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Abstract

The wireless link poses a signi�cant challenge for sending video streams. This is due to
the fact that current generation wireless links have low bit rate and high error rate compared
to wire-line links. To send high bit rate delay-sensitive tra�c over a wireless link, suitable
video compression algorithms and transport/link protocols are needed. We built a wireless
video system merging a low bit rate video codec with appropriate transport/link layer protocols
that overcome the constraints imposed by the wireless link. In the general case, this project
provides a general wireless network infrastructure to support real-time streaming applications.
We assume that the application layer provides error resilience, rate control, and packetization
functionalities to the network. In turn, the network layers allow error-resilient policies at the
application to be reected in the transport and link layers by enabling exible checksumming
schemes such as UDP Lite and PPP Lite. We evaluated the overall performance of this wireless
video system using both quantitative performance metrics (such as throughput, jitter, packet
loss, and end-to-end latency) and qualitative performance metrics (such as viewer perception of
quality: smooth motion, changes in luminance, edge detection, etc).

1 Introduction

As cellular telecommunications and packet-switched data networks converge, ubiquitous computing
applications [36] will enable users to access data \anywhere, anytime, anyplace." Web browsing
on cellular phones is already a reality with the introduction of Nokia's and Ericsson's Wireless
Access Protocol (WAP) phones [35] this year. Other multimedia services like mobile banking,
voice-activated email, and cellular video are being prototyped in Europe, Asia and the US. These
new applications require new functionality in the networking stack of Internet and cellular nodes
as well as in the protocols that span these nodes.

Current network/system environments enforce ordered reliable delivery when in fact the ap-
plication may be able to tolerate out-of-order, unreliable or corrupted data. As protection in the
protocol stack is increased { in the form of forward error correction (FEC), checksums, or auto-
matic repeat request (ARQ) mechanisms { there is a corresponding decrease in the e�ective data
rate. This in turn decreases the ability of the application to react on the y to transmission errors.
Rather than over-engineering network protocols to anticipate every possible packet mis-ordering
or corruption, we show that a protocol stack with exible error correction schemes uses band-
width more e�ectively, decreases retransmissions, and decreases latency and jitter. For example, if
the application can stand bit error rates of 10�2 but requires in-order delivery, then it implicitly
communicates those requirements to the network; the network then guarantees this level of error
protection on a per-socket granularity. The application-level framing (ALF) model proposed by
Clark and Tennenhouse [8] o�ers a powerful framework for enabling the application to determine
what it considers \sensitive" data. One can imagine a graph of network protection versus applica-
tion adaptivity; the balance point for each application is then determined by the notion of \utility"
elaborated by Shenker and others in the QoS literature [7, 29].

1.1 Contributions of This Work

Research in this area has thus far focused on how to make delay-sensitive applications adaptive or
error-resilient in the wired Internet. With the exception of the multicast community [4, 18], no
one (to our knowledge) has developed a network architecture to enable multimedia streaming in
low-bandwidth environments. The video coding community has extensively researched application-
level error correction schemes [24, 27, 34, 37], but none at the transport and link layers. For an
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in-depth discussion of related work, please refer to Section 6. To sum up, the contributions of this
work are that

� we are exploring the very low bandwidth environment of wide-area wireless data networks;

� we are enabling real-time delay-sensitive multimedia ows by modifying error detection mech-
anisms in the network and not in the application; and

� we buttress simulation studies of error resilience with actual measurements on a wireless
GSM1 circuit-switched data network.

Speci�cally, our project aims to realize one aspect of the cellular/IP multimedia trend by proto-
typing \video over wireless" { we send video streams over a wireless interface and measure network
performance and video quality. Challenges in implementing this system include the low bit rate
(9.6 kb/s) and high bit error rate of the wireless channel. In addition, the sensitivity of human
perception of multimedia [31] imposes tight requirements on jitter, delay, and image quality. In our
system, the former set of challenges is addressed by changes in transport and link layer protocols,
while the latter set is addressed by o�-the-shelf error resilient video coding software.

2 Background

2.1 Application Layer

2.1.1 Video Transmission Systems

Generic video transmission systems consist of a video coding engine which encodes an analog video
into a digital video bitstream, and a channel coding engine which transmits the bitstream over a
(possibly lossy) channel. The former piece is commonly known as a source coder while the latter
is referred to as a transport coder.

Source coders are themselves composed of two parts, waveform and entropy coders. The wave-
form coder transforms the original video using lossy techniques such as the Discrete Cosine Trans-
form (DCT) and quantization. The motion estimation and compensation stage of the waveform
coder predicts each frame from its neighboring frames, compresses the prediction parameters, and
produces the prediction error frame. The prediction error stage codes the prediction and residual
error in each frame.

The entropy coder then losslessly converts the output from the waveform coder into binary code
words according to the statistical distribution of symbols to be coded. Common techniques used
by the entropy coder are Hu�man and arithmetic coding.

Finally, the transport coder performs channel coding, packetization and modulation, and trans-
port level control to convert the video bitstream into suitable data units (packets) for transmission.
The overall system is summarized in Figure 1. Note that although the transmission is typically
only shown in the forward direction, systems with two-way communication channels (such as ours)
are not uncommon. These will be detailed in the following section.

2.1.2 Error Detection and Concealment

Unfortunately, video transmission is not error-free. Bit errors and erasures are introduced at both
the waveform and transport coders. There are three main mechanisms to detect these errors. First,

1Global System for Mobile Communications
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Figure 1: A Generic Digital Video Transmission System

transport-level detection involves adding header information or using FEC to prevent packet
loss. Second, video-level detection involves using di�erences in pixel values (between adjacent
lines, or between boundary values in a frame) to detect bit errors and erasures on a per-frame
basis. The advantage of using transport-level detection is that transmission becomes more reliable;
the downside is that including redundant information increases channel bandwidth, which may
not be appropriate for low bitrate channels like wireless. Thus the advantage of using video-level
detection is that it does not add bits to the stream beyond those allocated to the source coder.
A third technique, known as frequency domain detection, compromises well between the �rst
two techniques by using synchronized code words and incomplete variable length codes (VLCs) to
detect bitstream errors.

Once errors have been detected, they must be concealed. This is typically achieved by adding
\concealment redundancy" at the waveform, entropy, or transport coders. Given a video source
model, total channel bandwidth, and channel error characteristics, one can design a source-transport
encoder/decoder in three di�erent ways.

First, encoder-based techniques are those in which the encoder plays the primary role in
concealing errors. Examples include FEC, robust entropy/waveform coding, multiple description
channels, layered coding, and joint source-channel coding. Second, decoder-based techniques are
those in which the decoder plays the primary role in concealing errors, using estimation and inter-
polation. Examples include spatial and temporal smoothing, interpolation, and �ltering. Finally,
interactive techniques assume the presence of a backchannel from the decoder to the encoder;
both parts of the system then cooperate to detect and conceal errors on the y. Examples include
ARQ, intelligently chosen retransmissions, and selective predictive coding with feedback from the
decoder.

2.1.3 H.263+ Error Resilient Video Codec

The H.263 video codec standard was developed by the ITU for transmitting video streams at low
data rates (< 64 kbit/s) over the public switched telephone network. It encodes low bit rate video
streams using a motion-transform hybrid video coding framework.

The H.263+ standard (1998) improves upon the H.263 standard (1996) in the following ways: it
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Figure 2: Sample Screenshots from H.263+ Video Bitstream

provides enhanced error resilience capabilities (appendices A-F from the standard), o�ers optional
bitstream scalability, and enables better packetization with an underlying protocol such as RTP [5].
The H.263+ standard adds nine new features to the existing suite, including advanced intra coding,
reduced block artifacts using a deblocking �lter, reference picture selection and resampling, reduced-
resolution updates, and modi�ed quantization. The curious reader is referred to the voluminous
ITU standard [12] for an exhaustive description of the codec. Two sample screenshots from the
\mom" bitstream are shown in Figure 2. These screenshots are used as benchmarks to evaluate
the performance of our video transmission system, detailed in Section 5.

2.2 Transport Layer

Real-Time Transport Protocol (RTP). RTP, the Real-time Transport Protocol [28], provides
end-to-end delivery services for real-time data such as interactive audio and video. The protocol
design allows application-level framing (ALF) and integrated layer processing. RTP provides extra
information to the application layer in the form of sequence numbers, timestamping, payload type,
and delivery monitoring. Depending on the particular real-time application at hand, RTP is either
integrated with the application layer or the transport layer (UDP); both RTP and UDP contribute
parts of the transport layer functionality.

It is important to note that RTP does not itself ensure timely delivery or other quality-of-service
guarantees; it relies on lower-layer services to do so. RTP sequence numbers allow the receiver to
reconstruct the sender's packet sequence, but are also used to determine the proper location of a
packet (e.g. in video decoding) without necessarily decoding packets in sequence.

User Datagram Protocol (UDP). UDP is a connection-less unreliable best-e�ort transport
layer protocol. At the transport layer of the protocol stack, we had the choice of using either TCP
or UDP. TCP is the most common transport protocol for sending data. However, the main draw-
back of TCP is that it does not perform well when carrying delay-sensitive tra�c such as audio or
video. This is because TCP drops corrupted packets at the receiver, causing the sender to retrans-
mit packets, which in turn introduces delay into the connection. An extensive body of research
has examined modi�cations to TCP for real-time ows, including TCP-friendly applications [33],
indirect TCP [2], etc. TCP-friendly modi�cations primarily address congestion control, with less
attention to packet loss. Indirect TCP isolates mobility and wireless-related problems, but requires
additional hardware in the network in the form of Mobility Support Routers.

In contrast, UDP does not require additional hardware nor does it retransmit lost packets.
This guarantees immediate delivery. While an improvement over TCP, UDP is still not the ideal
multimedia transport protocol because it drops corrupted packets, thus decreasing throughput.
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Figure 3: Packet Header for Video. Note the coverage �eld used by UDP Lite.

UDP Lite. The UDP Lite protocol [15] attempts to solve these problems by allowing the ap-
plication to receive corrupted packets instead of dropping them altogether. This is achieved by a
partial checksum which only covers a �xed amount of \sensitive" data. Integrating UDP Lite into
existing UDP frameworks is simple: the length �eld in the UDP header is replaced by the coverage
�eld (see Figure 3), which signi�es how many bytes of the packet have been checksummed. With
a checksum coverage value replacing the packet length, UDP Lite packets are treated like classic
UDP packets with the checksum enabled.

The UDP Lite approach is better suited for video tra�c where it is more important to receive
frames at a constant rate even though some frames may be corrupted. By using UDP Lite as the
underlying transport protocol, these applications can perform more robustly in the face of errors
caused by the (wireless) network.

Socket Interface. We implemented our own version of a send/receive socket interface in C
because existing implementations use TCP as the default transport-layer protocol [9, 32], whereas
we needed to use RTP and UDP in the transport layer. In addition, we instrumented our socket
interface to collect statistics as described in Section 3. The sender's socket sends data continuously
while the receiver's socket blocks until it receives new data. This initially resulted in bu�er overows
(and therefore packet drops) as the kernel bu�er �lled up faster than the radio link layer could empty
[17]. The trade-o� in this design was thus between latency and packet loss rate: increasing the
kernel's bu�er resulted in fewer dropped packets but worsened the end-to-end delay, while increasing
the rate at which packets were sent resulted in less end-to-end delay but higher packet loss rates.
Using standard rate control calculations, we determined the balance point of the socket bu�er to
be 8192 B (up from the default 4096 B).
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2.3 Link Layer

2.3.1 Data Link

Point to Point Protocol (PPP). PPP [30] is a data link protocol for point-to-point links. It
has two main functions: encapsulation of IP datagrams, and error detection using a polynomial
Frame Check Sequence (FCS).

PPP Lite. The implementation of UDP Lite obtained from Lulea University included modi�ca-
tions to the device drivers to implement a \lite" version of PPP for Unix FreeBSD. Keith Sklower
ported these modi�cations to BSDi with additional functionality for simply ignoring PPP check-
sums in the receiver. This e�ectively limits the checksumming to that provided by UDP Lite, which
can be controlled at the socket level.

2.3.2 Radio Link

The GSM standard allows data tra�c in two modes. Non-transparent mode runs a semi-reliable
protocol, the Radio Link Protocol, described below. Transparent mode, described in the paragraphs
following, simply utilizes the GSM radio link without embedding any additional functionality.

Radio Link Protocol (RLP). The GSM Radio Link Protocol [1] is a full-duplex reliable link
layer protocol derived from the HDLC logical link layer protocol. Fixed-size data frames of 30
bytes (with 6 bytes of header information) are sent/received every 20 ms; the overall bandwidth is
therefore 1200 bytes/s or 9.6 kbit/s. All frames are strictly aligned to the GSM radio block size
used as a basis for channel coding. RLP uses two mechanisms for error recovery: selective reject

and checkpoint recovery.
Figure 4 illustrates the selective reject mechanism, which is explicitly initiated by the receiver

to request retransmission of missing frames. Whenever a frame is received out of order, the receiver
sends an \SREJ" control frame specifying the sequence number of the missing frame. The sender is
not required to \roll back," but instead retransmits the frame of the sequence number equal to the
sequence number sent by the receiver. The sender then returns to its state before retransmission
and continues to transmit frames. It should be noted that every SREJ frame is protected by a
single retransmission timer and the sender is limited to retransmitting the same frame no more
than N2 (typically 6) times.

sender

receiver

1 3 2 4 52

ack 1 ack2 ack4SREJ

frame 2

ack 3

Figure 4: Selective Reject in RLP

Figure 5 illustrates the checkpointing mechanism, which is initiated by the sender whenever
there is a timeout of an acknowledgment. The sender sends a \Poll" control frame and waits for
the receiver's response. The receiver responds with a control frame indicating the receive sequence
number of the frame that it is expecting. Finally, the sender retransmits all the frames in sequence,
starting from the �rst frame before the timeout.
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Poll1 32 54

N(R)=4

Figure 5: Checkpointing in RLP

The ARQ mechanism of RLP will introduce delay that may not be tolerable when sending video
streams. GSM allows us to choose between transparent mode (without ARQ) and non-transparent
mode (with ARQ). Turning on RLP increases reliability but also increases delay. On the other
hand, turning o� RLP decreases delay but also decreases reliability. By experimenting with these
two modes, we better understood the role of RLP in overall performance.

GSM non-RLP Mode. Since transparent mode uses the GSM radio link without any additional
functionality, it allows consistent delay on the data transfer. Other protocols for compression (e.g.,
V.42bis, MNP5) and error control (e.g., MNP4, V.42) may be run as separate protocols by the
two communicating modems. Data compression yields data rates approaching the 64 kbits/s of the
GSM base network.2 In addition, transparent mode is typically run asynchronously, where data
is not clocked but includes start/stop bits for each byte and some additional overhead. The other
option is to run transparent mode synchronously, where clocking is achieved with the use of an
additional semi-reliable protocol. In this case, bandwidth overhead is almost as high as that of
RLP.

Radio Link Tradeo�s. To understand the tradeo�s between RLP and the various non-RLP
con�gurations, we performed a set of ping measurements and collected round-trip-time (RTT) and
packet loss statistics. These results are detailed in Appendix B, and show that non-RLP without
error control and compression yields the minimum end-to-end delay and overhead.

3 Design Overview

We now present a brief overview of the layers in our network stack and the challenges and solutions
posed at each layer. Figure 6 illustrates the di�erent parts of our design. Our setup consists of
a mobile host which communicates with a �xed host3 through a GSM [19, 25] circuit-switched
connection.

The mobile host communicates with the GSM Network using an Ericsson mobile phone and a
commercial Ericsson wireless modem.4 Commands to initialize the modem are included in Appendix
C. Going end to end, we have RTP with either UDP or UDP Lite5 running at the transport layer,
IP on the network layer, and PPP at the data link layer. The wireless link from the mobile host to
the GSM base station runs either RLP or non-RLP.

2However, it should be noted that most compression algorithms perform worse when fed already-compressed data;
this is what we observed when trying to transmit compressed video bitstreams.

3Both hosts are running UNIX BSDi 3.0.
4DC23 PCMCIA card.
5UDP Lite always runs over PPP Lite.
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Figure 6: Cellular IP Testbed

At the sender (mobile host), video streams were encoded using the H.263+ standard error-
resilient video codec for low bit rates. The resulting encoded bitstreams, with a QCIF resolution of
176 x 144 pixels, bit rate of 10 kbits/s and frame rate of 10 Hz, were packetized into RTP packets
using a recommended packetization algorithm [38], then fed into a socket connection. At the
receiver (�xed host), RTP packets were read o� the socket, stripped of headers, and reassembled
into a contiguous stream which was read by the decoder in real time. The resulting video was
displayed on the receiver and analyzed qualitatively. The protocol stack with appropriate interfaces
is shown in Figure 7.

P A C K E T I Z A T I O N

S O C K E T    I N T E R F A C E

Application

RTP

UDP

IP

Data / Radio Link

Physical

Figure 7: Networking Stack

To trace information at the RTP/UDP sender and receiver, we developed socket-dump, which
generates a single log �le containing timestamps and byte numbers specifying when a packet was
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placed in the sender's bu�er. From the data generated by socket-dump, we graphed time/sequence
plots and calculated statistics. In particular, we were interested in analyzing end-to-end delay,
packet inter-arrival time, throughput information and also some exceptional conditions (e.g. re-
transmissions, detailed in Section 2.3). To visualize the data generated by socket-dump and RLP-

dump, we used MultiTracer [17], a set of Perl scripts that convert the trace data into the input
format required by plotting tools such as Matlab and xgraph.

4 Implementation

4.1 Iceberg Testbed

The Iceberg (Internet-based Core for CEllular networks BEyond the thiRd Generation) project
at UC Berkeley [13] aims to integrate diverse access networks with Internet, telephony, and data
service capabilities. Service-intensive, network-based real-time applications are deployed by securely
embedding computational resources in the switching fabric. As a result, we will understand how
to encapsulate existing application services (e.g. speech-to-text, location-awareness). We will also
be able to provision \all-IP" cellular networks for scalability, multinetwork mobility, and security
support while studying QoS issues for delay-sensitive ows.

The GSM subsystem of our experimental testbed is the focus for integrating a GSM base station
with an IP core network. Details of the \Iceberg GSM network" cloud from Figure 6 are shown
here in Figure 8. The various pieces of equipment are described in Raman's MS thesis [26], pp.
16-19.

Briey, a data call is set up as follows. After initializing the base station to accept data calls
on a particular timeslot, the Datapath program is started up on the IP-Packet Assembler and
Disassembler (IP-PAD). This polls the E1 interface card, which is an HDLC adapter with incoming
T1/E1 lines.6 When the mobile host (not pictured here) calls a phone number, the controller
machinery at the User Part Simulator (Upsim) receives these signaling frames. At the IP-PAD,
GSM data frames arrive on the E1 line. The Datapath program pulls them o�, strips the necessary
bits in the header (see Appendix A for the format of a data frame), demultiplexes the frame,
and extracts the data payload from each of the relevant timeslots. This payload is then tunneled

6Thor-2 Dual T1/E1 Adapter, Odin TeleSystems [14].
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through UDP to a Unix BSDi workstation for further processing. At the Unix workstation, the
RLP-to-PPP program starts the RLP state machine to process incoming packets, then invokes
pppattach to start a PPP connection between the sender and receiver. At this point, the sender
and receiver can communicate just as though there was a wired network connection between them.

4.2 Lessons Learned

As of August 1999, a BSDi UNIX implementation of RLP by Bela Raythoni (Ericsson) was work-
ing correctly on hosts initiating wireless data transfer, but was not tested on the \receive" side.
Although the setup was su�cient if the user was simply interested in controlling the \send" side
of data transfer, it was not su�cient if the user was interested in controlling both ends of data
transfer, or obtaining any end-to-end statistics about RLP, or using the mobile host as the receiver
in a data call. To realize this, it was necessary for the Iceberg IWF host to run RLP correctly,
analogous to what happens inside a commercial GSM network.

Paci�c Bell Testbed

RLP code 7! laptop's COM port 7! cell phone 7! PacBell GSM network 7! PacBell IWF 7! PSTN
7! receiver modem

Iceberg Testbed

RLP code 7! laptop's COM port 7! cell phone 7! Iceberg base station 7! IP-PAD \IWF" (Thor
board + RLP code) 7! LAN

Figure 9: Paci�c Bell and Iceberg Testbeds

Data calls initiated through the base station's Upsim controller were being torn down by the
controller before any actual data transfer could begin. This was because the Upsim software was
assigning timeslots incorrectly. Once that problem was �xed, data calls stayed up but no data was
actually being received on the IP-PAD (acting as the Iceberg IWF). Keith Sklower and I wrote a
program which tested Raythoni's RLP implementation by simulating a duplex send/receive wireless
channel. We found that the sender was expecting an acknowledgment to its XID request, sent as the
very �rst frame. (XIDs are used in a single handshake to periodically negotiate control information.)
The receiver was not correctly set up to send acknowledgments, so after N2 (6) re-transmissions of
its XID request every 48 frames, the sender's RLP state machine simply dropped the connection.
We corrected the receiver to send acknowledgments, and also increased its window size to twice
that of the sender to prevent XID collisions. This resulted in both sender and receiver working
correctly.

In retrospect, although the conceptual problem was not very intricate, debugging roughly 10,000
lines of completely undocumented code { accompanied only by opaque ETSI speci�cations { was
challenging in its own right.

Further work involved plugging in the corrected RLP implementation into the IP-PAD software,
and testing data calls from end to end. This involved the additional step of modifying the IP-PAD
IWF software to remove all dependencies on the Upsim, in anticipation of the shift to an Abisco
interface.7

7The Ericsson TSS 2000 \Abisco" (Abis Communicator) will replace the Upsim as the base station controller.
In addition to all the functionality provided by the Upsim, the Abisco also provides a Smile interpreter, runtime
inter-process message database, and a Windows interface for functional and test debugging.
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Fragmentation is used as a basis for wireless packet simulation. Note that the \header" is not really 2 bytes

long as shown in scale: there are two bits of overhead for each byte in asynchronous mode, which we simplify

as 2 bytes of overhead per 28 bytes of data.

Figure 10: Radio Block Fragmentation

When the corrected RLP implementation was installed on the IP-PAD, further problems arose.
Data calls could be set up and torn down, but were unstable; various minor bug �xes (e.g., replacing
an idle polling loop with a timed poll to reduce processor cycles, testing the timing of the RLP state
machine, etc.) did not rectify this. We guessed that the clocking mechanisms on Windows NT were
not �ne-grained enough to support the delay-sensitive RLP code, but could not migrate to a Unix
BSDi platform (where the RLP code was known to work) because the drivers for the E1 interface
card were written only for Windows. Therefore we devised an intermediate solution in which the
IP-PAD would simply strip the headers from incoming data frames, and tunnel the payload (using
UDP) to a Unix BSDi workstation, which would terminate RLP. This solution worked well, and we
could set up and maintain data calls for extended periods of time; however, the round trip times
from sender to receiver ranged from 1200 to 1800 ms, about twice as high as the RTTs on the
PacBell testbed, and clearly unacceptable for taking measurements!

We noticed an unusually high number of retransmissions in RLP with the new UDP tunneling
set up. Since the UDP connection between the IP-PAD and the BSDi workstation was on a 10Mb/s
shared Ethernet, we surmised that there were many packet losses, in turn triggering radio link-level
retransmissions. To test this hypothesis, we conducted several runs of 1000 pings between various
machines on the Ethernet at various times of the day. The results were contrary to what we
expected: there were no packet losses. Other debugging approaches including checking for memory
leaks and pro�ling the memory usage of the IP-PAD software provided no insights. At the time of
this writing, the problem has not been investigated further: we think the retransmissions might be
caused by slight di�erences in clock cycles between the IP-Pad and the BSDi workstation.

The approach most likely to succeed would be to port the Thor2 device driver code to Unix, test
it aggressively, and run both RLP and its attendant device driver software on the same machine.

5 Performance Evaluation

We conducted both simulations and experiments on wireless video transmissions. Although we had
planned to conduct experiments on the Iceberg testbed, we were not able to take realistic measure-
ments owing to the high RTT described in Section 5. Therefore we used the commercial Paci�c
Bell GSM network instead. The simulations served the purpose of isolating the error resilience ef-
fects of various codecs as well as understanding the viability of UDP Lite as a protocol for wireless
multimedia streaming.8

8Simulations also helped keep the PacBell phone bills at a minimum!
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5.1 Channel Simulation

Performance studies of multimedia applications over wireless networks require intense analysis of
real video transmission over an existing network infrastructure. In addition to being very time-
consuming, it is oftentimes di�cult to isolate speci�c problems. To understand the impact of high
bit error rate wireless channels on multimedia applications, we designed a wireless simulator,WSim

which takes advantage of wireless error traces collected in previous work [16]. WSim (see Figure
11) takes as input a video stream, a wireless error trace, and a protocol con�guration. It uses these
to generate an output video stream with some corruption.

Wireless Error Trace Input Video Stream

Output Video Stream

WSim

Figure 11: WSim block diagram

The wireless error traces we used are speci�c to the particular FEC and interleaving schemes
implemented in GSM circuit-switched data connections. A trace is comprised of a binary sequence
where each element represents the state of a radio block9 in a GSM wireless channel. There are
two states. A one represents a corrupted radio block, while a zero represents a correct radio block.
The BLock Error Rate (BLER) de�nes the average rate of corrupted radio blocks.

The traces were collected in di�erent channel environments such as stationary, walking and
driving. Traces collected in stationary environments are either termed bad or good depending on
the signal strength at the mobile phone [16]. The error trace speci�es if a 30-byte radio block is
corrupted or not. However, we did not know the distribution of errors within a block. We initially
use a simplistic approximation by randomly corrupting 20% of the bytes in the block. Towards
the end of this project, we collected byte-level traces using the tip command, which simply wrote
bytes between two wirelessly connected devices. In future work, we plan to feed this byte-level
error distribution into the channel model.

WSim is based on 215 minutes of traces collected in a bad stationary environment. We simulate
two protocol con�gurations:

� UDP running over transparent (non-RLP) mode

� UDP-Lite running over transparent mode

The algorithm for WSim is as follows:

1. Choose ADU size = size of the application data unit (ADU) in bytes.

2. Choose transport protocol (UDP or UDP-Lite).

3. Repeat following steps until end-of input video stream is reached.

(a) Read ADU size bytes from input video stream.

9In current circuit-switched GSM systems, a radio block contains 30 bytes.
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UDP UDP Lite

Figure 12: Simulation Screenshots

(b) Generate packet size in bytes: add RTP/UDP/IP/PPP header size (7+8+20+7=42
bytes, see Figure 3) to ADU size.

(c) Generate N = number of radio blocks to carry packet size bytes of data, where each
radio block contains 28 bytes of data (see Figure 10).

(d) Repeat following steps N times.

� Read radio block from input wireless error trace

� If the radio block is corrupted, corrupt 28 bytes of data.

(e) If the chosen transport protocol is UDP

� if packet is corrupted, drop the packet i.e. do nothing

� else write ADU into output video stream

(f) If the chosen transport protocol is UDP-Lite

� if packet RTP/UDP/IP/PPP header is corrupted, drop the packet i.e. do nothing

� else write ADU into output video stream

Our goal was to compare the two protocol con�gurations and determine which one o�ers better
video quality. We ran WSim on the \mom" video stream using a wireless error trace of 1.58%
BLER. Figure 12 shows representative screenshots of video streams produced by Wsim for both
UDP and UDP Lite. Observe that the video quality with UDP is far worse than with UDP Lite
owing to the fact that UDP drops corrupted packets while UDP Lite transmits them.

5.2 Experimental Results

For our experiments, we ran video over wireless for the four possible combinations of transport and
radio link protocols: UDP and UDP Lite with RLP; UDP and UDP Lite with non-RLP.

The tradeo� here is thus between (1) a connection-less best-e�ort datagram protocol in the
transport layer, with and without exible checksumming, and (2) a wireless link layer protocol
with and without reliability. Running UDP or UDP Lite over RLP means that drops at the
transport layer might trigger retransmissions in the radio link machinery. This negates the e�ect
of using a best-e�ort datagram service in the �rst place.

To \showcase" the di�erence between UDP and UDP Lite, we turn o� retransmissions and
aggressive checksumming in lower protocol layers. This is achieved by running the wireless link in
transparent (non-RLP) mode, with error correction and compression turned o�. The experiments
with non-RLP therefore pinpoint di�erences between UDP and UDP Lite.

We will refer to each video transmission, lasting four minutes, as a run. We collected a total of
4480 minutes of wireless video traces, corresponding to 1120 runs. Each protocol combination was
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repeated for ten runs for both good and bad channel conditions. Thus, each data point on each
graph presented below corresponds to 40 minutes of transmission.

We de�ne a good channel condition as one in which the signal strength varied from 15 to 20
dB10 corresponding to a readout of 4-5 bars on the mobile phone's indicator, while a bad channel
condition was one in which the signal strength varied from 4 to 9 dB corresponding to a readout
of 1-2 bars on the mobile phone's indicator.

For each run, we collected various statistics as described in Section 2 and used these to compute
four key metrics:

� End-to-end delay (s)

� Jitter, also known as packet inter-arrival time (s)

� Packet loss (% of packets lost)

� Throughput (kbits/s)

In the following several graphs, we present results for 160 minutes of the collected traces. The
mean value for each metric and protocol combination is plotted as a single point, with Y error bars
denoting standard deviation.

5.2.1 Delay

The delay of the connection from end to end is plotted in Figure 13. Notice that the mean delay of
the non-RLP connection, for both UDP and UDP Lite, is smaller than the mean delay of the RLP
connection. This is as expected: a reliable link-layer protocol like RLP will introduce end-to-end
delay due to retransmissions at the link layer, even though the overlying transport protocol (UDP
or UDP Lite) is only best-e�ort.

1.726

1.936

0.511
0.377

0.0

0.5

1.0

1.5

2.0

2.5

UDP, RLP UDP Lite, RLP UDP, non-RLP UDP Lite, non-RLP

Figure 13: End-to-End Delay (seconds)

10Obtained by periodically querying the wireless modem using the command at+csq.
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5.2.2 Jitter

The jitter or packet inter-arrival time is plotted in Figure 14. The main result in this graph is that
packet inter-arrival time is remarkably constant across all combinations of transport and link-layer
protocols. Again comparing RLP with non-RLP, we notice that the range of inter-arrival times is
larger for RLP (introduced by re-transmissions) than for non-RLP. We believe that the di�erence
in standard deviations across all four protocol combinations can be explained by slight variations
in the wireless channel environment rather than by any signi�cant protocol e�ects.

0.601 0.602
0.594 0.597

0.50

0.55

0.60

0.65

0.70

UDP, RLP UDP Lite, RLP UDP, non-RLP UDP Lite, non-RLP

Figure 14: Jitter or Packet Inter-Arrival Time (seconds). Note that the Y-axis does not begin at
zero.

5.2.3 Packet Loss

Packet loss is plotted as a percentage of packet drops in Figure 15. These results are simple to
understand. Loss is 0% for the RLP connection, because the radio link protocol uses ARQ to
retransmit lost frames or acknowledgments. Loss is slightly higher for the non-RLP connection
because there is no reliability at either the link or transport layers. As expected, packet loss is
much lower for UDP Lite than UDP (1.1% vs. 2.1%), because the checksumming function in UDP
Lite is turned o�.

5.2.4 Throughput

The �nal metric of interest is throughput, presented in Figure 16. Since packet loss is signi�cantly
lower for RLP than non-RLP, we expect to see higher throughput for the RLP connections, and
this is indeed the case. Zooming in on the non-RLP connections, we notice that the throughput for
UDP is markedly lower than that of UDP Lite. This is explained by the fact that UDP has higher
packet loss than UDP Lite, which in turns drives its throughput down.
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Figure 15: Packet Loss (%)
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Figure 16: Throughput (kbits/s). Note that the Y-axis does not begin at zero.

5.2.5 Perceived Video Quality

Delay, jitter, and packet loss all a�ect perceived video quality. High delay causes a long lag between
when an image is encoded/sent and when it is received. High variation in packet inter-arrival times
causes the video to appear \shaky" or jerky. Finally, packet loss causes the image to be blurred or
severely distorted. The pictures shown in Figure 17 are samples from the H.263+ video bitstream
sent over varying protocol combinations. They are ordered from left to right as the x-axes on
the four preceding plots. From these screenshots, we see that RLP (the two left pictures) causes
excellent video quality. However, the real-time delay caused by RLP (appreciably high, as described
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Figure 17: Experimental Screenshots

previously) cannot be depicted in a screenshot. On the other hand, non-RLP (the two pictures on
the right) causes slightly worse video quality. When using non-RLP, it is preferable to use UDP
Lite over UDP: notice that the UDP screenshot shows a large amount of distortion near the girl's
ear (due to packet losses) while the UDP Lite screenshot does not.

5.3 Discussion

In summary, UDP Lite (with non-RLP) provides 26% less end-to-end delay, constant jitter, slightly
higher (1%) throughput, 50 % less packet loss, and signi�cantly better video quality than UDP.
These results allow us to comment on what protocol combinations may be used for particular
applications. For example, a delay-sensitive application that does not have stringent error-free
requirements might perform better using the error resilience of UDP Lite and the low delay charac-
teristics of non-RLP. On the other hand, an interactive error-intolerant application would perform
better using the high reliability of RLP o�set by the high throughput of UDP Lite.

These tradeo�s are summarized in the table below.

Type of Application Example Protocol

Choice

intolerant & rigid* batch TCP/RLP
email, ftp

interactive UDP/RLP
telnet, web

tolerant & adaptive* hard real-time UDP/RLP
wb
adaptive real-time UDP Lite/
vic, vat non-RLP

*Adapted from [7].

6 Related Work

Several e�orts similar to this research exist both in industry and academia. Here we will outline
the most prominent and attempt to compare and contrast them with our work.

PacketVideo Corporation [23] based in San Diego, CA develops software for streaming video
to mobile devices wirelessly. First demonstrated in November 1999, their patented video codec
plays MPEG-4 video streams on the application-speci�c integrated circuits used in mobile phones.
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However, since their technology is patented, performance is somewhat clouded by market hype and
analyses are not publicly available. That said, PacketVideo's impressive trade show demos and
product o�erings have justi�ably gotten intense press coverage.

NEC Corp. [20] in September 1999 announced a prototype of a two-piece third generation
cellular video handset which transmits images and sound simultaneously. The phone and viewer
are connected using Bluetooth short distance radio technology while the video is compressed using
the MPG-4 standard. NTT DoCoMo [10] has also produced a prototype video phone similar to
NEC's. However, these prototypes are aimed at the W-CDMA (wideband code division multiple
access) network system, supporting data rates of 64 Kb/s and 128 Kb/s. The high bandwidths
distinguish NEC's and NTT's products from our research. Also, with GSM standards taking and
more of wireless market share (71% in 1998), it is unclear how CDMA or AMPS technology can
compete.

On the academic side of the fence, researchers in Sweden have pro�led the performance of
multimedia streams over network nodes running UDP Lite in the kernel [15]. Their simulations
of real-time network tra�c (with and without partial checksums on the transport and link layers)
show that the decision to turn checksumming on or o� must be a function of the particular network
environment rather than a function of the particular multimedia stream. This decision concurs
with our results.

Wendi Heinzelman has developed unequal error protection schemes for MPEG-4 [22] video
which adapts the level of correction across a packet to the importance of the corresponding bits
[6]. Her work is distinguished from ours in that her application-speci�c communication protocols
for wireless networks focus mainly on energy-e�cient cluster-based routing and media access.

Closer to home, Avideh Zakhor's group at Berkeley has developed hierarchical FEC, subband
coding, and other video compression techniques in the context of their Matching Pursuits [21] video
codec. They are also examining TCP-based bandwidth-scalable techniques; these can be grouped
with the TCP-friendly body of work.

Finally, the Comet group at Columbia University [11] is examining adaptive mobile networking
issues through Mobiware, a CORBA- and Java-based networking middleware toolkit which adapts
to time-varying network conditions. Although the thrust of their work sounds quite similar to
the ideas presented here, the primary di�erence is in (important) details: all their experiments
are based on local-area (2 Mb/s WaveLAN) and ATM networks, and not the wide-area IP-based
Internet. The extremely high bandwidth of their air interface implies a signi�cantly di�erent set of
research problems than ours.

7 Conclusion

In this report, we have argued for application-level adaptation schemes and against aggressive
network-level protection of multimedia tra�c over wireless. We base this argument on the ALF
model and on the implementation of exible checksumming schemes such as UDP Lite and PPP
Lite, which allow the application to determine what data it considers \sensitive" to corruption
or loss. Through simulation of the wireless channel and experiments transferring live video over
a radio interface, we have shown that a networking stack instantiated with these \lite" protocols
o�ers markedly less delay, less packet loss, and higher throughput than a traditional protocol stack,
while keeping the jitter and video quality constant. In addition, implementing these protocols is
not di�cult: UDP Lite involves changes to only a few hundred lines of kernel code, and at the user
level, it is possible to invoke UDP Lite on a per-socket basis. As video coding technology such as
MPEG-4 improves and all-IP cellular networks such as GPRS [3] mushroom, we will be able to
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build rate-adaptive systems which utilize the radio backchannel for network-level feedback. This
simplistic but powerful networking approach, when combined with appropriate video codecs, will
enable truly error-resilient mobile multimedia communication.

8 Future Work

There are several possible extensions to this work. At the application layer, one might incorporate
unequal protection schemes which would work in concert with UDP Lite. Also, we were initially
interested in prototyping video transmission for both H.263+ and MPEG-4 video codecs; however,
the MPEG-4 code11 was extremely di�cult to work with. After a lengthy and painful compilation
process, we were still not able to encode or decode video streams in real time due to undocumented
con�guration parameters and untraceable oating-point errors.

At the socket layer, a better implementation might entail a more dynamic feedback mecha-
nism between the application and link layers. By providing real-time feedback on radio channel
conditions, the encoding application can adapt its transmission rate accordingly.

In the wireless simulator, we plan to collect byte-level wireless error traces which we will feed
into WSim as the channel coding model.
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A Bit Format of a GSM Data Frame

The C bits are control bits which carry signaling and state information.

Bit number

Octet no. 1 2 3 4 5 6 7 8

-----------------------------------------------------

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

2 1 C1 C2 C3 C4 C5 C6 C7

3 C8 C9 C10 C11 C12 C13 C14 C15

4 1

5 1

6 1

7 1

8 1 data quadrant 1 (72 bits)

9 1

10 1

11 1

12 1

13 1

14 1

15 1

16 1

17 1 data quadrant 2

18 1

19 1

20 1

21 1

22 1

23 1

24 1

25 1

26 1 data quadrant 3

27 1

28 1

29 1

30 1

31 1

32 1

33 1

34 1

35 1 data quadrant 4

36 1

37 1

38 1

39 1
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B Ping Statistics

For each modem con�guration we send 100 pings with payload of 500 bytes.
Ping command: ping -c 100 -s 500

Mode Synch- Data Error RTT Loss

ronous? Compr. Ctl. (ms) (%)

RLP Y N/A N/A 2023 0

non-RLP N MNP 5 MNP 4 4425 25
N none MNP 4 3670 25
N none none 1576 33

Notes:
It is not possible to run RLP in asynchronous mode.
The fourth non-RLP case, viz. data compression without error control, is not supported by the
modem.
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C Modem Initialization

% tip tty02 use tip to connect to device modem
connected

atz initialize modem
OK

at+cbst=7,0,0 9600 bps, asynchronous, no RLP
OK

at+es=0,0,0 turn o� error correction
OK

at+ds=0 turn o� data compression
OK

at+er=1 report error correction policy used
OK

at+dr=1 report data correction policy used
OK

at+csq check signal strength on phone

+CSQ: 16,99 (low 4 - 10, med 10 - 15, high >15)

OK

atdt6429514 dial modem number

+ER: NONE no error correction being used

+DR: NONE no data compression being used

CONNECT 9600

BSDI BSD/OS 3.0

(akira.CS.Berkeley.EDU)

login:
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