structure (DDS) [15], a self managing storage layer designed to run on a

cluster of workstations and to handle heavy Internet service workloads. Given that there are

multiple services instances running within the cluster, the probability that none of them being

available is rather low. Therefore, the overall availability of the APC service is greatly increased.

Furthermore, a cluster can usually provide networks with greater than 1 Gb/s throughput with

10 to 100 �s latency [3].

Resources within a cluster are much more easily managed due to high network bandwidth, low

response time, and low probability of network partition. Therefore, a cluster resource monitor-

ing service for reporting dynamic information of network and computational resources is not

diÆcult to build. Such a monitoring service would keep track of running services, machine load,

memory usage, machine computational capacity, network bandwidth and various other resource
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information helpful to make load-balancing and operator placement decisions (see Section 4.3).

Given a speci�ed set of constraints in terms of software, hardware, processing speed, memory

requirement, the resource monitoring service should �nd the available set of machines satisfying

them. The monitoring service is a distributed network service with the scope of the distributed

clusters such as that Millennium project [34].

In addition, a cluster provides the functionality of service location or discovery, service querying

or identi�cations [5], and service listing to the APC facility.

SRC DST

APC Service InstanceControl Path:
Data Flow: 
Operator:

Figure 4: Redundant control paths: To ensure a fast and robust fault-recovery model, multiple

control paths are built into the system to guarantee their robustness. Each APC service instance is

responsible for a subset of paths created in the cluster.

4.2 Fault Recovery Model

Despite inherent redundancy and low probability for network partition within a cluster, failures

can still occur at both the process and machine level due to hardware problems or software

bugs. If paths span multiple clusters, network partition can also cause path failures. It is

critical for a path to gracefully and quickly recover from failures. The assumption is that the

APC itself is highly available and fault-tolerant due to redundancy in the cluster. New APC

service instances are created in response to failures or high load. At any given time, the cluster

guarantees that there are suÆcient number of service instances to handle the load. The number

of service instances grow dynamically in response to increasing load. Overload is detected by

the cluster computing platform when the task queue size of each service instance exceeds a limit.

If any APC service instance fails, the cluster automatically starts a new one. Additionally, any

component within the constructed path can also malfunction due to process or node failure.

However, the cluster fault recovery mechanism alone is not enough, since existing running paths

will not recover even when new services instances (i.e. operators) are created to replace the

failed ones. Connectors need to be reestablished and lost state may need to be recovered. The

APC provides two redundant sets of control paths for detecting and handling path component

failures as illustrated in Figure 4.

APC Monitoring{ The APC periodically sends UDP heartbeat beaconing messages to each
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operator within the path to make sure they are functional. Upon timeout, the APC assumes

either process or node failure, and thus attempts to restart the operator. First it tries to reuse

the existing node provided it is not overloaded or unreachable. If that fails, APC locates a

new node through the cluster. If that is still unsuccessful, reconstruction of logical paths is

attempted.

Peer Monitoring{ Operators are network I/O intensive and continuously receive data from

and send data to neighboring operators. Upon catching an I/O exception when reading or

writing data, an operator immediately noti�es the APC so that failure recovery can be quickly

initiated.

4.3 Placement of Operators

Given the classi�cation of operators (Section 3.7 and 3.8), we now examine what considerations

a�ect operator placement decisions in step 2 of the path construction process. We will revisit

this topic in the context of wide area path design (Section 5).

The goal of this process is to optimize the path requestor's speci�ed QoS metric by optimally

utilizing resources within the infrastructure. Resources encompass not only CPU, but also

memory, storage, and network capacity. Placement decisions �rst must satisfy potential resource

requirements of the operators such as special hardware or software needs, processing power, and

storage capacity. This limits the set of physical nodes as the candidates for running a given

operator. APC uses a cluster resource monitoring service to match this set of constraints with

the set of physical machines. Based on user's optimization metric, the best placement solution

is then found using shortest path graph search (e.g. Dijkstra's algorithm) by expressing various

dependencies among resources and optimization goals as a directed graph. Nodes of the graph

represent potential computational sites. The edge itself exists if the two nodes are adjacent

nodes in the logical path. The cost of the edge is dependent on the properties of the network

link between the nodes as well as the characteristics of the nodes. Usually the two end points

of the paths are �xed given the location of the End Client and the service of the requesting

Application Service Provider.

5 Wide-Area Path Construction

We now discuss our design of constructing wide area paths consisting of local area paths linked

together. There are several major di�erences from the local area case. First of all, wide-area

latency is much higher. There is a higher probability of failures due to network partition. As

a result, cluster-level monitoring is necessary to detect any cluster failure. Additionally, there

are more security concerns as data travels across di�erent trust domains, since it must then be

encrypted. Accurate resource monitoring is diÆcult due to high statistical variation and high
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latency. Finally, there are more administrative and policy issues to be addressed when searching

for logical and physical paths.

5.1 Wide-Area Path Selection Decision

We �rst address when to construct a wide area path as opposed to a local one. If a path

requires special operators not present in the local area, it is inevitable to build a wide area path.

Furthermore, if the two end points of the path span across the wide area, and the operators

are latency-sensitive, it becomes desirable to place certain operators closer to either end point

rather than gathering all operators on a single cluster in the middle of the network. In addition,

it is impossible to place all services within the core of the network due to high network delay

and diÆculties to support applications such as real-time video conferencing which demand high

quality of service. It is thus vital to distribute services to the edge of the network where there

is large amount of bandwidth, low packet loss rate and jitter. However, certain services still

need to remain in the core network for ease of accounting and state maintenance. Consequently,

there is a need for wide area path connecting between end users at the edge to the core of the

network.

5.2 Wide-Area Path Construction

Some of the lessons learned from building local area paths are clearly applicable here, given that

a wide area path is made of local area paths strung together. Since resources in the wide-area

are more unpredictable, less controlled, and access is complex to obtain, adaptivity to resource

changes becomes even more important. Intelligent decisions in operator placement, insertion,

and deletion are critical to obtain good performance and scalability. The wide area path con-

struction is built upon or protocol for the local area presented in Section 3.6. Given a path

construction request consisting of relevant information (e.g., data format, location descriptions,

any special constraints) and quality of service speci�cations in terms of application-speci�c met-

rics, an optimal path is determined through the following protocol.

1. First, the set of available clusters are determined, along with their properties such as sup-

ported format, operators, available resources. This information can be obtained through

a soft-state-based database on each cluster updated through periodic beacons, whose fre-

quency is adaptive to resource changes.

2. Given this information, we determine which clusters to use for the path based on the

network distance between the path endpoints, the network connectivity within and between

clusters, and the available computational, memory, and storage resources of each cluster.

We select clusters that are close to the path end points (e.g., cluster A, C in Figure 5),

have high network bandwidth between each other, and with suÆcient resources.
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Figure 5: An example wide area path: This �gure illustrates an example wide area path. Each

circle denotes an operator. Each connecting line between the operators indicates a connector. The path

is requested by the end service.

3. We then determine the set of intermediate data formats between clusters. This is achieved

through a negotiation protocol. Each pair of adjacent clusters in the path exchange com-

mon data format information. In Figure 5, the negotiation occurs between Cluster A and

B, Cluster B and C. The two end clusters (A and C) need to guarantee that a path exists

between the common format and the path end point.

4. After the common format has been determined, each individual cluster performs its own

shortest path search for locating the optimal logical local area path, based on the input

and output formats.

5. The results of individual clusters are aggregated to verify that user constraints and input

QoS requirements are satis�ed. The process may be repeated until we �nd a set optimal

logical paths satisfying the input constraints.

6. Subsequently, each local area physical path can be determined in individual clusters with

special resource optimization considerations discussed in the Section below.

If data crosses di�erent trust boundaries, encryption operators need to be inserted. Note, the

logical path creation process may be repeated if no physical path satisfying the input QoS

requirement is found.

Placement of Operators{ For a path that spans the wide-area, network resources are less

controlled. It therefore becomes critical to exploit network topology awareness to optimally

place operators. It is desirable to have an up-to-date repository of network resource information

(e.g., [39]) to determine which clusters to use for constructing the path and how to strategically

place operators. Optimizations such as FEC and compression operators become very important

to achieve high QoS.
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Cluster Failure Recovery{ Across the wide area, a network partition can occur causing an

entire cluster to be unreachable. It is therefore important to have cluster-level failure detection

mechanisms in addition to that of process and node discussed in Section 4.2. APC designates

a few nodes in each cluster to be monitoring nodes responsible for periodically sending beacon

messages to other clusters in the wide-area path. By appropriately adjusting the timeout value

based on the tradeo� between bandwidth utilization and response time to fault, APC can quickly

detect cluster failure or network partition. APC services on the remaining clusters of the path

subsequently locate a new cluster with similar locality and operator functionality to rebuild the

path on the failed cluster by searching through its softstate-based database containing wide area

information. Connections between this local path and other path components are re-established.

If no available cluster is found, the logical path is rebuilt by the APC service instances on the

remaining paths. Path rebuilding and recovery is transparent to both the End Client and the

Application Service Provider.

6 Paths Adaptation and Personalization

Before diving into implementation details of the APC in the next Section, here we focus on how

paths adapt to resource variations and end user mobility to maintain high quality of service.

We also briey discuss how the APC achieves personalization of services.

6.1 Enabling Personal Mobility

In addition to format conversion, the APC also provides personal mobility support needed by

mobile clients. A roaming client switching from wired network to wireless access may change his

IP address but would still like to continue the ongoing service session without any interruption.

A session service redirection proxy is provided by the mobile operator created in the data path

to dynamically detect user's mobility pattern change and redirect the service data to the moved

clients. Such a redirection proxy also caches application-speci�c data during temporary network

disconnectivity to provide the illusion of a continuous session.

6.2 Dynamic Adaptation to Resource Variations

Frequently end users may experience degraded performance of the service due to dynamic

changes in network conditions, e.g., sudden drop in bandwidth due to network congestion, or

other resources such as computational cycles and memory space. There is a need for applications

to adapt to dynamic changes in available resources to optimize user's perceived quality of service.

We de�ne three ways to adapt to changes in resources. These adaptations are performed only
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after the e�ect has been observed to persist beyond a threshold amount of time, since reacting

to transient resource changes result in unjusti�ed overhead and unstability of the system.

� Application-intelligent adaptation

The application is powerful enough to do its own adaptation to resource changes. For

instance, RealAudio combines multiple streams encoded for di�erent bit rates into a single

clip, and RealVideo uses a single codec to encode data for all bandwidths. During runtime,

the audio and video streams dynamically adapt to changes in bandwidths [26]. In this

case, the APC should directly take advantage the application adaptation mechanism in

the composed path.

� Application-speci�c adaptation

The application provides mechanisms for dynamic adjustment, but does not do so au-

tomatically. For instance, for bandwidth adaptation, there are di�erent instances of the

same codec intended for di�erent bit rate. A codec may be error-resilient, but needs to be

noti�ed of the current error rate through a control channel. In this case, the APC is respon-

sible for monitoring the resource changes and providing the feedback to the applications

to enable dynamic adaptation.

� Application-independent adaptation

If there is a lack of knowledge of the underlying implementation of the application, the

APC treats it as a black box and does application-independent adaptation. For instance, to

adapt to high packet loss rate, forward error correction (FEC) and compression operators

are inserted for better data throughput. FEC can also vary the amount of redundancy

based on the packet loss rate.

Combinations of the above approaches can be used if needed. Given the path requestor's opti-

mization criteria, the APC strives to create service compositions that best utilize network and

computational resources to achieve the optimal desired QoS. Optimized resource utilization and

di�erentiated QoS are enabled by our iterative data path construction process with continuous

feedback (see Section 7) and clear speci�cation of optimization metrics.

6.3 Enabling Service Personalization

Not only does ICEBERG provide service mobility support, it also stresses the concept of having

the person instead of the device as the communication endpoint. This level of personal mobility

is possible by creating a single identity for an individual providing a level of indirection to the

desired endpoint for communication. A service thus can be transparently accessed by the user

regardless of his endpoint communication device. Furthermore, services are customized using

the client's preference speci�cation depending on the user's current activities. The Personal
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Activity Coordinator (PAC) service [17] keeps detailed account of the current ongoing activity

of the user to make services properly customized according to user's location and activity. The

APC service queries the database of user's preference and constructs the appropriate data path.

6.4 Localization of Services

Depending on end user's current location, services can be localized by incorporating useful local

information. For instance, a user sitting in a traÆc jam moving slowly will automatically receive

updates on alternative routes to his destinations as part of the service data. A student going into

a Computer Science building automatically gets information about ongoing seminars. This is

possible because the APC is continuously keeping track of user's current location by having the

very last operator in the composition chain reporting to the APC and getting updates through

PAC about user's current activity and customizes the service output accordingly. Thus, services

can become more context- and location-aware.

7 Implementation

Here we describe our experience in implementing two prototypes of the APC, and using them to

compose services. We discuss how we achieved our design goals: Automation, fault-tolerance,

and scalability. The detailed performance analysis for the local area is found in Section 8.

7.1 The APC Service

Our implementation encompasses the full range of path creation steps described previously

supporting both long-lived and dynamic service instances. Our APC implementation is a cluster-

based Ninja infrastructure service [35] providing fault-tolerance and high availability of the

composed service.

7.2 iSpace-based Implementation

The �rst prototype is based on Ninja iSpace, which is thread-based and uses blocking RMI

calls for interprocess communication. We quickly ran into scaling problems after the number

of clients using the service exceeds a certain number. This is due to thread context switching

overhead as well as the memory requirement for storing thread state. Some other disadvantages

of thread-based programming model include lack of graceful degradation and lack of explicit

scheduling exposed to the users.
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Figure 6: vSpace-based path implementation: This diagram shows the sequence of task dispatch-

ing (indicated by solid arrows) and completion returning (indicted by dashed arrows) between di�erent

workers and the end client to execute a path request.

7.3 vSpace-based Implementation

The second prototype uses Ninja vSpace, an event-driven cluster service programming platform.

vSpace workers or service instances are asynchronous event handlers that accept tasks (i.e.

units of work to be processed) as well as completions (i.e. return values). Interactions with

the distributed data structures and other modules is achieved through non-blocking, split-phase

RPC calls, taking an upcall as a parameter and returning immediately. At a later time, when

the actual result is received, the upcall handler is invoked. We perceive a great improvement in

scalability as a result, due to reduced overhead in context-switching and thread state.

The APC service is structured in the manner illustrated in Figure 6. It consists of four types of

workers { Logical Path Creation Worker (LPC), Physical Path Creation Worker (PPC), Physical

Path Execution Worker (PPE), and Connection Manager Worker (CMGR). LPC workers create

logical paths provided with a path request (arrow 0) containing the two end point descriptions

of data format, IP address, port number, input arguments to the service, QoS metric, any

required operators in the data path. Then they dispatch a task (arrow 1) to the PPC workers

which determine the physical locations to run individual operators. This task consists of the

original path request as well as the logical path description of the sequence of operators joined

by connectors. Note, the path may not be linear.

Subsequently PPE workers receive a task (arrow 2) to instantiate paths from PPC workers.

This task contains the physical path description (i.e. the operator name as well as their running

location). PPE then contacts CMGR worker (arrow 3) which runs on each physical node of the

path to create operator instance (if operators are to be created on the y) and the connector

between operators. This task (arrow 3) contains the name of the operator as well as its input

arguments and the path identi�er. There are two stages in path execution: First, a CMGR

worker instantiates the operators and creates the necessary connectors. Once the entire path

has been instantiated, a CMGR worker starts the operator, which begins computation and starts

to receive from and send data through its connectors.
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The path requestor will �nally receive a completion event indicating the success or failure of the

path request after a successive sequence completion events owing from CMGR workers back

to the client (arrows 4-7). If any worker fails, the underlying vSpace cluster will take care of

resubmission of the task to another worker. After the retry has exceeded a speci�ed number,

a failed completion event is propagated back to the client indicating the failure and its reason.

This decomposition of tasks within the APC Service maximizes the concurrency and minimizes

blocking.

Each path has associated with it a unique identi�er. Users of paths can send requests to APC

to make changes to paths (e.g., change data output location). If any operator or connector fails,

PPE will initiate repair by noticing the failure itself, or receiving a message from the correspond-

ing CMGR worker, or receiving a repair request from CMGR workers running on neighboring

operators of the failed operator. This is due to the redundant control paths mechanism (Sec-

tion 4.2).

7.4 Path Search Algorithms

7.4.1 Logical Path Search

Given application-speci�c optimization metrics, to �nd an optimal logical path, APC conducts

the shortest path search on a graph modeling the space of operators. Any vertex of the graph

denotes a data or protocol format. Each edge represents an operator performing the translation

between the two formats with a value denoting the cost of operation. Using Dijkstra's shortest

path search algorithm, the running time is O(E log V ), where V is the number of vertices in the

graph, and E is the number of edges.

7.4.2 Physical Path Search

Subsequently, the optimal physical path can be located also using the shortest path search on a

graph constructed by mapping physical machine nodes to vertices and path connectors to edges.

First, the set of potential physical machines for running each operator is determined. An edge

exists between two vertices representing two physical machines if they are adjacent operators

in the logical path. The cost of each edge is determined by properties of the two connected

operators as well as the network characteristics between the two physical nodes. To make the

path search algorithm scale with the number of operators, we propose to make the search space

domain speci�c (e.g., audio format translation, language conversion) to limit the size of the

graph. Most graphs are relatively static and can be reused. Furthermore, popular search results

are also cached for reuse.
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7.5 Operators

For our prototype, dynamic operators are multi-threaded, inheriting from an abstract class to

have desired behavior of initialization, creation, execution, maintenance, and termination. When

they fail, restarting them will not cause loss of important state information. We have also built a

special class of long-lived operators to wrap existing services to make use of legacy services that

do not communicate directly with our connectors. Using o�-the-shelf software when necessary,

we have implemented at least one operator in each of the categories described in Section 3.8,

shown in Table 1. Each implementation is simple and has less than 100 lines of Java code.

Each operator is strongly typed and has a description of its attributes written in XML. We

choose XML since it allows encoding of arbitrary structures of hierarchically named values. In

addition, there are existing well-supported software (e.g., [2]) for validating XML descriptions

against well-de�ned schemas (Document Type De�nitions). The DTD contains the following in-

formation about each operator: unique identi�er, code location, functional operator classi�cation

(Section 3.8), operator categorization (according to operator properties in Section 3.7), number

of inputs, number of outputs, each input's type, each output's type, acceptable connector for

each input and output, cost, and special requirement (e.g., hardware or software).

Multiple operators can run on a single physical processor. To manage the resources of a single

node, we establish a connection manager service on each node where operators can execute.

The job of a connection manager, acting as an operator registry, also includes allowing querying

of operators and connectors, uploading an operator, creating connections for an operator, and

notifying failures of operators or connectors to the APC service for path repair.

Functional Classi�cation: Operators implemented:

Data format conversion operators: PCM to GSM, GSM to PCM,

MPEG3 to PCM, MPEG decoder, REAL encoder,

Speech recognition, Speech synthesizer, G.723 to PCM

Protocol conversion operators: SSL to simple encryption

Content transformation operators: text summarization operator, language translation operator

Optimization operators: FEC, compression, encryption, decryption

Table 1: Implemented operators: Using the current prototype of APC, we have experimented with

the above set of operators.

7.6 Connectors

Each operator has a reference to an output and input connector. All connectors implement a

common Java interface. To interact with previous and subsequent operators in the operator

chain, each operator invokes these read and write methods of the interface to receive its input
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data and send its output data. TCP, UDP, and RTP connectors are supported in the current

prototype. We are exploring various connector properties such as delivery order, latency, etc.

Our initial taxonomy categorizes a connector in the following dimensions.

� Reliability guarantees: reliable vs. unreliable.

� In order delivery guarantees: TCP-like in order delivery vs. no ordering guarantees like

UDP.

� Flow control: whether ow control mechanism exists to prevent overloading the receiver.

� Duplicate delivery: whether duplicate packets are ever delivered.

� Security levels: whether packets are encrypted.

� Blocking: whether the interface is blocking (e.g., RMI like) or nonblocking and asyn-

chronous.

7.7 APC Example Applications

We have implemented these applications using the APC: accessing Jukebox service [14] (MP3

format) using a cell phone, accessing email through Vat [36] (an audio tool), communication

between a PSTN phone and a GSM cell phone, and voice-enabled interactive room control.

Most of the above applications are developed for the ICEBERG architecture [37] with the main

goal of enabling any-to-any communication independent of end devices. The functionality of

path allows seamless integration of any new device into the communication infrastructure [25].

It only requires the addition of an operator that converts between a supported format to the

new device's data format.

Our experience shows that service composition is greatly simpli�ed by the APC and the QoS of

the resulting composed entity is guaranteed through the path search process and path runtime

adaptivity. Moreover, we �nd the classi�cation of operators based on the properties in Section 3.7

quite helpful during operator and path creation. Now, we briey describe some the applications

developed using the APC.

7.7.1 Listening to Jukebox MP3 Songs using Cell Phone

Ninja Jukebox is a distributed, collaborative music repository that delivers digital music in MP3

format to Internet clients in real-time. A GSM cell phone user interested in using the service

can take advantage of the APC's data transformation functionality to convert the music into

the right data format. Furthermore, the data path established also hides the network jitter and

bandwidth uctuations by bu�ering and downsampling the data.
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This data path is built from existing Unix utility tools { mpg123 and sox programs, and a GSM

lossy speech compression codec [6]. This demonstrates that the APC can easily integrate legacy

code as operators to construct data paths.

7.7.2 Universal Inbox

Universal Inbox is an infrastructure service in ICEBERG that provides customizable redirection

of incoming communication based on user preference pro�les as well as user's end devices. The

inbox is universal because it accepts all types of communication, e.g., voice mail, paging message,

email, news feeds from the Web. Depending on user's current end device, the incoming message

is automatically transformed to the proper format before delivery. For example, an HTML-

email message goes through a speech synthesizer and a PCM encoder before reaching a user on

a PSTN phone. For Universal Inbox, the APC is the key to extensibility and service portability.

7.7.3 Interactive Voice Room Control

In this era of ubiquitous computing, it becomes important to control various appliances in smart

spaces using various modes, e.g., speech, text, gesture, etc. There is such a smart space in our

lab, consisting of various audio and visual appliances that can be controlled over the network.

Using the APC service, we can control A/V equipment (e.g., move cameras, turn on lights,

program VCR) using a variety of input devices. Paths are automatically constructed from

input source to the room control application and vice versa. For instance, speech input is �rst

converted to PCM audio, then speech-to-text conversion is performed on the output, which goes

through natural language processing to the text format. The text subsequently is changed into

commands accepted by the room application. Responses from the application goes through the

inverse transformation: �rst to text, then PCM speech, and �nally GSM audio if the end user

is using a cell phone.

7.7.4 Real-time Streaming Video for Wireless Mobile Clients

One of the path applications we have recently developed is a video streaming service for mobile

wireless clients. As a future extension, we plan to support real-time video conferencing between

wired and wireless clients using a variety of end-devices. Depending on the access network band-

width and client's end device capability, the APC automatically generates the proper sequence

of transformation operators and content adaptors to generate desired data format at the proper

data rate and quality. Furthermore, the constructed data path is intelligent enough to redirect

data when user roams. We have built a path (shown in Figure 7) transcoding from MPEG

streams to REAL format [27].
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Figure 7: Video transcoding path: This �gure shows the path transcoding from MPEG video streams

to Real format delivered to a wireless mobile client running a REAL Player. This nonlinear path demon-

strates the use of compression operators to reduce data size, FEC operators to reduce packet loss rate on

the wireless link.

7.8 Fault Recovery Implementation: Partial Path Repair

We now discuss our implementation of path fault recovery using redundant control paths (Sec-

tion 4.2). To actively detect operator failures, the APC periodically contacts all operators in

running paths. This active monitoring will detect failures at both the process and machine

level. In addition to active polling, passive monitoring is also used by taking advantage of the

continuous data ow during execution. Any interruption of data ow can be an indication of

a potential failure. Each operator can time out depending on the application-speci�c expected

latency of receiving data from the previous operator in the chain. Furthermore, upon catching

an I/O exception or getting an error message when an operator attempts to read or write, it

can deduce that its connectors or neighboring operators have failed.

To achieve fast fault recovery, the following protocol we developed aims at minimizing the

amount of down time of the path and its impact on the end-users. Thus, partial path repair is

always attempted before restarting the complete path. There is usually never a need to tear

down the entire path to rebuild it as long as the control path is resilient to failures.

The following discussion of path repair applies to both single and multiple operator failure.

First, if failure occurred only at the process level, the failed operator is restarted on the original

node. If that is unsuccessful, a new physical path is constructed to relocate the failed operator

to a di�erent processor. We always try to reuse existing running operators to avoid loading and

initialization overhead. If none are found, the physical path construction process is repeated to

�nd an optimized location to restart the failed operator. The connections between the failed

operator and its neighboring operators are reestablished to resume the data ow. To minimize

the amount of data lost, as soon as the path component failure is detected, the data ow is

halted (i.e. bu�ered) when possible to avoid unnecessary loss of data. To achieve full reliability,

lost data sent need to be retransmitted by the application. If the newly found physical path

fails again, the logical path is rebuilt.

28



7.9 Path Flow Control

For real-time paths, ow control is needed to compensate for the di�erences in the rate at which

operators produce data. This property belongs to the operator's XML description. Data is

bu�ered for operators that generate data at a higher speed, so that slower ones will not drop

packets due to bu�er overow. Furthermore, connectors exert back pressure to slow down faster

operators. For operators that are relatively slow, output data should not be bu�ered.

8 Performance Evaluation and Analysis

In this section, we discuss performance evaluation of our prototype in the local area. We �rst

focus on the evaluation of the APC's functionality. Thus, as example service instances, we choose

null-operators which perform no operation other than copying data3. For all our measurements,

we run the APC service and operators on a local area cluster of 400MHz Pentium-II machines

each with 256MB of main memory and 512KB of processor cache with 100 megabit Ethernet

connection. All the Java programs use IBM's JDK v1.1.8.

Table 3 shows good performance of a single APC service instance for a path made of 6 null-

operators on 2 nodes with 200 paths constantly being created and torn down in the background.

Path creation latency is the amount of time between path request and actual data ow. Latency

through path denotes the time it takes for data to travel from the �rst to the last operator. Fault

recovery latency in this table applies to a single operator failure. It is the time elapsed between

operator failure and the restart of path data ow.

mean std dev.

Single-Node APC throughput 15 creations/sec 0.4

Path Creation Latency 66.3 ms 2.5

Latency through Path 5.7 ms 0.2

Fault Recovery Latency 77 ms 2.3

Table 2: Performance of a single APC service instance for operating on 6-nullop-paths on 2 nodes.

There are 200 paths continuously being created and destroyed in the background. Results are averaged

over 50 measurements.

3Each null operator is implemented as a process in an independent JVM. Therefore, APC path creation

throughput is low due to the overhead of running these heavy-weight processes requiring large amount of memory.

The APC does however support sharing of a service through multiple threads.
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Figure 8: Latency through Path: This graph shows as the path length increases, lower path latency

is achieved by distributing operators across di�erent machines.

8.1 Latency through Path

It is bene�cial to distribute computation across multiple physical machines for ease of scalability,

as the number of operator increases. The bene�t nevertheless needs to o�set the increased com-

munication overhead between processors. As Figure 8 shows, for paths of simple null operators

in a cluster, after the number of operators exceeds 4, it is more bene�cial to place operators

on separate machines. The bottleneck here is memory space. As the number of operators on

a single machine exceeds 7, thrashing starts. If we use realistic operators that actually per-

form computation on data, the crossing point would even be smaller due to processing power

requirement. We now extrapolate the scenario to the wide area, where communication latency

can be much higher. We expect the curve to be slightly shifted to the right. To justify multiple

machine execution, we need longer path length for low path latency. We can conclude from these

measurements that except for very short paths placing operators on separate nodes is bene�cial

for load balancing.

8.2 Scalability

It is important that our path construction process scales well with respect to increasing path

length given �xed amount of physical resources and also with increasing number of machines

for a given path. The two plots of Figure 9 con�rm this claim. As the number of processors

available for running operators increases, the total path creation latency decreases quickly due

to parallelizing of the tasks, increase in memory and processing power. On the other hand, given

�xed number of nodes, path creation latency increases only linearly with respect to the path
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Figure 9: Path Creation Latency of a 6-nullop-path: As the number of available machines to run

operators increases, the overhead is signi�cantly reduced. The slight increase from 3 to 5 nodes is an

artifact due to better cache locality when more than one null operator runs on the same node.

Path Creation Latency of on Two Nodes: it increases linearly with path length provided that there

are enough memory and processing capacity.

length.

The path construction process can be broken down into the following steps. (See Figure 10 and

Figure 11). Figure 10 examines for a �xed path length of 6 operators, how various path creation

components scale with respect to the number of physical machines available to execute the path.

Figure 11 studies the path creation latency breakdown on two physical machines as the number

of operators in the path varies.

1. Logical Path Creation Latency (Figure 10-A, 11-A) is relatively constant due to �xed

search space of operators in this case. In general, as the number of operators (V) increases,

the search is O(E log V ).

2. Physical Path Creation Latency (Figure 10-B, 11-B) is also roughly constant due to

�xed amount of physical resources. Using the shortest path graph search, the running

time is O(E log V ) (V: number of physical machines, E: lengths of path). Both latencies

can be reduced by reusing search results for logical and physical paths.

3. Operator Instantiation Latency (Figure 10-C, 11-C) increases linearly with the number

of operators before saturation. This is because more operators in the path imply more

processing is necessary. Due to cache locality behavior, operator instantiation latency is

very small for 3 node case when the number of operators running on each node is maximized

to 2. This is an artifact because the same operator is used in the path. However, in general,
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Figure 10: Path Creation Latency Breakdown of a 6-Operator Path: The �rst �ve plots show

how each detailed step of path creation process behaves with increasing physical resources. The last plot

shows path tear down latency decreases with increasing number of nodes.

for a �xed path length of di�erent operators, operator instantiation latency is independent

of the number of machines as long as there are enough memory and processing capacity.

This is because operators in a path are instantiated in parallel.

4. Connection Setup Latency (Figure 10-D, 11-D) decreases signi�cantly with increasing

number of nodes. This is because creating multiple socket connections on a single machine

is expensive due to processing-bound kernel operations. Distributing connection creations

across multiple machines reduces the load on each individual machine. The connection

setup latency increases linearly with number of operators due to the need to setup more

connections.

5. Operator Startup Execution Latency (Figure 10-E, 11-E) has similar behavior as

connection setup latency. Operator startup is also a processing-bound operation; thus,

distributing it across di�erent machines speeds it up. As path length increases, the number

of operators that need to start increases as well. Consequently, the total operator startup

latency increases with path length given �xed physical resources. Path teardown latency

shown in Figure 10-F and Figure11-F has similar behavior.

We can conclude from this set of measurements that to guarantee good performance, it is crucial

to determine whether the computation performed is CPU-, memory- or I/O-bound. We must

load balance accordingly by either distributing the computation across di�erent machines or

collocating neighboring operators to reduce network bandwidth requirement. The set of bench-
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Figure 11: Path Creation Latency Breakdown of on Two Nodes: The �rst �ve plots show how

each detailed step of path creation process behaves with increasing path length. The last plot shows path

tear down latency increases with path length as expected.

marks presented above are useful for service authors to characterize the relative performance

characteristics of their operators.

8.3 End-to-end performance numbers

To demonstrate the usability of the APC service, we now present some end-to-end performance

measurements for one path application (Section 7.7.1){ accessing a MP3 streaming Jukebox

service using a cell phone. Table 3 shows good performance of a single APC service instance

for a path consisting of 4 operators on 2 nodes with 200 paths continuously being created and

torn down in the background. The performance shown is acceptable because the response time

for a path creation is less than 500ms. Users typically do not care about how long it takes for

the service session to terminate. In this case, it takes less than 300ms. Recovery takes slightly

longer (i.e. 400ms); however, if bu�ering is used, the user can hardly notice any gap in the

output audio. The scalability of path is also reasonable { 16 paths per machine, 15 creations

per second. This means that to handle 1000 service creations per second, we need 67 machines,

while 200,000 service sessions are in progress.

In the context of two-way telephone calls, statistics [21] show that during busy hours, the average

call arrival rate R = 2:8 calls=hour=user�N (N is the number of users in the system), with the

call duration t = 2:6 minutes. From our measurements, we know that the rate of path creation

is 15 paths=sec with 32 paths running in the background. The call arrival rate a two-node APC
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can handle is therefore given by 32=(2:8 � 60) = :19 call=sec. Thus, the system can handle

N = :19=(2:8 calls=hour) = 244. Therefore, a two-node APC service can easily handle over 200

users for this type of transcoding operators: sound conversion operations and GSM to PCM

codecs.

Logical and physical path creation time: 264ms

Path instantiation time: 215ms

Path teardown time: 289ms

Path recovery from one failed operator: 402ms

Data throughput: 64kbps

Path construction latency: 479ms

Path scalability: 32 simultaneous paths

Single-Node APC throughput 15 creations/sec

Table 3: Performance of a single APC service instance for operating on 4-operator-paths on 2 nodes.

There are 200 paths continuously being created and destroyed in the background on other nodes. Results

are averaged over 50 measurements.

9 Future Work and Conclusions

So far we have only deployed our prototype in the local area. We are yet to measure the

performance of paths that span across multiple clusters, although our implementation has built-

in mechanisms for cluster level failure detection and recovery. We plan to use remote sites

from our Swedish collaborators to test out wide area paths and also use the emulation testbed

provided by University of Utah [24]. Additionally, we plan to build more path applications to

make APC service general for all types of Internet service composition. We would like to explore

dynamic path adaptation and performance tuning, and other optimizations such as caching and

reusing path results.

In conclusion, we presented the design and implementation of a service composition platform

that automates compositions of both legacy and new Internet services across the wide area.

Automation is enabled through a strong typing system and the encoding of service attributes

through exible XML descriptions. By providing features of fault-tolerance, scalability, and

optimized adaptive resource utilization, we allow service authors to focus on the speci�c con-

tent of their services rather than how the service will be accessed by di�erent devices and how

it will interoperate with other services. We achieve fault-tolerance through redundant control

paths responsible for fast fault-recovery. Scalability is leveraged from using a cluster computing

platform. Optimized resource utilization and di�erentiated QoS are obtained through the iter-

ative path construction process with continuous feedback and a clear speci�cation of the user's

optimization criteria. Moreover, we identify two key abstractions (i.e., operator and connector)

34



useful for putting together services in a tinkertoy-like fashion and for service component reuse.

Another contribution of our work is to present the key set of properties of operators or Internet

services that need to be considered to achieve high application-speci�c QoS in the resulting

service composition entity.

We validated our claim of easy service compositions by presenting numerous applications built

using our prototype APC service. In the context of the ICEBERG project, we demonstrated that

the APC provides extreme ease in integrating any new devices into the communication infra-

structure enabling true any-to-any communication paradigm. Finally, we justi�ed our design

goals by demonstrating good scaling performance of the APC facility in the local area.
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