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Abstract

The rise of ubiquitous computing has created a need
for wide-area durable storage. We propose a model and
interface for such an archival system, that stores data
in a durable, verifiable, available, and self-maintainable
manner. We argue that such a system can be created by
using novel techniques of erasure codes, secure hashing,
and decentralized wide-area location infrastructures to
distribute fragments across the wide-area on an arbitrary
set of servers. This model allows files to remain available
even as servers fail. Finally, we implement Silverback, a
prototype archival system using the model that we devel-
oped, and measure its performance.

1 Introduction

The world is undergoing a second digital revolution. The
first began with the advent of the computer, which rad-
ically changed manufacturing, information processing,
and scientific endeavor. The second has been far more
subtle and at the same time more pervasive – the rise
of ubiquitous computing. With the break-neck pace of
miniaturization and concomitant decrease in power con-
sumption, computational devices are rapidly finding their
way into the very fabric of lives: in cars, walls, cloth-
ing, and materials. Even more astonishing is the fact that
gigabytes of information can now be deployed in small
disposable devices. We can only guess at the ultimate
ramifications of this technology.

One consequence of inexpensive storage and compu-
tation is that online digital data is rapidly replacing other
forms of archival storage. This transformation is at once
a great opportunity and a great liability – while digital
information is far more flexible to manipulate than (say)
paper, it is also easily destroyed. This problem ofin-
formation fragility is reaching critical proportions, since

ordinary people are beginning to commit precious, ir-
replaceable memories (such as photos) to digital form.
Consequently, we assert that the most pressing question
in the ubiquitous computing revolution is:where does
persistent information reside?

This paper is about persistent information. The con-
struction of a highly-available persistent storage infras-
tructure presents many complex issues, such as security,
consistency, performance, availability, and archival dura-
bility. Systems such as Farsite [1] and OceanStore [7]
attempt to address all of these issues simultaneously. In
this paper, however, we will focus on one single aspect:
version-based archival storage. We will present our mus-
ings in the context of Silverback, a global-scale archival
system under construction here at Berkeley. The pur-
pose of an archival system is todurably store informa-
tion from many users; durable in this context may mean
centuries or millennia. An ancillary desire is that oftime
travel[15], namely the ability to reconstruct the view of
an archived document as it appeared at any time during
its lifetime. In today’s world of ubiquitous computing,
we can easily consider the possibility that every person
in the world may wish to archive information. Thus we
wish to consider systems that scale to 1010 users and
store (perhaps) onemole1 of bytes (6�1023).

The ubiquitous computing vision suggests anon-line
archival system, rather than something more traditional,
such as tape. There are at least three reasons for this.
First, a ubiquitous archival system must be able to com-
mit information at high rates from numerous devices.
This implies the collaborative effort of many servers
writing to spinning storage (for bandwidth) and use of
massive redundancy with continuous repair (for durabil-
ity). Second, ubiquitous devices might be unreliable or
possess limited storage; this suggests that devices will
make frequent use of online retrieval of archival informa-

1A mole of bytes is not as large as it might seem; see Section 3.5.

1



tion. Finally, tape storage density is not keeping up with
the 18-month doubling period of disk capacity. Hence,
archiving information to spinning storage is rapidly be-
coming theonlyoption for archival storage.

Stepping back for a moment, we can list several prop-
erties that we desire from a global-scale archival system:

� durability: Data is stored for long periods of time –
decades, centuries, or even millennia.

� verifiability: Information should not subject to sub-
stitution attacks.

� availability: Data is accessiblemost of the time,
where “most” is defined in many90s of availability.

� maintainability: The system recovers from server
and network failures, efficiently incorporate new re-
sources, and adjust to changing usage patterns, all
without manual intervention.

� atomicity: Each update is applied atomically, with-
out interference from other pending updates.

� performance: Response time is bounded and deter-
ministic – consistent with online storage.

This paper will describe how to construct a system that
meets all of these requirements while maintaining scala-
bility to billions of users and moles of bytes.

The rest of this paper is organized as follows: First,
Section 2 presents essential elements of our archival
model, complete with a minimal set of archival opera-
tions. Next, Section 3 explores requirements and coding
techniques to achievedeep archival storage, i.e. infor-
mation that remains unchanged for millennia. Section 4
discusses the design and implementation of the Silver-
back archival system, while Section 5 explores the per-
formance of this system. Section 6 sets some future di-
rections and Section 7 discusses related work. Finally,
we conclude with Section 8.

2 Archival Model

In this paper, anarchiveis a linearly ordered sequence of
versions, where each version is a read-only sequence of
bytes. New versions may be added to the end of the ver-
sion sequence throughupdateoperations, each of which
generates a new version. Data may be read from a spe-
cific version throughread operations. Each version is a
stand-alone entity and is abstractly unrelated to any pre-
vious versions. For concreteness, an archive might be a
file, adirectory, or adatabase record. Archives may also
contain the names of other archives.

We will assume the ability to generate globally-
unique identifiers (GUIDs); we will discuss the specifics
of GUID generation in Section 3.2 and Section 4.3.
Archives are uniquely specified byarchive GUIDs (A-
GUIDs). Every version of every archive will also have
a uniqueversion GUID (V-GUID). While V-GUIDs are
globally unique across all archives, version-IDs are only
unique with respect to a specific archive.

When multiple updates are simultaneously submitted
to an archive, an entity in the network, called aserializer,
must provide atomicity. This serializer takes each up-
date, atomically applies it to the archive (including any
operations required to make this update durable), then
generates a new V-GUID. Consequently, when a client
seeks the most recent version of an archive, a request is
sent to the serializer to obtain the V-GUID of this latest
version. More generally, the system provides a mapping
such that, given an A-GUID and some version informa-
tion (for instance, a timestamp), the GUID of a particular
version can be retrieved.

A global-scale archival system must include a routing
infrastructure capable of forwarding requests to appro-
priate servers. Requests for different types of GUIDs are
handled differently, so all requests will be tagged with
their type. While the nature of the routing layer is an im-
plementation detail, a good implementation can signif-
icantly improve the performance of the archival system.
Additionally, acachinglayer masked by the routing layer
can greatly improve the latency to data; note that cache
consistency is greatly simplified since all requests for in-
formation are againstspecificversions of an archive.

2.1 Archival Interface

In this section, we will list the operations that must be
present in an archival system. First, to generate a new
archive, a user must specify a human-readable name for
the archive, the user’s identity as a public key, and a pub-
lic/private key pair for the signing of commits:

create(name, identity, keys) ) A-GUID

An empty first version is produced as well. We assume
that users keep the A-GUID ofone“root” archive with
them at all times. This can be used to construct an ar-
bitrary, hierarchical naming structure in which to store
mappings between user-relative names and their associ-
ated A-GUIDs.

To read data, we assume that a client provides a V-
GUID and a specification about which data to read:

read(V-GUID, offset, length) ) data

This operation returns data from the specified version.
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New versions can be either unique or derived from pre-
vious versions. We highlight three distinct update opera-
tions in the following:write() , append (), andmod-
ify() . Each of these operations generates a new ver-
sion of an archive, returning a V-GUID in the process.
First, to generate a completely new version awrite()
operation is used:

write(A-GUID, data) ) V-GUID

This operation commits a new version of the archive. A
second type of update treats the archive as a permanent
log:

append(A-GUID, data) ) V-GUID

This operation appends new information to the end of the
most recent version. Note that a persistent log is a fun-
damental component of many distributed algorithms. Fi-
nally, we provide the ability to derive a new version from
a previous version through themodify() operation:

modify(V-GUID, offset, data, allowbr)

) V-GUID or nil

Theallowbr flag denotes whether or not we allow this
operation to generate a version branch. Branching would
occur if the V-GUID is not the latest for the archive at the
time this operation is serialized; if this happens and the
allowbr flag is set tofalse , then themodify() op-
eration will return nil2. It is up to user to place additional
semantics on top of branches if they occur.

Finally, we providequery operations to acquire spe-
cific version information from a given archive. The first
form returns the latest V-GUID from a given archive:

query(A-GUID) ) V-GUID

This returns the latest V-GUID at the time that the re-
quest reaches the serializer. The second form ofquery
is more general:

query(A-GUID, Spec) ) V-GUID

This takes a specifier for a version (which may be a
timestamp, version-ID, or other means of identifying a
version) and returns an appropriate V-GUID.

2.2 Example

Figure 1 provides a pseudo-code description of how to
use the interface of Section 2.1 to back-up a file system.
Although simplistic, this example illustrates a number of

2Note that settingallowbr to false allows read-modify-write
operations on low-conflict archives. Higher rates of conflict can be
handled with an append-only logging methodology.

ARCHIVEFS(dir, A-GUID)
V-GUID query(A-GUID);
foreach (file in dir)

name = “dir/file”;
record SEARCH(V-GUID,name);
if (isnull(record))

FILEGUID create(name,identity,key);
record f name, FILEGUID, 0g;
append(A-GUID, record);

else
FILEGUID record.aguid;

endif
if (record.timestamp6= stattime(file))

record.timestamp stattime(file);
append(A-GUID, record);
if (isdirectory(file))

ARCHIVEFS(name, FILEGUID);
else

write (FILEGUID, contents(file));
endif

endif
endfor

Figure 1: Archival File Backup: Inputs are a top-level
directory and A-GUID for that directory. We maintain a
simple name! (A-GUID, timestamp) mapping as a lin-
ear structure that is traversed by the SEARCH() function.
Changes to this mapping are performed by appending a
new mapping for the given name; this is simple but inef-
ficient. Mappings are inserted as records that are triplets
with three fields:name, aguid, andtimestamp.

important points. First, we generate a separate archive
for every directory and everyfile. Second, directories
are application-level associative mappings between user-
relative names and the A-GUIDs for that name. This
example provides a very primitive linear array for name
resolution; use of themodify() operation would per-
mit more efficient hash-tables to be constructed. Note
also that this example provides no file deletion operation.
Third, recognition of changes is done by the application
(in this case through timestamps), not by the system. Fi-
nally, by reusing the A-GUID for a file with each change,
we associate all versions of a file with one another.

3 Deep Archival Storage

Given the model in Section 2, we now describe the
mechanisms which make a wide-area archival system
possible. These mechanisms must provide high levels of
durability and availability, while ensuring users’ data in-

3



tegrity 3. In particular, we must use explicit redundancy
and geographic distribution of data to protect data against
inevitable hardware failures and malicious threats, and
use cryptographically secure mechanisms to guarantee
the immutability of read-only data.

3.1 A Case for Erasure Codes

The most common methods used to achieve high dura-
bility of data are complete replication and parity schemes
such as RAID [16]. The former imposes extremely high
storage overhead (size in storage is several factors larger
than original data), while the latter does not provide the
robustness necessary to survive high rate of failures ex-
pected in the wide area. Erasure codes are an alternative
to these classic mechanisms which provides extremely
high durability and availability without imposing an un-
reasonable overhead in storage space.

Using erasure codes, a user can break up an object into
n fragmentsand recode them intokn fragments, where
k > 1. Such encoding increases the size of the data by a
factor ofk. We refer to1=k as therate of encoding. The
key strength of erasure codes is that the original object
can be reconstructed fromanyn fragments.

There are a number of erasure codes with differ-
ent performance characteristics. Some, such as Tor-
nado Codes [8], scale linearly with the number of frag-
ments. Tornado codes in particular can reconstruct an
object very quickly, but do so only with high probabil-
ity and only in the presence of slightly more than one
half (for rate one-half) of the fragments. These proper-
ties make Tornado Codes appropriate only when large
numbers (hundreds to thousands) of fragments are be-
ing produced. The “Reed Solomon” [11] family of era-
sure codes are popular, but have encoding time scaling
quadratically, making them practical only for relatively
small objects. Because we encode small blocks in Sil-
verback, we chose an effiecient version of Reed Solomon
called Cauchy Reed Solomon codes.

3.1.1 Availability

Erasure coding exploits the statistical stability of a large
number of independent components. The availability of
an object increases with the number of fragments and
rate of encoding. As the fraction of the fragments needed
to reconstruct an object decreases, probability of reach-
ing enough fragments for reconstruction increases. Sim-
ilarly, as the number of fragments for an object grows,
the probability that not enough fragments are available
for reconstruction due to network partitions and machine

3Privacy of data can be enforced by end-to-end encryption.
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failures decreases. The availability of an object can be
summarized as below:

Po probability that an object is available
rf maximum safe number of unavailable fragments
f total number of fragments
n total number of machines in the world
m number of currently unavailable machines

Po =

rfX

i=0

�
m
i

��
n�m
f�i

�
�
n
f

� (1)

This formula states that the probability that an object is
available is equal to the number of ways in which we can
arrange unavailable fragments on unreachable servers,
multiplied by the number of ways in which we can ar-
range available fragments on reachable servers, divided
by the total number of ways in which we can arrange all
of the fragments on all of the servers.

For instance, with a million machines, ten percent
of which are currently down, simply storing two com-
plete replicas provides only two nines (0:99) of avail-
ability. A 1=2-rate erasure coding of a document into
16 fragments gives the document over five nines of
availability(0:999994), yet consumes the same amount of
storage. With 32 fragments, the availability increases by
another factor of 4000, supporting the assertion thatfrag-
mentation increases availability. This is a consequence
of the law of large numbers.

3.1.2 Durability

An analysis of the MTTF of fragments and frag-
mented objects is also essential in motivating distributed
archives. Disk failure distributions obtained from [10]
and shown in Figure 2 indicate that while disks have
some infant mortality, a high number of them survive the

4



0 0.5 1 1.5 2 2.5 3 3.5 4
Repair Epoch

(months) 0
10

20
30

40
50

60
70

Number of
fragments
(rate = 2)

1
1e+10
1e+20
1e+30
1e+40
1e+50
1e+60

MTTF (years)

Figure 3: Mean Time to Failure of a Block

duration of their service life of five years. Using these
numbers, we determined that the age of a randomly se-
lected disk was uniformly distributed from zero to sixty
months. This allows us to calculate the expected lifetime
of a fragment after dissemination, and ultimately to cal-
culate the mean time to failure of an entire object. We ac-
cept the simplifying assumption that all fragments would
fail independently, no servers behave maliciously, and
that the repair mechanism would (if the object was still
alive), periodically reconstruct and re-disseminate every
fragment. Our parameters include the rate of encoding
(1=2), the number of fragments (varying from4 to 64
in increments of4), and the length of the repair epoch
(varying from1=4 months to4 months in increments of
1=4 month).

Figure 3 shows the results of our calculations. The
scale of the MTTF axis is exponential, indicating that the
MTTF of objects scales super-linearly with the inverse
of the repair epoch. A more exciting result is that the
MTTF of objects scales exponentially with the number
of fragments. With twelve fragments and a repair time of
two weeks, we see that an object has an MTTF of over
one hundred billion years.

3.2 Verification Scheme

Erasure coding requires the precise identification of
failed or corrupted fragments. As a result, the system
needs to detect when a fragment has been corrupted and
throw it away. We therefore introduce a secure verifica-
tion scheme for fragments.

For each encoded block, we create a verification tree
over its fragments. Figure 4(a) is a binary verification
tree. The scheme works as follows: We produce a hash

            

(a)            

(b)

Figure 4: AVerification Treeis a hierarchical hash over
the fragments of the blow. The top-most hash is the
block’sGUID.

over each fragment, concatenate the corresponding hash
with a sibling hash to produce a higher level hash, we
continue the algorithm until there is a topmost hash. We
then store with each fragment all of the sibling hashes to
the topmost hash, a total of logn hashes, wheren is the
number of fragments. Figure 4(b) shows the contents of
a “dissemination fragment”. The hash at the root of the
tree is the name or GUID of the block. To ensure that
other data does not hash to the same GUID, we use the
SHA-1 [9] secure hash.

On receiving a fragment for recoalescing, a client ver-
ifies it by hashing over the data of the fragment, con-
catenating that hash with the sibling hash stored in the
fragment, hashing over the concatenation, and continu-
ing this algorithm until there is a topmost hash. If the
final hash matches the GUID for the block, then the frag-
ment has been verified; otherwise, the fragment is cor-
rupt and should be discarded.

3.3 Dissemination

The serializer must store fragments in a manner that
avoids correlated failures. Otherwise, the statistical ad-
vantages of erasure coding becomes greatly reduced.
Correlated failures can occur, for instance, within ge-
ographic regions or administrative domains. Avoiding
correlation is important enough that we devote a com-
plete section to this in Section 4.3.1.

3.4 Repair

Crucial to the implementation of a durable archival sys-
tem is the use of efficient, robust repair algorithms. In a
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distributed archival system with the previously discussed
properties, there are three basic types of repair mecha-
nisms: local fragment maintenance, passive detection,
and active sweep. Servers can perform local fragment
maintenance by periodically checking the integrity of lo-
cal fragments. When servers fail, however, the system
requires a distributed scheme to detect loss of fragment
availability. If neighbor nodes monitor their peers, they
can inform interested parties when certain fragments are
no longer available. Yet even this scheme falls short in
the presence of malicious servers. A periodic sweep of
all the fragments by some entity is required to completely
protect against a catastrophic loss of data.

Passive detection, notification, and active sweeps are
simplified by the existence of some entity charged with
the survival of a user’s data. AResponsible Partyis a
service provider paid by users that plays such a role.
Because it is a service provider, the Responsible Party
can remain online continuously, and thus receive notifi-
cations of fragment failures as well as periodically sweep
through users’ data.

3.5 A Mole of Bytes

Humanity currently generates an estimated1:5 exabytes
of data per year. An archival system should be durable on
the order of1000 years, so a capacity of over1021 bytes
is desirable. This number is close to onemole(6� 1023)
of bytes. The mechanisms described in the preceeding
sections, combined with the increasing capacity of disks
and networks, make it possible for the first time to pos-
tulate the storage and maintenance of a mole of bytes.
Put another way, what are the resources needed to pre-
vent the loss of a single byte in a mole of bytes for one
thousand years? Assuming that encoded objects fail in-
dependently, the analysis performed for a single object’s
MTTF can be extended to any number,b, of objects sim-
ply by taking thebth root of the desired probability of
failure (in our case,:5).

Using the repair scheme described in Section 3.1.2,
with sixty-four total fragments, a rate1=4 erasure code,
and a repair epoch of ten months, a mole of bytes (bro-
ken up into4kB blocks, can be expected to fail after
twenty-seven thousand years. The repair mechanism for
a mole of bytes requires that one billion billion bits be
transferred per second. If we assume that there are ten
billion machines in the world, the bandwidth required
per machine is therefore one hundred Mbs. This num-
ber is within one order of magnitude of today’s network
capacity, indicating that a wide-area archival system can
successfully scale to service one mole of bytes. Scala-
bility becomes even more feasible when more efficient

Decoder
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Archival Storage
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Figure 5: Archive Architecture

repair schemes are used — schemes which only transfer
fragments which require reconstitution. Additionally, as
network bandwidth grows with Moore’s Law, increasing
numbers of bytes will become maintainable.

4 Implementation

Figure 5 shows the architecture of the prototype Silver-
back archival system. The wide-area location and rout-
ing infrastructure shown in the middle of the architec-
ture is Tapestry [17], a wide-area routing and location
infrastructure discussed in greater depth in Section 4.2.
All nodes in our implementation communicate through
Tapestry, so that the set of storage servers (shown at the
bottom of the figure) which store fragments from a sin-
gle object can all be contacted by a single message. Each
node in the network can serve as a client, a serializer, a
storage server, or as any combination of these roles. We
have shown nodes taking on single roles for simplicity.

In this section we discuss our implementations of the
components and interfaces outlined in 2 and 3. We begin
our explaination with the archival object structure in 4.1,
then Tapestryin 4.2, next the serializer in 4.3, and finally
maintaining the system in 4.4.

4.1 Archival Object Structure

Figure 6 presents graphically the central data structure
used by the Silverback archival layer. At the heart of
this structure is thedata B-tree, a conventional B-tree
with blocks of data stored at the leaves. This structure
is shown in the figure inside the dashed box. As in
databases, all blocks of the B-trees need not be colocated
at all times. To ensure the integrity of blocks prior to
archival, the data B-tree uses secure SHA-1 hashes, or-
ganized as in Section 3.2, to refer to other nodes in the
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Figure 6: The data object structure.

tree.
The data B-tree uses a copy-on-write mechanism. The

serializer operates on the data B-tree, utilizing the copy-
on-write mechanism, to transform the object from one
consistent state to the next. Because of the properties
of the copy-on-write mechanism, a small update only re-
quires changing a number of blocks equal to the height
of the tree and both the old version and the new version
are accessible by referencing their distinct root nodes.

As the serializer produces new versions of the data B-
tree, it passes the new version to the archival layer for
checkpointing. A checkpointis a self-contained object in
the archive; that is, it can be reconstructed without refer-
ence to other versions or the log (to be discussed below).
To create a self-contained archive, the archival layer de-
scends the tree archiving blocks as in a pre-order traver-
sal; that is, all child blocks are archived before their par-
ent. For archive, a block is erasure encoded to produce a
number ofencoded fragments. These encoded fragments
are hashed using the SHA-1 algorithm to produce a ver-
ification tree, as described in Section 3.2. The hashes
needed to verify an encoded fragment are combined with
the encoded fragment to produce adissemination frag-
ment, or simply fragment. The root hash produced by
the verification tree becomes the name, or GUID, for the
block, and each dissemination fragment of that block is
named by that GUID. This GUID is stored in the par-
ent block so that a valid, permanent reference is archived
when the parent is archived. In Figure 6, versionsV6 and

V10 have been checkpointed and the full encoding pro-
cess has been shown for blocksd1 andd0

8
.

Even with the copy-on-write optimization, any change
to a data object requires encoding and archiving at least
a number of blocks equal to the height of the tree. For
small updates, even this seems inordinantly expensive.
To avoid the overhead of archiving blocks for each up-
date, most of which will be small, the archival layer does
not archive every version with a checkpoint as described
above. For versions which are not checkpointed, the
archival layer inserts a log entry. Log entries describe
how to alter a checkpointed version of a data object to
restore an intermediate version. In Figure 6, the archive
can reconstruct versionV7 by applying log entryV7 to
checkpointed versionV6; versionV8 is recovered by ap-
plying log entryV8 to versionV7, and so on. VersionV10
is recovered by accessing the checkpoint for versionV10
directly, without any reference to the log. The frequency
of checkpoint is variable and could even be introspected
upon, based on the frequency and size of updates.

4.2 Tapestry

Objects in Silverback are free to reside anany server.
While this provides tremendous flexibility for replica-
tion, caching, and migration policies, it makes the task
of finding object much more difficult.

This task falls to Tapestry, Silverback’s routing and
location subsystem. Tapestry is an IP overlay infrastruc-
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ture that uses a distributed, fault-tolerant data structure
to explicity track, by GUID, the location of all objects
in the network. Each GUID maps deterministically to its
uniqueroot node in the network. A storage serverpub-
lishesan object’s by routing via Tapestry (as described
below) from itself to the root node, depositing pointers to
the object’s location at each Tapestry hop along the way.
To find an object, a client maps the object’s GUID to its
root node and routes to that root node. Tapestry rout-
ing is hierarchical, and multiple routes to a destination
form a tree rooted at the destination. This provides local-
ity properties, since the path taken to root by any client
searching for an object nearby will with high probability
intersect the path taken by the storage server at publish
time. The Tapestry location client routes directly to the
storage server when it finds a location pointer for the ob-
ject it is looking for. If such a crossing does not occur,
the route will eventually reach the object’s root which
also holds a pointer to the object.

The Tapestry routing scheme is based on the hashed-
suffix routing structure originally presented by Plaxton,
et. al. [12]. It uses local neighbor maps to incrementally
route message to the destination address digit by digit.
For example, a node with address 0325 searching for a
node with address 4598 would follow a route along nodes
with address� � �8 =) � � 98 =) �598 =) 4598,
where�’s represent wildcards. This process is illustrated
in Figure 7.

A key property of Tapestry location that the archival
layer utilizes is that of locality. Since all fragments
belonging to a block are named by the block GUID,
a search for fragments for reconstruction routes to the
“root node” of the block, returning the closestN blocks

to satisfy the threshold.

4.3 Serializer

Theserializeris the only node in the system which is ca-
pable of encoding objects for storage. Since it is respon-
sible for ordering updates to an archive, it must possess
a copy (or a slice of a copy) which it alters according to
writes it receives from the client. Also, there is aunique
serializer on a per archival object basis. Therefore, up-
dates to different archival objects will communicate with
different archives. The seperations allows the archival
system to scale to the wide area.

The client application code communicates through the
network to the serializer update mechanism to get V-
GUIDs and to write changes to archives. Note that the
decode layer of the client is capable of communicating
directly with the archive; it can send requests for ver-
sions through Tapestry and is therefore capable of ac-
cessing read-only copies of data without contacting the
serializer, so long as it has the versions’ V-GUIDs.

4.3.1 Dissemination

Once the serializer receives an update request the archive
system must store fragments in a manner which achieves
independence of fragment failures. Correlated failures
can occur as a result of similar geographic location or ad-
ministrative domain of the storage servers. Independent
failures will not pose difficulty to arandomdissemena-
tion scheme if the pool of storage servers islarge. For
example, it is extremely unlikely that twenty-four ran-
domly placed fragments of thirty-two fragment set will
all be located on the West Coast.

We define a simple randomized algorithm that en-
sures independence of fragment placement by avoiding
a catastrophic collisionwith extremely high probabil-
ity. In the rare case that the algorithm fails, only the
co-located fragments need redissemination.

Definition: A catastrophic collisionis where(k�1)n
or more fragments are co-located.

Input: kn fragmentsf0,. . . ,kn� 1g.
Output: Disseminate fragments to servers on our net-

work s.t.kn fragmentssatisfya system ofm constraints,
where aconstraint is a rule that states acatastrophic
(i.e. (k� 1)n) amount of fragments cannot share a given
property(i.e. geographic region, domain, admin, etc. . . ).

Algorithm:

1. 8i pick a server�(i) u.a.r.and disseminatei to�(i).

2. 8i, �(i) sends back anacki with its properties.

8



3. Analyze eachacki
If all m constraintsaresatisfied- Done.
Else pick amaximalsubset ofkn fragments s.t. all
m constraintsaresatisfiedand redisseminate frag-
ments not in the subset.

Analysis:

Claim: Pr[catastrophic collision] � 1

`(k�1)n .

Proof: We generalize our analysis to a system with
only one constraint! property, but the property has
many valuesl. Given aproperty, distribution can be
made uniform. Simply stated, the probability that a frag-
menti is stored on a server with property value`j is 1

`
.

The probability that a second fragmenti+1 is stored on
the same server with property value`j is 1

`
� 1

`
= 1

`2
.

Hence the fragments(k � 1)n fragments are stored on
the same server with property value`j is 1

`(k�1)n .
Example:
As an example, givengeographyas property with

32 unique cities or 32 values,n = 16 and k = 2,
where arate 1=k encoding requires a minimum set of
n fragments to reconstruct the original object. The
Pr[catastrophic collision] � 1

3216
.

Given1010 users and104 objects per user, the proba-
bility of a catastrophic collision in the system is10

14

3216
�

1

1010

4.3.2 Tombstones

Our system allows serializers to be taken offline after
long periods of no use. When a serializer is taken down,
it first stores the mappings from its A-GUIDs to its V-
GUIDs in tombstones, so named because the serializer
puts them in place in the event of its own death. A tomb-
stone for a particular archive is named and located by that
archive’s A-GUID, and contains the public key of the se-
rializer, the name of the archive, and the latest V-GUID
of the archive. It also contains a signature over this in-
formation which is produced by the serializer’s private
key. Thus, a tombstone is verifiable by its archive’s A-
GUID: one need simply hash over the concatenation of
the public key and human-readable name to verify the
public key against the A-GUID, and then use the public
key to verify the tombstone’s signature. When the seri-
alizer produces new tombstones for an archive, it routes
them to the storage servers containing the old tombstones
for that archive. These servers verify the new tombstones
and then overwrite their older counterparts.

In the presence of a responsible party, the user is able
request to send a request to the archival system for a file
even if no serializer is currently active. The request will

be routed to the tombstones for the archive, which in
turn are sent to the responsible party. The responsible
party spawns a new serializer which begins servicing re-
quests.

4.4 Maintenance

In order to provide long term availability in a dynamic
environment, Silverbackshould survive changes to the
physical infrastructure over time with minimal external
management. During normal operation, new nodes regu-
larly become available to the network, while other nodes
exit the system for maintenance or due to failure. Silver-
backprovides mechanisms that seamlessly integrate new
nodes, extract exiting nodes, and recovers from link and
node failures, all with minimal external intervention.

4.4.1 Integration

To make a new server available for archival storage, it
only needs a network connection and the location of one
known Tapestrynode. The server then weaves itself into
the routing and location layer, advertises that it is ready
to store new fragments. Tapestry includes a set of dis-
tributed algorithms to support automatic server integra-
tion and removal without human administration. To inte-
grate into the network, a server populates its neighbor
maps by copying and optimizing neighbor maps from
nearby nodes that share portions of its address. The node
completes integration by notifying nearby nodes of its
existence so that neighbors may include it in their own
neighbor maps.

If a server cannot store new fragments due to stor-
age constraints, it may cease this advertisement at any
time, either through manual intervention or introspec-
tively. Similarly, serializers can advertise their availabil-
ity through Tapestry when they are introduced to the net-
work.

4.4.2 Removal

A server can be removed from Silverbackif it becomes
obsolete, needs scheduled maintenance, or experiences
component failures. When possible, the server runs an
optional shutdown script which proactively informs the
routing layer of its imminent departure. Neighbor nodes
which receive this message can update their routing maps
to eliminate references to the departing node. Location
pointers to fragments and fragments themselves can be
moved off the server, or regenerated after its departure.
Since Tapestrynodes utilize asoft statefault-handling
model, nodes use regularheartbeatbeacons to inform
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neighbor neighbors of their existance, while object stor-
age servers republish their objects on a regular basis.
In the absence of a departure announcement, the rout-
ing layer will detect and correct for the server’s absence.
First, its neighbor nodes will detect its absence and up-
date their routing maps. Nodes which depend on the
server for routing will promote secondary routers and
find new backups. Second, object pointers will be repub-
lished. Finally, the Tapestryroot nodes will miss regular
advertisements for fragments, and if redundancy falls be-
low acceptable levels, send notification to the objects’ re-
sponsible parties or to other storage nodes, who will then
ensure regeneration and redissemination of fragments.

4.4.3 Fault-handling

To maintain objects such as fragments and tombstones,
our archival system makes use of the repair methodol-
ogy discussed in Section 3.4, and relies on built-in fault-
handling mechanisms in Tapestry.

At a lower level, Tapestryattempts to recover from rou-
tine failures, and notifies Silverbackof application-level
failures. For example, to tolerate routing failures, a lo-
cal routing map which determines the next hop location
contains several secondary routes in addition to the pri-
mary route. Failures on the primary link result in mes-
sages switching transparently over to secondary routes.
To reduce the impact of location failures, Tapestry pub-
lishes an object multiple times with different names. This
greatly improves the probability that a node can find an
object’s location, even in the presence of full network
partitions.

As part of its failure detection, Silverbackstorage
servers on the network periodically issueheartbeatbea-
cons for each of its fragments. These beacons are prop-
agated through Tapestry in exactly the same fashion as
the initial publication of a new object (described in Sec-
tion 4.2). Our analysis in Section 3.1 show that main-
tenance need only occur on the order of months. Conse-
quently, heartbeats can be relatively infrequent, minimiz-
ing the overhead of the bandwidth they consume. When
the root node of a particular object has failed to receive a
beacon for a given fragment after several heartbeat peri-
ods, it sends notification to the object’s responsible party,
which will then reconstruct and redisseminate as neces-
sary.

Finally, an active maintenance sweep must be per-
formed to protect data against adversaries in the wide
area. This task can be performed by a user’s responsi-
ble party, which can be trusted, but may have limited
CPU and bandwidth resources. Alternatively, the stor-
age servers themselves can perform this task. While
they have less contended resources, are not completely

trustworthy. This tradeoff can be explored depending
on the degree to which users trust the wide area and on
resource availability. Note that the responsible party is
only needed if the user desires someone to be responsi-
ble for a given operation, since storage servers are also
capable of repair. Therefore, responsible parties are not
essential to an archive model or to our implementation.

4.5 Scalability

We now attempt to analytically evaluate our design and
implementation on the scalability metric. With the large
scale of data storage discussed in Section 3.5, any point
of centralization or potential bottleneck will hamper the
scalability of the overall system.

To understand how the Silverback system scales, one
needs to recognize the pervasiveness of data indepen-
dence throughout our design. Our key approach is to
remove any central authority which could buckle under
heavy load. Each archive contains all versions of a single
file, and each archive is associated with its own serializer.
This implies that serializers can be distributed across all
available nodes, and load-balancing can be achieved on
a fine granularity. The other key mechanism, Tapestry,
takes a fully decentralized approach to routing and loca-
tion [17]. As a result, granularity is maintained on the
order of files, and the lack of centralized mechanisms al-
lows the system to scale up with the amount of available
resources.

5 Performance

In this section, we evaluate our system by focusing on
three metrics critical to the operation of an archival sys-
tem:data expansion, time to durability, andread perfor-
mance. By data expansion, we mean the factor by which
the size of the data increases in the archive. For instance,
if a system uses an erasure code with rate one-half, the
expansion factor is at least two. Time to durability refers
to the time it takes the system to take new bytes from a
user and finish storing them in a durable fashion. Finally,
read performance is the time between when a user issues
a request for bytes of a version of an object and the time
that he receives those bytes.

5.1 Initial Prototype

To explore the performance of Silverback, we con-
structed a prototype file system backup service on top
of Silverback. Refer back to figure 5 to see where the
client application level code resides in the system. We
placed NFSI [6], a java-based NFS [13] server on top of
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our implementation of a serializer. Our serializer resides
on the same machine or LAN as its clients would to limit
the network latency of requests to the serializer.

Users can mount a directory stored in Silverback just
like any NFS directory. The kernel processes file system
calls from the user and passes them through the vnode
layer to the Silverback server, which caches files and di-
rectories on a local backend directory. Silverback ser-
vices requests by accessing files in its local cache or,
when necessary, by accessing the archival layer.

Files and directories in Silverback are named just like
files in standard UNIX file systems. Users can append
version numbers or timestamps to these names when they
wish to access past versions in a similar syntax to that
used in the Elephant file system [14].

Finally our filesytem code is similar to theArchival
Filesystem Backuppresented in figure 1. The only differ-
ence is instead of implementing the expensive SEARCH()
function, we developed a more efficientmeta-object li-
brary, calledMLib’s. A MLib is metadata for a directory
and contains an entry for every child of the directory, and
each entry, in turn, stores the version number, time of
creation, and V-GUID for every version of its file.

In the context of the discussion above and in the be-
ginning of section 5, we analyze Silverback in terms
of data expansion, time to durability, and read perfor-
mancemetrics in the following sections by a combina-
tion of results from analysis, simulation, and measure-
ment from our prototype. To drive our microbenchmark
results, we used access patterns from the Andrew Bench-
mark [5], a standard file system benchmark which tests
all major components of a file system. We ran our stor-
age servers on a large collection of campus-sized clus-
ters [2], and our routing infrastructure simulated wide
area latency by varying the time to these nodes to up to
200ms. Running the benchmark against NFSI without
Silverback took 188 seconds.

5.2 Storage Overhead

An important measure of the efficiency of an archival
system is the data expansion, or the number of bytes
stored for every byte the user commits. In Silverback,
every archive version has some metadata and a B-tree
for data. Data blocks are currently exactly4kB large, but
indirect blocks are no larger than necessary (they are not
padded to4kB). Root blocks are always indirect blocks,
even for files smaller than4kB, and have appended to
them the metadata for the version. The Cauchy encoder
we use pads the top block plus the metadata to 896 bytes
(the smallest possible even multiple of 128) before gen-
erating the block’s32 fragments. Each fragment has ap-
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Figure 8: Storage Overhead: Total bytes stored versus
original file size

pended to it24 bytes of encoding metadata and120 bytes
of verification hashes (see Section 3.2). Thus, the top
block for the smallest possible file is6400 bytes.

The data block for a file of size< 4kB is padded to
4kB and fragmented into32 encode fragments, each of
which is 256 bytes large. The system appends to these
fragments24 bytes of encoding metadata plus120 bytes
of verification information, making the total number of
bytes disseminated12800 bytes. Thus, the smallest size
file in Silverback is19200 bytes. Files of size smaller
than4kB will all be of this size, and files between4kB
and8kB will be of size32000 bytes. The sizes continue
in a stair-step fashion every4kB, as shown in Figure 8.
This figure also shows dissemination sizes for files when
8kB blocks are used. Note that in this case, smaller files
are slightly larger, but that larger files — where most
bytes are stored — are steadily smaller than their4kB
block equivalents.

5.3 Time to Durability

Users of an archival system want their data to be durably
committed as quickly as possible. The time required to
produce dissemination fragments is a key component of
this figure. Using a stand-alone program, we measured
the time it took to encode a4kB block to be7:04ms with
a standard deviation of0:23ms.

In our run against Andrew, we measured the time in-
terval between when Silverback began to commit an up-
date to the archival layer to when it put the last fragment
on the network for dissemination. This number is a mea-
surement of the load updates produce on a serializer. Fig-
ure 9 shows that the time to durability had a minimum
size which grew linearly with the number of bytes being
disseminated. The variability shown in the graph is a re-
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Figure 10: Recoalesce Time

sult of thread context switching and garbage collection
in our Java implementation. To help mask these effects,
we have removed all times which were more than two
standard deviations above the mean time for a particular
dissemination size.

5.4 Read Performance

To service a read request, an archival system needs to re-
quest multiple fragments from the network and perform
computation to reconstruct the object. Because these op-
erations impact the user-perceived latency of the read, it
is important that an archival system execute these steps
efficiently. The local computation required to reconstruct
a4kB block from fragments was measured using a stand-
alone program to be3:83ms with standard deviation of
0:77ms.

We also measured the time our run against Andrew
took to service file requests which resulted in a cache
miss. These numbers are shown in Figure 10. This fig-
ures shows that for files consisting of just one block, the
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Figure 11: Reconstruction Latency: This chart shows
latency required to receive enough fragments for re-
construction in a Transit-stub network of 4096 Tapestry
nodes.

time from a request to the time that the data has been de-
code is independent of the file size. For files larger than
4kB, we see that the minimum time required to service a
request grows linearly with the size of the file. Because
we implemented our prototype in Java, we had to con-
tend with garbage collection. Additionally, we ran our
simulation at a time when the resources of the cluster
that we used were being taxed by other parties. Both of
these factors contributed to a high variability in the reco-
alesce times, so we removed all data points which were
two standard deviations above the mean recoalesce time
for other files of the same dissemination size.

5.5 Large-scale Simulations

When we receive a read request for a block no longer
actively maintained, the archival layer reconstructs it by
locating and requesting (via Tapestry) enough fragments
of that block, and reconstructing the block from them.
To better understand the latencies involved in serving
such requests on a wider scale using a routing overlay
such as Tapestry, we ran three simulations measuring the
tradeoff between number of fragments requested and var-
ious performance metrics. These results confirm our hy-
pothesis, that requesting a small number of blocks over
the threshold drastically reduces response time in nor-
mal and failure-prone environments while incurring a
low cost in additional aggregate bandwidth used.

We ran our experiments on a packet level simulator of
Tapestry, running 4096 overlay nodes on several topolo-
gies, including Transit-stub networks, TIERS networks,
and models of the MBone and Autonomous Systems on
the Internet. The results are similar across topologies,
and we show here only the Transit-stub results. For these
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Figure 12: Reconstruction with Failures: This chart
shows simulated time necessary for block reconstruction
in a Transit-stub network of 4096 Tapestry nodes, retry-
ing after link failures.
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Figure 13:Aggregate Bandwidth Used: This chart shows
the aggregate bandwidth used during block reconstruc-
tion as a function of fragments requested. A bandwidth
unit is bandwidth used transmitting 1 fragment across
one network hop.

simulations, we assumed a memoryless distribution ap-
plied to network hop latency, where the average hop la-
tency was 1 “hop unit.” For each run, we simulate the
latency required for a randomly placed client to request
and receive 16 (threshold) out of 32 (total) fragments
for a block. The client needs to only issue a single re-
quest specifying the number of fragments (N ) desired to
Tapestry, which travels to the “root node” of the block,
gathering the closestN fragments. We also assume that
25% of the 32 randomly placed fragment storage servers
are highly loaded, requiring an additional 5 hop units for
queuing, where unloaded servers require only 1 hop unit
for queue processing.

Figure 11 shows the time before at least threshold (i.e.
16) fragments are received by the client. The result fol-

lows a power curve, showing that increasing fragment
requests gradually removes factors such as network la-
tency variance and server load. Error bars showing stan-
dard deviation also decrease significantly as number of
requests increases. Figure 12 confirms this result in the
case where links fail, clients detect end-to-end failures
and issues retries until success. Finally, Figure 13 shows
the expected bandwidth usage, where each unit repre-
sents bandwidth required for one fragment over one net-
work hop. We vary locality by measuring from clients at
different distances from the object’s root node. The re-
sult shows clients closer to the root incur a lower slope in
aggregate bandwidth, meaning that they find more frag-
ments with less hops, decreasing the penalty for higher
fragment requests. Our results demonstrate that by re-
questing a few fragments over the threshold, we gain sig-
nificant benefits both in response time and response vari-
ability, while incurring a relatively low bandwidth over-
head.

6 Future Work

There are several unresolved security issues in our
archival architecture. Chief among them is that we have
not discussed means of preventing a machine from pub-
lishing false advertisements To prevent misrepresenta-
tion, an introspection layer must use some form of repu-
tation scheme to help filter out malicious machines.

Another (unresolved) issue in Silverback’s utility
model is the question of billing. Clients will presum-
ably pay a responsible party to ensure the integrity of
their data, and the responsible party will in turn cooper-
ate with and pay storage providers. Each archival frag-
ment must therefore be tagged with a billing certificate
which can be used on a regular basis to acquire payment,
ultimately from the object’s owner. Any billing scheme
must be thorough enough that double billing (two stor-
age nodes claiming funds for the same fragment) should
be impossible.

Finally, the serializer presented in this paper is neither
scalable nor fault tolerant. A set of servers on the wide
area using a byzantine agreement protocol can be used to
provide consistency and conflict resolution for an archive
in a fault tolerant manner.

7 Related Work

The idea of using versioning as a means to provid-
ing time-travel was first introduced with the Postgress
database [15]. The Elephant file system [14] studied the
idea of time travel in a file system. Additionally, the
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project examined schemes for reducing the storage over-
head by understanding tradeoffs between the number of
versions stored and the granularity of time-travel possi-
ble.

Several other projects use the idea of distributing data
of multiple machines for persistance and availability.
The FarSite project [1] replicates data at multiple nodes
throughout an organization-scale network. They demon-
strate that such a distribution on a typical network can
provide five nines availability with a replication factor
of only three. The PAST project [3] provides persistant
storage in their peer-to-peer system by replicating ob-
jects and distributing them throughout the system. Ob-
jects stored in PAST are immutable and thus do provide
facilities for time-travel. PAST, however, suffers from
large storage requirements because and does not pro-
vide any mechanisms for repair other than client scans.
Most similar to the Silverback archival layer is Inter-
memory [4]. This system uses Cauchy Reed-Solomon
erasure codes to fragment data; the fragments are then
distributed among members of the service. In intermem-
ory, repair is driven from a centralized source.

8 Conclusion

The most important concern in today’s world of ubiqui-
tous computing is that of information persistence. This
paper describes Silverback, a global-scale, version-based
archival system that isdurable, verifiable, available,
maintainable, andatomic, which scales to handle billions
of users and a mole of bytes. We discussed the imple-
mentation of Silverback and explored the performance
of a prototype backup system built on top of it.

Three technologies make this system possible:

� Erasure Coding: Erasure coding provides durability
by exploiting the statistical stability of large num-
bers of independent components.

� Secure Hashing: Secure hashes permit globally-
unique IDs to be unforgeably associated with
archival data.

� Tapestry Routing and Data Location: Tapestry is a
distributed infrastructure that routes queries directly
to fragments and resources (such as serializers) us-
ing only local information.

Version-based archival systems such as Silverback are
enabled by Moore’s law growth in disk and storage re-
sources. One of the most exciting consequences of such
a system is the legitimate prospect of preserving digital
information for 1000s of years.
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