
Industrial and Economic Properties of Software
Technology, Processes, and Value

David G. Messerschmitt
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, California, USA
messer@eecs.berkeley.edu

Clemens Szyperski
Microsoft Research

Redmond, Washington, USA
cszypers@microsoft.com

Copyright notice and disclaimer

© 2000 David Messerschmitt. All rights reserved.
© 2000 Microsoft Corporation. All rights reserved.

Reproduction for personal and educational purposes is permissible.
The names of actual companies and products mentioned herein may be the trademarks of their

respective owners.
The views presented in this paper are solely those of the authors and do not represent the views of

either the University of California or Microsoft Corporation.

Abstract

Software technology and its related activities are examined from an industrial and economic
perspective. More specifically, the distinct characteristics of software from the perspective of the
end-user, the software engineer, the operational manager, the intellectual property lawyer, the
owner, and the economist are identified. The overlaps and relationships among these perspectives
are discussed, organized around three primary issues: technology, processes, and value
relationships. Examples of the specific issues identified are licensing vs. service provider models,
alternative terms and conditions of licensing, distinct roles in the supplier value chain
(development, provisioning, operation, and use) and requirements value chain (user needs and
requirements), and the relationship of these issues to industrial organization and pricing. The
characteristics of software as an economic good and how they differ from material and
information goods are emphasized, along with how these characteristics affect commercial
relationships and industrial organization. A primary goal of this paper is to stimulate more and
better research relevant to the software industry in the economic, business, and legal disciplines.

 2

Table of contents

Copyright notice and disclaimer.. 1
Abstract ... 1
Table of contents .. 2
1 Introduction .. 4

1.1 Software—a unique good .. 4
1.2 Software—a unique industry ... 4
1.3 Foundations of information technology.. 5
1.4 Perspectives and issues.. 6

2 User perspective ... 7
2.1 Productivity and impact... 8
2.2 Network effects... 8
2.3 Usage.. 8
2.4 Quality and performance ... 8
2.5 Usability ... 9
2.6 Security and privacy.. 9
2.7 Flexibility and extensibility ... 9
2.8 Composability... 9

3 Software engineering perspective .. 10
3.1 Advancing technology... 10
3.2 Program execution .. 10

3.2.1 Platform and environment.. 10
3.2.2 Portability.. 11
3.2.3 Compilation and interpretation... 11
3.2.4 Trust in execution .. 12
3.2.5 Operating system... 12

3.3 Software development process... 12
3.3.1 Waterfall model... 12
3.3.2 Development tools... 13
3.3.3 Architecture... 13
3.3.4 Interfaces and APIs.. 14
3.3.5 Achieving composability ... 14

3.4 Software as a plan and factory ... 15
3.5 Impact of the network.. 16
3.6 Standardization ... 16

4 Managerial perspective ... 17
4.1 Four value chains .. 18
4.2 The stages of the supply value chain .. 19

4.2.1 Development ... 19
4.2.2 Provisioning .. 19
4.2.3 Operations... 20
4.2.4 Use.. 20

4.3 Total cost of ownership ... 20
5 Legal perspective.. 21

5.1 Copyright.. 21
5.2 Patents .. 21

6 Ownership perspective.. 22
6.1 Industrial organization... 22
6.2 Business relationships ... 23

6.2.1 Types of customers.. 23
6.2.2 Software distribution ... 24
6.2.3 Software pricing .. 24
6.2.4 Acquiring applications... 25

 3

6.2.5 Acquiring infrastructure... 25
6.3 Vertical heterogeneity ... 26
6.4 Horizontal heterogeneity ... 27

6.4.1 Multiple platforms ... 27
6.4.2 Shared responsibility ... 28
6.4.3 Distributed partitioning.. 28

6.5 An industrial revolution? ... 28
6.5.1 Frameworks... 29
6.5.2 Components .. 29

7 Economic perspective ... 31
7.1 Demand .. 31

7.1.1 Network effects vs. software category .. 31
7.1.2 Lock-in.. 32

7.2 Supply .. 32
7.2.1 Risk... 32
7.2.2 Reusability .. 33
7.2.3 Competition... 33
7.2.4 Dynamic Supply Chains... 33
7.2.5 Rapidly expanding markets.. 33

7.3 Pricing .. 34
7.3.1 Value pricing and versioning ... 34
7.3.2 Variable pricing... 35
7.3.3 Bundling ... 35
7.3.4 Third party revenue ... 35

7.4 Evolution .. 35
7.5 Complementarity... 36

8 The future... 36
8.1 Information appliances .. 36
8.2 Pervasive computing ... 37
8.3 Mobile and nomadic information technology ... 37
8.4 A component marketplace ... 37
8.5 Pricing and business models .. 37

9 Conclusions .. 38
References ... 39
The authors .. 42
Endnotes .. 42

 4

1 Introduction

The software industry has become critical. It is large and rapidly growing in its own right, and its
secondary impact on the remainder of the economy is disproportionate. In view of this, the
paucity of research into the industrial and economics properties of software—which flies in the
face of both its growing economic importance and the interesting and challenging issues it
engenders—is puzzling. Most prior work on the economics of software—performed by
practitioners of software engineering—has focused on serving software developers, where the
emphasis is on cost estimation and justification of investments, and to a lesser extent, estimation
of demand [Boe81, Gul93, Ver91, Boe99, Boe00, Ken98, Lev87, Cla93, Kan89, Boe84, The84].
As discussed later, many of the concepts of information economics [Sha99], such as network
externalities [Kat85], lock-in, and standardization [Dav90], also apply directly to software.
However, software involves not only development, but also other critical processes such as
provisioning, operations, and use. In ways that will be described, it differs markedly from
information as an economic good.

The lack of research from this general perspective is likely due to the complicated and sometimes
arcane nature of software, the process of creating software, and the industrial processes and
business relationships surrounding it. With this paper, we hope to rectify this situation by
communicating to a broad audience, including especially the economics, business, and legal
disciplines, the characteristics of software from an industrial and economic perspective. There are
myriad opportunities to study software and software markets from a broader economic, industrial,
and managerial perspective. Given the changing business models for creating and selling software
and software-based services, it is an opportune time to do so.

1.1 Software—a unique good

Like information, software is an immaterial good—it has a logical rather than physical
manifestation, as distinct from most goods in the industrial economy, which are material.
However, both software and information require a material support infrastructure to be useful.
Information is valued for how it informs, but there must be a material medium for storing,
conveying, and accessing its logical significance, such as paper, disk, or display. Software is
valued for what it does, but requires a computer processor to realize its intentions. Software most
closely resembles a service in the industrial economy: a service is immaterial, but requires a
provider (mechanical or human) to convey its intent.

Software differs markedly from other material and immaterial goods and services. On the supply
side, its substantial economies of scale are much greater than material goods, with large creation
costs but miniscule reproduction and distribution costs. In this regard, it is similar to information.
On the demand side, unlike information (which is valued for its ability to influence or inform),
software is similar to many material goods and to services in that its value is in the behaviors and
actions it performs. In some circumstances, like computation, robotics, email, or word processing,
it directly substitutes for services provided by human providers. In other cases, like the typewriter
and telephone, it directly substitutes for material goods. Software is valued for its execution,
rather than its insights. Additional understanding of software as a good will be developed later.

1.2 Software—a unique industry

In light of the uniqueness of software, the software industry has many characteristics that are
individually familiar, but collected in unusual combinations. For example, like writing a novel, it
is risky to invest in software creation, but unlike writing a novel it is essential to collaborate with
the eventual users in defining its features. Like an organizational hierarchy, software applications

 5

are often essential to running a business, but unlike an organization, software is often designed by
outside vendors with (unfortunately) limited ability to adapt to special or changing needs.
Although software is valued for what it does, like many material goods, unlike material goods it
has practically no unit manufacturing costs, and is totally dependent on an infrastructure of
equipment providing its execution environment. To a considerably greater degree than most
material goods, a single software application and its supporting infrastructure are decomposed
into many internal units (later called modules), often supplied by different vendors and with
distinct ownership. Even the term “ownership” has somewhat different connotations from
material goods, because it is based on intellectual property laws rather than title and physical
possession.

These examples suggest that the software industry—as well as interested participants like the
end-user, service provider, and regulatory communities—confronts unique challenges, and indeed
it does. In addressing these challenges, it is important to appreciate the many facets of software
and how it is created and used in the real world, and that is the goal of this paper. The authors are
technical specialists with a special interest in industrial, business, and economics issues
surrounding software. We are especially interested in how software technology can be improved
and the business and organizational processes surrounding more successful. To aid software
professionals and managers, we hope to stimulate the consideration of superior (or at least
improved) strategies for software investments. We believe it would be to the benefit of the
software industry for economists and business strategists to study software’s characteristics and
surrounding strategies in greater breadth and depth. Thus, our primary goal is to aid the
understanding of software as a good, as distinct from material and information goods, and to
understand the processes surrounding it. We do not specifically address here the strategic
challenges that flow from this understanding, but hope that this work will stimulate more and
better investigation of this type.

1.3 Foundations of information technology

We all have an intuitive understanding of software based on our experience with personal
computers. It is embodied by a “program” consisting of many instructions that “execute” on a
computer to do something useful for us, the user. Behind the scenes, the picture is vastly more
complicated than this, especially as software becomes an integral foundation of the operation of
organizations of all types, and even society more generally.

Information technology (IT) is created for the primary purpose of acquiring, manipulating, and
retrieving information, which can be defined as recognizable patterns (like text, pictures, audio,
etc.) that affect or inform an individual or organization (group of people with a collective
purpose). Information technology has three constituents: Processing modifies information,
storage conveys it from one time to another, and communications conveys it from one place to
another.

Often products valued for their behavior or actions have a material or hardware embodiment.
Hardware refers to the portion of in information technology based directly on physical laws, like
electronics, magnetics, or optics1. In principle, any information technology system can be
constructed exclusively from hardware2. However, the central idea of computing is hardware
programmability. The functionality of the computer is determined not only by the hardware
(which is fixed at the time of manufacture), but can be modified after manufacture as the software
is added and executed3. Since there is a fundamental exchangeability of hardware and software—
each can in principle substitute for the other—it is useful to view software as immaterial
hardware. The boundary between what is achieved in software and what in hardware is
somewhat arbitrary and changes over time4.

 6

Fundamentally, information comes in different media, like a sound (as a pressure wave in the air),
picture (a two-dimensional intensity field), or text (a sequence of alphabetical characters and
punctuation marks). However, all information can be represented5 by collections of bits
(immaterial entities assuming two values: zero and one), such a collection is also known as data6.
In information technology systems, all information and software are represented by data—this is
known as a digital representation. This is advantageous because it allows different types of
information, and even software, to be freely mixed as they are processed, stored, and
communicated. IT thus focuses on the processing, storage, and communication of bits7.

An operating IT system conveys streams of bits through time and space. Bits flow through space
via a communications link from a sender to one or more receivers. Storage conveys bits through
time: a sender stores bits at one time and a recipient retrieves these bits at some later time8.
Processing modifies bits at specific points in space-time. When controlled by software,
processing is performed by hardware specialized to interpreting the bits representing that
software. A fundamental requirement is for material hardware to underpin all bit-level operations:
the material structure (atoms, photons) brings the immaterial bits into existence and carries out
the processing, storage and retrieval, and communication from one place to another.

1.4 Perspectives and issues

This paper views software from six individual perspectives, corresponding to the rows in Table 1:
Users, software engineers, managers, lawyers, owners, and economists. We make no pretense of
completeness in any of these perspectives, but focus on issues of greatest relevance and
importance9. The main body of the paper is organized around these perspectives10, in the order of
the rows of Table 1.

We also focus on three basic issues, as reflected in the columns of Table 1. In technology, we
address those technical characteristics of software and its execution environment that are
especially relevant. One of the key distinctions here is between software applications (that
provide functionality directly useful to end-users) and software infrastructure (that provides
functionality common to many applications). Processes are the primary steps required to
successfully supply, provision, and use software, and the precedence relationships among them.
Finally, value considers the value-added of various functions and participants, and their
interdependence. Specifically, there are two value chains in software, in which participants add
value sequentially to one another. The supplier value chain applies to the execution phase, and
starts with the software vendor and ends by providing valuable functionality to the user. The
requirements value chain applies to the software implementation phase, and starts with business
and application ideas, gathers and adds functional and performance objectives from users, and
finally ends with a detailed set of requirements for implementation. Together, these two chains
compose to form a value cycle11. Many innovations start with software developers, who are better
able to appreciate the technical possibilities than users, but nevertheless require end-user input for
their validation and refinement.

Altogether, there are many dependencies of technology, processes, and value. Some
representative considerations at the intersection of perspectives and issues are listed in the table
cells. Reference back to this table should be helpful in appreciating the relationship among the
numerous issues addressed later. The following sections now consider the six perspectives (rows
in Table 1) and how they relate.

 7

Table 1. Examples of issues (columns) and perspectives (rows) applying to commercial
software.

 Technology Processes Value

Needs
(users) Flexibility Security, privacy

Functionality,
impact

P
ar

ti
ci

pa
nt

s

Design
(software
engineers)

Representation,
languages,
execution,
portability, layering

Architecture,
composition vs.
decomposition,
standardization

Requirements,
functionality,
quality, performance

Roles
(managers) Infrastructure

Development,
provisioning,
operations

Uses

Legal & policy
(lawyers,
regulators)

Intellectual property
(patent, copyright,
trade secret)

Licensing, business
process patents,
antitrust

Ownership,
trademark (brand)

F
ac

ili
ta

to
rs

Industrial
organization
(owners)

Components,
portability

License vs.
subscribe,
outsourcing

Software and
content supply,
outsourced
development, system
integration, service
provision

O
bs

er
ve

rs

Economics
(economists) Costs

Business
relationships, terms
and conditions

Supply,
demand,
pricing

2 User perspective

The primary purpose of software is to serve the needs of its end users, whether they are
individuals, groups of individuals, organizations (e.g. companies, universities, government),
groups of organizations (e.g. commerce), or society at large (e.g. entertainment, politics).

To the user, the only direct impact of technology is the need to acquire, provision, and operate a
complementary infrastructure to support the execution of the applications, which includes
hardware and software for processing, storage, and communication. As discussed in Section 4,
there are substantial organizational processes surrounding a software application, and a major
challenge for both the end-user and vendors is coordinating the design and provisioning of the
application with those processes, and/or molding those processes to the software.

Software informs a computer (rather than a person) by giving it instructions that determine its
behavior. Whereas information embodies no behavior, the primary value of software is derived
from the behavior it invokes; that is what it causes a computer to do on behalf of a user, and
various aspects of how well it does those things. Although much depends on the specific
application context, there are also important generic facets of value that are now discussed.

 8

There are various costs associated with acquiring, provisioning, and operating software, including
payments to software suppliers, acquiring supporting hardware, and salaries (see Section 4).
Software with lower costs enhances the user’s value proposition12.

2.1 Productivity and impact

One way to value an application is the tangible impact that it has on an organization (or
individual user) by making it more effective or successful. An application may improve the
productivity of a user or organization, decrease the time to accomplish relevant tasks, enhance the
collaboration of workers, better manage knowledge assets, or improve the quality of outcomes13.
Applications can sometimes enable outcomes that otherwise would not be achievable, as in the
case of movie special effects or design simulation.

2.2 Network effects

For many software products, the value depends not only on intrinsic factors, but also increases
with the number of other adopters of the same or compatible solutions. This network effect or
network externality [Sha99, Chu92, Kat85, Kat86] comes in two distinct forms [Mes99a]. In the
stronger direct network effect, the application supports direct interaction among users, and the
value increases with the number of users available to participate in that application. (In particular,
the first adopter typically derives no value.) In the weaker indirect network effect, the value
depends on secondary assets like available content or trained staff, technical assistance or
complementary applications, and more adopters stimulate more investment in these secondary
assets. An example of direct network effects is a remote conferencing application that simulates a
face-to-face meeting, whereas the Web exhibits an indirect network effect based on the amount of
content it attracts. An intermediate example would be a widely adopted word processing
application, which offers substantial value to a solitary user, but also increases in value if many
users can easily share documents.

2.3 Usage

Generally speaking, software that is used more offers more value. Usage has two factors: the
number of users, and the amount of time spent by each user14.

2.4 Quality and performance

Quality speaks to the perceptual experience of the user [Sla98]. The two most immediate aspects
of quality are the observed number and severity of defects and the observed performance15.

The most important performance parameters are the volume of work performed (e.g. the number
of Web pages served up per unit time) and the interactive delay (e.g. the delay from clicking a
hyperlink to the appearance of the requested page). Observed performance can be influenced by
perceptual factors16, but when the “observer” is actually another piece of software, then objective
measures apply17.

Perceived and real defects cannot be avoided completely. One reason is an unavoidable mismatch
between what is built and what is needed. It is difficult enough to capture precisely the
requirements of any individual user at any one point in time. Most software targets a large
number of users (to increase revenue) and also needs to serve users over extended periods of
time, during which their requirements change. Requirements of large numbers of users over
extended periods of time can at best be approximated. Perceived defects are defined relative to
specific requirements, which cannot be captured fully and accurately18. A second reason is the
impracticality of detecting all design flaws in software19.

 9

These observations notwithstanding, there are important graduations of defects that determine
their perceptual and quantifiable severity. For example, any defect that leads to significant loss of
invested time and effort is more severe than a defect that, for example, temporarily disturbs the
resolution of a display.

2.5 Usability

Another aspect of quality is usability [Nie00, UPA]. Usability is characterized by the user’s
perception of how easy or difficult it is to accomplish the task at hand. This is hard to quantify
and varies dramatically from user to user, even for the same application. Education, background,
skill level, preferred mode of interaction, experience in general or with the particular application,
and other factors are influential. Enhancing usability for a broad audience thus requires an
application to offer alternative means of accomplishing the same thing20 or adaptation21 [Nie93].
Like quality, usability is compromised by the need to accommodate a large number of users with
different and changing needs.

2.6 Security and privacy

Security strives to exclude outside attacks that aim to unveil secrets or inflict damage to software
and information [How97, Pfl97]. Privacy strives to exclude outside traceability or correlatability
of activities of an individual or organization [W3CP]. Both security and privacy offer value by
restricting undesirable external influences.

The details of security and privacy are defined by policies, which define what actions should and
should not be possible. Policies are defined by the end-user or organization, and enforced by the
software and hardware22. Often as these policies become stricter, usability is adversely impacted.
It is therefore valuable to offer configurability, based on the needs of the individual or
organization and on the sensitivity of information being protected.

A separate aspect of security and privacy is the establishment and honoring of trust. Whenever
some transaction involves multiple parties, a mutual network of trust needs to be present or
established, possibly with the aid of trusted third parties [Mess99a].

2.7 Flexibility and extensibility

Particularly in business applications, flexibility to meet changing requirements is valued23. Today,
business changes at a rapid rate, including organizational changes (mergers and divestment) and
changes to existing or new products and services.

End-user organizations often make large investments in adopting a particular application solution,
especially in the reorganization of business processes around that application. Software suppliers
that define and implement a well-defined roadmap for future extensions provide reassurance that
future switches will be less necessary.

2.8 Composability

A single closed software solution offers less value than one that can be combined with other
solutions to achieve greater functionality. This is called the composability of complementary
software solutions. A simple example is the ability to share information and formatting among
individual applications (like word processor and spreadsheet) in an office suite. A much more
challenging example is the ability to compose distinct business applications to realize a new
product or service.

 10

3 Software engineering perspective

The primary function of software engineering is the development (which includes design,
implementation, testing, maintenance, and upgrade) of working software [Pre00]. Whereas the
user represents the demand side, software development represents the supply side. There are
intermediaries in the supply chain, as detailed in Section 4. A comprehensive treatment of
development would fill many books, so we focus on a few salient points.

3.1 Advancing technology

Processing, storage, and communications are all improving rapidly in terms of cost per unit of
performance24. In each case, this improvement has been exponential with time, doubling in
performance at equivalent cost roughly every 1.5 to 2 years and even faster for storage and fiber-
optic communication. Continuing improvements are expected, with foreseeable improvements on
the order of another factor of a million. Physical laws determine the ultimate limits, but the rate
of improvement far short of those limits (as is the state of technology today) is determined by
economic considerations. Technology suppliers make investments in technology advancement
commensurate with current revenues, and determine the increments in technology advance based
on expectations about increased market size, the time to realization of returns on those
investments, and the expected risk. These factors all limit the rate of investment in research,
development, and factories, largely determining the rate of technological advance25. A predictable
rate of advancement also serves to coordinate the many complementary industry participants,
such as microprocessor manufacturers and semiconductor equipment vendors26.

These technology advances have a considerable impact on the software industry. Fundamentally,
they free developers to concentrate on factors other than performance, such as features that
enhance usability (e.g. graphical user interfaces and real-time video), reduced time to market, or
added functionality27.

3.2 Program execution

A software program embodies the actions required in the processing, storage, and communication
of information content. It consists of the instructions authored by a programmer—and executed
by a computer—that specify the detailed actions in response to each possible circumstance and
input.

Software in isolation is useless; it must be executed, which requires a processor. A processor has
a fixed and finite set of available instructions; a program comprises a specified sequence of these
instructions. There are a number of different processors with distinctive instruction sets, including
several that are widely used. There are a number of different execution models, which lead
directly to different forms in which software can be distributed, as well as distinct business
models.

3.2.1 Platform and environment

As a practical matter, consider a specific developed program, called our target. Rarely does this
target execute in isolation, but rather relies on complementary software, and often, other software
relies on it. A platform is the sum of all hardware and software that is assumed available and
static from the perspective of our target. For example, a computer and associated operating
system software (see Section 3.2.5) is a commonplace platform (other examples are described
later). Sometimes there is other software, which is neither part of the platform, nor under control
of the platform or the target. The aggregation of platform and this other software is the
environment for the target. Other software may come to rely on our target being available and

 11

static, in which case our target is a part of that program’s platform. Thus, the platform is defined
relative to a particular target.

3.2.2 Portability

It is desirable that programming not be too closely tied to a particular processor instruction set.
First, due to the primitive nature of individual instructions, programs directly tied to an
instruction set are difficult to write, read, and understand. Second is the need for portable
execution—the ability of the program to execute on different processors—as discussed in Section
3.5. For this reason, software is developed using an abstract execution model, divorced from the
instruction set of a particular processor.

Portability of a given program means that full functionality is preserved when executing on
different computers and operating systems. This requires that a new platform be created that
appears uniform to our portable target program. Adding software to each operating system creates
such a new and uniform platform. This new platform, often called a virtual machine, creates
uniform ways to interact with operating system resources, input and output devices, and the
network. It also creates a uniform representation for programs across different computers,
enabling portable execution.

Particularly in the networked age, portability is an essential business requirement for many
applications (see Section 3.5).

3.2.3 Compilation and interpretation

The program format manipulated directly by the software developer is called source code. It is
written and read by people and also by various tools (programs performing useful functions
aiding the software development process). One such tool is an automatic translator to another
program format; the result of such an automatic transformation is called object code. The form of
object code that is directly executed on the target processor is called native code. It is not
necessary to directly translate from source to native code. Instead, a series of transformations can
be used to achieve that goal—these transformations can even be staged to happen at different
times and places [LL96].

Traditionally, a single transformation occurred either at the time of development (called
compilation) or immediately prior to execution (called interpretation). Compilation allows the
developer to transform the code once and deliver native code for one specific target processor.
Interpretation allows transformation on the fly, at the time of execution, by the target processor.
The primary distinction is that compiled object code can execute on a single target processor,
whereas interpretation allows code to be executed without modification on distinct targets28.
Portable execution can be achieved with multiple compilations, but requires a different software
distribution for each target processor. Interpretation allows portable execution with a single
software source distribution.

In a multi-stage translation, compilation and interpretation can be combined29 as in the Java
language30. This allows software to be distributed in a form that can execute on different targets,
but retains some of the advantages of compilation, such as better performance optimization. For
software that is executed multiple times on the same processor, interpretation incurs an
unnecessary performance penalty that can be avoided by using just-in-time compilation (JIT), in
which a compiler is invoked within the interpreter to compile some of the intermediate object
code to native code. This technology can include online optimization, which actually improves
the compilation by observing the local execution31. Current implementations of Java illustrate
this32 [Sun99, SOT00].

Interpretation and JIT compilation are important techniques to achieve execution portability.
Interpretation can be avoided entirely without losing portability by always applying install-time

 12

or JIT compilation, as is the case with the common language runtime of the Microsoft .NET
Framework. In a narrower definition of portability, interpretation and JIT compilation can also be
used by platform vendors to allow software designed for another target be run on their platform,
for example to allow Windows applications designed for a Pentium platform to execute on a
Digital Alpha platform33.

3.2.4 Trust in execution

An important issue is the implicit trust that a user places in an executing program [DFS98]. An
untrustworthy program could damage stored data, violate privacy, or do other bad things. This
places an additional consideration and burden on the choice of an intermediate object code
format. Two different models are currently in use. First, using cryptographic technology, a user
can verify that object code originated from a reputable software vendor, and further that it has not
been modified34. Second, at execution time, it can be verified that code is not behaving
maliciously and policies on what the code can and cannot do can be enforced35.

3.2.5 Operating system

An application program never comprises the totality of the software executing on a particular
computer. Rather, that program coexists with: an operating system36, which provides an abstract
execution environment serving to isolate the program from unnecessary details of the computer
hardware (e.g. the particulars of how data is stored on disk), hides the reality that multiple
programs are executing concurrently on the same computer (called multitasking), allocates
various shared resources (e.g. memory and processor cycles) to those programs, and provides
various useful services (e.g. network communications). The operating system is thus an essential
part of any platform, along with the hardware.

3.3 Software development process

The primary process of interest to software engineers is development. Programs today have
reached an order of size and complexity that warrants careful consideration of this process.
Physical limitations (such as processing power and storage capacity) are no longer a significant
limitation to what can be accomplished in software; rather, the most significant limitations relate
to managing complexity, the development process, and limited financial resources.

3.3.1 Waterfall model

Recall that the requirements value chain taps the end-user’s experience to ultimately define the
requirements of a given software development. This is augmented by the waterfall model of
development [Roy70], which defines a set of distinct phases, each adding value to the phase
before. Conceptualization and analysis develop a vision, a detailed plan for development in
sufficient detail to warrant investment, and a set of detailed requirements. Architecture and design
use a “divide and conquer” approach to break the overall system into pieces that can be realized
(somewhat) independently. These pieces can then be implemented and tested individually,
followed by integration of the modules (making them work together) and testing and evaluation
of the resulting functionality and performance.

Traditional development methods emphasized processes that start with end-user requirements and
end with deliverable software, but this picture is now largely irrelevant. Instead, most new
software results from a modification and update of existing software [Vac93]. Where the
produced software is monolithic, the asset that enables production of new software is the
established source base (the repertoire of source code available to and mastered by an
organization). Software components (see Section 6.5.2) are an alternative complementary to
maintaining source bases: instead of viewing source code as a collection of textual artifacts, it is

 13

viewed as a collection of units that separately yield components. Instead of arbitrarily modifying
and evolving an ever-growing source base, components are individually evolved and then
composed into a multitude of software products.

While the waterfall model is useful for identifying the distinct activities in development, it is
highly oversimplified in practice because it does not recognize the existing code base37, it does
not recognize that these phases are actually strongly overlapping, and because requirements are
rarely static throughout development.

3.3.2 Development tools

An additional source of value, because they greatly reduce the development time and cost, are
development tools38. These tools automate tasks that would otherwise be time consuming, and do
a number of other functions, such as keeping track of and merging changes. Sophisticated toolkits
are necessary for the management and long-term success of large projects involving hundreds or
thousands of software engineers.

3.3.3 Architecture

The notion of building software based on available assets can be moved to a more principled
approach. Instead of relying on developers to ‘discover’ that some available code or component
may be reused in new situations, software systems are designed such that they are related by
construction. The level of design that emphasizes such relationships is software architecture
[BCK98, Bos00]. Like tools, architecture plays an important role in containing the complexity of
the system, in this case by allowing the overall system to be composed of pieces developed
largely independently.

The primary role of architecture is to address system-wide properties by providing an overall
design framework for a family of software systems. Concrete designs then fit in by following the
architecture’s guidelines and complementing it with concrete local design decisions. If done
properly, architecture decomposes systems into well-identified pieces called modules, describes
their mutual dependencies and interactions, and specifies the parameters that determine the
architecture’s degrees of configurability. As illustrated in Figure 1, architecture has three facets:
the decomposition of the system into modules, the functionality of each module, and the
interaction among modules. Global system properties (a.k.a. system qualities), such as
performance, maintainability, extensibility, and usability, emerge from the concrete composition
of modules39 [CSA98].

Functionality

Decomposition

Interaction

Figure 1. An illustration of a simple software architecture.

 14

"Modular" is a term describing architectures that have desirable properties from the perspectives
of supporting a good development methodology and containing complexity [Par72, Bak79,
Jun99]. One key property is strong cohesion (strong internal dependencies within modules) and
weak coupling (weak dependencies across module boundaries). Other desirable properties of
modular architectures have become accepted over time40.

As illustrated in Figure 2, modular architectures are usually constructed hierarchically, with
modules themselves composed of finer-grain modules. This enables the same system to be
viewed at different granularities, addressing the tension between a coarse-grain view (relatively
few modules to understand) and a fine-grain view (small modules that are easy to implement). Of
course, the cohesion of modules is inevitably stronger at the bottom of the hierarchy than at the
top41.

Coarser grain: few
modules are easier to
understand

Finer grain:
small modules
are easier to
implement

Figure 2. An illustration of hierarchical decomposition.

Software architecture has interesting parallels in the design of human organizations [Lan00,
Lan92, Bal97, San96]. The principles of modularity can be applied there as well.

3.3.4 Interfaces and APIs

The interaction among modules focuses on interfaces. The module interface tells, roughly
speaking, how other modules are to ‘use’ this module. More precisely, an interface specifies a
collection of atomic42 actions (with associated data parameters and data returns) and protocols
(compositions of actions required to accomplish specific ends). Multiple protocols may share a
given action.

The second purpose of the interface is to inform the module developer as to what must be
implemented. Each action is implemented as an operation on internal data, and often requires
invoking actions on other modules. Importantly, an interface is designed to hide irrelevant
internal implementation details so that the latter can be freely changed without other modules
becoming dependent on them43. The encapsulation of implementation details precludes bypassing
the interface and creating unnecessary (even inadvertent) dependencies44.

An interface meant to accept a broad and open class of extensions—modules that are added later,
following deployment—is called an application-programming interface (API)45.

3.3.5 Achieving composability

There are two distinct approaches to modular software development. In decomposition, modules
are defined in response to the required system functionality, and in composition, that functionality
is achieved by composing pre-existing modules. Composition is the focus of component software,
discussed in Section 6.5.

 15

Architecture and development focus on defining and implementing modules that can later be
composed (see Section 2.8). The additional functionality that arises from composition, called
emergence46, is a source of value in the development stage of the supply chain. While critically
important, composability is actually difficult to achieve, although it is considerably easier for top-
down decomposition than for bottom-up composition. It requires two properties: interoperability
and complementarity.

For two modules to communicate in a meaningful way, three requirements must be met. First,
some communication infrastructure must enable the physical transfer of bits47. Second, the two
modules need to agree on a protocol that can be used to request communication, signal
completion, and so on. Finally, the actual messages communicated must be encoded in a mutually
understood way. Modules meeting these three requirements are said to be interoperable.

Mere interoperability says nothing about the meaningfulness of communication. To enable useful
communication, the modules need to complement each other in terms of what functions and
capabilities they provide and how they provide them. (An example of non-complementarity is the
failure of a facsimile machine and a telephone answering machine to cooperate to do anything
useful, even though they can interoperate by communicating over the telephone network48.)
Modules that are interoperable and complementary (with respect to some specific opportunity)
are said to be composable (with respect to that opportunity). Composable modules offer
additional value since the composed whole offers more functionality and capability than its
pieces. The Web browser and server offer a rich example of interoperability49, complementarity50,
and composability51. Usability (see Section 2.5) can be considered a form of composability of the
user with the software application.

3.4 Software as a plan and factory

The question arises as to the character of software as a good. Is it similar to information goods in
the “new economy”, or material goods in the “industrial economy”? We have pointed out that the
demand for software differs from information in that it is valued for what it does, rather than how
it informs52. Many goods in the material world are valued for what they do (e.g. the automobile,
which takes us places), so, the question arises: Is software perhaps closer in its characteristics to
many material products (traditional engineering artifacts) than to information? From the
perspective of the user, on the demand side, it is53. However, in terms of its development, the
supply-side, one property sets it far apart.

If a software program were analogous to a material product or machine, we could view it as a
predefined set of modules (analogous to the parts of a material machine) interacting to achieve a
higher purpose (like the interworking of parts in a machine). If this were accurate, it should be
possible, to a greater extent than is realized today, to construct software from standard, reusable
parts—the “industrial revolution of software”.

This view is incorrect. In fact, the set of interacting modules in an executing program is not pre-
defined. During execution, a large set of modules are created dynamically and opportunistically
based on the particular needs that can be identified only at that time. An example would be a
word processor, which often creates literally millions of modules at execution time tied to the
specific content of the document being processed54. The programmers provide the set of available
modules, and also specify a detailed plan by which modules are created dynamically at execution
time55 and interact to achieve higher purposes.

Programming is analogous to creating a plan for a very flexible factory in the industrial economy.
At execution, programs are universal factories that, by following specific plans, manufacture an
extremely wide variety of immaterial artifacts on demand and then compose them to achieve
higher purposes. Therefore, a program—the product of development—is not comparable to a
hardware product, but rather more like a factory for hardware components, and one that is highly

 16

flexible at that. The supply of raw materials of such a factory corresponds to the reusable
resources of information technology: instruction cycles, storage capacity, and communication
bandwidth.

In short, software products are most closely analogous to a plan for a very flexible factory on the
supply side, and to a material product (created by that factory) on the demand side. The plan is a
form of information—and one that shares many characteristics of information like high creation
costs and low reproduction costs—but it informs the factory (executing program) rather than the
consumer.

Other engineering disciplines are similarly struggling when aiming at methods to systematically
create new factories, especially flexible ones [Upt92]. The common belief that software
engineering has yet to catch up with more mature engineering disciplines is thus exaggerated.

3.5 Impact of the network

The spectacular success of the Internet has had a dramatic impact on software. It enables
distributed applications composed of modules executing on different computers interacting over
the network. Distributed applications that can execute across heterogeneous platforms serve a
larger universe of users, and due to network effects offer greater value56. While portability was
useful before, because it increased the available market size for software vendors, it becomes
much more compelling in the networked world. The network also makes interoperability more
challenging, because interacting modules are more likely to come from different vendors, or to be
executing in heterogeneous administrative environments (like across organizational boundaries)
with less opportunity for coordinated decision-making.

The network offers another major opportunity: Software programs can be transported over the
network just like information, since they can be represented by data. This offers an attractive
distribution channel, with low cost and delay57.

Traditionally software is semi-permanently installed on each computer, available to be executed
as needed. The idea with mobile code is to opportunistically transport a program to a computer
and execute it there, ideally transparently to the user58. By eliminating pre-installation of
software, mobile code can help overcome network effects by transporting and executing
applications all in a single step, avoiding the need for pre-installation and the difficulty in
achieving interoperability between different releases of a given program. Mobile code can also
move execution to the most advantageous place; e.g. near the user (enhancing responsiveness) or
where there are available resources59.

While mobile code enables the opportunistic distribution of code, in some circumstances it is
necessary for a program to actually move between processors during the course of its execution.
This is called a mobile agent, and requires that the program carry its data60 as well as code with it.
Mobile agents have applications in information access and negotiation, but also pose challenging
security and privacy challenges.

The multi-stage translation described in Section 3.2 is important for networked software
distribution and mobile code. As discussed later, it is rarely appropriate for business reasons to
distribute source code, and native object code is problematic on the network because of the
heterogeneous platforms (although standard for “shrink-wrapped” software products). Hence, an
intermediate form of object code becomes the appropriate target for software distribution, relying
on compatible interpreters on each platform61.

3.6 Standardization

An open industry standard is a commonly agreed, well-documented, and freely available set of
specifications, accompanied by no intellectual property restrictions (or possibly restrictions that

 17

are not burdensome and are uniform for all). (The opposite case would be proprietary
specifications not made available to other vendors.) Especially as a means of achieving
interoperability over the network, where software from different vendors must be composed,
complicated by heterogeneous platforms, standards become an essential enabler62. Thus,
standards processes become an essential part of the collective development activities in the
networked software industry [Dav90]. In addition, users and managers encourage open standards
because they allow mixing and matching of different products, encouraging both competition and
specialization of industry, with advantages in availability, cost and quality.

As applied to interfaces, the purpose is to allow modules implemented by different software
vendors to interoperate. The first step in any standards effort is to define the decomposition of the
overall system into typical modules: this is called a reference model63. A reference model is a
partial software architecture, covering only aspects relevant to the standard64. The standards
process can then specify the functionality and interfaces of the modules, insuring composability65.
Another common target of standards is the data representation for common types of information,
such as documents (e.g. HTML used in the Web and MPEG for video). De facto standards, which
arise through market forces rather than any formal process, are interfaces or data representations
that are widely used66.

Standards also address a serious problem in software engineering. In principle, a new interface
could be designed whenever any two modules need to compose67. However, the number of
different interfaces has to be limited to reduce development and maintenance costs. Besides this
combinatorial problem, there is the open world problem. The open world assumption in systems
allows new modules to be added that weren’t known or in existence when the base system was
created. It is not only impractical but also clearly impossible to have a complete set of special-
case or proprietary interfaces that connect a full range of modules that may arise over time.

Interfaces, the functionality related to these interfaces, the preferred decomposition of systems
into extensions, and the representations used for data crossing the interfaces all need to be
standardized to enable interoperability. For needs that are well understood and can be anticipated
by standardization bodies (such as industrial consortia or governmental standardization
institutions) standards can be forged in advance of needs and then implemented by multiple
vendors. This approach has had a tendency to fail outright or to be too slow and cumbersome
when the attempted standardization was simultaneously exploring new territory. This has led to
new standardizations processes well integrated with a research endeavor, such as the Internet
Engineering Task Force (IETF)68.

An approach to standardization called layering allows standards to be built incrementally and
enhanced over time, rather than defined all at once69 (the IETF follows this approach). The first
layer, called wiring or plumbing standards, is concerned with simple connection-level standards.
As with other types of wiring or plumbing, it is entirely feasible to establish connections at this
level that are meaningless (or even harmful) during composition. Standardization can then be
extended one layer at a time, establishing ever-richer rules of interoperation and composability.

4 Managerial perspective

Software presents severe management challenges, some of them relating directly to the software,
and some relating to the organizational context of the software application.

The supplier value chain from software vendor to user has four primary stages, as listed in the
rows of Table 2: development, provisioning, operation, and use70. Each of these roles presents
management challenges, and each adds value and thus presents business opportunity as discussed
in Section 6. The development stage involves not only initial design and implementation (as
described in Section 3.3), but also the ongoing maintenance and upgrade of the software. In the

 18

provisioning stage, the facilities (network, servers, PC’s) are purchased and deployed, depending
in large part on performance requirements, and the software is installed, integrated, and tested. At
the operations stage, an application and its supporting infrastructure is kept running reliably and
securely. At the use stage, the application functionality provides direct value to users and end-
user organizations (as discussed in Section 2).

Table 2. Stages of the supplier value chain (rows) vs. generic tasks (columns).

 Planning Deployment Facilitation Maintenance Evolution

D
ev

el
op

m
en

t

Functional and
performance
requirements

Build systems
Software tools
support

Defects repair,
performance
tuning

Tracking
requirements,
upgrade

P
ro

vi
si

on
in

g

Organizational
design,
performance
requirements

Installation,
integration,
configuration,
and testing

Procurement,
finance

Installation,
integration,
configuration,
and testing

O
pe

ra
ti

on

Systems
administration

Patching

U
se

Organization
Organizational
adjustments,
training

Help and trouble
desk

Organization and
training

4.1 Four value chains

There are two distinct types of software, and hence in reality two supplier value chains.
Application software provides specific functionality meeting the needs of end users, and
infrastructure provides generic capabilities subsumed by many applications. The infrastructure
includes both hardware (computers, peripherals, and communications links and switches) and
software71. Examples of the latter are the operating system and a general category called
middleware (discussed later). Infrastructure does not provide direct value to the user, but is
essential to the operation of an application.

 19

Development Provisioning Operation

Development Provisioning Operation

Use

Application

Infrastructure

Analysis

Figure 3. Three value chains in the software industry.

Considering the separation of application from infrastructure, there are two supplier value chains
and one of the two requirements value chains, as illustrated in Figure 3. The development,
provisioning, and operation of infrastructure adds value indirectly by enabling applications, as
well as making them easier to develop, provision, and operate. The development, provisioning,
and operation of the application provide direct value to the user. The requirements chain from the
user adds value to the application development by defining appropriate requirements that better
meet user needs. User requirements have no direct relevance to the infrastructure, which is
designed to serve many applications. However, the collective needs of many applications form a
second requirements value chain (not shown).72.

4.2 The stages of the supply value chain

The columns of Table 2 show some generic issues that require management attention, and the
cells in the table list specific roles for each stage in the value chain that contribute to resolving
these issues. In many cases these roles correspond to specific job functions, with specialized
training and skills. The four stages in the supply value chain are now discussed in greater detail.

4.2.1 Development

The responsibilities of a software developer continue throughout the product’s lifecycle, that is,
as long as the software is supported. Other players at all stages require support, answering
inquiries and assisting with the location of problems or its successful use. An ongoing
maintenance role (in the form of service packs or patches) is the fixing of reported flaws. Also,
all software requires upgrades, (in the form of periodic releases) with often extensive re-
programming, to fix flaws, and meet changing requirements or add new features.

4.2.2 Provisioning

Provisioning includes the selection, negotiation, and purchase (or other arrangements, such as
licensing, leasing, or subscription) of all the facilities (equipment and communication links) and
software required to execute an application and its supporting infrastructure. Often this involves a
design element: the sizing of the facilities to meet the performance needs of the users73.
Provisioning also includes the actual installation and testing of the resulting equipment and
software, with acceptance criteria based on functionality and performance criteria. Often the
communication and information processing (processing and storage) portions of the facilities
have separate provisioning processes. Either or both of these elements may be outsourced to a
firm providing this as a service called systems integration.

 20

4.2.3 Operations

The daily operation of most software systems requires some degree of attention. For example,
with organizational and personnel changes, authorization levels need to be adjusted. Security is
another issue that requires vigilant attention, and patches fixing security holes or flaws must be
installed. Together, these functions are called system administration. In addition, the facilities
need to be adjusted and reconfigured to meet changing organizational needs and changing
distributions of workload. This is called system management, and in a sense is an extension of the
provisioning phase. Together administration and management are critical factors that determine to
a significant degree an application’s effectiveness and efficiency.

4.2.4 Use

End-user organizations perform a number of important support functions for individuals using
applications74. During the planning, important issues revolve around business processes and
organizations that use the application. In the planning stage, an important issue is whether to
develop a custom application (thus molding it more closely to business processes) or a common
off-the-shelf (COTS) application (requiring changes to match the assumptions incorporated in the
design). The vendors of COTS applications try to make them as configurable and parameterizable
as possible75, providing greater flexibility but also necessitating considerable effort in the
provisioning phase76.

Preparatory to the operations phase, the training of workers to properly use the application as well
as execute other elements of the business process is critical. During operations, an organization
must also provide help to its users, and provide a point of contact for problems (commonly called
a ‘helpdesk’).

4.3 Total cost of ownership

An important consideration to managers is the total cost of ownership (TCO) of an application.
This includes the cost of provisioning, operations, and user support. In addition, it may include
development and maintenance costs for an application developed and maintained internally. In
cases where users must perform administrative functions (like administrating their own desktop
computers) or provide training of or help to other users, the imputed costs of these responsibilities
should be included in the TCO.

As the TCO has become an appreciable part of a typical organization’s budget, reducing the TCO
has become a significant issue to managers and suppliers. The quest to lower the TCO has
resulted in pressure on vendors to provide streamlined administration and management of
applications and infrastructure, as well as improved usability with simplified training and help
requirements. The observation that considerable costs result from the administration of desktop
computers (including by users as well as systems administrators) has resulted in a trend toward
greater centralization. In particular, moving the points of administration and management from
desktop computers (called clients) to centralized computers (called servers) where, at minimum,
fewer computers need be administered and managed, can reduce costs. In a sense, this harks back
to the days of centralized mainframes77, albeit with considerable differences78. An extreme case is
thin clients, where the desktop computer executes no application specific code except that which
can be dynamically loaded as mobile code. An alternative is rich clients (rich in local
customizability and functionality) supported by improved centralized administration and
management mechanisms. Most organizations deploy a mixture of thin and rich clients, reflecting
the varying job profiles supported by the client systems.

 21

5 Legal perspective

The legal system plays an important role in establishing and enforcing property rights for
software. Increasingly, government regulation is contemplated to address issues surrounding
software, such as privacy, control over access (particularly for children), and controls over the use
of encryption79.

5.1 Copyright

Like information, exact replicas of software are easily created, and these replicas are non-rival in
use. This easy replication makes unauthorized copying and distribution trivial. Security schemes
to discourage this also inhibit usability and thus encounter strong customer resistance. Only social
constructs such as established ethics, legal restrictions and active law enforcement can prevent
piracy—large-scale unauthorized manufacture and sale of software—and, it is argued, encourage
substantial investments in the creation of software80.

The copyright protects an original creation of software by granting the creator exclusive control
(including the right to sell or license) of the work and precluding others from appropriating,
replicating, and selling the software without permission. It does not prevent others from
independently developing a similar work based on the same ideas or intended purposes. The
original developer can also maintain control over derivative works, such as new releases.

Software is normally licensed to whoever provisions and operates it. The license can contain
arbitrary terms and conditions on use, payment, and dissemination—including timing and size of
payments. Because the replication (analogous to manufacturing) costs are low, some unusual
licensing terms become economically viable. Freeware involves no payment and allows the user
to replicate and distribute the software freely. Shareware is provided for free, but a voluntary
payment is requested if the user puts the software to productive use81. Copyleft encourages
derivative works, but requires that they themselves be freeware or copyleft.

Copyrights can protect the property rights of either source or object code, but it is almost always
object code that is distributed and licensed. Object code places an additional obstacle to reverse
engineering to uncover trade secrets (proprietary ideas or methods)82. Most important, object code
is much more difficult to modify—which is important because customer modifications would
effectively invalidate warranties and preclude customer support83. Distributing object code also
contributes to the encapsulation of implementation details, avoiding unnecessary dependencies in
any composition with other software.

Open source is a form of freeware in which source rather than object code is released84.
Associated with open source is usually an informal (but coordinated) group of dedicated
volunteers who maintain and upgrade it.

5.2 Patents

A patent grants limited-term exclusive rights to make, use, or sell products incorporating an
invention (roughly, a novel, non-obvious, and practically useful idea). Unlike the copyright, the
patent owner can preclude others from using an invention, even if they discover it independently.
Patents have only recently been applicable to software85. Patents have also recently been
permitted on business processes, which often underlie software applications86.

An invention is implicitly divulged as it is used—or at least the possibilities are revealed—and it
is non-rival in use, making it easily appropriated and a poor investment without appropriate
property rights. Patents encourage investment in research and development by promising a period
of exclusivity, but also publicize inventions (rather than keep them a trade secret), allowing others
to improve upon them even if they are not used.

 22

6 Ownership perspective

The organization of the software industry depends strongly on technology, processes, and value.
This organization of the marketplace into cooperating and competing firms is essentially an issue
of ownership coupled with appropriate business relationships. Ownership and the right to derive
monetary value provide the incentives to produce software87; an industrial and societal
organization that honors these rights is thus key to effective production. Software architecture is
strongly influenced by industrial organization, and vice versa, as the only practical boundaries of
individual firms correspond to well-specified module interfaces. As for process and value, the
stages of the value chain as defined in Section 4 form natural business functions with separate
ownership, sometimes broken down further into specific job functions. Of course, these functions
can also be bundled together as combined businesses.

6.1 Industrial organization

Since companies tend to form around individual units of value that enhance internal synergies and
exploit common expertise, industrial organization [Rob95, Lan92] can be thought of as a
partitioning of the value chain into distinct companies. In these terms, there are natural businesses
formed by partitioning of the value chain of Figure 3 as illustrated in Figure 4.

The application software supplier typically bundles the analysis and development functions,
working closely with the end-user organization to define requirements. Similarly, the
infrastructure software supplier must be cognizant of the requirements imposed by a wide range
of applications.

The system integrator specializes in provisioning. This role takes responsibility for acquiring
software from both application and infrastructure suppliers (usually more than one), does
whatever is necessary to make it work together, and installs and tests the software88. Some
programming is typically involved as well89. Another role in provisioning is the consultant, who
helps the end-user organization rework the organization and business processes around the
software, and often helps configure the software to the needs of the particular end-user.

Operation is the specialty of a service provider. An application service provider (ASP) licenses
and operates the application, while an infrastructure service provider (ISP90) purchases or
licenses and operates the hardware and software infrastructure (computers, storage, network,
operating system, etc.).

Of course, different partitions of the value chain are possible. A common bundling is an end-user
organization that performs one or both91 the service provider functions internally in an
information systems (IS) department. A large organization may even develop at least some of its
own applications, and serve as its own systems integrator. Other common bundles are an ISP that
handles its own systems integration, and a service provider that operates both application and
infrastructure92. The ISP function is often fragmented into two or more companies (e.g. separate
backbone network and processing and storage service providers) or between the end-user
organization and a service provider (e.g. internal application hosting and networking but a
separate backbone network provider). A software developer may also become an ASP, effectively
changing its business relationship with the end-user from one of licensing object code to
providing application services by subscription.

 23

System
integrator

Application
software supplier

Infrastructure
software supplier

Application
service provider

(ASP)

Infrastructure
service provider

(ISP)

End-user
organization

Figure 4. Natural businesses partitioning of the value chain.

Not shown in Figure 4 is the information content supplier. One focus of applications is the
manipulation and presentation of information to the user, and this information may come from an
independent source (e.g. a stock analyst that discloses company prospects to the users of a stock
brokerage application).

Increasingly, the industry is evolving toward more complex industrial organizations in which
applications are composed from two or more unbundled modules, which interoperate using the
network. An example is Web services, where one Web-based application serving a user directly
incorporates capabilities from another, using the Web infrastructure. In this case, the ‘customer’
of the latter is another piece of software, rather than the end-user. Alternatively, the first can be
considered in part an intermediary on behalf of the user and the second, often adding value (by
measures such as customization, aggregation, filtering, and consolidation).

6.2 Business relationships

Whatever the industrial organization, there are many possible business relationships among the
participating firms. A selection of important issues is now discussed.

6.2.1 Types of customers

Today, virtually every organization, and a large percentage of individual citizens, are customers
of software vendors or are themselves software developers. Users come in four distinct
categories: Individuals license applications for their own purposes, such as personal productivity,
collaboration, information access, and entertainment. Organizations license, purchase, or develop
internally applications that support their internal business and external business relationships.
Original equipment manufacturers (OEMs) embed software within equipment that they
manufacture and sell93. Finally, the ‘customer’ of a piece of software can be another software
application, as in Web services.

 24

6.2.2 Software distribution

There are several ways to get software to a customer. As explained in Section 5.1, software is
normally distributed as object code. That object code is represented in a binary alphabet, and can
be distributed on magnetic or optical media or over a network.

The network as a distribution channel for software is increasingly important. It is inexpensive,
especially when used to bypass the normal distribution chain, and timely. These properties make
it valuable for the frequent distribution of maintenance and new releases, giving greater freedom
to change applications with less fear of incompatibilities94. However, intermediaries remain
useful in the distribution chain, particularly where there are large numbers of alternative suppliers
to consider, or where the integration and bundling of different products is needed.

What has to happen before a customer can execute software? There are at least four possibilities:
First, the software may have been embedded (pre-installed) in a piece of equipment before that
equipment is distributed. Such equipment, when sold to an end-user, is called an appliance.
Second, the customer may have to install the software herself, which requires conspicuous action
(this is user self-provisioning). Third, the software may download over the network and simply
execute without an installation step. This is called mobile code. Fourth, the customer may simply
use software executing remotely, which is operated by an ASP. From the customer perspective,
these options are similar, with the exception of the second95.

For user-installed or mobile software, a traditional business model of productization and
marketing is appropriate. For embedded and ASP/ISP-operated software, the OEM or service
provider acquires and provisions the software96. The key difference to the supplier is one of scale
and sophistication: a small number of sophisticated OEMs or service providers as opposed to a
large number of end-users. The decision process is also different: with an OEM or service
provider or mobile code, a third party makes decisions on behalf of the end-user to install a new
version or move to a competitive offering.

Mixtures of these distribution models are common. Appliances may fetch automatically installed
upgrades over the network. An ASP may use mobile code to move a portion of the execution
closer to the end user, thereby improving interactivity97. Similarly an ASP may require a
complementary user-installed piece of software.

6.2.3 Software pricing

There are many alternatives and issues in designing pricing models (see Section 7.3). However,
there are also fairly standard practices observed in the industry today, and they differ across
distribution models. User-installed software is usually sold for a fixed price like traditional
products. This places a premium on selling new releases to maintain a steady revenue stream,
especially after a high penetration is reached98. This also makes its own installed base the main
source of competition for the supplier.

OEM or service-provider models place an intermediary in the value chain, requiring two pricing
strategies (software supplier to intermediary, and intermediary to end-user). From the perspective
of the software supplier, a common approach is to approximate the user-installed pricing model
by basing the price on the rate of end-user adoption (such as a fixed price per appliance sold, or
proportional to the number of customers an ASP attracts)99. Other possibilities are opened up in
the ASP case by the relative ease of metering other metrics of usage, such as the total number of
transactions completed.

ASP pricing to an end user may use models commonly found in traditional service industries.
Three dominant models are subscription, pay-per-use, and cross-subsidy. A subscription offers
the service for capacity-limited or unlimited use over a contracted time period. Pay-per-use
requires metering and billing on a per-use basis100. Cross-subsidy recovers the cost of providing a

 25

service (possibly incurring a loss or a profit margin) by attaching to a technically unrelated
model, such as advertising or bundling with another paid service.

Another example of a distribution and payment model is the superdistribution [Cox96], which
encourages anyone to further distribute software modules they find useful, with a mechanism and
infrastructure for payments (typically based on metering and usage) to flow to the owner101.

6.2.4 Acquiring applications

An end-user organization that is acquiring software for internal purposes has several options.
Generally, these can be summarized as make, buy, license, and subscribe. Each has its advantages
and disadvantages.

In the make option, all four stages (development through use) are kept in-house. This has the
greatest potential for competitive differentiation, but offers no potential to amortize costs over
multiple end-users, and invokes considerable delay and risk102. The buy option is to outsource
development to a firm specializing in such developments. In this case, the source code may
become the property of the end-user organization, and ongoing maintenance and upgrade may be
the responsibility of the developer or user. Both options offer the opportunity to mold business
processes, organizations, and the software as a unit, gaining efficiency and competitive
advantage.

In the license option, an end-user licenses a software product from a software supplier. Finally, in
the subscription option, the application services are purchased directly from an ASP. These are
generally low-cost options, but offer little opportunity to differentiate from competitors. In both
cases, the software largely defines business processes and organizations, and a consultant is
frequently engaged to assist in making needed changes to processes and organizations103.

6.2.5 Acquiring infrastructure

Sometimes, application software that becomes both ubiquitous and frequently composed into
other applications effectively moves into the infrastructure category. For example, the Web was
originally conceived as an information access application for scholarly communities [W3C95],
but has evolved into an infrastructure supporting e-commerce and other applications. Another
example is productivity application suites that today are commonly used as infrastructure for
custom applications that require core functionality such as word processing or spreadsheets. In
other cases, infrastructure is explicitly developed, either for a particular class of applications or
for all applications.

An important distinction can be made between infrastructure that is a platform and infrastructure
that is specialized to serve some applications. Different supplier firms tend to specialize in
different types of infrastructure, and different business models apply. Some infrastructure is
provided solely to simplify and reduce the cost of application development, and such
infrastructure may be bundled with an application and licensed as a unit. In this case, the effect is
to subsidize the infrastructure development cost with income generated by applications. This still
relies on platform support to avoid repeated redundant or even conflicting installation of
infrastructure software.

Since a platform must pre-exist any deployed application, and supports many applications, and
because it is usually a massive undertaking, it is sold separately. This way, it can be licensed and
installed only once. More importantly, separate applications often must be composed for higher-
level functionality, like information sharing. One important value added (and economic
underpinning) of a platform is interoperability among applications, which would not be possible
if each application was bundled with its own infrastructure.

 26

Infrastructure is rarely made or bought, but can be licensed or subscribed. Wide-area networking
and communication services in particular are subscribed, because it is largely impractical for end-
user organizations to provision their own communication lines and because a public network
offers a richness of connectivity that would be impractical to match with dedicated facilities.

Consistent with the rising popularity of application subscription, there are indications that
infrastructure offerings by subscription will grow in both richness and in popularity. An early
example is caching, which improves the performance of information distribution by locating
temporary storage of information nearer to end-users accessing that information104.

6.3 Vertical heterogeneity

Like other industries, software has both vertical and horizontal heterogeneity that impacts the
industry structure and the nature of business relationships. The vertical heterogeneity creates
dependencies and complementarities among different types of firms. For example, application
software has a vertical relationship to infrastructure software—it is dependent upon it105. Such
dependencies also arise within the infrastructure—in software, this is called layering and is
related to the layering of standards discussed in Section 3.6.

Layering is a specific architecture in which modules share a vertical relationship: Each layer is
dependent on the layers below106. The layers are thereby complementary, and all layers are
necessary to support an application. An example of infrastructure layering is shown in Figure 5.
Lower layers are specific to the technology component (processing, storage, and connectivity),
and provide common representations (how information elements are represented by bits107) and
services (standard functions performed by the infrastructure108). Above this are integrative layers
that bring together the services of the constituent technologies in useful ways109. Finally, on top
lie the application components (discussed later) and applications themselves.

Applications

Integrative services

Processing Storage Connectivity

Application components

Generic services

Common representations

Figure 5. Internal software architecture.

It is desirable for a diverse set of applications to co-exist with a diverse set of core
technologies110, so that free market entry and innovation can be maintained in both applications
and core technology with minimal dependence of the two. The key idea embodied by the middle
infrastructure layers is, as illustrated in Figure 6, to define a set of common and universal

 27

representations and services. The applications speak to these common elements, which can be re-
implemented for each new technology111.

Diversity of applications

Diversity of processing, storage, and
connectivity technologies

Common services and
representations
and structures for
information

Figure 6. A separation of technological progress from applications.

The modern goal of each and every layer is to provide representations and services that are
sufficiently general and configurable that they form a platform suitable for a wide variety of
applications. This is a relatively new goal, and has not been totally achieved as yet. Formerly, the
industry formed vertical stovepipes112 for narrower classes of applications (e.g. separate
infrastructures for voice, data, and video distribution) [Bro98]. This old model proved unsuitable
for stimulating a diversity of applications, because of the necessary investment in an entirely new
infrastructure for each new class of application113.

The transition from stovepipes to layers has profound implications for industry structure. While
stovepipes like the mainframe, UNIX server, PC, and telephone networks resulted in largely
independent marketplaces, suddenly companies must adapt to a world in which they support all
applications. Specialization tends to occur at the individual layers, rather than being associated
with narrower classes of applications. This moves away from vertical integration and towards
horizontal integration, and no single company can provide a complete integrated solution to the
customer. Competition forms at the individual layers, and customers (or a system integrator or
intermediary) must integrate products together for a complete solution.

6.4 Horizontal heterogeneity

The ideal of a set of homogeneous infrastructure layers is not quite reality because of attempts of
suppliers to differentiate themselves and other practical difficulties. The more severe difficulty
results from networking: Distributed applications are partitioned and deployed to multiple hosts
across the network. This introduces some significant operational challenges, and affects business
relationships.

6.4.1 Multiple platforms

As a result of historical trends and industry competition, there is horizontal heterogeneity in the
platforms. For example, a number of operating system and processor platforms (e.g. the IBM
mainframe, SUN/Solaris, Macintosh, and PC/Windows) coexist. Post Internet, there is need for
applications to execute across different platforms. This puts a premium on portability and
mobility of code, with some technical solutions arising as discussed in Section 3.5. Similar issues
arise in storage and networking. There are several flavors of object relational databases
competing in the marketplace, but a strong impetus to define unifying standards. The Internet
technologies are evolving to accommodate a wider range of applications (e.g. high-quality voice
and video), perhaps eventually displacing the stovepipe telephone and video distribution
networks.

 28

6.4.2 Shared responsibility

At the application layer there is heterogeneity introduced by the necessary partitioning of the
application across hosts and across multiple organizations.

Many distributed applications involve two or more end-user organizations (e.g. supply chain
management and business-to-business e-commerce more generally). This means that all the roles
discussed earlier (such as planning, deployment, provisioning, operation) may be a shared
responsibility. In addition, such applications must typically compose with legacy applications
within these organizations. The shared ownership and operational control introduces many
practical difficulties.

Since coordinated decision making on issues like what platform to adopt is impractical114, other
approaches are necessary. One approach is to define common standards, and then to introduce
appropriate conversions to maintain interoperability with different platforms and legacy
applications115 (e.g., XML as a common representation for business documents of all types).
Another approach is an intermediary, who takes responsibility for the interoperability with each
of the organizations (e.g., the common business-to-business e-commerce intermediary being
formed by the automotive industry [Cov00]).

There are many other issues in shared responsibility other than format and protocol conversions.
Complications arise in all aspects of provisioning and operations.

6.4.3 Distributed partitioning

If an application is distributed over hosts, the issue arises as to how to partition it and why.
Merely distributing an application does not by itself enable additional functionality –anything that
can be done in a distributed environment can also be done centrally. There are nevertheless some
compelling reasons for networking an application: First, the performance and scalability of an
application may be improved when multiple hosts execute concurrently. Second, a centralized
application must be administered centrally, whereas the administration and control of a
distributed application can be partitioned. This is crucial for applications that span organizational
boundaries where close coordination is not feasible. An example is business-to-business e-
commerce, where an application may run across many organizations. Third, the security of an
application is affected by its distribution. For example, if an application must access critical data
assets of two organizations, each can exercise tighter control if each maintains control over its
own data. Similarly, distributed data management can address privacy and ownership issues.

6.5 An industrial revolution?

The previous picture of separate software developers is a considerable simplification of reality.
As mentioned earlier, most new software is constructed on a base of existing software. There are
two cases to consider. Most of the time, development focuses on modifying and extending an
existing code base, for example a new release of an existing application. Another case is where
units of software design are specifically conceived to be reusable in multiple software
developments116. Of course, a platform has this property of reusability, but the reuse idea can be
extended to applications [Fra90, Gaf89].

Reuse has many attractions. A major one is the amortization of cost over multiple uses117, and
another is the reduced development time. Reusable software is also higher quality, because
software used in different contexts and used more will have more effective "testing and repair by
trial".

The reuse of software is analogous to the idea of standard interchangeable parts in the industrial
revolution. Can software make a similar transition from handcrafted and individualized products
to the composition of reusable elements licensed from elsewhere, as in the material world? Could

 29

it even move to the self-composition by users, who are then able to customize an application to
their individual needs? While this has happened to some extent, and is clearly a goal for the
future, this “industrial revolution in software” is much more difficult than in the material world.

Reusability can focus on two levels of design: architecture and individual modules. In software,
the former is called a framework, and the latter a component. In both cases, the target of reuse is a
narrowed range of applications118, not all applications, since by definition infrastructure software
targets reuse opportunities in the latter case.

Superdistribution [Cox96] is an example of how reusable components can be distributed quickly
and widely while retaining economic incentives for the owner. Cox asserts that this helps curb
complexity; as money is saved by using fewer components and thus it is economically favored to
engineer streamlined lower-complexity solutions.

6.5.1 Frameworks

A framework is essentially an architecture that is reusable for multiple applications119. Thus, in
essence it is a pre-plan for the decomposition of an application, including interface specifications.
A framework can be customized by substituting different functionality in constituent modules,
and extended by adding additional modules through defined gateways. Due to the wide variation
in application requirements, the scope of a framework is necessarily limited: No single
architecture will be suitable for a wide range of applications.

6.5.2 Components

One form of reuse is sharing, as happens with the infrastructure120. Another form of reuse is to
incorporate preexisting modules into a software development. Roughly speaking, software
components [Szy98] are reusable modules suitable for composition into multiple applications.
Although the software community has seen many technologies, methodologies, and processes
aimed at reuse, the consensus today is that component software is the most promising approach.

A component is designed to have minimal context dependencies. Instead of assuming many other
modules to be present, a component provides connection points that allow it to be configured for
a particular context121. Components can retain their identifiable individuality in a deployed
application, allowing the application to be updated and extended by replacing or adding
components. In contrast, current applications deploy a collection of executable or dynamically
loadable modules that have configuration and context details “hard-wired in” and cannot be
updated without being replaced as a whole.

Component-based architectures should be modular, particularly with respect to weak coupling of
components, which eases their independent development and composability. Strong cohesion
within components is less important, as components can themselves be hierarchically
decomposed for purposes of implementation122.

 30

Diversity of
applications

Diversity of processing,
storage, and connectivity
technologies

Common services,
representations and
structures for information

Component Frameworks

… …Components

Figure 7. Component frameworks to separate dimensions of evolution.

While component-based systems are necessarily modular, components are reusable in different
contexts, which is not a requirement of all modules. Component-based systems are much more
difficult to design than modular ones. By relaxing the contextual assumptions a component can
rely on, degrees of freedom are opened that lead to a potentially vast and open combinatorial
space. Even theoretically, the set of possible configurations cannot be bounded, as the set of
components is open and growing. Retaining quality under such conditions is a significant
challenge that has yet to be fully addressed. Consequently, the market for software components
started budding only around the mid 90’s. The dominating practice still is more a craft (acquiring
almost-right modules and modifying them to fit) rather than engineering (acquiring components
designed to fit without modification in the context of a reference model).

The act of choosing, configuring and composing components is called component assembly.
Constructing an application from components by configuring them all against one another, called
a peer-to-peer architecture, does not scale beyond simple configurations because of the
combinatorial explosion of created dependencies, all of which may need to be managed during
the application evolution. A component framework can be used to bundle all relevant component
connections and partial configurations, hierarchically creating a coarser-grain module123. Figure 7
illustrates how a framework can decouple disjoint dimensions124. An example of a component
framework is an operating system, accepting device driver components to allow progress “below”
and accepting application components to allow progress “above”.

Allowing component frameworks to be components themselves creates a hierarchy. For example,
an OS-hosted application can be turned into a framework by accepting plug-ins (which is a
synonym for components). Although it may appear that component frameworks are layers as
described in Section 6.3, the situation is more complex since component frameworks (unlike
traditional layers) actively call components “layered” above them. Component frameworks are a
recursive generalization of the idea of separating applications from infrastructure.

While most software systems today are not assembled predominantly from components, many
hardware systems are. Adding customized software often differentiates them. Presently emerging
component software technologies and methods may well trigger an industrial revolution in
software in the future, where components purchased from outside firms are commonly composed
into software. Customized modules (or components internally developed) can—and most likely
will—still be used for differentiation.

 31

7 Economic perspective

Microeconomics offers a number of insights into the business relationships and strategy of the
software industry. This section builds on the earlier discussion to make some observations on the
economic properties of software. However, a primary purpose of this paper is to stimulate more
research into the economic and business characteristics of software; the discussion in this section
is thus by no means complete or definitive.

Due to its low replication and distribution costs, and the fact that replicas of software are non-
rival in use, traditional supply-demand relations typical of material goods do not apply. Thus, like
information economics, software economics focuses on various issues relating to the incentives
for investment in software development and ways in which suppliers can derive economic value
from those investments.

7.1 Demand

Beyond the generic characteristics discussed in Section 2, software can serve as an intermediary
for information access and add value in many other ways. Further advances, such as automated
agents that perform increasingly sophisticated tasks on behalf of users and enhanced input-output
based on speech and three-dimensional virtual reality, suggest that the value of software will
continue to increase with time. The Internet has already resulted in remarkable new capabilities;
overall, this revolution is still in its early stages.

7.1.1 Network effects vs. software category

Network effects have a strong influence on the software industry. However, there are
considerable differences among different types of software.

Considering first the infrastructure, before the Internet different platforms could co-exist and
compete for the same customers. The primary source of value related to market share was success
in attracting application developers, i.e. secondary network effects. The platforms tended to
segment the market—mainframes for back-office business applications, the PC’s for personal
productivity, and UNIX servers and workstations for the scientific and technical market and for
departmental business applications. Post Internet, the platform for distributed applications
becomes collectively all computer platforms, the network, and potentially expanding middleware
(the middle layers in Figure 5). Virtually all infrastructure suppliers need to consider prominently
their role in an ecosystem of complementary as well as competitive suppliers.

Prospective infrastructure solutions now face two related forms of network effects. First, they
must achieve a sufficiently large user community, increasing the value they offer to each member
of that community. Second, there is the “cart and horse” obstacle that infrastructure solutions
offer value to end users only to the extent that they attract a significant base of applications
layered on them, but application developers are only interested in layering on infrastructure with
a significant penetration.

These two obstacles are difficult to overcome125, but there are a couple of paths. Mirroring how
the Internet was established, infrastructure solutions may initially arise in the research
community, where they can attract experimental applications, and eventually the infrastructure
and applications move together into the commercial marketplace. Otherwise, compelling
capabilities might initially be bundled as a part of a successful application and subsequently spun
off as a separate infrastructure product category126.

Some categories of applications also experience considerable impediments due to network
effects. Most distributed applications today follow the client-server model, in part because this
model experiences less strong network effects—the first client of a new server application derives

 32

full value127. This may contribute to the success of the ASP model of application provisioning—
the obstacle of getting the requisite software installed on many clients is overcome. On the other
hand, applications that depend on many clients interoperating directly (called the peer-to-peer
model) encounter stronger network effects. Examples include video conferencing, facsimile, and
instant messaging. Nevertheless, there have been significant successes primarily because of the
relative ease of distributing the necessary software over the network128.

7.1.2 Lock-in

Customers often experience considerable switching costs in moving from one product to another,
and this adds an impediment to competitive suppliers trying to attract customers [Sha99]. A
complete application is composed of and depends on a number of complementary products,
including different application components and infrastructure equipment and software. There are
also less tangible complementary investments, such as the training of workers and the costs of
changing the administration and operation of the software. Moving to a new software vendor
usually involves switching costs associated with replacing complementary assets, retraining, etc.
Lock-in attaches a negative value to a competitor's product equal to the switching costs, adding
another barrier for that competitor to overcome129.

Open standards are attractive to customers because they allow the mixing and matching of
products from different vendors130 and reduce switching costs. However, this only touches the
surface. Lock-in is especially significant in business applications that have associated
organizational processes and structures. If moving to a new vendor requires the reengineering of
processes, reorganization and training of workers, and the disruption of business during
deployment, the switching costs can be extraordinary. Competitive suppliers can overcome lock-
in by subsidizing the customer's switching costs. Since that new supplier has already relinquished
the incremental lock-in asset value, lock-in favors the supplier that initially acquires the
customer131.

In infrastructure, layering significantly reduces switching costs, since new infrastructure
capabilities can be added without abandoning the old. This further explains the attractiveness of
layering as a means of advancing the infrastructure. In fact, layering is a natural outcome of
market forces in both the material and immaterial worlds.

7.2 Supply

On the supply side, software has similar characteristics as information. For example, the fixed
creation costs are high, but manufacturing and distribution costs are very low, creating large
supply economies of scale. Other costs, such as marketing and support, do not scale as well. The
overall economies of scale allow a dominant supplier to undercut a competitor's pricing if
necessary, resulting in positive feedback and further increasing market share. Scale economies
[Sil87] also disallow a market approaching ”pure competition”132 [Mar90], making it critically
important for suppliers to differentiate their products from the competitors’.

7.2.1 Risk

The large creation costs of traditional software are largely sunk133. Application software is an
experience good (it has to be experienced to be appreciated), increasing the difficulty of gaining
adoptions. One way to overcome this is to take advantage of the low replication and distribution
costs to offer a free trial. However, there is a limit to the attention of the users—ever more free
trial offerings make this approach increasingly tedious. Thus, as a practical matter it is important
to use a portfolio diversification strategy, investing in multiple products with overlapping product
lifetimes, to mitigate risk.

 33

7.2.2 Reusability

Advances in reusable software would have a substantial impact on software suppliers, reducing
development costs and time and the attendant risk. Unfortunately, as discussed in Section 3.4, this
reusability is considerably more difficult to achieve than in the material world due to the
character of software. Nevertheless, viable component technologies have been emerging starting
with the introduction of Microsoft COM as part of OLE 2 in 1992. Several fast-growing markets
now exist [IDC99] and a number of companies have formed to fill the need for merchant, broker,
and triage roles134.

One significant open problem is trust and risk management: when software is assembled from
components purchased form external suppliers, then warranty and insurance models are required
to mitigate the risk of exposure. Due to the complexity and peculiarity of software, traditional
warranty, liability laws, and insurance require rethinking in the context of software, an issue as
important as the technical challenges.

7.2.3 Competition

The best way to derive revenue from software is through maximizing the value to the customer
together with differentiation from competitor’s products. However, it is difficult to prevent
competitors from copying an application once it is released and available. Relative to some other
industries (such as biotechnology) patents are relatively easy to circumvent by merely
accomplishing the same ends another way. Copyrights have proven ineffective at preventing the
copying of the features and “look and feel” of applications. Reproducing the same features and
specifications independently in a “clean room” environment can circumvent copyrights.

What, then, are the fundamental deterrents to competitors, aside from intellectual property
protections? There are several. First, enlightened competitors attempt to differentiate rather than
copy, because they know that profits are difficult to obtain when there are undifferentiated
competitors with substantial supply economies of scale. Second, a supplier, who has achieved
significant market share and economies of scale, can employ limit pricing, which takes into
account the high creation costs faced by a new entrant [Gas71]. Third, lock-in of customers is
advantageous to the supplier with the largest market share. Switching costs may require a
competitor to subsidize a customer’s switch, either explicitly or through price discounting.
Suppliers thus attempt to maximize the lock-in of customers, for example by adding proprietary
features or enhancing applications interoperability with complementary products. On the other
hand, there are numerous strategies competitors can employ to reduce the customer’s switching
costs, such as offering translations or backward compatibility [Sha99], many of these measures
specific to software. This is a promising area for research.

7.2.4 Dynamic Supply Chains

For material goods, suppliers and customers can have long-term contractual relationships, or
procurement can occur dynamically in a marketplace (electronic or otherwise). For software,
these means are possible, but in addition supply chains can be made to be fully “self-aware”, as
illustrated by superdistribution [Cox96]. Components can be freely exchanged, even directly
among customers, and the components themselves can initiate and enforce a fair compensating
monetary flow using an enabling micro-billing infrastructure.

7.2.5 Rapidly expanding markets

Software markets are often very rapidly expanding, especially in light of the low replication and
distribution costs and distribution delay. This engenders special challenges and strategies for
suppliers. For example, the simple theory of lock-in does not apply in a rapid-growth situation, as
capturing a significant fraction of the customer base does not, by itself, suffice to gain a longer-

 34

term advantage. Rather, for as long as growth is rapid and network effects are not strong, new
competitors can enter and attract a large part of new customers entering the market—for example,
by aiming at a more attractive price-value point, offering a more attractive bundle, or offering
other advantages such as better integration.

Thus, initial strength in new technologies—and software is no exception—grants a first-mover
advantage, but not necessarily a lock-in advantage. Leveraging the first- (or early-) mover
advantage requires rapid and continuing innovation, despite a lock-in advantage with the initial
but rapidly marginalized customer base.

7.3 Pricing

Pricing is an important issue in any supplier-customer relationship. The large supply economies
of scale make pricing a particular challenge for software suppliers. Unit costs offer little
guidance, since they depend strongly on unit sales, opening the space for a wide variety of pricing
strategies with an equally wide array of ramifications.

There are several dimensions. First, does an identical pricing schedule apply to all customers, or
is there price discrimination? Forms of price discrimination include basing price on individual
customers’ value or willingness to pay, segmentation of the customer population, or versioning,
in which customers self-select the most attractive price-quality tradeoff from among several
alternatives. Second, is the price usage dependent? Usage-based pricing requires monitoring and
billing of usage, or this can be avoided with crude usage metrics such as the allowable peak
number of individual users, the number of servers the software is installed on, or the number of
clients able to access the software. Third, what are the terms and conditions of the sale? Some
common options include paying once, with the right to use indefinitely, leasing for a limited
period, paying per use, or subscription arrangements involving periodic payments. Another class
of terms is a warrantee on correct functioning or on performance attributes (the latter is called a
service level agreement [Hil93, Koc98]). Fourth, what is bundled into the sale? Beyond the
software itself, options include maintenance upgrades, customer support, and new releases. In the
case of an ASP, provisioning and operations are also bundled. Fifth, who pays? In some cases, it
is not the end-user but a third party like an advertiser or a cross subsidy from other products.

These dimensions of pricing are sometimes coupled. For example, usage-based or per-use pricing
inherently requires periodic billing, a prepayment and debit system, or a pay-before-use
infrastructure (such as digital cash). A supplier shouldn’t promise new releases (with the
attendant ongoing development costs) unless they are purchased separately or there is ongoing
subscription revenue. Similarly an ASP should expect subscription revenues to offset operational
costs.

Finally, all ways of selling software, including bundling with provisioning and operations or not,
offer a full range of pricing options. While licensing and customer-installation is usually
associated with fixed pricing, with networked computers it would be possible to use subscription
or per-transaction pricing. Software sold as an application service is usually associated with
subscription pricing or coverage by third-party advertising, but could be sold at a fixed price.

7.3.1 Value pricing and versioning

For products well differentiated from the competition, the best supplier strategy is value pricing:
base prices on the customer willingness to pay [Sha99]. Value pricing is, however, complicated
by the wide dispersion in willingness to pay among customers. To maximize revenue, value
pricing requires price discrimination.

There are a number of different price discrimination strategies. One particularly applicable to
software is versioning. A portfolio of products is created that offers different levels of features,
quality, and performance. With appropriate pricing, customers will self-select based on their

 35

willingness to pay. Frequently, a minimal version is offered for free, for a limited-time trial or
indefinitely. This bears little marginal cost to the supplier, and serves to familiarize the customer
with the product in the hope of upgrading them to a paying version or inducing them or others to
purchase a complementary product. An example of the latter is the Web, where the browser is
free and the server with complementary value-added features is sold.

Some business models offer more flexibility for price discrimination than others. Fixed pricing of
"shrink wrapped" software offers minimal opportunity for price discrimination. At the other
extreme, an individually negotiated license for a custom-developed application can take into
account attributes like usage and impact discussed in Section 2. An attractiveness of the ASP
model is some flexibility to base pricing on willingness to pay, usage, and context.

7.3.2 Variable pricing

The user’s willingness to pay depends on the many contributors to value described earlier. Some
of these, such as usage and quality, can actually be different at different times, even for the same
user. This suggests forms of variable pricing in which the price is dependent on patterns of use.

Actually implementing variable pricing is a challenge. An example is pricing based on usage.
While direct monitoring of usage (time or transactions) is rare, suppliers frequently approximate
usage by basing prices on the number of "seats" where an application is available or the number
of computers on which the software is installed, irrespective of actual usage. A variant is the
“floating license”, in which pricing is based on the peak number of concurrent users without
regard to the number of seats or users. With the ubiquity of the Internet, it becomes possible to
monitor usage more directly, and similarly the ASP model naturally admits the monitoring of use.
A fundamentally different approach is to base pricing on direct impact rather than usage, such as
per-transaction pricing for ASP e-commerce intermediaries.

The business model and pricing strategy can have a significant impact on supplier incentives and
targets for investment. For example, usage-based pricing provides an ongoing revenue stream
even without releases, and thus reduces the pressure to continually add functionality (unless of
course it is targeted at increased usage).

7.3.3 Bundling

As with other goods, bundling of products is another way to mitigate the dispersion of customer
demand [Sha99]. That dispersion is often lower for a bundle than for its constituents, making
pricing simpler and ultimately increasing total revenues. In software, making the constituents
complementary and composable can enhance the value of a bundle135.

7.3.4 Third party revenue

With low marginal costs, advertising is a viable mechanism to derive revenues from a third party
rather than users. This is particularly true for the ASP subscription model, since there is an
opportunity to push a stream of targeted advertisements, and increasing their effectiveness by
taking into account the application context. In this case, the determinant is the value of the
attention of the user to the advertiser, rather than the direct value to the user. Unlike traditional
media, advertisements in networked media can be updated dynamically and usually include
hyperlinks to the advertiser's Web site, where unlimited information can be offered.

7.4 Evolution

To reduce the risk of competitor entry and create a stream of revenues, it is typical to create a
moving target by offering a stream of new releases, each with improved features, quality, and
performance. Maintenance upgrades may be offered for free136, but new releases can be sold.

 36

Releases also help support maintenance and improvements that attract new customers, create new
versions, and deter potential competitors. Once a significant market share is held, the greatest
competition for each new release is the installed base of older releases.

Although immaterial software does not “wear out” like material goods, absent upgrade it does
inevitably deteriorate over time in the sense that changing user requirements and changes to
complementary products render it less suitable. Thus, software demands new releases as long as
there is a viable user base. Upgrades entail some risks: a new release may discontinue support for
older data representations (alienating some customers), or may suddenly fail to interoperate with
complementary software.

Legacy software may eventually become a financial burden to the supplier. The user community
may dwindle to the point that revenues do not justify the investment in releases, or the supplier
may want to replace the software with an innovative new version. Unfortunately, terminating
investments in new releases will alienate existing users by stranding them with deteriorating (and
eventually unusable) software. Thus, the installed base sometimes becomes an increasing burden.
Components offer a smoother transition strategy provided old and new versions of a component
can be installed side-by-side137. Then, old versions can be phased out slowly, without forcing
clients of that old version to move precipitously to the new version.

7.5 Complementarity

Similarly to other markets, it is common to offer a portfolio of complementary products. This
reduces risk, sales and marketing costs, and offers the consumer systems integration and a single
point of contact for sales and support.

Nevertheless, software suppliers depend heavily on complementary products from other
suppliers, particularly through layering. Each supplier wants to differentiate its own products and
minimize its competition, but conversely desires strong competition among its complementers so
that its customers enjoy overall price and quality advantages.

8 The future

More so than most technologies and markets, software has been in a constant state of flux. The
merging of communications with storage and processing represents a major maturation of the
technology—there are no remaining major gaps. However, the market implications of this
technological step have only begun to be felt. In addition, there are a few other technological and
market trends that are easily anticipated, because they have already begun. While we don’t
attempt to predict their full implications, we now point out what they are and some of their
implications.

8.1 Information appliances

Instead of installing specialized applications on general computers, software can be bundled with
hardware to focus on a narrower purpose. Information appliances take software applications co-
existing in the PC, and bundle and sell them with dedicated hardware138. This exploits the
decreasing cost of hardware to create devices that are more portable, ergonomic, and with
enhanced usability139.

Software in the appliance domain assumes characteristics closer to traditional industrial products.
Both the opportunities and technical challenges of composability are largely negated. In most
instances, maintenance and upgrade become a step within the appliance product activity, rather
than a separable software-only process140.

 37

8.2 Pervasive computing

Another trend is embedding software-mediated capabilities within a variety of existing material
products141. The logical extension of this is information technology (including networked
connectivity as well as processing and storage) embedded in most everyday objects, which is
termed pervasive computing [Mak99, Cia00]. The emphasis is different from information
appliances, in that the goal is to add capability and functionality to the material objects around
us—including many opportunities that arise when these objects can communicate and
coordinate—as opposed to shipping existing capabilities in a new form. Our everyday
environment becomes a configurable and flexible mesh of (largely hidden from view)
communicating and computing nodes that take care of information processing needs less
explicitly expressed and deriving from normal activities.

Pervasive computing takes software in the opposite direction from information appliances.
Composability that is flexible and opportunistic and almost universal becomes the goal. This is a
severe technical challenge142. Further, taking advantage of information technology to increase the
complementarity of many products in the material world becomes a new and challenging goal for
product marketing and design.

8.3 Mobile and nomadic information technology

Many users have accessed the Internet from a single access point. Increasingly, nomadic users
connect the network from different access points (as when they use laptops while traveling).
There are two cases: the appliance or computer itself can be relocated or the user can move from
one appliance or computer to another. The advent of wireless Internet access allows mobility:
users change their access point even while they are using an application143.

Maintaining ideal transparency to the nomadic or mobile user raises many new challenges for
software engineers and managers. The infrastructure should recreate a consistent user
environment wherever the user may arise or move (including different access points or different
appliances or computers). Either, applications need to be more cognizant of and adjust to wide
variations in communications connectivity, or the infrastructure needs to perform appropriate
translations on behalf of the applications144. A severe challenge is achieving all this when
necessarily operating over distinct ownership and administrative domains in a global network.

8.4 A component marketplace

The assembly of applications from finer-grained software components is very limited as an
internal strategy for individual software suppliers, because their uses may not justify the added
development costs145. Like infrastructure software, the full potential unfolds only with the
emergence of a marketplace for components.

However, such markets may well turn out to be very different from hardware and material goods,
which are typically sold for a fixed price. One difference has already been discussed: software
components are protected by intellectual property rather than title, and will typically be licensed
rather than sold. More fundamentally, the pricing may be much more variable, potentially
including a number of factors including usage. The possibilities are endless, and this is a useful
area of investigation.

8.5 Pricing and business models

The rising popularity of the ASP model for provisioning and operations demonstrates the
changing business model of the software industry. There are several factors driving this. First, the
increasing ubiquity of high-performance networks opens up new possibilities. Second, as the
assembly of finer-grained software components replaces monolithic applications, and new value

 38

is created by the composition of applications, a given application may actually have multiple
vendors. Pervasive computing pushes this trend to the extreme, as the goal is to allow
composition of higher-level capabilities from different computing devices, often from different
vendors146. Third, mobility creates an endless variety of possible scenarios for the partitioned
ownership and operation of the supporting infrastructure. Fourth, the obstacles of provisioning
and operating applications become much more daunting to the user in a world with much greater
application diversity, and applications composed from multiple components.

Traditional usage-independent pricing models based on hosts or users supported become less
appropriate in all these scenarios. Instead, pricing should move to usage-based subscription
models. Such pricing models require infrastructure support for transparent, efficient, and
auditable billing against delivered services.

For example, components may be sold for subscription (usage is monitored, and micro-payments
flow to component vendors). Since most components introduce a miniature platform, which other
components can build on, this encourages widespread component adoption, and minimizes the
initial barriers to entry where earlier component offerings are already established.

While the details are unclear, the changing technology is stimulating widespread changes in
industrial organization and business models.

9 Conclusions

While individually familiar, software brings unusual combinations of characteristics on the
supply and demand sides. Its unparalleled flexibility, variability, and richness are countered by
equally unparalleled societal, organizational, technical, financial, and economic challenges. Due
to these factors—continually rocked by unremitting technological change—today’s software
marketplace can be considered immature.

We assert that there are substantial opportunities to understand better the challenges and
opportunities of investing in, developing, marketing, and selling software, and to use this
understanding to conceptualize better strategies for the evolution of software technology as well
as business models that better serve suppliers and customers. It is hoped that this paper takes a
first step toward realization of this vision by summarizing our current limited state of
understanding.

Software is subject to a foundation of laws similar to (and sometimes governed by) the laws of
physics, including fundamental theories of information, computability, and communication. In
practical terms these laws are hardly limiting at all, especially in light of remarkable advances in
electronics and photonics that will continue for some time. Like that other immaterial good that
requires a technological support infrastructure, information, software has unprecedented
versatility: the only really important limit is our own imagination. That, plus the immaturity of
the technology and its markets, virtually guarantees that this paper has not captured the
possibilities beyond a limited vision based on what is obvious or predictable today. The
possibilities are vast, and largely unknowable.

While the wealth of understanding developed for other goods and services certainly offer many
useful insights, we feel that the fundamentals of software economics are yet to be conceptualized.
Competitive market mechanisms, valuation and pricing models, investment recovery, risk
management, insurance models, value chains, and many other issues should be reconsidered from
first principles to do full justice to this unique good.

 39

References

[Bak79] Baker, Albert L.; Zweben, Stuart H. “The Use of Software Science in Evaluating Modularity
Concepts”. IEEE Transactions on Software Engineering, March 1979, SE-5(2): 110-120.

[Bal97] Baldwin, Carliss Y; Clark, Kim B. “Managing in an age of modularity”. Harvard Business Review,
Sep/Oct 1997, 75(5): 84-93.

[BCK98] Bass, Len; Clements, Paul; Kazman, Rick. Software Architecture in Practice, Addison-Wesley,
1998.

[Boe00] Boehm, B; Sullivan, K. “Software Economics: A Roadmap,” in The Future of Software
Engineering, special volume, A. Finkelstein, Ed., 22nd International Conference on Software
Engineering, June, 2000.

[Boe81] Boehm, B.. Software Engineering Economics, Englewood Cliffs, N.J. : Prentice-Hall, 1981.

[Boe84] Boehm, Barry W. “Software Engineering Economics”. IEEE Transactions on Software
Engineering, Jan 1984, SE-10(1): 4-21.

[Boe99] Boehm, B; Sullivan, K. “Software economics: Status and prospects”. Information & Software
Technology, Nov 15, 1999, 41(14): 937-946.

[Bos00] Bosch, Jan. Design and Use of Software Architectures, Addison Wesley, 2000

[Bro98] Brown, William J.; Malveau, Raphael C.; Brown, William H.; McCormick,; Hays W., III;
Mowbray, Thomas J. AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis, John
Wiley & Sons, 1998.

[Bul00] Bulkeley, William M. “Ozzie to unveil Napster-style networking” Wall Street Journal Interactive
Edition, October 24. (http://www.zdnet.com/zdnn/stories/news/0,4586,2644020,00.html)

[Chu92] Church, Jeffrey; Gandal, Neil. “Network Effects, Software Provision, and Standardization”.
Journal of Industrial Economics, Mar 1992, 40(1): 85-103.

[Cia00] Ciarletta, L.P., Dima, A.A. “A Conceptual Model for Pervasive Computing”, Workshop on
Pervasive Computing; in: Proceedings of the 29th International Conference on Parallel Computing
2000, Toronto, Canada, 21-24 Aug 2000.

[Cla93] Clark, J R; Levy, Leon S. “Software economics: An application of price theory to the development
of expert systems” Journal of Applied Business Research, Spring 1993, 9(2): 14-18.

[Com96] Compaq. “White paper: How DIGITAL FX!32 works”.
(http://www.support.compaq.com/amt/fx32/fx-white.html.)

[Cov00] Covisint “Covisint Establishes Corporate Entity – Automotive e-business exchange becomes
LLC”, December 2000. (http://www.covisint.com/)

[Cox96] Cox, B. Superdistribution: Objects as Property on the Electronic Frontier; Addison Wesley 1996.
(http://www.virtualschool.edu/mon)

[CSA98] Workshop report, OMG DARPA Workshop on Compositional Software Architectures, February
1998.
(http://www.objs.com/workshops/ws9801/report.html)

[Dav90] David, Paul A., and Shane Greenstein. 1990. “The Economics of Compatibility Standards: An
Introduction to Recent Research,” Economics of Innovation and New Technology 1(1-2): 3-41.

[DFS98] Devanbu, P.; Fong, P.; Stubblebine, S. “Techniques for trusted software engineering” In:
Proceedings of the 20th International Conference on Software Engineering (ICSE'98), Kyoto, Japan,
April 1998.
(http://seclab.cs.ucdavis.edu/~devanbu/icse98.ps)

[Fra90] Frakes, W. B.; Gandel, P. B. “Representing Reusable Software”. Information & Software
Technology, Dec 1990, 32(10): 653-664.

[Gaf89] Gaffney, J. E., Jr.; Durek, T. A. “Software Reuse - Key to Enhanced Productivity: Some
Quantitative Models”. Information & Software Technology, Jun 1989, 31(5): 258-267.

[Gas71] Gaskins. “Dynamic Limit Pricing: Optimal Pricing Under Threat of Entry”, J. Econ. Theory 306,
1971.

 40

[Goe9?] Ben Goertzel, “The Internet Economy as a Complex System”, 199?.
(http://www.goertzel.org/ben/ecommerce.html)

[Gul93] Analytical methods in software engineering economics. Thomas R. Gulledge, William P. Hutzler,
eds. Berlin ; New York : Springer-Verlag, c1993.

[Hil93] Hiles, A. Service Level Agreements – Managing Cost and Quality in Service Relationships,
Chapman & Hall, London, 1993.

[How97] Howard, J.D. “An Analysis Of Security Incidents On The Internet”, PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, April 1997.
(http://www.cert.org/research/JHThesis/Start.html)

[IDC99] Steve Garone and Sally Cusack. “Components, objects, and development environments: 1999
worldwide markets and trends”. International Data Corporation, June 1999.

[Jun99] Jung, Ho-Won; Choi, Byoungju. “Optimization models for quality and cost of modular software
systems”. European Journal of Operational Research, Feb 1, 1999, 112(3): 613-619.

[Kan89] Kang, K. C.; Levy, L. S. “Software Methodology in the Harsh Light of Economics”. Information
& Software Technology, Jun 1989, 31(5): 239-250.

[Kat85] Katz, Michael, and Carl Shapiro. 1985. “Network Externalities, Competition, and Compatibility,”
American Economic Review 75(3): 424-440.

[Kat86] Katz, Michael L.; Shapiro, Carl. “Technology Adoption in the Presence of Network Externalities”.
Journal of Political Economy, Aug 1986, 94(4): 822-841.

[Ken98] Kemerer, Chris F. “Progress, obstacles, and opportunities in software engineering economics”.
Communications of the ACM, Aug 1998, 41(8): 63-66.

[Koc98] Koch, Christopher. “Service level agreements: put IT in writing”, CIO Magazine, 15 Nov 1998.
(http://www.cio.com/archive/111598_sla.html)

[Lan00] Langlois, Richard, “Modularity in Technology and Organization”, to appear in the Journal of
Economic Behavior and Organization.

[Lan92] Langlois, Richard N. “External economies and economic progress: The case of the microcomputer
industry”. Business History Review, Spring 1992, 66(1): 1-50.

[Lan92] Langlois, Richard N.; Robertson, Paul L. “Networks and Innovation in a Modular System: Lessons
from the Microcomputer and Stereo Component Industries”. Research Policy, Aug 1992, 21(4): 297-
313.

[Lev87] Levy, L. S., Taming the Tiger: Software Engineering and Software Economics, Springer-Verlag,
Berlin, FRG, 1987.

[Lew97] Ted Lewis, Friction-Free Economy. HarperBusiness, 1997.
(http://www.friction-free-economy.com/)

[LL96] Lee, Peter; Leone, Mark, “Optimizing ML with run-time code generation”, ACM SIGPLAN
Notices, 1996, 31(5): 137-148.

[Mak99] Makulowich, John. “Pervasive Computing: ‘The Next Big Thing’” Washington Technology
Online, 19 July 1999. (http://www.wtonline.com/vol14_no8/cover/652-1.html)

[Mar90] Marshall, Alfred. Principles of Economics, first edition: 1890. Reprinted in Great Minds Series,
Prometheus Books, 1997.

[Mes99a] David G. Messerschmitt, Understanding Networked Applications: A First Course. Morgan
Kaufmann, 1999.

[Mes99b] David G. Messerschmitt, Networked Applications: A Guide to the New Computing
Infrastructure. Morgan Kaufmann, 1999.

[Mes99c] D.G. Messerschmitt, "The Prospects for Computing-Communications Convergence".
Proceedings of MÜNCHNER KREIS, Conference "VISION 21:Perspectives for the Information and
Communication Technology", Munich Germany, Nov. 25, 1999.
(http://www.EECS.Berkeley.EDU/~messer/PAPERS/99/Munich.PDF)

[Net] Nepliance, Inc. (http://www.netpliance.com/iopener/)

 41

[Nie00] Nielsen, J. Designing Web Usability: The Practice of Simplicity. New Riders Publishing,
Indianapolis, 2000.

[Nie93] Nielsen, J. “Noncommand user interfaces.” Communications of the ACM, April 1993, 36(4): 83-99.
(http://www.useit.com/papers/noncommand.html)

[Par72] Parnas, David L. 1972. “On the Criteria for Decomposing Systems into Modules,”
Communications of the ACM 15(12): 1053-1058 (December).

[Pfl97] Pfleeger, Charles P. Security in Computing, 2nd edition, Prentice Hall, 1997.

[Pre00] Pressman, Roger S. Software Engineering: A Practitioner’s Approach. (Fifth Edition) McGraw-
Hill, 2000.

[Rob95, Lan92] Robertson, Paul L; Langlois, Richard N. “Innovation, networks, and vertical integration”.
Research Policy, Jul 1995, 24(4): 543-562.

[Roy70] Royce, W.W. “Managing the development of large software systems”, IEEE WESCON, August
1970.

[San96] Sanchez, Ron; Mahoney, Joseph T. “Modularity, flexibility, and knowledge management in
product and organization design”. Strategic Management Journal, Winter 1996, 1763-76.

[Sch88] Schattke, Rudolph. “Accounting for Computer Software: The Revenue Side of the Coin”. Journal
of Accountancy, Jan 1988, 165(1): 58-70.

[Sha99] Carl Shapiro and Hal R. Varian, Information Rules: A Strategic Guide to the Network Economy.
Harvard Business School Press, 1999.

[Sil87] Silvestre, Joaquim. “Economies and Diseconomies of Scale”, in: The New Palgrave: A Dictionary
of Economics, ed. by John Eatwell, Murray Milgate, and Peter Newman. London: Macmillan, London,
1987, (2): 80-83.

[Sla98] Slaughter, Sandra A; Harter, Donald E; Krishnan, Mayuram S. “Evaluating the cost of software
quality”. Communications of the ACM, Aug 1998, 41(8): 67-73.

[SOT00] Suganuma, T.; Ogasawara, T.; Takeuchi, M.; Yasue, T.; Kawahito, M.; Ishizaki, K.; Komatsu, H.;
Nakatani, T. “Overview of the IBM Java just-in-time compiler”, IBM Systems Journal, 2000, 39(1): 175-
193.

[Sul99] Sullivan, Jennifer. “Napster: Music Is for Sharing”, Wired News, 1 November 1999.
(http://www.wired.com/news/print/0,1294,32151,00.html)

[Sun99] “The Java HotspotTM performance engine architecture – A white paper about Sun's second
generation performance technology”, April 1999.
(http://java.sun.com/products/hotspot/whitepaper.html)

[Szy98] Clemens Szyperski, Component Software—Beyond Object-Oriented Programming. Addison-
Wesley, 1998.

[The84] Thebaut, S. M.; Shen, V. Y. “An Analytic Resource Model for Large-Scale Software
Development”. Information Processing & Management, 1984, 20(1/2): 293-315.

[Tor98] Torrisi, S., Industrial Organization and Innovation : An International Study of the Software
Industry. Edward Elgar Pub, 1998.

[UPA] Usability Professionals' Association (http://www.upassoc.org/)

[Upt92] Upton, David M. “A flexible structure for computer-controlled manufacturing systems”,
Manufacturing Review, 1992, 5 (1): 58-74.
(http://www.people.hbs.edu/dupton/papers/organic/WorkingPaper.html)

[Vac93] Vacca, John. “Tapping a gold mine of software assets”. Software Magazine, Nov 1993, 13(16):
57-67.

[Ver91] The Economics of information systems and software. Richard Veryard, ed. Oxford ; Boston :
Butterworth-Heinemann, 1991.
[W3C95] World Wide Web Consortium. “A Little History of the World Wide Web”
(http://www.w3.org/History.html)

[W3CP] World Wide Web Privacy. (http://www.w3.org/Privacy/)

[War00] Ward, Eric, “Viral marketing involves serendipity, not planning”. B to B, Jul 17, 2000, 85(10): 26.

 42

The authors

David G. Messerschmitt is the Roger A. Strauch Professor of Electrical Engineering and
Computer Sciences at the University of California at Berkeley. From 1993-96 he served as Chair
of EECS, and prior to 1977 he was with AT&T Bell Laboratories in Holmdel, N.J. Current
research interests include the future of wireless networks, the economics of networks and
software, and the interdependence of business and technology. He is active in developing new
courses on information technology in business and information science programs, introducing
relevant economics and business concepts into the computer science and engineering curriculum,
and is the author of a recent textbook, Understanding Networked Applications: A First Course.
He is a co-founder and former Director of TCSI Corporation. He is on the Advisory Board of the
Fisher Center for Management & Information Technology in the Haas School of Business, the
Directorate for Computer and Information Sciences and Engineering at the National Science
Foundation, and recently co-chaired a National Research Council study on the future of
information technology research. He received a B.S. degree from the University of Colorado, and
an M.S. and Ph.D. from the University of Michigan. He is a Fellow of the IEEE, a Member of the
National Academy of Engineering, and a recipient of the IEEE Alexander Graham Bell Medal.

Clemens A. Szyperski is a Software Architect in the Component Applications Group of
Microsoft Research, where he furthers the principles, technologies, and methods supporting
component software. He is the author of the award-winning book Component Software: Beyond
Object-Oriented Programming and numerous other publications. He is the charter editor of the
Addison-Wesley Component Software professional book series. He is a frequent speaker,
panelist, and committee member at international conferences and events, both academic and
industrial. He received his first degree in Electrical Engineering in 1987 from the Aachen
Institute of Technology in Germany. He received his Ph.D. in Computer Science in 1992 from the
Swiss Federal Institute of Technology (ETH) in Zurich under the guidance of Niklaus Wirth. In
1992-93, he held a postdoctoral scholarship at the International Computer Science Institute at the
University of California, Berkeley. From 1994-99, he was tenured as associate professor at the
Queensland University of Technology, Brisbane, Australia, where he still holds an adjunct
professorship. In 1993, he co-founded Oberon microsystems, Inc., Zurich, Switzerland, with its
1998 spin-off, esmertec inc., also Zurich.

Endnotes

1 In fact, often the term technology is defined as the application of physical laws to useful purposes. By this
strict definition, software would not be a technology. However, since there is a certain interchangeability of
software and hardware, as discussed momentarily, we do include software as a technology.
2 The theoretical mutability of hardware and software was the original basis of software patents, as
discussed in Section 5. If it is reasonable to allow hardware inventions to be patented, then it should be
equally reasonable to allow those same inventions, but embodied by software, to be patented.
3 The computer is arguably the first product that is fully programmable. Many earlier products had a degree
of parameterizability (e.g. a drafting compass) and configurability (e.g. an erector set). Other products have
the flexibility to accommodate different content (e.g. paper). No earlier product has such a wide range of
functionality non-presupposed at the time of manufacture.
4 The primary practical issues are complexity and performance. It is somewhat easier to achieve high
complexity in software, but moving the same functionality to hardware improves performance. With
advances in computer-aided design tools, hardware design has come to increasingly resemble software
programming.

 43

5 By representation, we mean the information can be temporarily replaced by data and later recovered to its
original form. Often, as in the sound and picture examples, this representation is only approximated. What
is recovered from the data representation is an approximation of the original.
6 The usage of these terms is sometimes variable and inconsistent. For example, the term data is also
commonly applied to information that has been subject to minimum interpretation, such as acquired in a
scientific experiment.
7 Analog information processing--for example, in the form of analog audio and video recording and
editing—remains widespread. Analog is being aggressively displaced by digital to open up opportunities
for digital information processing.
8 In reality, storage cannot work without a little communication (the bits need to flow to the storage
medium) and communication cannot work without a little storage (the bits cannot be communicated in zero
time).
9Note that the “roles” of interest to managers (such as programmers and systems administrators) have some
commonality with the perspectives. The distinction is that the perspectives are typically more general and
expansive.
10 The perspectives chosen reflect the intended readership of this paper. We include them all because we
believe they all are relevant and have mutual dependencies.
11 As described in Section 4, this cycle typically repeats with each new software release.
12 The difference between value and cost is called the consumer surplus. Software offering a larger
consumer surplus is preferred by the consumer.
13 Often, value can be quantified by financial metrics such as increased revenue or reduced costs.
14 Of course, if the greater time spent reflects poor design, greater usage may reflect lower efficiency and
thus represents lower value.
15 “Observed” is an important qualifier here. The actual number of defects may be either higher or lower
than the observed one—it is higher than observed if some defects don’t show under typical usage profiles;
it is lower than observed if a perceived defect is actually not a defect but a misunderstanding on how
something was supposed to work. The latter case could be re-interpreted as an actual defect in either the
intuitiveness of the usage model, the help/training material, or the certification process used to determine
whether a user is sufficiently qualified.
16 For example, a slow activity can be masked by a multitude of attention-diverting faster activities.
17 Performance is an important aspect of software composition (see Section 2.8): two separately fast
components, when combined, can be very slow—a bit like two motors working against each other when
coupled. The exact impact of composed components (and the applied composition mechanism) on overall
performance is hard to predict precisely for today’s complex software systems.
18 Although this quality dilemma is faced by all engineering disciplines, many benefit from relatively slow
change and long historical experience, allowing them to deliver close-to-perfect products. IT as well as user
requirements are and have always changed rapidly, and any stabilization is accurately interpreted as a
leading indicator of obsolescence.
19 In theory, software could be tested under all operational conditions, so that flaws could be detected and
repaired during development. While most flaws can be detected, the number of possible conditions in a
complex application is so large as to preclude any possibility of exhaustive testing.
20 Such modes might include mouse or keyboard, visual or audio, context-free or context-based operations.
21 An example would be an initial “discovery” of features supported through several likely paths, while
later repetitive use of certain features can be fine-tuned to minimize the required number of manipulative
steps. Typical examples include the reconfiguration of user interface elements or the binding of common
commands to command keys.
22 Suitable mechanisms to support security or privacy policies can range from simple declarations or
warnings at “entry points” to total physical containment and separation. For all but the most trivial degrees
of resiliency, hardware and physical location support is required.

 44

23 Unfortunately, it is not well understood how to construct software that can meet changing needs. The
best attempts add considerable ability to parameterize and configure, and attempt modular architectures, in
which the user can mix and match different modules (see Section 3 for further discussion). As a practical
matter, information systems are often a substantial obstacle to change.
24 Relevant performance parameters are instruction rate (instructions per second), storage density (bits per
unit area or per chip), and communications bitrate (bits per second).
25 Thus far, reductions in feature size (which relates directly to improved speed at a given cost) by a fixed
percentage tend to cost roughly the same, regardless of the absolute. Thus, like compound interest, the
cumulative improvement is geometric with time (roughly 60% per year compounded).
26 The Semiconductor Industry Association has developed a roadmap for semiconductor development over
the next 6 years. This roadmap specifies the needed advances in every area, and serves to coordinate the
many vendors who contribute to a given generation of technology.
27 The inadequacy of computers even a few years old with today’s applications illustrates concretely the
importance of advancing technology to the software industry.
28 Compilation is typically seen as yielding pre-checked efficient object code that lacks the flexibility of
dynamic, on-demand modifiability and, importantly, the flexibility to execute on a variety of target
machines with different execution models. Interpretation is typically seen as yielding a more lightweight
and flexible model, but at the price of very late checking and reduced efficiency. Everyone has suffered
from the late checking applied to interpreted code: a visited Web page “crashes” with an error message
indicating some avoidable programming error in a script attached to the Web page. While early checking
during compilation cannot (ever!) eliminate all errors, modern languages and compiler/analyzer technology
have come quite far in eliminating large classes of errors (thus termed “avoidable” errors).
29This is illustrated by Java. A common (but not the only) approach is to compile Java source code into
Java bytecode, which is an intermediate object code for an abstract execution target (the so-called Java
virtual machine). This bytecode can then be executed on different targets by using a target-specific
interpreter. If all checking happens in the first step and if the intermediate object code is efficiently
mapable to native code, then the advantages of compilation and interpretation are combined. The software
unit can be compiled to intermediate form, which can then be distributed to many different target platforms,
each of which relies on interpretation to transform to the local physical execution model.
30 Java is more than a language. It includes a platform, implemented on different operating systems, that
aims at supporting full portability of software.
31 By monitoring the performance, the online optimizer can dynamically optimize critical parts of the
program. Based on usage profiling, an online optimizer can recompile critical parts of the software using
optimization techniques that would be prohibitively expensive in terms of time and memory requirements
when applied to all of the software. Since such a process can draw on actually observed system behavior at
“use time”, interpreters combined with online optimizing compilation technology can exceed the
performance achieved by traditional (ahead-of-time) compilation.
32 Java source code is compiled into Java bytecode—the intermediate object code proprietary to Java.
Bytecode is then interpreted by a Java Virtual Machine (JVM). All current JVM implementations use just-
in-time compilation, often combined with some form of online optimization, to achieve reasonable
performance.
33 There is nothing special about intermediate object code: one machine’s native code can be another
machine’s intermediate object code. For example, Digital (now Compaq) developed a “Pentium virtual
machine” called FX!32 [Com96] that ran on Digital Alpha processors. FX!32 used a combination of
interpretation, just-in-time compilation, and profile-based online optimization to achieve impressive
performance. At the time, several Windows applications, compiled to Pentium object code, ran faster on
top of FX!32 on top of Alpha, than on their native Pentium targets.
34 This approach uses a digital signature. Any form of verification of a vendor requires the assistance of a
trusted authority, in this case called a certificate authority (CA). The CA provides the software vendor with
a secret key that can be used to sign the code in a way that can be verified by the executing platform
[Mes99a]. The signature does not limit what is in the code and thus has no impact on the choice of object
code format. Microsoft’s Authenticode technology uses this approach.

 45

35 Java bytecode and the .NET Framework intermediate language use this approach. A generalization of the
checking approach is presently finding much attention: proof-carrying code. The idea is to add enough
auxiliary information to an object code that a receiving platform can check that the code meets certain
requirements. Such checking is, by construction, much cheaper than constructing the original proof: the
auxiliary information guides the checker in finding a proof. If the checker finds a proof, then the validity of
the proof rests only on the correctness of the checker itself, not on the trustworthiness of either the supplied
code or the supplied auxiliary information. The only thing that needs to be trusted is the checker itself.
36 The operating system is an example of infrastructure (as opposed to application) software (see Section 6).
37 The stages up to and (in the extreme) including requirements need to consider the available code base to
efficiently build on top of it.
38Traditionally, the two most important tools of a software developer were source code editors and
compilers. With the availability of integrated development environments, the toolkit has grown
substantially to include functional and performance debuggers, collectors of statistics, defect trackers, and
so on. However, facing the substantial complexity of many current software systems, build systems have
become one of the most important sets of tools. A build system takes care of maintaining a graph of
configurations (of varying release status), including all information required to build the actual deliverables
whenever needed. Industrial strength build systems tend to apply extensive consistency checks, including
automated runs of test suites, on every “check in” of new code.
39 Where subsystem composition is guided by architecture, those system properties that were successfully
considered by the architect are achieved by construction rather than by observing rather randomly emerging
composition properties. For example, a security architecture may put reliable trust classifications in place
that prevent critical subsystems from relying on arbitrary other subsystems. Otherwise, following this
example, the security of an overall system often is as strong as its weakest link.
40 Other such properties are interface abstraction (hiding all irrelevant detail at interfaces) and encapsulation
(hiding internal implementation detail).
41 The internal modularization of higher-level modules exploits this lack of cohesion. The coarse grain
modularity at the top is a concession to human understanding and to industrial organization, where the fine-
grain modularity at the bottom is a concession to ease of implementation. The possibility of hierarchical
decomposition makes strong cohesion less important than weak coupling.
42 By atomic, we mean an action cannot be decomposed for other purposes, although it can be customized
by parameterization. On the other hand, a protocol is composed from actions. An action does not require an
operation in the module invoking that action (although such an operation may follow from the results of the
action). A protocol, on the other hand, typically coordinates a sequence of back-and-forth operations in two
or more modules, in which case it could not be realized as a single action.
43Interfaces are the dual to an architect’s global view of system properties. An interface determines the
range of possible interactions between two modules interacting through that interface and is thus narrowing
the viewpoint to strictly local properties. Architecture balances the dual views of local interaction and
global properties by establishing module boundaries and regulating interaction across these boundaries
through specified interfaces.
44 Encapsulation requires support from programming languages and tools.
45 This terminology arose because the interface between an application and operating system was the first
instance of this. Today, the term API is used in more general contexts, such as between two applications.
46 Sometimes “emergence” is used to denote unexpected or unwelcome properties that arise from
composition, especially in large-scale systems where very large numbers of modules are composed. Here
we use the term to denote desired as well as unexpected behaviors. An example of emergence in the
physical world is the airplane, which is able to fly even though each of its subsystems (wings, engines,
wheels, etc.) is not.
47 Bits cannot be moved on their own. What is actually moved are photons or electrons that encode the
values of bits.
48 Imagine a facsimile machine that calls the answering machine, which answers and stores the
representation of the facsimile in its memory. (This is a simplification with respect to a real facsimile

 46

machine, which will attempt to negotiate with the far-end facsimile machine, and failing that will give up.)
Someone observing either this (simplified) facsimile machine or the answering machine would conclude
that they had both completed their job successfully—they were interoperable—but in fact no image had
been conveyed.
49 A Web browser and a Web server need to interoperate in order to transfer the contents of Web pages
from the server to the browser. However, once transferred, the browser can go offline and still present the
Web page for viewing, scrolling, printing, etc. There is not much need for any complementarity beyond the
basic assignment of the simple roles of page provisioning to the server and page consumption to the
browser.
50 In more complicated scenarios, Web pages contain user-interface elements. The actual user interface is
implemented by splitting execution between local processing performed by the browser and remote
processing performed by the server. To enable useful user interfaces, browsers and servers need to
complement each other in this domain. Browser and server compose to provide capabilities that neither
provides individually.
51 In even more involved scenarios, the Web server can send extension modules to the browser that extends
the browser’s local processing capabilities. Java applets, ActiveX controls, and browser plug-ins (such as
Shockwave) are the prominent examples here. For such downloadable extension modules to work, very
tight composition standards are required.
52 Of course, one common function of software is manipulating and presenting information content. In this
instance, it is valued in part for how it finds and manipulates information.
53 This assertion is supported by numerous instances in which software, supported by the platform on which
it executes, directly replaces physical products. Examples include the typewriter, the game board, the
abacus, and the telephone.
54 For example, each individual drawing in a document, and indeed each individual element from which
that drawing is composed (like lines and circles and labels), is associated with a software module created
specifically to manage that element.
55 Technically, it is essential to carefully distinguish those modules that a programmer conceived
(embodied in source code) from those created dynamically at execution time (embodied as executing native
code). The former are called classes and the latter objects. Each class must capture various configuration
options as well as mechanisms to dynamically create other objects. This distinction is also relevant to
components, which are described in Section 6.5.2.
56 For many applications, it is also considered socially mandatory to serve all citizens. For example, it is
hard to conceive of two Webs each serving a mutually exclusive set of users.
57 This is particularly valuable for upgrades, which can be distributed quickly. This can be automated, so
that the user need not take conscious action to upgrade his or her programs. Popular examples here are the
Web-based update services for Windows and Microsoft Office.
58 Mobile code involves three challenges beyond simply executing the same code on different machines.
One is providing a platform that allows mobile code to access resources such as files and display in the
same way on different machines. Another is enforcing a set of (usually configurable) security policies that
allow legitimate access to resources without allowing rogue code to take deleterious actions. A third is to
protect the mobile code (and the user it serves) from rogue hosting environments. Today, this last point is
an open research problem.
59 This enhances the scalability of an application, which is the ability to cost-effectively grow the facilities
so as to improve performance parameters in response to growth in user demand.
60 The data generated by a program that summarizes its past execution and is necessary for its future
execution is called its state. A mobile agent thus embodies both code and state.
61 The choice of object code and interpreter is subject to direct network effects. Interpreters (e.g. the JVM)
are commonly distributed as part of the operating system. Fortunately, it is possible to include two or more
interpreters, although this would complicate or preclude composition on the target platform.
62 An example is the World-Wide Web Consortium (W3C), which is a forum defining standards for the
evolution of the Web.

 47

63 A reference model is determined as the first step in a standards process. Sometimes the location of open
interfaces is defined instead by market dynamics (e.g. the operating system to application).
64 An obvious example is the hierarchical decomposition of a reference-model module, which is always an
implementation choice not directly impacting consistency with the standard.
65 More specifically, specifying interfaces focuses on interoperability, and specifying module functionality
emphasizes complementarity, together yielding composability (see Section 3.3.5).
66 Examples include the Windows operating system API and the Hayes command set for modems.
67 Unfortunately, this is not all that far from reality—the number of interfaces used concurrently in the
present software (and hardware) world is substantial.
68 The IETF has always recognized that its standards were evolving. Most IETF standards arise directly
from a research activity, and there is a requirement that they be based on working experimental code. One
approach used by the IETF and others is to rely initially on a single implementation that offers open-world
extension “hooks”. Once better understood, a standard may be “lifted” off the initial implementation,
enabling a wider variety of interoperable implementations.
69 Technically, this is called semantic tiering.
70 This does not take account of other functions that are common with nearly all businesses, like marketing
(related to Section 2) and distribution (discussed in Section 6.2.2).
71 Often infrastructure hardware and software are bundled together as equipment. For example, the
individual packet routing is implemented in hardware, but the protocols that configure this routing to
achieve end-to-end connectivity are implemented in software. The boundary between hardware and
software changes over time. As electronics capabilities outstrip performance requirements, software
implementations become more attractive.
72 While supporting the needs of all applications is an idealistic goal of infrastructure, this is rarely
achieved in practice. This issue is discussed further in Section 6.
73 Performance is an issue that must be addressed in both the development and provisioning stages.
Developers focus on insuring that a credible range of performance can be achieved through the sizing of
facilities (this is called scalability), whereas provisioning focuses on minimizing the facilities (and costs)
needed to meet the actual end-user requirements.
74 Some of these functions may be outsourced to the software vendor or third parties.
75 An example is Enterprise Resource Planning (ERP) applications, which support many generic business
functions. ERP vendors provide modules that are both configurable and can be mixed and matched to meet
different needs.
76 This process is more efficient and effective when performed by experienced personnel, creating a role for
consulting firms that provide this service.
77 Mainframes have not disappeared, and continue to be quite viable, particularly as repositories of mission
critical information assets.
78 One difference is the greatly enhanced graphical user interface that can be provided by desktop
computers, even in the centralized model. Another is that today the server software focuses to a greater
extent on COTS applications, providing greater application diversity and user choice, as compared to the
prevalence of internally developed and supported software in the earlier mainframe era.
79 Such controls may be deemed necessary to prevent undetectable criminal activity and to prevent the
export of encryption technology to other nations.
80 Open source software, discussed later, demonstrates that it is possible to develop software without
financial incentives. However, this is undoubtedly possible only for infrastructure software (like operating
systems and Web browsers) and applications with broad interest and a very large user community.
81 “Productive use” sees many different definitions, from frequent use to high duration of use.
82 In practice, there is a limited time to pass on unauthorized copies of software to others. In the longer-
term, object code will almost certainly fail to run on later platforms or maintain its interoperability with
complementary software. The continuing maintenance and upgrade is a practical deterrent to illegal

 48

copying and piracy. Another is the common practice to offer substantial saving on upgrades, provided a
proof of payment for the original release can be presented.
83 Source code is sometimes licensed (at a much higher price than object code) in instances where a
customer may want or need the right to modify. In this case, the supplier’s support and maintenance
obligations must be appropriately limited. In other cases, source code may be sold outright.
84 Sometimes, the source comes with contractual constraints that disallow republication of modified
versions or that disallow creation of revenue-generating products based on the source. The most aggressive
open source movements remove all such restrictions and merely insist that no modified version can be
redistributed without retaining the statements of source that came with the original version.
85 Scientific principles and mathematical formulas have not been patentable. Software embodies an
algorithm (concrete set of steps to accomplish a given purpose), which was deemed equivalent to a
mathematical formula. However, the mutability of software and hardware—both of which can implement
algorithms—eventually led the courts to succumb to the patentability of software-embodied inventions.
86 Software and business process patents are controversial. Some argue that the software industry changes
much faster than the patent system can accommodate (both the dwell time to issuing and the period of the
patent). The main difficulty is the lack of a systematic capturing of the state of the art through five decades
of programming, and the lack of history of patents going back to the genesis of the industry.
87 Open source is an interesting (although limited) counterexample.
88 The purpose of composition is the emergence of new capabilities at the systems level that were not
resident in the modules. The value associated with this emergence forms the basis of the system integration
business.
89 It is rarely so straightforward that existing modules can be integrated without modification. In the course
of interoperability testing, modifications to modules are often identified, and source code is sometimes
supplied for this purpose. In addition, there is often the need to create custom modules to integrate with
acquired modules, or even to aid in the composition of those modules.
90 An ISP is not to be confused with an Internet service provider, which is both an ISP (providing backbone
network access) and an ASP (providing application services like email).
91 For example, an end user may outsource just infrastructure to a service provider, for example an
application hosting service (such as an electronic data processor) and a network provider. Or it may
outsource both by subscribing to an application provided by an ASP.
92 The ASP Industry Consortium (www.aspindustry.org) defines an ASP as a firm that “manages and
delivers application capabilities to multiple entities from a data center across a wide area network (WAN)."
Implicit in this definition is the assumption that the ASP operates a portion of the infrastructure (the data
center), and hence is assuming the role of an ISP as well.
93 Increasingly, all electronic and electromechanical equipment uses embedded software. Programmable
processors are a cost effective and flexible way of controlling mechanisms (e.g. automotive engines and
brakes).
94 For example, where there are complementary server and client partitions as discussed in Section 6.4.3,
the server can be upgraded more freely knowing that timely upgrade of clients can follow shortly. A
reduction of the TCO as discussed in Section 4.2.3 usually follows as well.
95 The mobile code option will typically incur a noticeable delay while the code is downloaded, especially
on slow connections. Thus, it may be considered marginally inferior to the appliance or ASP models, at
least until high speed connections are ubiquitous. The remote execution model, on the other hand, suffers
from round-trip network delays, which can inhibit low-latency user interface feedback, such as immediate
rotation and redisplay of a manipulated complex graphical object.
96 Embedded software operates in a very controlled and static environment, and hence is largely absent
operational support.
97 Mobile code may also leverage desktop processing power, reducing cost and improving scalability for
the ASP. However, there is a one-time price to be paid in the time required to download the mobile code.

 49

98 In order to sell new releases, suppliers must offer some incentive like new or enhanced features. Some
would assert that this results in “feature bloat”, with a negative impact on usability. Other strategies include
upgrading complementary products in a way that encourages upgrade.
99 If a software supplier targets OEMs or service providers as exclusive customers, there is an opportunity
to reduce development and support costs because the number of customers is smaller, and because the
execution environment is much better controlled.
100Depending on the approach taken, pay-per-use may require significant infrastructure. For example, to
support irregular uses similar to Web browsing at a fine level of granularity, an effective micro-payment
system may be crucial to accommodate very low prices on individual small-scale activities.
101 This actually is based on software components (see Section 6.5.2). Each component has encapsulated
metering logic, and uses a special infrastructure to periodically (say, once a month) contact a billing server.
In the absence of authorization by that server, a component stops working. The model is transitive in that a
component using another component causes an indirect billing to compensate the owner of the transitively
used component. Superdistribution can be viewed as bundling of viral marketing [War00] with distribution
and sale.
102 A high percentage (estimates range from 40% to 60%) of large software developments are failures in the
sense that the software is never deployed. Many of these failures occur in end-user internal developments.
There are many sources of failure—even for a single project—but common ones are an attempt to track
changing requirements or a lack of adequate experience and expertise.
103 Software suppliers attempt, of course, to make their applications as customizable as possible. Usually
this is in the form of the ability to mix and match modules, and a high degree of configurability. However,
with the current state of the art, the opportunity for customization is somewhat limited.
104 Here too, there are alternative business models pursued by different software suppliers. Inktomi targets
Internet service providers, providing all customers of the service provider with enhanced information
access. Akamai, in contrast, targets information suppliers, offering them a global caching infrastructure that
offers all their users enhanced performance.
105 This places a premium on full and accurate knowledge of the infrastructure API’s. Customer choice is
enhanced when these API’s are open interfaces.
106 An example of a similar layering in the physical world is the dependence of many companies on a
package delivery service, which is in turn dependent on shipping services (train, boat, airplane).
107 Examples are: the Java bytecode representing a program, a relational table representing structured data
for storage, and an XML format representing data for communication.
108 Examples are: the instructions of a Java virtual machine, the SQL operators for a relational database,
and the reliable delivery of a byte stream for the Internet TCP.
109 An example is directory services, which combines communication and storage.
110 For example, applications should work the same if the networking technology is Ethernet or wireless. Of
course, there will inevitably be performance implications.
111This is analogous to standardized shipping containers in the industrial economy, which serve to allow a
wide diversity of goods to be shipped without impacting the vessels.
112 By stovepipe, we mean an infrastructure dedicated to a particular application, with different
infrastructure for different applications.
113 Examples are the failed efforts in the telecommunications industry to deploy video conferencing,
videotext, and video-on-demand applications. In contrast, the computer industry has partially followed the
layering strategy for some time. For example, the success of the PC is in large part attributable to its ability
to freely support new applications.
114 In many cases, there is a web of relationships (for example the set of suppliers and customers in a
particular vertical industry), and bilateral cooperation is insufficient. An additional complication is the
constraint imposed by many legacy systems and applications.

 50

115 This is similar to the layering philosophy in Figure 6. Suppose N different representations must
interoperate. A straightforward approach would require N*(N-1) conversions, but a common intermediate
representation reduces this to 2N conversions.
116 Software is reused by using it in multiple contexts, even simultaneously. This is very different from the
material world, where reuse carries connotations of recycling and simultaneous uses are generally
impossible. The difference between custom software and reusable software is mostly one of likelihood or
adequateness. If a particular module has been developed with a single special purpose in mind, and either
that purpose is a highly specialized niche or the module is of substantial but target-specific complexity,
then that module is highly unlikely to be usable in any other context and is thus not reusable.
117 However, the total development cost and time for reusable software is considerably greater than for
custom software. This is a major practical impediment. A rule of thumb is that a reusable piece of software
needs to be used at least three times to break even.
118 For example, enterprise resource planning (ERP) is a class of application that targets standard business
processes in large corporations. Vendors of ERP, such as SAP, Baan, Peoplesoft, and Oracle, use a
framework and component methodology to try to provide flexibility.
119 The closest analogy to a framework in the physical world is called a platform (leading to possible
confusion). For example, an automobile platform is a standardized architecture, and associated components
and manufacturing processes that can be used as the basis of multiple products.
120 Infrastructure software is almost always shared among multiple modules building on top of it. Multiple
applications share the underlying operating system. Multiple operating systems share the Internet
infrastructure. Traditionally, applications are also normally shared—but among users, not other software.
121 Even an ideal component will depend on some platform for a minimum of the execution model it builds
on.
122 Market forces often intervene to influence the granularity of components, and in particular sometimes
encourage course-grain components with considerable functionality bundled in to reduce the burden on
component users and to encapsulate implementation details.
123 A component may “plug into” multiple component frameworks, if that component is relevant to multiple
aspects of the system.
124 This is similar to the argument for layering (Figure 6), common standards (Section 6.4.2), and
commercial intermediaries, all of which are in part measures to prevent a similar combinatorial explosion.
125 Thus far there has been limited success in layering additional infrastructure on the Internet. For example,
the Object Management Group was formed to define communications middleware but its standards have
enjoyed limited commercial success outside coordinated environments. Simply defining standards is
evidently not sufficient.
126 There are some examples of this. The Web started as an information access application, but is now
evolving into an infrastructure supporting numerous other applications. The Java virtual machine and XML
were first promulgated as a part of the Web, but are now assuming an independent identity. The database
management system (DBMS) is a successful middleware product category that began by duplicating
functions in data management applications (although it also encounters less powerful network externalities
than communications middleware).
127 If a server-based application depends on information content suppliers, its users may benefit
significantly as the penetration increases and more content is attracted.
128 Examples in the peer-to-peer category are Napster [Sul99] and Groove Transceiver [Bul00]. As
downloadable software, Napster was relatively successful; if an application is sufficiently compelling to
users, they will take steps to download over the network.
129 Under simple assumptions, the asset present value due to increased profits of a locked-in customer in a
perfectly competitive market is equal to the switching cost.
130 They also force the customer to integrate these different products, or hire a systems integrator to assist.
131 See Section 7.2.5 for further clarification. In a rapidly expanding market, acquiring new customers is as
important or more important than retaining existing ones.

 51

132 Pure competition is an amorphous state of the market in which no seller can alter the price by varying
his output and no buyer can alter it by varying his purchases.
133 An exception is a software component, which may have a significant asset value beyond its immediate
context.
134 Some examples are CBDIForum, ComponentSource, FlashLine, IntellectMarket, ObjectTools, and
ComponentPlanet.
135 For example, office suites offer more convenient or new ways to share information among the word
processor, presentation, and spreadsheet components.
136 In many organizational applications, maintenance is a significant source of revenue to suppliers.
137 The .NET Framework is an example of a platform that supports side-by-side installation of multiple
versions of a component.
138 For example, bundling an inexpensive and encapsulated computer with Web browsing and email
software results in an appliance that is easier to administer and use than the PC. IOpener is a successful
example [Net]. The personal digital assistant (PDA) such as the Palm or PocketPC is another that targets
personal information management.
139 This last point is controversial, because information appliances tend to proliferate different user
interfaces, compounding the learning and training issues. Furthermore, they introduce a barrier to
application composition.
140 This is only partially true. Especially when appliances are networked their embedded software can be
maintained and even upgraded. However, it remains true that the environment tends to be more stable than
in networked computing, reducing the tendencies to deteriorate and lessening the impetus to upgrade.
141 Examples include audio or video equipment, game machines, and sporting equipment. Embedding email
and Web browsing capabilities within the mobile phone is another example.
142 Jini, which is based on Java, and Universal Plug-and-Play, which is based on Internet protocols, are
examples of technical approaches to interoperability in this context.
143 A practical limitation of wireless connections is reduced communication speeds, especially relative to
fixed fiber optics.
144 It may be necessary or appropriate to allow application code to reside within the network infrastructure.
Mobile code is a way to achieve this flexibly and dynamically.
145 An important exception is a product line architecture that aims at reusing components across products
of the same line. Here, product diversity is the driver, not outsourcing of capabilities to an external
component vendor.
146 An example would be to use a universal remote control to open and close the curtains, or a toaster that
disables the smoke detector while operating.

