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Abstract

Logical proofs are playing an increasingly important role in the design of reliable

software systems. In several applications, it is necessary to store, manipulate and trans-

fer explicit representations of such proofs. It is desirable that the proofs be represented

in a compact format, without incurring any loss of information and without performance

penalties with respect to access and manipulation. This thesis describes methods for

proof optimization in the context of Proof-Carrying Code (PCC).

Most of the proofs we encounter in program veri�cation are proofs in �rst-order

logic. Furthermore, in many cases predicates contain portions whose proof is uniquely

determined by the logic. A proof checker can be made to internally reconstruct the proof

in such cases, thus freeing the proof producer from encoding explicit proofs for them.

This simple optimization, which we call inversion optimization reduces the size of proofs

by 37%. We also describe an orthogonal optimization, which we call lemma extraction,

that attempts to replace repeated occurrences of similar subproofs by instances of a

more general lemma. We propose a few variants based on this general idea with varying

degrees of applicability. By using this optimization, we obtain a further reduction of

15% in the size of the proofs.
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1 Introduction

Recently there has been a surge in research aiming to provide assurances that a certain

piece of code is safe, for various notions of safety such as type safety, memory safety,

bounded resource usage and controlled information 
ow. This interest stems from the desire

to create extensible software systems whose functionality can be extended, temporarily

or permanently, by third-party code. Such systems can be application-level programs or

even operating systems. Examples of the former are postgres [22] and Java-enabled web

browsers. Operating systems like VINO [21] and SPIN [1] are designed for extensibility

while BSD allows network-packet �lters [10] to be loaded directly into the kernel.

Designers of such systems need mechanisms that ensure that the extension code does

not break the rest of the system, and various such mechanisms have been proposed. Some

proposals are based on cryptographic techniques that rely on the personal authority of

the code producer [11], while other mechanisms incorporate static and/or runtime checks

to ensure that the code meets certain safety speci�cations. Examples of the latter are

Java byte code veri�cation [9], Software-based Fault Isolation [24] (as in VINO), type-safe

languages (as in SPIN), and the automata based checkers described by Schneider [20].

Static checking of many interesting properties is undecidable and in the case of machine

code, even simple properties are hard to verify. To address this diÆculty, researchers have

proposed the concept of certi�ed code. As the name suggests, the code is accompanied by a

certi�cate designed to be easily validated, and whose validation guarantees the code satis�es

the properties of interest. One example of a certi�cation-based scheme is Typed Assembly

Language (TAL) [12], in which assembly language code includes typing annotations that

enable it to be type checked. Proof-Carrying Code (PCC) [13] carries this idea to an extreme

by requiring the certi�cate to be in the form of a formal proof that the code adheres to a

safety speci�cation.

Among the strengths of PCC are generality and simplicity of the checking process. The

proof checker can be recon�gured to handle a di�erent safety policy by just changing a �le,

called the signature, that encodes the safety policy. However, the generality of PCC comes

at a price: the proofs are too large (typically 2 to 3 times the size of the code) for the system

to be deployed e�ectively. This has been a major critique of certi�cation-based methods in

general, and PCC in particular, and has prompted researchers to look for alternative, and

usually weaker, ways to ensure code safety. For example, Kozen acknowledges that PCC

and TAL are expressive and general, but expresses concern over the fact that the certi�cates

they require tend to be large and time consuming to generate and verify [7]. Instead, he

proposes a small set of annotations to be added to the machine code that reveal enough

about the program's structure to enable some minimal safety properties to be veri�ed.

Using the jargon of PCC, one can say that his method veri�es compliance with a �xed
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(and limited) safety policy. While the annotations required by TAL are nearly an order of

magnitude smaller than PCC, both TAL and Kozen's EÆcient Code Certi�cation [7] are

much harder to adapt to di�erent safety policies.

PCC is not the only situation where proofs are produced, stored and manipulated. PCC

uses a theorem prover to generate the required proofs. Theorem provers have existed for a

long time, but a relatively recent trend is to have proof-generating theorem provers. This

enables one to verify the output of the theorem prover without relying on its soundness, at

the expense of relying on the correctness of a small proof checker. The ability to verify the

output of the theorem prover also helps to uncover bugs during its development. Stump and

Dill [23] describe proof generation from decision procedures and they also note that their

system is not suited for large proofs. It appears therefore, that there is a need to develop

methods for representing proofs compactly. We are not in favor of sacri�cing the expressive

power and formal nature of PCC simply because the proofs are too large. Rather, we want

to reduce the size of the proofs themselves. Kozen's paper can be viewed as exploiting the

regularity of the structure of compiler-generated code and placing some constraints on it to

ensure safety. Our view is that regular code structure likely translates into regular structure

in the corresponding safety proof, and this is where we ought to focus our energy. In this

thesis, we describe two orthogonal techniques for proof optimization: automatic techniques

for reducing the size of mechanically generated proofs.

Our �rst observation is that the proofs required for common notions of code safety,

namely type safety and memory safety, are predominantly predicates in a subset of �rst-

order logic. A part of this logic admits goal-directed, deterministic theorem-proving and

the structure of the proof virtually mirrors the structure of the predicate. This suggests

the following optimization: the proof checker can be augmented with additional intelligence

to reconstruct some parts of the proofs by itself (because there is a single pre-determined

way to prove them), instead of requiring the proof producer to encode them explicitly. We

will refer to this optimization as the inversion optimization, since the proof checker uses

inversion of the proof rules in order to reconstruct the proof.

Our second optimization technique is based on the realization that the various entities

that interact in the PCC system { the compiler, the veri�cation condition generator (whose

job is to construct the predicates to be proved), and the theorem prover, are automatic

systems. Each of these entities uses a limited number of techniques to produce its output.

It is not uncommon for the veri�cation condition generator to emit the same goal several

times. The theorem prover is very likely to proceed in exactly the same way while proving

these goals. Moreover, many goals, while not exactly the same, are often \similar" and the

corresponding proofs also proceed in a similar manner. If such similar proofs can be identi-

�ed, they can be extracted as lemmas in the same way as lemmas are used in mathematics
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as stepping stones in the process of proving complicated theorems. A particular proof can

then be simpli�ed by referring to these lemmas when needed rather than proving the sub-

goals every time they are encountered. Moreover, if we �nd a lemma to be general enough

and it occurs frequently, we can even add it to the axiomatization of the safety policy and

thus make it part of the proof checker's repertoire. In the original implementation of PCC,

this process was done manually by visual inspection of the proof, leading to the addition of

several useful proof rules. However, it was a tedious process and more importantly it was

error-prone and not comprehensive. We would like a tool to carry out this task, which we

will call lemma extraction. This thesis describes the design and implementation of such a

tool. The design space for lemma extraction is large. We describe our experiences with a few

alternatives, and the design decisions we made to achieve a good balance of implementation

e�ort, running time and reduction in proof size.

We introduce the concept of a proof schema, which captures all the proof rules used in a

proof and disregards all the non-proof terms. For every schema, we show how to construct

its schematic form. The schematic form is the most general proof having this schema, in

the sense that any other proof that also has this schema is an instance of the schematic

form. The notion of a proof schema also allows us to �nd, given two proofs, a proof that

is more general than either of them. By applying this method in an iterative fashion to all

proofs of the same schema, we get closer and closer to the schematic form and obtain the

most general occurring form, which we regard as a potential lemma.

We applied our techniques to a set of nearly 300 proofs of varying sizes and measured the

reduction in proof size. The inversion optimization turns out to be very simple to implement

and gives us a 37% reduction. Using lemma extraction, we obtain a further reduction of

15%.

The rest of this thesis is organized as follows. Section 2 gives an overview of the structure

of PCC and the proof representation it employs. In Section 3, we describe the inversion

optimization, which incorporates knowledge of the logical symbols of �rst-order logic into the

proof checker. Section 4 gives an overview of the process of lemma extraction. In Section 5,

we explore one method of �nding lemmas based on the extensional characterization of the

proofs, i.e. by looking at the hypotheses a proof references and the predicate it proves. We

also explain why we believe this is not the ideal way to carry out lemma extraction. Section 6

forms the centerpiece of this thesis. It describes the design of our lemma extractor and what

guarantees we can place on its e�ectiveness. After we have classi�ed all the occurring proofs

into potential lemmas, we have to decide whether or not it is pro�table to make them into

actual lemmas. This is the subject of the discussion in Section 7. Some variations on

our lemma extraction technique are described in Section 8. In Section 9 we describe our

experimental results. Section 10 describes related work in this area and Section 11 concludes

the paper and points out some directions for future work.
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Figure 1: The overall structure of the PCC system

2 Overview of PCC

PCC is a system for ensuring the safety of mobile code. It enables a party (called the code

consumer) to verify with certainty that a piece of code it has received from an untrusted

party (called the code producer) complies with its safety policy. Using a tool known as

the veri�cation condition generator (VCGen), the code consumer constructs a veri�cation

condition (VC) which is a formula in a certain logic. In the case where the notion of safety

is type safety or memory safety, this logic is typically a subset of �rst-order logic. The VC

has the property that it is provable only if the code adheres to the safety policy. The code

is accompanied by what the code producer claims to be the proof of the VC. The code

consumer uses a proof checker to verify that it is indeed so. The safety policy is speci�ed

by means of a set of axioms that the code producer can use for the purpose of constructing

the proof. Figure 1 illustrates the interaction between the various entities involved.

PCC uses the Edinburgh Logical Framework (LF) to encode the veri�cation conditions

and their proofs. LF is a metalanguage for speci�cation of logics. We present brie
y the

aspects of LF relevant to this paper; details are in [4]. LF is basically the simply-typed

lambda calculus with dependent function types. Through the variable binding mechanism

of the lambda calculus, it provides support for parametric and hypothetical judgments.

The simply-typed lambda calculus has provisions for specifying type constants and object

constants. By de�ning an appropriate set of constants in a �le called the signature, we can

specify various logics and safety policies.

The abstract syntax of the VC formulas is given by:

Formula F ::= A j F1 ^ F2 j A) F j 8x:F

Atomic formula A ::= true j r T1 T2 : : : Tk

Term T ::= n j x j f T1 T2 : : : Tk

In the above, n is an integer, x is a variable, r is a predicate constant and f is a function

constant. We will also use the non-terminal symbol S (for syntax) to represent either an

atomic formula or a term; similarly we will use s to denote either a term constructor or

an atomic-formula constructor. The reason for this will become clear when we discuss the

nature of proofs. As mentioned previously, it is the purpose of the signature to describe

4



the constant symbols. To illustrate this, a fragment of a typical signature for proving type

safety of programs is shown below:

true : pred

false : pred

int : exp

array : exp! exp! exp

of : exp! exp! pred

saferd : exp! exp! pred

safewr : exp! exp! exp! pred

� : exp! exp! pred

< : exp! exp! pred

+ : exp! exp! exp

� : exp! exp! exp

In the above signature, exp and pred are prede�ned type constants. pred is the type

of formulas while exp is the type of terms. All the other declared constants are object

constants of the given types. (array t l) denotes an array of l elements of type t. (of e t)

indicates that e is of type t. (saferd m a) is a predicate that says that it is safe to read

a word from address a in memory state m. (safewr m a v) says that it is safe to write

the value v into the location given by address a in memory state m. The memory state is

a term of type exp. A more complete signature would include, among other things, term

constructors for building new memory states from other memory states. Note that LF does

not know anything about �rst order predicate logic, or for that matter any logic. Therefore,

we also have to encode the logical symbols \^", \)" and \8", as shown below:

and : pred! pred! pred

impl : pred! pred! pred

all : (exp! pred)! pred

We have now seen the concrete syntax of the veri�cation conditions. An example of a

small but \real-life" VC is shown in Figure 2. It arises when we have to prove that it is safe

to access an array x1 of x2 elements at index x3 (array indices start at 0) in memory state

x0.

Before we end our discussion on the nature of veri�cation conditions, it is useful to know

what role the logical symbols \^", \)" and \8" (or their concrete representations \and",

\impl" and \all" respectively) play. Figure 3 shows the code (in stylized assembly lan-

guage), that results in the veri�cation condition shown in Figure 2. This code is presumably

in a context where the register rA stores the base address of an array of integers, rL stores

the number of elements in this array (rL > 0). This information might be speci�ed, for
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1 all (�x0 : exp:

2 all (�x1 : exp:

3 all (�x2 : exp:

4 all (�x3 : exp:

5 (impl (of x1 (array int x2))

6 (impl (� x2 0)

7 (impl (� x3 0)

8 (impl (< x3 x2)

9 (saferd x0 (+ x1 (� x3 4)))))))))))

Figure 2: An example of a veri�cation condition

1 if rI < 0 goto Error

2 if rI � rL goto Error

3 rT = rI � 4

4 rR = �(rA + rT )

5 return rR

Figure 3: Code that results in the VC in Figure 2

example, as a precondition of the function the code is part of. The code fetches the element

at index rI of this array into register rR on a 32-bit machine.

Thanks to the preconditions and the bounds checks present in lines 1 and 2 of the code, it

is easy to see that the memory read in line 4 is safe. If control reaches line 4, we can assume

that these checks have been successful. Lines 7 and 8 of the veri�cation condition in Figure 2

encode these assumptions. Lines 5 and 6 of the VC capture the preconditions and lines 1{4

quantify over arbitrary values of the corresponding registers. Another use of \8", which our

example does not illustrate, is to verify an arbitrary iteration of a loop. The logical symbol

\^" is used to collect the veri�cation conditions for a sequence of potentially unsafe code

statements. We do not have one in our example since there is only one potentially unsafe

statement.

We have seen how to encode the logical formulas or predicates; we now turn our attention

to the proofs of these formulas. In logic, a predicate is shown to be valid by exhibiting a

derivation of it using a set of prescribed proof rules. To translate this into LF, we �rst

introduce a separate type to assign to proofs. We use pf which is actually a type family

indexed by predicates. For example pf (� x1 0) is the type assigned to a proof of x1 � 0.

Then we need to give every proof rule a name, i.e. we have to specify the proof constructors.

These constructors are added to the signature in the form of constants, as illustrated below.
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impi : �x0 :pred:�x1 :pred:(pf x0 ! pf x1)! pf (imp x0 x1)

alli : �x0 :exp! pred:(�x :exp:pf (x0 x))! pf (all x0)

andi : �x0 :pred:�x1 :pred:pf x0 ! pf x1 ! pf (and x0 x1)

truei : pf true

safeRead : �x0 :exp:�x1 :exp:�x2 :exp:�x3 :exp:pf (of x1 (array int x2))!

pf (� x2 0)! pf (� x3 0)! pf (< x3 x2)!

pf (saferd x0 (+ x1 (� x3 4)))

ofIntExp : �x0 :exp:pf (of x0 int)

�x :a:b is a dependent function type { it is the type of a function whose domain is the

set of elements of type a and whose range is the set of elements of type b, where a can occur

free in b. In the particular case where b does not contain any free occurrence of a, �x :a:b

is abbreviated to a! b. Notice how the type of the proof constructors encodes the details

about the proof rules using the facility of dependent function types.

By examining the type of the proof constructors, we can see that except for andi,

impi and alli, the remaining proof constructors are used for constructing proofs of atomic

formulas. We will call such proofs atomic proofs and they have the abstract syntax given

by:

Atomic Proof P ::= y j p S1 : : : Sm P1 : : : Pn

Here y is a variable representing a hypothesis, p is a proof constructor, and S is a non-

terminal symbol representing either an atomic formula or a term. We will refer to S as a

non-proof term or sometimes as a syntax term.

The LF representations for formulas and proofs have the following property: a proof

P has type pf A if and only if P is the representation of a proof of the formula A. For

details, the reader can refer to [4]. Thus proof checking is equivalent to type checking in LF.

This is one reason why LF is a popular vehicle for logic programming and theorem proving

applications.

Figure 4 shows the proof of our example veri�cation condition. For clarity, some of the

terms (those marked by \ ") are not written in the above proof. In fact, these terms need

not be explicitly speci�ed because they can be inferred while the proof is being checked. A

variant of LF known as LFi (for implicit LF), that allows many subterms to be omitted is

described in [14]. Our optimization techniques work even in the presence of such missing

terms. However, in order to get the most out of the LFi representation algorithm (that

decides which terms can be omitted), the lemma extraction algorithm must be suitably

modi�ed. We will further comment on this in Section 9 when we discuss our experimental

results.
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1 alli (�x0 : exp:

2 alli (�x1 : exp:

3 alli (�x2 : exp

4 alli (�x3 : exp

5 (impi (�y0 : pf (of x1 (array int x2))

6 (impi (�y1 : pf (� x2 0)

7 (impi (�y2 : pf (� x3 0)

8 (impi (�y3 : pf (< x3 x2)

9 (safeRead x0 x1 x2 x3 y0 y1 y2 y3)))))))))))))

Figure 4: Proof of the VC in Figure 2

3 The Inversion Optimization

The veri�cation condition in Figure 2 and its proof in Figure 4 appear to have the same

overall structure. A quick look at the types of the proof constructors available to us shows

that exactly one of the proof constructors can be used to prove predicates having \all"

as head. The same is true about predicates involving \impi" and \andi". In other words,

the proof for these predicates must proceed in exactly one way. This fact is well known

to the theorem proving community. For this fragment of logic, a theorem prover's �rst

step, known as the inversion step, handles the logical symbols in a straight-forward and

completely deterministic way until it reaches an atomic formula. The hard part in theorem

proving lies in proving these atomic formulas.

If we view the proof as a tree with the internal nodes labeled with the proof constructors

corresponding to the logical symbols, then the atomic formulas are the leaves of the tree.

This observation suggests the following optimization: the proof checker, which was earlier

purely an LF type checker with no special knowledge of even \^", \)" and \8", can be

extended so that it knows about these symbols. It carries out the inversion step at the

time of proof checking and needs to be given only the proofs of the atomic formulas i.e.,

the fringe of the proof tree. Thus, instead of a monolithic proof, we have a list of atomic

proofs. We will refer to this optimization as the inversion optimization because it exploits

the inversion step performed by typical theorem provers for this fragment of logic.

In the veri�cation condition in Figure 2, there is only one atomic formula:

(saferd x0 x1 (+ (� x3 4)))

and its proof is:

(safeRead x0 x1 x2 x3 y0 y1 y2 y3)

These terms refer to variables that have been bound by lambda abstractions in the process
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of using the rules impi and alli. Thus we need the notion of an environment when we talk

about an atomic formula and its proof. An environment is a mapping from variable names

to types. Such an environment is constructed by a type checker during the process of type

checking and so also by an LF type checker (which is what an LF proof checker really is).

Exactly how this happens will be more clear after we describe formally the proof checking

process.

The proof checking judgment is of the form � ` D : pf F with the meaning that D is

a proof (i.e. a list of atomic proofs) of the logical formula F in the environment �. The

syntax of D and � is given by:

Atomic-Proof List D ::= P j D1;D2

Proof Environment � ::= � j x : a;� j y : pf A;�

Here a is a basic type and pf A denotes a proof type. The following rules show how proof

checking proceeds:

� `LF P : pf A

� ` P : pf A

� ` D1 : pf F1 � ` D2 : pf F2

� ` D1;D2 : pf (F1 ^ F2)

�; y : pf A ` D : pf F

� ` D : pf (A) F )

�; x : a ` D : pf F

� ` D : pf (8x : a:F )

The judgment � `LF P : pf A has the meaning that P is a proof of the atomic formula

A in environment � and the rules for it are the same as the rules for type checking in LF.

These rules are non-deterministic, in the sense that a proof list D can prove many

predicates. We reach the same conclusion if we realize that there are many trees having the

same fringe. The reason this is not a problem is that the proof checker is not trying to infer

the VC; it has the VC and it is verifying an alleged proof of it. By inversion of the above

rules, the proof checker proceeds to prove the VC on its own, until it encounters an atomic

formula. Every time it reaches an atomic formula, it consumes the next atomic proof from

the proof list D, and veri�es that this atomic proof is indeed a valid proof of the atomic

formula.

The reader might have noticed that in the process of constructing the list of atomic

proofs from a monolithic proof, we have lost the binding occurrences for the variables. The

atomic proofs will now contain unbound variables which should be compatible with the

bindings added during proof checking. This problem is easily solved by using deBruijn

indices [2]. In this scheme, a variable is referred to by its index in the environment, instead

of by name.

This optimization is very easy to implement and it reduces the size of all proofs without

any cost involved { proof checking is just as simple as before. The only drawback is that the
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code consumer will now have to be aware that the proofs are in this form, or for backward

compatibility, be able to distinguish this representation from the original representation.

On an average we observed a reduction of 37% in the size of the proofs we used for our

test cases. This optimization can be performed by itself, or in conjunction with another

optimization that we will see in the next section.

4 Lemma extraction

By incorporating knowledge of the logical symbols into the proof checker, we have converted

a proof into a set of atomic proofs. We now look at an optimization technique that targets

these atomic proofs.

A typical theorem prover uses a limited number of strategies to prove a formula. The

structure of a veri�cation conditions is also quite regular because of a similar constraint on

the veri�cation condition generator. These two factors in combination result in proofs that

have within them repeated occurrences of similar subproofs. Reducing this repetition is

likely to result in smaller proofs. One way to achieve this is to abstract from the individual

occurrences of the similar proofs and to create a lemma. Such a lemma needs to be proved

just once but it can be instantiated many times. In order to do this, we have to �rst make

precise the notion of proof similarity. After we have extracted potential lemmas from proofs,

there are several degrees of freedom in selecting those that �nally become lemmas. This

involves a cost-bene�t analysis to determine the pro�table lemmas.

Let us �rst look at the question of proof similarity. We ultimately want to be able to

say whether two proofs are special cases of a more general proof. As a �rst step, let us try

to solve a slightly simpler problem: When can we say that one atomic proof is a special

case of another?

There appear to be two distinct ways of approaching these problems. One way is to

compare the proofs based on their extensional behavior i.e. what predicates they prove and

what hypotheses they refer to. The alternative is to compare the proofs themselves. We

will analyze both these methods in the next two sections.

5 Using type information

The type of a proof encodes the predicate it proves. As a �rst attempt, let us use this

information to detect proof similarity. If we have two proofs of exactly the same predicate,

it seems plausible to consider the proofs interchangeable. Unfortunately, the proofs might

be constructed using di�erent sets of hypotheses. Therefore, we need to consider the proof

environments as well.
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Let �1 ` P1 : pf A and �2 ` P2 : pf A0 be the type judgments for two atomic proofs.

The form of �1 and �2 is given by:

�1 = x1 : a1; x2 : a2; : : : ; xm : am; y1 : pf A1; y2 : pf A2; : : : ; yn : pf An

�2 = x01 : a
0

1; x
0

2 : a
0

2; : : : ; x
0

m0 : a0m0 ; y01 : pf A
0

1; y
0

2 : pf A
0

2; : : : ; y
0

n0 : pf A0

n0

We will refer to the x's as syntax variables and the y's as proof variables or hypotheses.

It is quite evident that if �1 = �2 and A = A0, then P1 and P2 can be used interchange-

ably. However, even if these equality tests fail, it might still be possible to interchange the

proofs. These tests can fail for some trivial reasons, for example if there is a variable in �1

and not in �2, but this variable is not referenced in P1. Therefore, to avoid discarding a

proof match for such reasons, we �rst carry out a preprocessing step, which we will call the

simpli�cation phase that ensures that a proof environment satis�es the following:

1. Every hypothesis is referenced in the proof. We can simply ignore those that are not

being used.

2. The environment does not contain two proof variables having exactly the same type.

If it does, we can change the proof to use just one of them and ignore the other.

3. Every syntax variable is used either in the type of some hypothesis or in the proof

itself.

We will use \
:
=" instead of \=" to indicate equality of proof environments modulo

simpli�cation. Now if either of the tests �1
:
= �2 or A = A0 fail, then P1 and P2 cannot be

used interchangeably. However, it is possible that P1 is a special case of P2 (or vice versa).

We will also refer to this situation by saying that P1 is an instance of P2, or P2 is more

general than P1. As an example, consider the following proofs P 0

1 and P 0

2:

x1 : exp; x2 : exp; y1 : pf (> x1 x2) ` P 0

1 : pf (> (+ x1 1) x2)

y6 : pf (> 3 2) ` P 0

2 : pf (> (+ 3 1) 2)

It seems intuitive that P 0

1 is more general than P 0

2. This is indeed correct because

a syntax variable is universally quanti�ed, having been introduced by the proof checker

when it encountered the logical symbol \8", and a proof remains valid if it is made to

refer to a di�erent proof variable but of the same type. It is easy to see that by appropriate

substitutions of the syntax variables by non-proof terms and renaming of the proof variables

in the environment corresponding to P 0

1 above, we can equalize the environment with that

of P 0

2. In general, given two proofs P1 and P2, we can say that P1 is more general than P2 if

11



we can �nd substitutions S1; : : : ; Sm for x1; : : : ; xm and renamings y001 ; : : : ; y
00
n for y1; : : : ; yn

such that the following hold:

[S1 : : : Sm�x1 : : : xm ][
y001 : : : y

00

n�y1 : : : yn ]�1
:
= �2

[S1 : : : Sm�x1 : : : xm ]A = A0

In such a case, we can create a lemma and replace P1 and P2 by instances of this lemma.

In LF, we would create a new constant l1, with the following type:

l1 : �x1 :a1:�x2 :a2: : : :�xm :am:pf A1 ! pf A2 ! : : :! pf An ! pf A

The body of the lemma will be speci�ed as:

l1 = �x1 : a1: : : : �xn : an:�y1 : pf A1: : : : �yn : pf An:P1

The type of a lemma together with the lemma's body will be referred to as the lemma's

de�nition. Finally, the proofs P1 and P2 can be respectively replaced by the following

instantiations of the lemma:

(l1 x1 : : : xm y1 : : : yn)

(l1 S1 : : : Sm y001 : : : y00n)

Detecting proof similarity in this manner is useful if the actual constructions of the

proofs are very di�erent, as long as they prove similar predicates using similar hypotheses.

But this approach has several drawbacks.

One diÆculty is that it is not at all clear how one can eÆciently determine the substi-

tutions S1; : : : ; Sm and renamings y001 ; : : : ; y
00
n for the variables. We cannot rely on the order

of the hypotheses in �1 and �2 because the order can be di�erent. In fact, even the number

of hypotheses in �1 and �2 need not be the same. So in general we will have to consider all

possible renamings for the proof variables and determine appropriate substitutions for the

syntax variables. This can be a very expensive operation.

Secondly, while we can determine if one proof is more general than another, we cannot

determine, given two proofs, a proof that is more general then either of them. As a simple

example, consider a proof rule addgt whose type declaration is:

addgt : �x1 :exp:�x2 :exp:�x3 :exp:pf (> x1 x2)! pf (> x3 0)! pf (> (+ x1 x3) x2)

This rule allows us to prove that (x1 + x3) > x2 if we know that x1 > x2 and x3 > 0. Now

consider the following two proofs that use addgt:

y1 : pf (> 3 2); y2 : pf (> 1 0) ` (addgt y1 y2) : pf (> (+ 3 1) 2)

y1 : pf (> 3 2); y2 : pf (> 5 0) ` (addgt y1 y2) : pf (> (+ 3 5) 2)

12



Using the method we have just described, these proofs would be regarded as di�erent.

If the proof was more complicated than we have illustrated (i.e. it had used a sequence

of proof rules instead of just addgt), we might have lost a good opportunity to extract a

lemma. We will address this problem in the next section.

Finally, there are proofs that occur very few times, but contain subproofs that occur

frequently. Using the information the type of the proof provides is very unlikely to detect

this form of redundancy because it totally disregards how a proof is constructed.

6 Using the proof structure

In this section, we explore whether we can capture more of the redundancy occurring in

proofs if we take into account how the proofs are constructed. We will �rst illustrate our

new approach using examples, and later state it more formally and in a general setting.

Assume that we have added the proof rule transgt to the LF signature. It encodes the

transitivity of \>".

transgt : �x1 :exp:�x2 :exp:�x3 :exp:pf (> x1 x2)! pf (> x2 x3)! pf (> x1 x3)

An example of the use of transgt is the following proof of (5 > 3) from the hypotheses

(5 > 4) and (4 > 3).

y1 : pf (> 5 4); y2 : pf (> 4 3) ` (transgt 5 4 3 y1 y2) : pf (> 5 3)

Now let us take a slightly bigger proof, one that has two uses of transgt. The following

is a proof of (5 > 2) from the hypotheses (5 > 4), (4 > 3) and (3 > 2). Let us call this

proof P1.

y1 : pf (> 5 4); y2 : pf (> 4 3); y3 : pf (> 3 2) `

(transgt 5 3 2 (transgt 5 4 3 y1 y2) y3) : pf (> 5 2)

Let us ignore the syntax terms and focus only on the proof terms (proof constructors and

hypotheses). Our claim is that this \proof skeleton" can be used to prove many more related

predicates than just (5 > 2). For example, here is a proof of (5 > 1). We will refer to it as

P2.

y1 : pf (> 5 4); y2 : pf (> 4 3); y3 : pf (> 3 1) `

(transgt 5 3 1 (transgt 5 4 3 y1 y2) y3) : pf (> 5 1)

Our experiments with a large set of proofs have revealed that there are a large number of

cases where proofs di�er only in their syntax terms. To capture this behavior, we introduce
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the concept of a proof schema. A proof schema records all the proof terms and disregards

all the syntax terms. P1 and P2 share the same schema, which is shown below:

(transgt u1 u2 u3 (transgt u4 u5 u6 y1 y2) y3)

Here the u's are a new brand of variables called uni�cation variables. The types of the uni�-

cation variables and the proof variables in a schema are speci�ed in a schema environment.

In our example, it is:

� = u1; : : : ; u9 : exp; y1 : pf u7; y2 : pf u8; y3 : pf u9

Observe that in general it is not true that � `LF G, because there are no constraints on the

types of the hypotheses. However, by �nding the constraints the LF signature imposes on

the uni�cation variables, we can obtain a valid LF proof object, which we call the schematic

form. The schematic form for our example is shown below. Let us call it Ps.

u1; u2; u3 : exp; u5 : exp; y1 : pf (> u1 u5); y2 : pf (> u5 u2); y3 : pf (> u2 u3) `

(transgt u1 u2 u3 (transgt u1 u5 u2 y1 y2) y3) : pf (> u1 u3)

We will formally describe this process in Section 6.1. Here we want to focus on its prop-

erties and applications. We can easily verify that P1 and P2 can be obtained from Ps by

appropriate substitution of the uni�cation variables in Ps. In fact, we will claim (and later

prove) that the schematic form of a schema is the most general proof corresponding to

that schema, in the sense that any other proof with that schema can be obtained from the

schematic form.

This claim allows us to conclude that any atomic proof P can be written as a pair

hPs; Li, where Ps is the schematic form and L is a substitution mapping the uni�cation

variables in Ps to syntax terms. Furthermore, this characterization of a proof allows us to

generalize two proofs of the same schema.

Consider two proofs hPs; L1i and hPs; L2i. By anti-uni�cation of the terms in L1 and

L2 we can obtain a new substitution L. For �rst-order terms, there exist an algorithm to

compute the most speci�c anti-uni�er. This process will be described fully in Section 6.2.

It is easy to see that hPs; Li is also an instance of the schematic form Ps. Thus, we can

construct the most speci�c generalization of two atomic proofs having the same schema.

For example, the most speci�c generalization of P1 and P2 is the following proof, which we

call P3.

x1 : exp; y1 : pf (> 5 4); y2 : pf (> 4 3); y3 : pf (> 3 x1) `

(transgt 5 3 x1 (transgt 5 4 3 y1 y2) y3) : pf (> 5 x1)

Thus, a proof can be generalized to various levels. At the lowest level is that proof itself,

and at the topmost level is the schematic form corresponding to its schema. A proof in this
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generalization hierarchy can be written as an instance of any proof at a higher generalization

level. In our example, P1, P3 and Ps represent three proofs in increasing order of generality.

We can create a lemma from a proof at any generalization level. So one idea would be

to make a lemma from every schematic form and so any atomic proof will be an instance of

a lemma. However, choosing the right level of generalization is important for size consider-

ations. To illustrate this, let us make a lemma l1 from the proof P1. The lemma has the

following de�nition:

l1 = �y1 : pf (> 5 4):�y2 : pf (> 4 3):�y3 : pf (> 3 2):

(transgt 5 3 2 (transgt 5 4 3 y1 y2) y3)

: pf (> 5 4)! pf (> 4 3) ! pf (> 3 2)! pf (> 5 2)

Instantiations of l1 will be of the form (l1 y1 y2 y3).

Let us compare this to the lemma we get from highest generalization level. In other

words, let us a make the schematic form into a lemma. We obtain the following lemma:

ls = �u1 : exp:�u2 : exp:�u3 : exp:�u5 : exp:

�y1 : pf (> u1 u5):�y2 : pf (> u5 u2):�y3 : pf (> u2 u3):

(transgt u1 u2 u3 (transgt u1 u5 u2 y1 y2) y3)

: �u1 :exp:�u2 :exp:�u3 :exp:�u5 :exp:

pf (> u1 u5)! pf (> u5 u2)! pf (> u2 u3)! pf (> u1 u3)

This lemma will be instantiated as (ls x1 x2 x3 x4 y1 y2 y3).

These lemmas expose an important fact: The generalization level of a lemma a�ects the

size of the lemma de�nition and the size of the lemma instantiation. In general, the fewer

syntax variables there are in a lemma, the better it is. On the other hand, the more general

a lemma is, the greater the number of proofs that we can obtain from it.

In view of the above tradeo�, we decided to choose a middle path by constructing what

we call the most general occurring form of a schema. For each schema we maintain a proof

that generalizes all the proofs encountered so far having this schema. We iterate over all

the proofs of this schema and constantly update the most general occurring form. After

we have processed all the atomic proofs, we are left with a set of most general occurring

forms, one for each schema, and we regard them as potential lemmas. If the proofs P1 and

P2 are the only proofs with their schema, the most general occurring form is P3. This is

substantially di�erent from Ps. The presence of other atomic proofs with this schema might

bring the most general occurring form closer to the schematic form Ps.

This completes our informal description of the algorithm we are using to detect proof

similarity and extract lemmas by utilizing the structure of the proof. The following two

subsections (6.1 and 6.2) will describe this formally and present theorems that establish the

crucial properties of this process.
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6.1 Constructing the schematic form

We will now formalize the process of constructing the schematic form. It involves the

following steps:

1. Constructing the schema

2. Carrying out a uni�cation-based process to resolve the dependencies between the

uni�cation variables and thereby obtain a valid LF object. We will formalize this as

a two-stage process:

(a) Collecting a set of �rst-order uni�cation constraints

(b) Solving these constraints

In a real implementation, however, these two stages will typically be interleaved.

Throughout this section, p stands for a proof constructor having the type:

p : �x1 :a1: : : :�xm :am:pf S
p
1 ! : : : ! pf Spn ! pf Sp

6.1.1 Schema construction

The syntax for schemas and schema environments is given by:

Schema G ::= y j p u1 : : : um G1 : : : Gn

Schema Environment � ::= � j u : a;� j y : pf u;�

Here u stands for a uni�cation variable. We extend the syntax of non-proof terms S to

include uni�cation variables.

Given an atomic proof P , pPq yields a pair (G;�), where G is the schema and � is the

schema environment. p�q is de�ned inductively by the following rules:

pyq = (y ; fy : pf u; u : predg), where u is fresh

pp S1 : : : Sm P1 : : : Pnq = (p u1 : : : um G1 : : : Gn ; fu1 : a1 : : : um : amg [
Sn
i=1�i)

where pPiq = (Gi;�i) and u1; : : : ; um are fresh

Note that by this construction, the proof variables in a schema environment have types

of the form pf u and the type of u is pred. We will make use of this fact in the proofs of

the theorems.
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6.1.2 Constraint collection

The judgment � ;G ; pf S ! C means: Given a schema G in an environment � and a

syntax term S, generate a set of �rst-order uni�cation constraints C. The rules for this

judgment are given below:
�(y) = pf u

�; y; pf S ! u � S

�;Gi; pf [
uj�xj ]S

p
i ! Ci

�; p u1 : : : um G1 : : : Gn; pf S !
Sn
i=1 Ci [ fS � [uj�xj ]S

pg

The top-level invocation of this judgment is as follows: We let S be a fresh uni�cation

variable u0 and we let � be the schema environment ofG extended with u0 : pred. The set of

constraints C that we obtain captures all the dependencies among the uni�cation variables

imposed by the LF signature. In the the case of the schema we showed in Section 6, we

obtain the following constraints:

C = u0 � (> u1 u3); u7 � (> u4 u5); u8 � (> u5 u6);

u9 � (> u2 u3); (> u4 u6) � (> u1 u2)

6.1.3 Constraint solving

The judgment C
u
! 	 means: 	 is the most general solution to the set of �rst-order

uni�cation constraints C. 	 is a set of substitutions for (some of) the uni�cation variables

occurring in C. The syntax of 	 is given by:

	 ::= � j u 7! S;	

This process is well known [6] and its rules are shown below:

S1 � S2
u
! 	 	(C)

u
! 	0

S1 � S2;C
u
! 	0 Æ	

u � u
u
! �

u =2 FV(S)

u � S
u
! u 7! S

u =2 FV(S)

S � u
u
! u 7! S

S1 � S01
u
! 	1 	1(S2) � 	1(S

0

2)
u
! 	2 : : : (	n�1 Æ : : : Æ	1)Sn � (	n�1 Æ : : : Æ	1)S

0
n

u
! 	n

s S1 : : : Sn � s S01 : : : S0n
u
! 	n Æ	n�1 Æ : : : Æ	1

If we solve the constraints for our example, we obtain the following substitution:

	 = u0 7! (> u1 u3); u7 7! (> u1 u5); u8 7! (> u5 u2);

u9 7! (> u2 u3); u4 7! u1; u6 7! u2
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6.1.4 Properties of the process of constructing the schematic form

The following theorems establish some important properties about the process of construct-

ing the schematic form. But �rst we need to introduce some notations:

� A set of �rst-order uni�cation constraints C is said to be well-typed w.r.t � if and

only if for every constraint S1 � S2 in C, � `LF S1 : a and � `LF S2 : a for some a.

� A substitution 	 is said to be well-typed w.r.t � if and only if for any u 2 dom(	)

such that u : a 2 �, 	(�) `LF 	(u) : a.

� Given a set of constraints C, we write 	 j= C to mean that 	 is a solution (not

necessarily the most general one) to C.

The �rst claim that we want to substantiate is that the schematic form is a valid LF

object. Recall how we construct the schematic form: Given an atomic proof P , we construct

its schema G and schema environment �. The judgment �[ u0 : pred;G; pf u0 ! C gives

us a set of constraints C that we solve as indicated by the constraint solving judgment. Our

goal, therefore, is to prove the following theorem:

Theorem 6.1 If � `LF P : pf S and �; u0 : pred;G; pf u0 ! C, where pPq = (G;�) then

there exists 	 such that C
u
! 	 and 	(�) `LF 	(G) : pf 	(S).

We cannot prove this theorem directly. Therefore, we will prove a series of theorems which

put together will give us a proof of this theorem. The thread of the argument goes as

follows: Theorem 6.2 tells us that C is well-typed and if we can �nd a well-typed solution

to C, we are done. Theorem 6.3 says that if the constraint solving step succeeds, then its

answer is a well-typed solution to C. Finally Theorem 6.5 argues that the constraint solving

step indeed succeeds. It uses the fact that a solution to C exists, as proved in Theorem 6.4.

Theorem 6.2 If �;G; pf S ! C and � `LF S : pred then C is well-typed w.r.t �. Further,

if 	 j= C and 	 is well-typed w.r.t �, then 	(�) `LF 	(G) : pf 	(S).

Proof: The proof is by induction on the structure of the derivation of �;G; pf S ! C.

Case: The derivation is:
�(y) = pf u

�; y; pf S ! u � S

u � S is well-typed because � `LF S : pred (assumption) and � `LF u : pred (because

of the way the schemas are constructed). If 	 j= u � S then 	(u) = 	(S). Also,
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(	(�))y = pf 	(u) = pf 	(S). Finally, 	(y) = y, since 	 only provides substitutions

for the uni�cation variables. Now we can construct the LF typing derivation:

(	(�))y = pf 	(S)

	(�) `LF y : pf 	(S)

Case: The derivation is:

Di

�;Gi; pf [
uj�xj ]S

p
i ! Ci

�; p u1 : : : um G1 : : : Gn; pf S !
n[

i=1

Ci [ fS � [uj�xj ]S
pg

Let C =
Sn
i=1Ci [ fS � [uj�xj ]S

pg. Clearly, if 	 j= C then 	 j= Ci for i = 1 : : : n

and 	 j= S � [uj�sj ]S
p. Since ui and xi have the same type, and Sp and Spi have type

pred, [uj�xj ]S
p and [uj�xj ]S

p
i also have type pred. Now the induction hypothesis is ap-

plicable to Di which gives us 	(�) `LF 	(Gi) : pf 	([uj�xj ]S
p
i ). Since Sp and Spi do

not contain any uni�cation variables, 	([uj�xj ]S
p) = [	(uj)�xj ]S

p and 	([uj�xj ]S
p
i ) =

[	(uj)�xj ]S
p
i . Since 	 j= S � [uj�xj ]S

p, 	(S) = 	([uj�xj ]S
p) = [	(uj)�xj ]S

p. Also,

note that 	(p u1 : : : um G1 : : : Gn) = p 	(u1) : : : 	(um) 	(G1) : : : 	(Gn). Finally,

	(�) `LF 	(ui) : ai because by assumption, 	 is well-typed w.r.t �. Now we can construct

the LF typing derivation:

	(�) `LF 	(ui) : ai 	(�) `LF 	(Gi) : pf [
	(uj)�xj ]S

p
i

	(�) `LF p 	(u1) : : : 	(um) 	(G1) : : : 	(Gn) : pf [
	(uj)�xj ]S

p

�

Theorem 6.3 If C is a set of well-typed �rst-order uni�cation constraints w.r.t �, then if

C
u
! 	 then 	 j= C and 	 is well-typed w.r.t. �.

Proof: The proof is by induction on the structure of the derivation of C
u
! 	.

Case: The derivation is:
D1

S1 � S2
u
! 	

D2

	(C)
u
! 	0

S1 � S2;C
u
! 	0 Æ	

By applying the induction hypothesis to D1, 	(S1) = 	(S2) = S0 (say) and 	 is well-

typed. 	(C) is also well-typed (this is an easy extension of Lemma 6.6). So we can apply

the induction hypothesis to D2 to obtain that 	
0 is well-typed and for any S01 � S02 2 	(C),

	0(S01) = 	0(S02). Now (	0Æ	)S1 = 	0(S0) = (	0Æ	)S2. Furthermore, for any S
0

1 � S02 2 C,
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(	0 Æ	)S01 = 	0(	(S01)) and (	0 Æ	)S02 = (	0(	(S02)). But 	(S
0

1) � 	(S02) is in 	(C). So

	0(	(S01)) = 	0(	(S02)). This shows that 	
0 Æ	 is a solution to S1 � S2;C. What remains

to be shown is that if 	 and 	0 are well-typed, 	0 Æ	 is also well-typed. Consider a variable

u in dom(	0 Æ	). Let 	(u) = S. Then, u and S have the same type. By Lemma 6.6, 	0(S)

also has this type. Thus, 	0 Æ	 is well-typed.

Case: The derivation is:

u � u
u
! �

The empty substitution is well-typed and is a solution to u � u.

Case: The derivation is:

u =2 FV(S)

u � S ! u 7! S

Here 	 = u 7! S. 	(u) = S = 	(S) since u =2 FV(S). By assumption, u and S have the

same type.

Case: The derivation is:

u =2 FV(S)

S � u! u 7! S

This case is very similar to third case above.

Case: For the remaining case, we will show the proof for n = 2. For larger n the proof is

similar. The derivation is:

S1 � S01
u
! 	1 	1(S2) � 	1(S

0

2)
u
! 	2

s S1 S2 � s S01 S
0

2

u
! 	2 Æ	1

This case is very similar to the �rst case. This is easily seen by observing that the uni�ca-

tion subgoals can be thought of as S1 � S01;S2 � S02. This is a set of well-typed constraints

because by assumption (s S1 S2) and (s S01 S
0

2) have the same type, and the unique signa-

ture of s ensures that S1 and S2 have the same type, as do S
0

1 and S02. �

Theorem 6.4 If � `LF P : pf S1 and �;�0;G; pf S2 ! C, where pPq = (G;�) and �0 is

an extension to � so that we can type S2, and if there exists a substitution 	0 (mapping

uni�cation variables to terms involving variables only from �) such that 	0(S2) = S1, then

there exists a substitution 	 (mapping uni�cation variables to terms involving variables only

from �) that is a solution to C.

Proof: The proof is by induction on the structure of the derivation of � `LF P : pf S1.

Case: The derivation is:

�(y) = pf S1
� `

LF

y : pf S1
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pyq = (y;u : pred; y : pf u) where u does not occur in S2. In this case, C = u � S2. We

choose 	 to be (u 7! S1) Æ	0. It is easy to see that 	 is indeed the desired solution.

Case: The derivation is:

� `LF S0j : ai

Di

� `LF Pi : [
S0j�xj ]S

p
i

� `
LF

p S01 : : : S0m P1 : : : Pn : pf [
S0j�xj ]S

p

G = p u1 : : : um G1 : : : Gn where u1; : : : ; um do not occur in G1; : : : ; Gn or in S2.

C =
Sn
i=1 Ci [ (S2 � [uj�xj ]S

p) where �;Gi; pf [uj�xj ]S
p
i ! Ci. We have 	0 such that

	0(S2) = pf [Sj�xj ]S
p. Let 	0 = fu1 7! S01; : : : ; un 7! S0ngÆ	0. Clearly 	

0(pf [uj�xj ]S
p
i ) =

pf ([S
0

j�xj ]S
p
i ). We can now apply the induction hypothesis to Di, and we obtain substitu-

tions 	i that satisfy Ci respectively. Observe that the domains of 	i are mutually disjoint

and also disjoint with 	0. Choose 	 = 	1 Æ 	2 Æ : : : Æ 	n Æ 	
0. It is easy to see that 	

satis�es C. �

Theorem 6.5 If � `LF P : pf S and �; u0 : pred;G; pf u0 ! C, where pPq = (G;�) then

there exists 	 such that C
u
! 	.

Proof: We rely on the completeness property of �rst-order uni�cation which tells us that

if C has any solution, a most-general solution can be found [19]. Theorem 6.4 says that

a solution indeed exists. Therefore, the constraint solving step (which is nothing but a

computation of the most general uni�er) succeeds. �

On two occasions in Theorem 6.3 we made use of a lemma, which we now state:

Lemma 6.6 If 	 is a well-typed substitution w.r.t. � and � `LF S : a for some a, then

	(�) `LF 	(S) : a.

Proof: This can be proved by an easy induction on the structure of S, and using the

de�nition of well-typedness of a substitution. �

Theorem 6.5 suggests a useful optimization: since the constraint solving step will not fail,

nor will the occurs-checks, which can therefore be removed. Of course, the schema must

be constructed from a well-typed proof (as indicated by the statement of Theorem 6.5). In

other words, with these checks removed, the lemma extractor is guaranteed to work only if

it is given valid LF proofs.

We conclude this section by proving the second claim that we made about our lemma

extraction process { that the schematic form is the most general proof for a given schema.
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Theorem 6.7 An atomic proof is an instance of its schematic form.

Proof: The proof of Theorem 6.4 shows that the syntax terms of an atomic proof provide

a solution to the constraints obtained during the constraint collection step. Since the

schematic form corresponds to the most general solution to these constraints, it follows

that a proof can be obtained by appropriate substitution of the (uninstantiated) uni�cation

variables in its schematic form. �

6.2 Generalization of proofs having the same schema

From our discussion in Section 6, a proof can be represented as a pair. Consider two proofs

hPs; L1i and hPs; L2i where Ps is the schematic form, and L1 and L2 are substitutions (map-

ping uni�cation variables to syntax terms). Let L1 = u1 7! S1; : : : ; un 7! Sn and L2 = u1 7!

S01; : : : ; un 7! S0n. We construct a set of disagreement pairs H = hS1; S
0

1i; : : : ; hSn; S
0
ni. Us-

ing the algorithm described in [8] we compute the most speci�c anti-uni�erHa = Sa1 ; : : : ; S
a
n

of H, which gives us the generalized substitution La = u1 7! Sa1 ; : : : ; un 7! San. An impor-

tant component of the anti-uni�cation process is the anti-uni�cation environment, which

maintains a set of triples hSi; S
0

i; xii. This triple remembers that the terms Si and S0i were

abstracted by the variable xi, and so if these terms are encountered again for the purpose

of anti-uni�cation, they must be replaced by xi and not another variable. This is crucial

for computing the most speci�c generalization, as opposed to a generalization.

We de�ne two judgments. The judgment H
a
! Ha means that Ha is the most speci�c

generalization of the set of disagreement pairs H. This invokes another judgment, namely

K;�
a
! Ka;�0 which has the following meaning: Ka is the most speci�c generalization of

the disagreement pair K in the anti-uni�cation environment � and a modi�ed environment

�0 is returned.

The rules for these judgments are shown below.

�1 = � hSi; S
0

ii;�i
a
! Sai ;�i+1

hS1; S
0

1i; : : : ; hSn; S
0
ni

a
! Sa1 ; : : : ; S

a
n

hx; xi;�
a
! x;�

x 6= S hx; S; x0i 2 �

hx; Si;�
a
! x0;�

x 6= S hx; S; x00i 62 � x0 is fresh

hx; Si;�
a
! x0;� [ hx; S; x0i

�1 = � hSi; S
0

ii;�i
a
! Sai ;�i+1

hs S1 : : : Sn; s S
0

1 : : : S
0
ni;�

a
! s Sa1 : : : S

a
n;�n+1
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s1 6= s2 hs1 S1 : : : Sn; s2 S
0

1 : : : S
0
n; x

0i 2 �

hs1 S1 : : : Sn; s2 S
0

1 : : : S
0
ni;�

a
! x0;�

s1 6= s2 hs1 S1 : : : Sn; s2 S
0

1 : : : S
0
n; x

00i 62 � x0 is fresh

hs1 S1 : : : Sn; s2 S
0

1 : : : S
0
ni;�

a
! x0;� [ hs1 S1 : : : Sn; s2 S

0

1 : : : S
0
n; x

0i

This technique can result in the generalized proof having duplicate hypotheses i.e. proof

variables of the same type. This is easily recti�ed by following the proof generalization

by a simpli�cation phase, in which we change the proof to use only one of the duplicate

hypotheses and then delete the others from the proof environment.

7 Deciding whether a lemma is pro�table

After we have classi�ed all atomic proofs based on their schemas and have obtained the

potential lemmas by constructing the most general occurring forms for these schemas, we

have to decide which of these lemmas we actually want to keep. This requires a cost-bene�t

analysis. The motivation behind lemma extraction is to reduce the size of the proofs because

we expect that an instantiation of a lemma will be smaller than the original atomic proof.

Thus the bene�t to be evaluated is the savings in size obtained by instantiating lemmas.

The cost of using a lemma is the space required for its de�nition. We consider two scenarios

while doing this analysis. We discuss them in the following subsections.

7.1 Global lemma extraction

If a lemma captures a certain proof pattern that occurs frequently in many proofs, it is

an indication that this lemma will be a good candidate for addition to the axiomatization

of the safety policy. We call global lemma extraction the process of obtaining lemmas that

are of this nature. We start with a representative collection of proofs and we extract the

lemmas that we consider to be general enough and add them to the safety policy. Because

we are directly adding the lemma to the code consumer's repertoire, there is only a one-time

cost attached to using global lemmas. Note that our intention is to �nd global lemmas only

once, based on our representative set of proofs. We do not intend to repeat this process

every time we encounter a new proof.

The notion of whether a lemma is general enough to be called global is often subjective.

However, devising some useful objective criteria is necessary if we want to automate this

process. Our implementation provides two \knobs" for the lemma extractor when it is

working in the global-extractor mode. The �rst puts a threshold on the minimum number

of di�erent proofs in which a schema must occur. The second setting imposes a minimum
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threshold on the savings in size expected by using a lemma instance instead of the original

atomic proof. In general the savings vary from instantiation to instantiation, depending on

how far removed in the generalization hierarchy the lemma and the original atomic proof

are. Recall that instantiating a lemma involves providing substitutions for its variables. We

adopt a simple approach to estimate the savings a lemma will provide: We assume that

these variables will be substituted by other variables, and we accordingly compute the size

of a lemma instance and what the size the proof would be if we did not use the lemma. The

latter is simply the size of the body of the lemma after ignoring the lambda abstractions at

its beginning.

Di�erent implementations of PCC will use di�erent encodings for the LF objects. We

decided to keep our notion of size implementation-independent by measuring the size in

terms of tokens. A token is either a constant or a variable, or it indicates an application

of a constructor to its arguments. By this measure, the size of an instance of the lemma

l1 shown on page 15 is 5 tokens: one to indicate an application, one for the head constant

and three for the arguments. Similarly, the size of the atomic proof, if we do not use this

lemma, will be estimated to be 13 tokens. Thus, the savings we obtain by using l1 is 8

tokens.

7.2 Local lemma extraction

Large proofs often use the same proof schema repeatedly but such schemas may not be

present in a suÆciently large number of distinct proofs to warrant the creation of a global

lemma. Also, at some point we have to �nalize our safety policy and stop adding more

global lemmas. In such situations, we can create a local lemma. We construct, for each

schema, its most general occurring form, considering all the atomic proofs in this proof only,

and decide if they are worthwhile.

The cost here is the cost of adding the lemma de�nition to the beginning of the proof.

The bene�t is the savings in size provided by using the lemma times the number of occur-

rences. The computation of the savings is the same as discussed for the global lemmas. For

lemma l1, the cost is 57 tokens, while each instantiation saves us 8 tokens. So if this lemma

occurs at least 8 times, it will be deemed pro�table.

Local lemma extraction does not require us to tweak any parameters of the lemma

extractor. If our cost-bene�t analysis indicates a saving of even 1 token, we will use the

lemma. But there is a di�erent kind of decision to be made while extracting lemmas locally.

The lemma de�nition may include only the body of the lemma, or it may include both the

type of the lemma and its body. The advantage of including the type is that the proof

checker can verify the body of the lemma just once, instead of verifying it every time it is

used. By omitting the type of l1, we save 25 tokens in its de�nition. In this case, l1 must

occur only 4 times, before we overcome the cost of using it.
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8 Variations on lemma extraction

We have seen two distinct methods of extracting lemmas. Theoretical examination of these

methods as well as experience with an implementation lead us to believe that the approach

based on proof schemas is the better one. We now describes a few variants on our two basic

techniques.

We considered two proofs to be similar if they have the same schema. This requires two

proofs to have the same proof constructors in the right locations and also they must have

hypotheses in exactly the same locations. It is possible to have two proofs, one of which uses

a hypothesis and the other uses a subproof that e�ectively proves that hypothesis \inline".

It can be useful to make an allowance for such cases and consider the proofs to be similar.

This involves some more implementation work and possibly requires a somewhat di�erent

cost-bene�t analysis. Moreover, this approach must be judiciously used, because with this

characterization of proof similarity no lemmas are really required { every atomic proof is an

instance of an axiom (corresponding to the head constant of the proof) and no compression

is obtained.

A second variation is to change our de�nition of a potential lemma. We considered

only one potential lemma for every proof schema, namely its most general occurring form.

From our discussion in Section 6, we know that the generalization level a�ects the size of

the lemma de�nition and its instantiation. Therefore, we can have situations where our

approach does not work well. Imagine we are carrying out local lemma extraction and we

encounter two proofs P1 and P2 of the same schema. Also suppose these proofs occur a

huge number of times. Our usual approach is to generalize P1 and P2 by a singe lemma. It

is conceivable in this case that the bene�t of creating two \customized" lemmas for these

proofs might overcome the cost of prepending the proof with two lemma de�nitions, instead

of just one. We believe that doing this optimally in general is prohibitively expensive. But

some some re�nement of this technique can give substantial gains in some cases.

Finally we can use type information in conjunction with the proof structure. The former

can capture cases where we have two proofs with entirely di�erent structures, but they prove

the same predicate. Although this is unlikely to happen if we are using the same theorem

prover, we can imagine situations where multiple theorem provers, with di�erent proof

strategies, cooperate to create a proof. Actually, this can also happen in a single theorem if

it uses cooperating decision procedures [16], which are chosen in a non-deterministic order

every time a new goal has to be proved.
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LOCs Inversion Lemma Extraction

Program (Java) LFi Optimization Global Local

Best Realistic w/Types w/o Types

gnu-getopt 1588 56202 38524 29336 33320 35422 29442

linpack 1050 74692 47690 35660 44784 44733 37957

jal 3812 64432 35670 23198 35670 27231 24683

nbody 3700 205842 150620 110782 133070 119019 105159

lexgen 7656 472664 314636 239018 287116 241836 222856

ocaml 9400 509712 259558 210396 253904 220779 207795

raja 8633 435930 258648 209500 246762 212643 201817

Figure 5: A list of our test cases along with the number of lines of Java source code, the

size of the LFi encodings and the size of the proofs after the inversion optimization, global

lemma extraction (with best and realistic settings) and local lemma extraction (with and

without types in the lemma de�nition). All proof sizes are in bytes.
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Figure 6: Reduction in proof size due to the inversion optimization.
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Figure 7: Reduction in proof size by global lemma extraction.
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Figure 8: Reduction in proof size by local lemma extraction.
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9 Experimental results

We experimented with a set of about 300 proofs resulting from the veri�cation of x86 binaries

for compliance with the Java type safety policy. We will focus on the results for some of

the larger proofs because our primary interest is in making very large proofs smaller, and

besides, any technique that exploits redundancy or repeated occurrences is likely to perform

better on large proofs.

Figure 5 lists our test cases and shows the proof sizes that result from the optimizations

we have described. gnu-getopt is the GNU command-line parser, linpack is a set of linear

algebra routines, jal is SGI's Java Algorithm Library, nbody is an N-body simulation

program, lexgen is a lexical-analyzer generator, ocaml is an Ocaml byte code interpreter

and raja is a ray tracing program.

The 300 proofs we analyzed contained collectively 3772 distinct proof schemas and a

total of 6.2 million atomic proofs. Thus, the number of proof schemas is about 0.06% of the

number of atomic proofs. This indicates that using proof schemas, we are able to capture

a lot of the redundancy that occurs in proofs.

Figure 6 shows the reduction in proof size due to the inversion optimization alone. On

an average, we see a 37% reduction in size. Figure 7 and Figure 8 show the performance

of our lemma extractor (the reductions shown are in addition to that obtained from the

inversion optimization). If we add a lemma for every occurring schema in our test cases to

the code consumer's knowledge base, irrespective of how many di�erent times it occurs or

how much savings it give us in proof size, we obtain the compression indicated by \Global

(Best)" in Figure 7. On an average, we get proofs that are 15% smaller. This approach is

not practical because it would mean adding 3772 new constants to the LF signature that

originally contained only 150 proof rules. Therefore we decided to explore the result of using

the global lemma extractor in a more realistic setting. By requiring that a schema must

occur in 15 di�erent proofs (or 0.5% of the total number of test proofs) and the minimum

expected savings per instantiation must be at least 50 tokens, we obtain 95 lemmas. With

these settings, the performance of the global lemma extractor falls drastically; we obtain

only 3.6% reduction in size on average. This is indicated by \Global (Realistic)" in Figure 7.

Finally, we measured the performance of local lemma extraction. In this case, we do not

add the lemmas to the code consumer's list, but instead prepend the lemma de�nition to

the proof itself. If we include the types of the lemmas, we obtain a size reduction of 9.2%

as indicated by \Local (w/Types)" in Figure 8, and if we decide to omit it, we can go up to

15.4%, shown by \Local (w/o Types)". In this latter case, we will not obtain any savings

in proof checking time that is possible by using lemmas.

There appears to be some anomaly in our results. We would have expected that global

lemma extraction with the best settings would give us optimal results since it replaces every
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atomic proof by a lemma instance, but local lemma extraction, which usually does not add

a lemma for every schema and has the overhead of prepending the lemma de�nition, does

slightly better. We investigated the reason for this and we found that it was because of the

interaction between our lemma writer and the LFi representation algorithm [14]. In order

to obtain the best results from LFi, the arguments to the lemma constructors must be in a

particular order. Our implementation currently does not take this in account. The result is

that a large number of lemmas that were created by the global lemma extraction actually

caused expansion of the proof after after being subjected to the LFi representation process.

10 Related work

The problem of simplifying proofs has been addressed in the literature. Before the advent of

Proof-Carrying Code, these e�orts were motivated by the desire to present a more pleasing

user interface to theorem provers and proof assistants. Interactive theorem proving becomes

much easier when the user can focus on the key elements in a proof. Accordingly, systems

like LEGO [18] and Coq [3] use techniques to reconstruct some parts of proofs.

As a proof representation language, LF has several merits, but a drawback of using LF

is that the proofs are extremely verbose. The reason for this is that the proof must be

validated by a simple type checking process. By using various reconstruction algorithms, it

is possible to drastically reduce the size of proofs in LF. An implicit variant of LF, called

LFi is described in [14] that is able to achieve a reduction in proof size of more than 2

orders of magnitude. For example, all the LF terms that should appear in the placeholders

marked by \ " in Figure 4 can be omitted, as can some terms in the proof (safeRead : : : ).

The programming language Elf [17] incorporates a reconstruction algorithm that is based

on constraint solving. Although more powerful than LFi, the extra power is usually not

useful in practice because Elf will permit any number of terms to be omitted, but will later

declare a failure if it is unable to reconstruct the terms.

A lot of work has been done in the �eld of data compression and it has some relevance to

the ideas presented in this thesis. While our goals are similar, the approaches are di�erent.

Data compression techniques like Hu�man coding [5] and Lempel-Ziv compression [25]

work in a purely syntactic fashion, irrespective of the nature of the data they are trying

to compress. Secondly, the compressed data is not directly useful; a decompression phase

must be applied to get the data in the original form before it can be used. Thus, these

methods are useful for archival and transmission purposes only. Researchers have looked

at extensions to Lempel-Ziv style compression that take into account some of the structure

present in the input data, but the limitations that we just mentioned remain. This thesis

advocates compression at a semantic level with the advantage that the \compressed" proof

is directly usable. Admittedly however, our optimizations perform poorly compared to
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Lempel-Ziv-based techniques. For example, gzip, a widely use compression program, is

able to achieve a 12x reduction in size when applied to our test cases. However, we should

note that the techniques we have described in this thesis can be used in conjunction with

standard data compression packages.

Finally, a powerful extension to our inversion optimization is described in [15]. Recall

that we removed some portions of a proof and required the proof checker to handle the

corresponding parts of the predicate internally. We were able to do this because there was

just one way to proceed in such cases. [15] generalizes this by requiring the proof to be in

the form of an oracle, or hints to the proof checker on how to proceed at every stage. In

those cases where there is exactly one way to proceed, no hints are required. This oracle-

based checking is able to reduce proof sizes by 30 times. While it is appropriate for storage,

transmission and veri�cation of proofs, lemma extraction can still be potentially useful

in situations where a textual representation of a proof must be maintained. Moreover, we

believe that it is possible to use lemma extraction in conjunction with oracle-based checking.

How to construct a system that uses both these techniques e�ectively is an open question.

11 Conclusions and future work

We have presented two techniques for the optimization of proofs in �rst-order logic. While

we believe that these techniques are applicable in a wide variety of situations, our focus is

on optimizing proofs that arise in the context of Proof-Carrying Code (PCC). Since PCC

uses the Edinburgh Logical Framework (LF) for proof representation, our discussion also

has been entirely in terms of LF.

Our �rst optimization is to bring the proof checker one step closer to becoming a theorem

prover by imparting it the knowledge of the logical symbols of �rst-order logic, namely

\^",\)" and \8". This allows us to discard those portions of the proof that deal with

these symbols, resulting in proofs that are 37% smaller than before.

The primary contribution of this thesis is a detailed description of a method to automat-

ically extract lemmas from proofs. This idea came from the realization that mechanically

generated proofs of mechanically generated predicates have many occurrences of similar

subproofs. By replacing such subproofs by instances of a lemma, we reduce the size of the

proofs, because the lemma instances are often smaller than the original proofs.

The key concepts in our description of lemma extraction are that of proof schema and

its schematic form. All the proofs that use the same proof rules in the same order share

a common schema. Moreover, they are instances of the corresponding schematic form.

Given two such proofs, we showed how to generalize them using anti-uni�cation. Thus, we

regard two proofs to be similar if they have the same schema and we consider the most

general instance of the schematic form that we encounter to be a potential lemma. This
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simpli�cation does not give optimal results, but it makes the lemma extraction problem

more tractable.

Finally, to decide which of our potential lemmas are worthwhile, we showed a simple

cost-bene�t analysis that we do in our implementation.

A strength of our approach is that it is applicable to any �rst-order LF-based proof.

Moreover the proof can be in \pure" LF or in one of the variants (LFi) described in [14].

Secondly, we require minimal changes to the server side of the PCC system. Lemmas can

be represented as LF terms and can be handled in the usual way by an LF proof checker.

Making the proof checker cognizant of the logical symbols requires some simple changes to

the proofs checker; however, our lemma extraction phase does not depend upon that { the

two techniques are completely orthogonal. Finally, we should note that our methods can

be used in conjunction with popular o�-the-shelf data compression utilities like gzip.

Although the original motivation for this work was to reduce the size of the proofs, we

realized that this tool can be useful to a person designing the safety policy of a server in

the form of axioms or proof rules that a client is allowed to use. Now the designer can start

with some very primitive rules and use an automatic tool to discover frequently occurring

patterns that can be added to the safety policy as needed. In a similar vein, this tool can be

used to improve the user interface of interactive theorem provers by abstracting a sequence

of proof rules that together form a meaningful unit into a lemma.

Using lemma extraction we were able to obtain a further reduction of 15% in the size of

the proofs. This is actually less than what we had hoped. One reason is that the compiler

and theorem prover we are using have become better as they evolved over a considerable

period of time, thus reducing the opportunities available for lemma extraction created by

redundancies in the proof. On earlier versions of the proofs, we had observed reductions in

size in the range of 20%{40%. Secondly, our implementation does not take full advantage

of the LFi representation algorithm [14]. By more careful ordering of the terms in a lemma

instantiation, we could increase the e�ectiveness of the LFi representation algorithm and

further reduce the proof size.

A second possible direction of research would be to investigate whether our methods

can be extended to the higher-order case. Since uni�cation and anti-uni�cation play a

key role here, a formidable diÆculty in the higher-order case is that these operations are

undecidable. It might be possible to restrict our attention to those higher-order cases for

which these operations are tractable.

Finally, it would be interesting to explore whether lemma extraction can be used in

conjunction with the oracle-based checking described in [15], and thereby combine two

powerful semantic-level approaches to proof optimization.
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