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Abstract

Furies1 provides a control framework for scalable, eÆcient admission control and traÆc
policing. Furies leverages the knowledge of traÆc demand distributions between ingress-egress
pairs and the network topology within an ISP in making admission control decisions. We propose
to aggregate admitted ows for policing at edge routers instead of monitoring individual ows.
Furies achieves this by assigning a unique ow-identi�er to every admitted ow based on its
ingress and egress point. As a result, the amount of states maintained by the edge routers can
be reduced from O(n) to O(

p
n), where n is the number of admitted ows, while core routers

are stateless. Simulation results show that we can successfully detect a majority (64-83%) of
the malicious ows with virtually zero false-alarms without maintaining per-ow state at the
edge. Our implementation demonstrates that Furies adds minimal processing overhead to edge
routers and can be incrementally deployed.

1 Introduction

There has been considerable research focused on extending the Internet architecture to provide
better quality of service (QoS) for non-traditional Internet traÆc such as real-time ows. Integrated
Services (Int-Serv) with RSVP signaling [1] introduces end-to-end ow reservations, which requires
core routers to maintain individual ow states and therefore does not scale well. Di�erentiated
Services (Di�-Serv) [2], on the other hand, relies on packet marking and policing at the access or
edge routers and di�erent per-hop behaviors (PHB) at core routers to provide service di�erentiation.
The packet forwarding mechanisms (e.g., scheduling, shaping, queue management, etc.) in Di�-
Serv have been well-studied, but a fundamental understanding of the control framework is still
lagging. Recent proposals use agents, known as bandwidth brokers (BB) [3, 4] to negotiate resource
reservations between neighboring domains. However, it remains unclear how a BB interacts with
the rest of Di�-Serv mechanisms, such as con�guring the traÆc policers or schedulers.

A control architecture for provisioning network resources [5] is an essential component for building
a better service model for IP-based latency sensitive applications. Any such architecture must
have two distinct components: admission control and policing. Admission control is necessary
for limiting the usage of resources by competing ows, while policing is useful for detecting and
penalizing malicious ows. TraÆc policing in the Di�-Serv literature usually refers to parameter-
based packet �lter mechanisms, which are useful in tracking and shaping per-ow usage. In this
paper, policing refers to monitoring an aggregate group of admitted ows and identifying malicious
ows within this aggregate. We use the words \malicious" and \misbehaving" interchangeably to
describe admitted ows that violate their allocated share of bandwidth.

Designing such an architecture faces numerous challenges. The most important one is to achieve
compatibility with the existing Internet architecture. By compatibility, we mean that the proposed
policies should be incrementally deployable and be able to reuse rather than replace the primitives
supported by the existing network. Another important requirement is scalability. The overhead
imposed by implementing the policies, such as amount of state maintained and processing time,
should be minimized as the number of ows grows. To the best of our knowledge, scalable ma-
licious ow detection has not been studied in the research literature. There is also a lack of an

1Furies is the name of the Roman goddess responsible for tormenting evildoers.
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understanding how scalability, performance and deployment issues a�ect the design choices of such
a control architecture. We attempt to bridge this gap in this paper.

This paper proposes Furies, a new framework for scalable traÆc policing and admission control in
the Internet. Recent BB proposals [4, 6] have suggested di�erent policies to manage a domain's
internal resources and allocate inter-domain resource agreements. Our work expands on these
e�orts and seeks insights on how to implement and integrate the required control mechanisms over
the current Internet in an eÆcient and scalable way. Speci�cally, we present

� An admission control policy based on dynamic estimation of aggregate traÆc demand between
every pair of access routers in a network domain (typically a complete or subset of an ISP's
network). Access routers (ARs) are ingress/egress points where traÆc enters/exits a domain.

� A methodology for policing admitted ows and detecting malicious activity while maintaining
a very small amount of state information at the access routers.

Furies uses the \core-stateless" principles [7], i.e., no state information is maintained in the core,
and requires only simple priority scheduling in the core routers. Our architecture builds on many
of the existing Di�-Serv primitives, like packet marking and leaky-bucket policing. The admission
control and traÆc policing mechanisms of Furies require passive monitoring of aggregate ows at
the ARs.

This paper shows the scalability and the practicality of Furies through simulations, lab prototyping
and implementation. In Section 2, we introduce the Furies architecture, and discuss how we arrive
at several design choices based on our understanding of current Internet infrastructure. The key
insight behind Furies is a coordinated way of assigning a ow-identi�er, Fid, to every admitted ow,
which allows aggregation of ows for traÆc policing without compromising the ability to uniquely
identify a ow if it is malicious. Each Fid has two sub�elds: FidIn and FidEg. At ingress routers,
admitted ows are aggregated based on their FidIn for group policing. Similarly, egress routers
police ows with the same FidEg as an aggregate. The fact that each access router maintains only
the aggregate state for each group, identi�ed by Fid sub�elds, is crucial for the reduction of state
from O(n) to O(

p
n), where n is the number of admitted ows. The details of the algorithms of

Furies are described in Section 3.

Furies does not strive to provide hard end-to-end guarantees but a relaxed nature of statistical
QoS, as provided by soft real-time services. The simulations discussed in Section 5 are designed to
evaluate the robustness and worst-case performance of our algorithms. We show that Furies can
detect a majority of malicious ows with virtually zero false-alarms for a variety of source models.
Section 6 provides a brief description of our implementation of Furies based on Click Router [8],
and demonstrates that the overhead of deploying Furies at an access router is insigni�cant. If
adopted, the Furies architecture could enable a dramatic shift in the paradigm of implementing
real-time service models in the Internet. Deployment and remaining open issues are addressed in
Section 7. We discuss the related work in Section 8, and present our conclusions in Section 9.
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2 Design Rationale

In this section, we describe some basic properties of current Internet network topology and economic
models based on our discussion with two major ISPs, and discuss how these considerations a�ect
our design rationale.

A classic 1st-tier ISP backbone2 generally consists of high-speed backbone links (0.6-10 Gbps) and
low-bandwidth edge links (45-155 Mbps). Major ISPs in the United States typically have 15-25
Point-of-Presence (POPs) located in every big city in the country. The fan-out structure of POPs
varies from city to city. For example, the number of access routers (ARs) connected to the core
routers (CRs) inside a POP, usually in the range of 10-20 [9], depends on the number of customers
in that region of the country. Di�erent types of downstream \customers" are connected to the ISP
at the ARs through the edge links. As mentioned in [10], the core backbone connects to neighboring
private peers, public exchange points or transit providers via separate peering links. The access
links, however, connect to corporate customers, university campuses, or web-hosting complexes,
and 30-50 of such access links can be terminated at the same AR. Past studies have indicated that
it is at these interconnection points, where large amounts of traÆc converge and the backbone pipes
meet the narrow access links, that congestion occurs, often resulting in packet loss and unreliable
QoS.

Furies is designed to improve end-to-end performance by rationing the number of high priority
ows admitted by the edge router based on continuous network measurements and estimated upper-
bound traÆc matrix. In our architecture, we treat the traÆc demand coming from a private peer or
transit provider di�erently from the high priority ows generated by end-hosts, because the resource
allocation for both cases happen in vastly di�erent time-scales and granularity. In the former, the
traÆc is usually subjected to peering agreements or Service-Level-Agreements (SLAs) [11] that
reect aggregate traÆc performance (e.g., maximum round-trip delay). SLA renegotiation and
the corresponding resource allocation decisions take place over longer time-scale, e.g., weeks or
months. In the latter, the reservation requests from individual ows usually need fast admission
control decisions, e.g., within ms, and the aggregate traÆc demand uctuate in a smaller time-scale,
e.g., hours. We focus on the latter case in this paper. Although Furies also provides mechanisms
for modeling, implementing and policing SLA traÆc, a detailed description of them is out of the
scope of this paper.

2.1 Features of Furies

The following characteristics are responsible for the scalability and robustness of our architecture.

2.1.1 TraÆc Matrix Based Admission Control

In this paper, we argue that there is a need for a traÆc matrix based admission control mechanism in
the current Internet. A traÆc matrix provides an abstraction of the traÆc demand and the topology
within an ISP. Furies uses an upper-bound traÆc matrix (refer to Section 3.1) as a threshold to

2For proprietary reasons, we do not have access to the exact backbone topology. Example ISP network maps are

available from http://www.vbns.net/ and http://www.cybergeography.org/atlas.
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perform admission control at the edge router without relying on an end-to-end signaling protocol
such as RSVP. The upper-bound traÆc matrix is topology sensitive and is derived based on passive
measurements of the ingress-egress traÆc demand within a domain. The available bandwidth
on each link is split amongst the ingress-egress pairs in proportion to their estimated demands.
This approach allows the admission control process to take into account the dynamic uctuations
of traÆc demands, leading to more eÆcient resource provisioning. Such a traÆc matrix based
approach can also leverage intelligent traÆc engineering mechanisms across di�erent paths within
the network.

2.1.2 Flows, Flow-Identi�ers and Policing

In our framework, a ow refers to a high-priority stream between a speci�c source and a destination
end-host that requests a particular amount of bandwidth. In order to pinpoint a misbehaving ow,
Furies assigns each admitted ow a unique 32-bit ow-identi�er, Fid, which is inserted in the
packet header. This Fid is explicitly assigned by Furies and is not assumed as a random number
by the ow. Every Fid consists of two 16-bit sub-�elds: FidIn and FidEg. All ows that enter
or exit at an AR are aggregated into di�erent groups based on their Fids. Each of these groups
is identi�ed with a unique group-identi�er. The FidIn and FidEg sub�elds of a ow refer to the
group identi�ers used by its ingress and egress ARs, respectively.

Furies aggregates all ows that share the same sub�eld FidIn (or FidEg) and polices them as a
group at each ingress (or egress) AR. Every ow is policed at both its ingress and egress ARs in two
distinct groups, thereby increasing the chances of detecting malicious ows. Every AR maintains
only the aggregate state for each group and hence does not store any per-ow state.

2.1.3 Explicitly Assigned vs User-Selected Fids

In our approach, we attempt to maximize the level of ow aggregation without compromising the
uniqueness of Fids, thereby minimizing the number of groups to be policed at every AR. An explicit
assignment of Fids can achieve this since it can keep track of the availability of individual Fids
and allocate unused ones to new ow requests. For example, if there are n ows from an ingress
to a speci�c egress router, an explicit assignment can preserve uniqueness by maintaining onlyp
n groups at each of the two routers. It also allows aggregating ows with similar bandwidth

requirements into a common group for policing.

On the other hand, if ows were allowed to assume their own Fids, then it would be necessary
to maintain per-ow state information at the edge routers for traÆc policing. Any scheme that
attempts to group ows with random identi�ers into common groups without maintaining per-
ow state information must build a group membership function on the random Fids. The cost of
performing an online grouping of ows based on these functions would be very high because the
Fids are continuously changing. Techniques like Stochastic Fair Blue (SFB) [12] that use random
hash functions cannot be applied because they do not provide an inverse mapping from group
identi�ers to actual Fids. Thus, using SFB alone does not provide a direct mechanism to verify
whether a suspected ow is truly misbehaving without knowing its actual Fid.

In other words, if a ow is detected as possibly misbehaving, we do not have a direct mechanism
for verifying that without knowing its actual Fid.
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Figure 1: Components of Furies.

2.2 Components of Furies

One of the design requirements of Furies is to extend rather than replace the existing network
architecture to support incremental deployment. Furies adds functionality to access routers and
monitoring components of a POP in order to implement its policies. Furies has three components:
a Resource Manager (RM), TraÆc Monitors (TMs) and TraÆc Policers (TPs). The RM, the
most crucial component, interacts with the ARs continuously to admit new ows and identify
misbehaving ows. Fig. 1(a) illustrates the approximate placements of these components in two
POPs of an example ISP network. The arrows labeled M1, M2 and M3 show the REQUEST,
ACCEPT and CONFIGURE control messages between the RM, ARs and customer routers in the
host networks. Fig. 1(b) shows the various modules of the Resource Manager (RM) and the logical
ow of the control messages.

The Resource Manager is a logical unit within a network (ISP) that can be physically placed at
the fault monitoring point or policy server in an ISP. In practice, it could be implemented as a
distributed architecture across POPs. The RM maintains the repository of assigned Fids and their
allocated bandwidths in the Fid-Repository (FR). It also keeps track of the traÆc demands between
every pair of ingress-egress ARs and estimates the upper-bound traÆc matrix for admission control.
When a new REQUEST message arrives (M1 in Fig. 1a), the RM performs admission control and
assigns an Fid if admitted. Upon successful admission, the RM then sends an ACCEPT message
(M2) along with the Fid back to the host. Otherwise, the RM sends a REJECT message. It also
updates the traÆc policers at the ingress and egress ARs when a new ow is admitted using the
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CONFIGURE message (M3 in Fig. 1a).

A TraÆc Monitor (TM) at each ingress AR passively measures the rate of admitted traÆc between
itself and every other egress AR. It updates the RM periodically, and these updates are used by
RM to estimate the load on each link. A TraÆc Policer (TP) is introduced at each ingress and
egress AR to police groups of ows identi�ed by sub�elds of their Fids (Section 3.2.1) and identify
the group that violates the aggregate allocated bandwidth. The TP micro-monitors the ows in a
misbehaving group and reports potential malicious ows (ows with high usage) to the RM.

2.3 Assumptions

We make the following assumptions in our design:

1. We focus on access routers, but not hosts, as endpoints. We assume all-pair shortest paths
between a speci�c ingress and egress router can be determined by the underlying intra-domain
routing and BGP route-selection process, after tie-breaking. We do not modify any routing
decisions.

2. Non-conformant packets that violate traÆc pro�les can either be dropped or re-marked to
lower priority levels at the TPs. Our architecture can support both cases equally well, but
for simplicity, we chose packet dropping as the default choice.

3. We assume we can insert a 32-bit Fid in the packet header. In practice, this is done by the
customer router.

4. Furies requires explicit REQUEST and TEARDOWN messages for admitting and releasing
every ow. The messages can be generated by either the customer router or a proxy and sent
as UDP packets at the same level of priority (high) as the data packets.

3 Detail Descriptions of Furies

In this section, we provide a detailed description of our algorithms for admission control and
malicious ow detection.

3.1 TraÆc Matrix Based Admission Control (TMAC)

Since the admission-controlled traÆc must coexist with current best-e�ort traÆc, we follow the
same set of principles outlined in [14]. First, we need to strictly limit bandwidth allocated to the
admission-controlled traÆc so that it never borrows bandwidth from the best-e�ort class. Secondly,
best-e�ort traÆc must not pre-empt admission-controlled traÆc, and hence the latter should be
served in a higher priority class. In Furies, the maximum bandwidth usage along a link by high-
priority traÆc is bounded by a small fraction, denoted as �T, of its total capacity. This ensures
that the edge-to-edge queuing delay within a domain is statistically bounded.

For ease of discussion, we de�ne the following terms:
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� IE-Pipe(s, d) refers to all high-priority traÆc entering the ISP at ingress AR-s, and exiting
at egress AR-d.

� TraÆc Matrix, D, captures the distribution of traÆc demand within an ISP. Given an ISP
network with K access routers, D is an K �K matrix, where each entry D(s; d) represents
the total bandwidth requirement of high priority ows from ingress AR s to egress AR d.

� Upper-bound Matrix, U , is computed by splitting the bandwidth of the bottleneck links
from AR-s to AR-d between all the competing IE-Pipes(s; d) in proportion to their estimated
traÆc demands D(s; d) (Section 3.1.2). U(s; d) is used as a threshold for admission control.

When a new ow arrives at AR-s, the AR-s forwards the REQUEST message to the RM. The
REQUEST message indicates the average rate r and burst parameter b required by the ow. The
peak rate, rpeak, is computed as r+

b
Æ
where Æ is the samping period (0.5 s in this paper). The input

link and destination IP address of the REQUEST message are used to identify the end-points of
demands, i.e., ingress AR-s and egress AR-d. This process requires information about destination
pre�xes associated with each egress link. We follow the same methodology outlined in [10], and keep
a table of destination pre�xes and the corresponding egress routers in the RM. Each dest-prefix

consists of an aggregated network address advertised by the egress router and a mask length. The
dest-prefix allows a set of destination IP addresses to be mapped to a speci�c egress router d.
In practice, these dest-prefix's can be determined from the forwarding tables of routers that
terminate egress links. We assume RM can obtain this information from the underlying routing
protocol.

Upon receiving a new REQUEST message for a ow with peak rate rpeak between ingress AR-s
and egress AR-d, the RM checks the following condition:

M(s; d) + rpeak < (1 + �) � U(s; d) (1)

where M(s; d) is the estimated rate of admitted traÆc between AR-s and AR-d, U(s; d) is the
admission threshold, and 0 � � � 1 is the hysteresis parameter. The new ow is admitted if the
condition in (1) is not violated. Otherwise the ow is rejected. Setting � > 0 exploits statistical
multiplexing of multiple ows and increases utilization level, but � must be small enough to avoid
oversubscription of resources and its corresponding adverse impact on the end-to-end performance.
We found that � 2 [0:10:2] is a reasonable range. We describe how D, M and U matrices are
estimated in the next two subsections.

3.1.1 Estimating TraÆc Matrix and Usage Matrix

The RM estimates the traÆc demand, D(s; d) as simply the sum of the peak rate requested by
individual ows (including both admitted and rejected requests):

D(s; d) =
X

ffg

rpeak(f) (2)

where ffg is the set of ows that enter the network at ingress AR-s and exits at egress AR-d.

We use a time-window estimator as described in [15] at each ingress AR-s to estimate the usage
vector M(s; :), where each entryM(s; d) represents the rate of admitted traÆc to each egress AR-d.
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The measurement window �T is a multiple of �S, and at the end of every �T, M(s; d) is set to the
highest average load computed for any �S in the previous window. All ingress AR-s send regular
updates of their M(s; :) vectors to the RM, which maintains the complete matrix M .

3.1.2 Computing Upper-bound TraÆc Matrix

We assume that shortest paths for all ingress-egress pairs can be determined from the underlying
routing protocol. Let Pij be the set of links that form the shortest path from ingress router i to
egress router j:

Pij = fl1; l2; : : : ; lhg
where h is the number of hops from i to j.

For each link with capacity Cl, we limit the share of bandwidth allocated to high priority traÆc as
�T � Cl where 0 < �T < 1. This available bandwidth should be split among di�erent IE-Pipes that
share the same link in proportion to the corresponding D(s; d). For a particular IE-Pipe(s; d), the
allocated bandwidth on link l is:

Ul(s; d) =
Dl(s; d)P

i;j s:t: l2Pij ; i6=j Dl(i; j)
� �T � Cl (3)

The admission threshold for IE-Pipe(s; d) can be determined as:

U(s; d) = min
l2Psd

Ul(s; d); 8s; d; s 6= d: (4)

We compute the entries, U(s; d), from Eqs. (3) and (4) when s 6= d and set U(s; d) = 0 when
s = d. Since traÆc demands for operational IP networks exhibit di�erent time-of-day patterns
(as reported in [10]), we need to update U often enough to reect the dynamic uctuations. The
update interval is denoted as tu, which is a parameter that we vary in our experiments.

Robustness to non-stationarity in the demand can be achieved by choosing the update interval,
tu, to be smaller than the time-scale at which D(s; d) uctuates. The authors in [10] observed a
small number of \heavy-hitters" (i.e. large traÆc demands) that exhibit certain amount of stability
across time (di�erent days, di�erent weeks). Setting tu in the order of minutes should be suÆcient.

3.2 TraÆc Policing

The policing mechanism of Furies is mainly designed for detecting a small number of malicious
ows among a large group of ows. Furies aggregates admitted ows into di�erent groups at every
AR and every ow is policed in distinct groups at both its ingress and egress ARs. When an
AR detects an aggregate group of ows as misbehaving, it micro-monitors this group to identify
possible individual ows that may be misbehaving. Normally the candidate ows in this group are
the ones that transmit at a very high rate.
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3.2.1 Flow-Identi�er Assignment and Releasing

Furies assigns each access router i a set ofM unique group identi�ers, denoted asAi = fxi1; xi2; : : : ; xiMg,
where each member is an 16-bit binary number and is unique across the set Ai. The sets Ai and
Aj associated with any two ARs i and j are mutually disjoint.

As mentioned earlier, every ow is associated with an Fid which has two �elds: FidIn and FidEg.
Any Fid of an admitted ow should satisfy the following properties:

1. If the ow is routed from AR-s to AR-d, then FidIn 2 As, and FidEg 2 Ad.

2. No other ow should have the same Fid.

When a new ow from AR-s to AR-d is admitted, the RM picks a random xsk from As and a
random xdl from Ad such that the Fid with FidIn = xsk and FidEg = xdl is not used by any
other ow. This Fid is assigned to the ow, and a new entry with this Fid and its allocated
bandwidth is added to the Fid-Repository (FR). The total number of ows that can be uniquely
identi�ed in this scheme is K �M2 for a particular ingress router, where K is the total number of
potential egress routers, each has its own unique set of identi�ers.

As a reality check, we consulted two major ISPs to get an idea of the typical number of ows on an
ingress link: roughly 300-5000. Based on the discussion in Section 2, K, which is roughly (number
of POPs � number of access routers/pop), is in the order of 150-500. We need a maximum of
M =

p
5000, which is roughly 71 unique identi�ers per A set. Since the total number of unique

identi�ers required for the whole ISP is M �K, allocating 16-bits for each sub�eld should be more
than suÆcient for producing mutually disjoint Ai for all AR-i.

We assume the admitted ow will send a TEARDOWN message to the ingress router when it
terminates. The TEARDOWN message contains the Fid, and its allocated peak rate rpeak. When
RM receives the TEARDOWN message, it updates the FR accordingly and releases the Fid. Furies
does not explicitly update the estimated load M(s; d) but relies on the time-window estimator to
detect the departure of the ow.

3.2.2 Malicious Flow Detection (MFD)

Furies deploys a set of token bucket traÆc policers [15] at each ingress and egress AR to police
packets from the admitted ows with the matching FidIn or FidEg group identi�ers. Every group
identi�er, x 2 Ai, is associated with a token bucket with two parameters, rtot and btot, where
rtot is the total average rate of admitted ows and btot is the total burst size. When a new ow
between AR-s and AR-d is admitted, the RM sends a CONFIGURE message that speci�es the
FidIn and FidEg of the admitted ow to the ingress AR-s and egress AR-d, respectively, along
with its average rate r and burst-size b. TPs and TPd will then update the the token bucket with
the matching FidIn and FidEg accordingly. The packets that violate the associated traÆc pro�le
are considered non-conformant and discarded. Each TP keeps a counter for the non-conformant
packets and reports the statistics to RM.

As an example, let a ow with Fid = [f; g] be malicious. All ows with the same FidIn = f will
be policed as an aggregate in the same token bucket at the ingress point, TPs, regardless of what
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their FidEg is. If a group token bucket with FidIn = f is violated, the a�ected TP reports f to
the RM using an ALARM message (Fig. 1b). However, this information alone is insuÆcient for
pinpointing the exact misbehaving ow, because there can be as many as M ows with the same
FidIn, and any of these could potentially contribute to the violation of the total allocated rate. If
the TP at an egress router FidEg = g also sends an ALARM message, the RM can infer that a
ow with Fid that contains both f and g as its sub�eld is malicious. However, this may not always
happen. To improve the e�ectiveness of MFD, Furies requires the TPs to perform \micro-policing"
for a duration of tmp whenever a group token bucket is violated. During this period, we sample the
peak rate of each ow and identify the top nmp potentially malicious ows. For each of these ows,
we report its Fid (from the packet header) and its sampled peak rate to the RM. We consider nmp

= 5 in this paper.

For each reported ow with Fid = b, the RM compares the allocated rate, Rb with the measured
peak rate rb reported in the ALARM message:

rb < (1 + �) �Rb (5)

where � is a hysteresis parameter to absorb transient behavior of bursty traÆc. If the condition in
(5) is violated, the ow is considered misbehaving. � is typically between 0 and 0.05. A counter
associated with this ow is incremented for every such violation of condition (5). To reduce the
probability of false alarm, we introduce a second hysteresis parameter, �, which determines the
minimum number of violations before a ow is reported as misbehaving. A reasonable range for �
is between one and �ve.

Several actions could possibly be taken against the misbehaving ow, e.g., dropping all the future
packets of this ow, demoting all its packets to best-e�ort, or charging more for the connection.
However, the study of these penalty actions is out of scope of this paper. Our goal is to provide
insight into the scalability and robustness issues of the MFD-scheme itself.

Since the policing at TP is performed on a group of ows sharing the same 16-bit sub�eld of Fid,
the amount of state information maintained at the ingress router is proportional to M , i.e., the
number of unique identi�ers in the set, A. In practice, the maximum value of M is 71, which is
signi�cantly smaller than typical number of active ows at the AR, which is roughly 5000.

3.2.3 Hiding in the Aggregate

Although group policing allows the Furies architecture to scale, it limits the e�ectiveness of MFD
to detect a misbehaving ow that \hides" in the aggregate. There are two speci�c cases where a
malicious ow can hide in the aggregate:

1. The total usage of the group is less than the tolerated usage because either certain ows are
under-utilizing their resources or the percentage of over-utilization is less than the threshold
�.

2. The malicious ow is a relatively small ow in a misbehaving group and is not reported since
there are many other larger ows in the group.
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To address this problem, Furies introduces redundancy by deploying TP at each egress router that
terminate a set of egress links. By assigning a unique Fid to every ow, we ensure that no two
ows are in the same group in both the ingress and the egress routers. Essentially every ow is
policed in the aggregate at two distinct points to maximize the number of malicious ows that are
detected.

3.2.4 Other Issues

Bogus Identi�ers

It is possible for an external malicious user/application to create its own Fid which is valid but
has not been explicitly assigned by the RM. We refer to such identi�ers as bogus ow identi�ers.
This problem can be easily solved by using a secure hash function with a secret key within an
ISP. Assume that the RM and the ARs share a secret key, K, for a hash function h(). Given a
Fid = f ,the actual Fid in the packet of the ow is set to hK(f) and the edge routers needs to
perform an inverse hashing of the Fid for every packet before performing the policing operations.

Routing Changes

When a routing change occurs, the previous Fid will not match with the group identi�ers in at least
one of its new ARs. Whenever the sub�eld of the Fid of a ow does not match any of the group
identi�ers at an AR, we can either (1) remark the packets of this ow as best-e�ort, or (2) contact
the RM for re-admission of this ow with the new endpoints. Further investigation is needed to
understand the the performance and security issues of both approaches.

4 Simulation Framework

The aim of the simulation study is to evaluate the performance and robustness of Furies design. We
use the ns-network simulator to implement the basic mechanisms of Furies. The TP3 is implemented
as a connector in front of a node, and a time-window estimator is introduced at each input link to
estimate the rate of existing ows. The admission control module is created as an NsObject and
inserted before the ingress router. The various tasks of the RM in Furies are implemented at the
Tcl-level. Our Furies-patch works for ns-2.1b6.

4.1 Network Topology

Since it is infeasible to run large-scale Internet simulations over actual networks, we simulate a
simple subgraph of the backbone topology shown in Fig. 2 that consists of 6 POPs. For simplicity,
we analyze only one access router per POP. AR0-AR2 are ingress routers where traÆc enters the
backbone, while AR3-AR5 are egress routers where traÆc leaves the backbone to other POPs.
TraÆc demand originating from AR-s to AR-d is denoted as D(s; d). The bandwidth of the
bottleneck link in our simulations is 10 Mbps. The target utilization level �T for high priority
traÆc is 0.3.

3We modify the Di�Serv module contributed by Sean Murphy, http://www.teltec.dcu.ie/~murphys/ns-work/

diffserv/index.html.
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Figure 2: Simulation Topology

Each router uses a simple priority scheduler, and the control messages are sent at the same priority
as the data. There is enough bu�ering for 200 packets at each queue.

4.2 TraÆc Generation

For proprietary reasons, we are unable to access the real traÆc measurements from Internet back-
bone networks. We derive traÆc models based on published results and discussions with researchers
who have studied data sets collected by ISPs themselves.

In our simulations, we model the admission-controlled traÆc as a Poisson arrival process. The
arrival rate from a host network to an ingress router is denoted as �i(t). We use the indices t to
indicate the time-of-day dependence of the traÆc demand as reported in [10] and [16], but do not
attempt to di�erentiate the e�ect from di�erent user groups (e.g., domestic consumer vs. domestic
business, etc.). Data sets from the Sprint IP backbone monitoring project [16] indicate that the
bandwidth consumption peaks between 10 a.m. and 2 p.m. during the day and shows a dip from
midnight to 3-4 a.m.

To reect the realistic traÆc demand, we introduce � 10-15% changes to �i(t) at a regular interval,
T�. The traÆc distributions from an ingress node s to a set of egress nodes are based on a
probabilistic model where the probability associated with each egress node is proportional to the
populations in the city where the egress POP is located.

We use four kinds of traÆc source models in our experiments:

1. We use EXP1 to model a typical Voice-over-IP source. EXP1 has exponential on and o�
times with an average of 1.004 s and 1.587 s, respectively. This corresponds to a 38.53%
talk-spurt cycle, as recommended by ITU-T speci�cation for conversational speech [17]. The
peak transmission rate is 64 kbps, and the average is 24.8 kbps.

2. EXP2 also has exponential on and o� times, but with an average of 100 ms and 900 ms,
respectively. The peak rate is increased to 248 kbps while keeping the average rate the same
as EXP1, leading to a burstier source.

3. CBR is a constant bit rate source of 64kbps.
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4. PARETO source has pareto on and o� times but the average rate is the same as EXP1.

EXP1, EXP2 and CBR have exponential lifetimes with an average of 300s. The ow lifetimes of
PARETO sources follow a log-normal distribution with average of 300 s. The aggregation of pareto
sources is known to exhibit long range dependencies [18, 19]. For all four cases, packets are 320
bytes in length.

5 Performance Evaluation

In this section, we evaluate how well the admission control and traÆc policing schemes in Furies
perform with respect to the following goals:

� achieving high network utilization while maintaining low packet loss, and

� maximizing successful detection of misbehaving ows with as few false alarms as possible.

All simulations were repeated using di�erent seeds to the random number generator. The averages
across all repetitions are reported in our results. In all our experiments, we use homogeneous ows
unless speci�ed otherwise.

5.1 Basic Scenarios

Our �rst set of experiments simulate a basic scenario consisting of the topology shown in Fig. 2 with
AR0-AR2 generating high priority ows to AR3-AR5. The basic scenario attempts to understand
the e�ectiveness and practicality of the TraÆc Matrix Admission Control (TMAC). We evaluate
the utilization and loss characteristics for a variety of source models. We assume that all ows
are well behaved. The o�ered load is chosen such that blocking rates in these experiments are
approximately 20%. Utilization level is de�ned as measured link utilization/(�T x link capacity).

5.1.1 TMAC Characteristics

In our �rst experiment, we examine how well TMAC reacts to dynamic uctuations in traÆc
demand. Fig. 3 shows the bandwidth-sharing achieved on the bottleneck link L3 (Fig 2) as a result
of the TMAC policy when EXP1 source model is used. The x-axis shows simulation time and the
y-axis shows the average bandwidth used by each of the three IE-Pipes: (0,3), (1,3) and (2,3) over
ten-second intervals. All the EXP1 sources from AR0-AR2 which are destined to AR3 compete for
bandwidth on L3. The upper-bound traÆc matrix is updated at regular intervals of tu=2 minutes in
this case. We arti�cially introduce abrupt changes in traÆc demand D(0; 3), D(1; 3) and D(2; 3) at
time 900 s, 1800 s, and 2700 s. The dashed lines on Fig. 3 show the ideal allocation of bandwidth
among these three ingress-egress pairs if the traÆc demand is known a priori. The solid lines
show the actual link sharing achieved by Furies. Results indicate that each ingress-egress pair gets
roughly its ideal bandwidth allocation, with 8.1% - 19.9% deviation from the ideal values. On an
average, it takes 2.7 minutes after each perturbation to converge to the ideal utilization level.
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Figure 3: Basic Scenario: Share of bottleneck bandwidth allocated to each ingress-egress pair
that share Link-3: D(0; 3), D(1; 3) and D(2; 3), tu = 2 minutes.
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Figure 4: Basic Scenario: Sensitivity analysis of link utilization with respect to the update
interval for upper-bound traÆc matrix, tu and source models.

Since the admission control policy in Furies depends on the estimation of the upper-bound traÆc
matrix U , we need to understand how the utilization level is a�ected by the frequency at which
U is updated. Fig. 4 shows the network utilization level averaged over three bottleneck links as
tu is varied from 1 to 60 minutes for all four di�erent source models (EXP1, EXP2, CBR and
PARETO). We inject � 10-15% random uctuations in traÆc demand as described in Section 4.2
at regular intervals of T�=30 minutes. For a given source model, each point on the curve shows the
utilization level for a particular tu averaged over 10 simulation runs with di�erent random seeds.
In all four cases, the average utilization level decreases as tu is increased because the estimated U is
less responsive to traÆc uctuations. With EXP1 sources, the utilization level decreases from 77%
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Figure 5: Basic Scenario: Loss-load curves for four di�erent traÆc models as the hysteresis
parameter � is varied, tu=2 minutes.

to 51%. Clearly, experimenting with CBR sources achieves the highest utilization level (92-98%)
since the bandwidth usage of admitted ows is fairly deterministic. The presence of burstier source
(EXP2) reduces the utilization level (43-58%), while the long range dependent traÆc (PARETO)
achieves roughly the same utilization as (EXP1). In all cases except CBR source, packet loss is less
than 0.3%. For CBR source, packet loss varies from 0.6% to 4.5%.

5.1.2 Trade-o�s Between Loss and Utilization

There is a trade-o� between packet loss and network utilization level in any admission control
system. To increase the network utilization, one might admit more ows into the system. But this
may lead to over-subscribing resources and a higher loss rate. Tuning the hysteresis parameter, �,
allows an ISP to operate at the desired utilization level. We are interested in the range of utilization
and loss rates that can be achieved by varying � for di�erent source models. Results are plotted as
a set of loss-load curves in Fig. 5. Each point shows the average packet loss for a given utilization
level as � is varied from 0.0 to 0.5. The loss load curves have the same frontier as those of the
measurement-based admission control algorithm (not shown here) reported in [15]. The burstier
source (EXP2) shows a dramatically di�erent range as compared to the three other traÆc sources.
Since the peak rate of EXP2 is 10 times larger than that of EXP1, and the admission control policy
is based on peak rate, we tend to admit less number of EXP2 ows. However, since the activity
cycle of EXP2 is very short (10%) and the used bandwidth is zero for a large amount of time, we
observe this under-utilization of network resources.

5.2 Detection of Malicious Flows

This section investigates the e�ectiveness of the malicious ow detection (MFD) scheme in Furies.
We are interested in the following two events:
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Figure 6: Case 1: Zero Malicious Flows.
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Figure 7: Case 2: Many small homogeneous ows; a small fraction,  =0.1, misbehave.

� Successful Detection: a misbehaving ow is correctly identi�ed, and

� False Alarm: a well-behaved ow is misclassi�ed as malicious.

We de�ne the probability of successful detection Psd as the fraction of malicious ows that are
actually detected. Similarly, the probability of false alarm Pfa is the fraction of normal ows that
are incorrectly reported as misbehaving. Since the ows are policed as an aggregate, malicious
ows can cause packets from complying ows to be incorrectly marked as non-conformant. The
probability of such incorrectly-marked packets is denoted as Pmis.

To examine the robustness of the MFD scheme, we simulate four extreme cases:

Case 1: We consider a basic scenario as described in 5.1 with zero malicious ows.

Case 2: This load model is similar to Case 1, but now a small fraction, , of the ows are
misbehaving.
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Case 3: We consider a mixture of one large ow and many simultaneous small ows. The peak
rate of the large ow is 10 times larger than the peak rate of a small ow. All of the small ows
are compliant, and only the large ow misbehaves.

Case 4: Again, we consider a mixture of one large ow and many simultaneous ows like Case 3.
However, the large ow is compliant this time, and a fraction  of the small ows are malicious.

We consider homogeneous ows in each case, and repeat each experiment using four di�erent source
models: EXP1, EXP2, CBR and PARETO. For each scenario, the simulation was repeated 10 times
with di�erent random seeds, and the average Psd, Pfa, and Pmis was computed. Each simulation
ran for 1000s. All experiments were performed under high load, and the hysteresis parameter for
admission control, � = 0. A malicious source requests allocation for r kbps but sends traÆc at a
higher rate, randomly chosen between 1:1 � r and 1:2 � r kbps (10-20% violation). The average and
peak rate for each source model is the same as described in Section 4.

The experiments in Case 1 are intended for understanding the limitations of the Furies-MFD and
its performance sensitivity with respect to di�erent choice of design parameters. Ideally, none of
the ows should be reported as \misbehaving", but the transient behavior of bursty traÆc could
momentarily overow the token bucket �lters (TBF), and be interpreted as malicious, leading to a
\false alarm". Fig. 6a shows how the choice of bucket size, bTBF at the TraÆc Policers (TP) a�ects
the probability of mis-marked packets, Pmis. A smaller value of bTBF is more e�ective in policing
the aggregate traÆc and detecting misbehaving ows, but there should be enough tokens to allow
the legitimate packets to pass, and keep the Pmis low. Except for CBR traÆc, Pmis is below 0.01
for other source models. For CBR source, increasing bTBF to 6000 is suÆcient to reduce Pmis to
0.005. The two hysteresis parameters � and � determine under what conditions a ow is reported
as \malicious" (Section 3.2.2), but have no e�ect on Pmis.

We can relax the condition for MFD by increasing � and �, and this helps to reduce the number of
false alarms. Fig. 6b and 6c study how Pfa varies as a function of � for � = 0.0 and 0.05. For a 0%
tolerance level in MFD (i.e., �=0), Pfa decreases gradually as � is increased. However, we notice
that Pfa drastically decreases for all the source models when the tolerance level is increased to 5%.
This indicates that Pfa is more sensitive to � than �. For the rest of the experiments, we choose
�=0.05 and bTBF = 6000.

Increasing � causes a delay in reporting misbehaving ows and may adversely impact the e�ective-
ness of MFD. We examine this issue in Case 2. We set the value of  (fraction of misbehaving ows)
to be 0.1. Fig. 7a and 7b show the variation of Psd and Pfa as � is increased from 1 to 10. The
e�ect of � on Psd for CBR source is minimal. For the other source models, Psd decreases sharply
when � is increased and the rate of decrease varies across the source models. From Fig. 7b, we can
infer that only in the case of the EXP2 source model is Pfa sensitive to the value of �. With � =
1, we can detect most of the malicious ows with EXP1 (79%), CBR (83%) and PARETO (64%)
sources with virtually zero Pfa. In the case for EXP2, there is a trade-o� between maximizing Psd
and minimizing Pfa as we choose the value for �. This indicates that burstier sources are more
diÆcult to detect.

We also measured the detection time for each correctly identi�ed malicious ow and plotted the
distributions in Fig. 7c. With � = 1, the average detection time is 26.9 seconds, which is less than
1/10 of the average duration of a ow. 90% of the ows are detected within 78.9 seconds. When
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Source EXP1 EXP2 CBR PARETO

Psd 1.0 1.0 1.0 1.0

Pfa 0.0077 0.027 0.012 0.0013

Pmis 0.003 0.00021 0.0072 0.0037

Table 1: Case 3: One large malicious ow and many small complying ows. � = 5, bTBF = 6000,
� = 0.05.

we increase � to 5, the average detection time increases to 33.8 seconds, which is still reasonably
fast. The 90%-tile detection time is 80.4 seconds in this case.

The simulations in Case 2 show that basic results of Furies-MFD hold across di�erent source
models. Although long range dependent traÆc like PARETO is harder to detect, we can achieve a
reasonable success rate (0.64) with zero false alarms. The presence of burstier sources (EXP2) pose
challenges to the Furies-MFD scheme, and we need to choose the value for � carefully to maximize
Psd while keeping Pfa reasonably small.

We have so far considered only homogeneous ows with the same rates. In the next two cases, we
consider an extreme case where there is one large ow with peak rate rlarge and many small ows
with peak rate rsmall, where rlarge = 10� rsmall. We model the small ows the same way as in Case
1 and repeat our experiments for four di�erent source models. In Case 3, only the large ow is
misbehaving. The results are summarized in Table 1. For all source models, we always successfully
detect the misbehaving large ow and Pfa is less than 0.03.

Case 4 presents a more interesting scenario where the large ow is complying while a small fraction of
the small ows are misbehaving. The probability of a misbehaving ow is . Intuitively, we suspect
that detection is harder in this case, because the misbehaving ows can hide in the aggregate traÆc
by stealing the idle bandwidth allocated to the large ow. Since the traÆc policer can only enforce
the total allocated rate, the malicious ows may not be detected. Fig. 8 shows the Psd achieved for
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Figure 8: Case 4: One large ow (rlarge) and many small ows (rsmall);  of small ows misbehave.
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Source Model EXP1 EXP2 CBR PARETO

 = 0:1
Psd 0.74 0.43 0.75 0.57

Pfa 0.00066 0.011 0.0 0.0

Pmis 0.0032 0.00016 0.036 0.0028

 = 0:5
Psd 0.61 0.51 0.67 0.39

Pfa 0.00067 0.025 0.0 0.0

Pmis 0.0030 0.00047 0.050 0.0022

Table 2: Case 4: One large ow and many small ows. A fraction, , of small ows misbehave. �
= 5, bTBF = 6000, � = 0.05.

Source HET EXP1 EXP2 CBR PARETO
Model

� = 1
Psd 0.55 0.79 0.73 0.83 0.64

Pfa 0.0 0.0 0.14 0.0025 0.0
Pmis 0.0030 0.0028 0.00016 0.0079 0.0031

Table 3: Comparisons between heterogeneous and homogeneous source models:  = 0.1, bTBF =
6000,� = 0.05.

di�erent values of  and Table 2 summarize Psd, Pfa and Pmis for  = 0.1 and 0.5. Surprisingly, we
notice that the Psd achieved with  = 0.1 for EXP1, CBR, and PARETO sources are fairly close to
the results in Case 1, where there is no large ow. But for EXP2, the success rate is signi�cantly
smaller (Psd=0.43 in Case 4 as supposed to 0.54 in Case 1). When  increases, the success rate Psd
decreases for EXP1, CBR and PARETO source models. With EXP2, Psd uctuates as we vary ,
and is actually higher at =0.5 than =0.1. This is because the active cycle of EXP2 is very short
(10%), and can easily go undetected if it coincides with the idle period of the large ow. However,
when the fraction of malicious ows increases, there is an increased likelihood that some of the
malicious ows will synchronize or overlap in their active cycles, leading to overow of the TBF
at the traÆc policer. When the aggregate rate is violated, all the ows sharing the same sub�eld
(FidIn or FidEg) will be monitored individually (micro-monitoring) and the malicious ow can be
correctly identi�ed. The probability of false alarms Pfa and mis-marked packets Pmis are negligible
in this case across di�erent values of  and source models.

So far, we have been using only homogeneous ows in our simulations. The next experiment uses
a mix of the four di�erent source models (EXP1, EXP2, CBR and PARETO), each with di�erent
peak rates, idle times and burst times. Each arriving ow chooses among these source models at
random. This heterogenous source is denoted as HET. We repeat the experiment in Case 2, with
�=1 using HET, and compare the results with Case 2 where homogeneous ows are used. Results
are summarized in Table 3. With HET source, the success rate Psd is lower than all the other
homogeneous source models, but the di�erences in Pfa and Pmis are negligible. It is diÆcult to tune
the hysteresis parameters to optimize the overall performance. This is the inherent limitation of
using token bucket �lters as traÆc policers in Furies.
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6 Implementation and Prototyping

In this section, we provide a brief description of how we implemented the Furies architecture on
top of the Click modular router [8]. We extended the Click router to support all the traÆc policing
and admission control functionalities of our architecture. Using this implementation, we measured
the performance overhead incurred at an edge router by adding the policing and monitoring tools
of Furies. The current implementation works on Linux 2.2.16 and 2.2.17 kernels. Our architecture
has been operationally veri�ed in our laboratory's test-bed. We will provide an overview of the
implementation and performance measurements in sections 6.1 and 6.2.

6.1 Overview of Implementation

Click is a new software architecture for building exible and con�gurable routers developed by
Kohler et al. [8]. A Click router is assembled from packet processing modules called elements. Indi-
vidual elements implement simple router functions like packet classi�cation, queuing and scheduling.

We implemented di�erent elements that perform traÆc policing and admission control and inte-
grated them with the existing elements of Click. Since the con�gurations of Click are modular, we
found it very easy to extend Click to include Furies.

We have added two main elements to Click: the reservation agent (RA) and the monitoring agent
(MA). The reservation agent is responsible for receiving ow requests and forwarding them to
the Resource Manager (RM) of FURIES. The RA is also responsible for forwarding responses
from the Resource Manager to the client. The MA handles the traÆc monitoring and policing of
admitted ows, i.e., the functionalities of the TMs and TPs in the Furies architecture (Section 2.2)
The MA is responsible for: estimating the traÆc demands across edge routers, detecting and
penalizing misbehaving ows, and continuously updating the Resource Manager of the aggregate
traÆc demand distributions.

The communication between the Click router and the Resource Manager is performed through
SNMP. In order to enhance the throughput of the Click router, we reduce the number of context
switches required for processing the control packets from the RM. We achieve this by batching the
messages from the RM to the Click router.

6.2 Performance Evaluation

We used our implementation to evaluate certain performance metrics which could not be accurately
quanti�ed through simulations. One such important metric was the overhead of implementing the
RA and MA in an edge router. To obtain a reasonable and realistic picture of this overhead, we
compared the maximum throughput obtained from our implementation to a basic implementation
of Click which did not contain any of the monitoring tools (hereafter referred to as default Click).
A quanti�cation of this overhead was necessary to determine whether it is practical to deploy
FURIES. We also measured the time required by FURIES to admit a ow as a function of the load
on the network. This time is helpful in quantifying the response time for performing admission
control on a new ow request.
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Figure 9: Comparison of Peak Throughput of Furies+Click over Default Click

6.2.1 Experimental Setup and Methodology

For evaluating the performance, we set up our own cluster of machines over a 10.2.2.0/24 network.
The experimental setup consisted of a total of six Intel PCs running Linux. A Pentium-III 650Mhz
machine was used as the Click router. This machine used a 3com 3c905 100Mbps Ethernet controller
and had 256 KB of L2 cache. Another machine, a Celeron-400 Mhz with a 128 KB of L2 cache
was used as one of the traÆc generators. The other traÆc generators were Dell 6350, 4-processor
650 Mhz machines. We use two more machines as Sink and Resource Manager. All these machines
are connected to a backbone router using 100 Mbps connections. The router is a Bay Networks
Accelar-1100B router with the capacity to support 16 100 Mbps Ethernet ports.

To make our measurements more realistic, we used an IP routing table from a BBN planet edge
router [20]. The routing table contained 43,872 entries. We disabled the IP-lookup cache in order
to characterize lookup time and compared that time with the time taken for traÆc monitoring.
The traÆc distribution was periodically sent to the RM every 100ms. We modi�ed Mgen [21], a
publicly available traÆc modeling software, to generate traÆc for our experiments.

Other than this implementation, we also built a proof-of-concept prototype on a powerful compu-
tational testbed in our laboratory. We veri�ed all the functionalities of our architecture by setting
up a virtual network of seven ingress-egress network over this testbed.

6.2.2 Experimental Results

In our �rst experiment, we measured the maximum throughput of our implementation at di�erent
loads and compared it to a default Click router. We tested our implementation for varying loads.
A basic ow in our setup had a bandwidth 80kbps and a packet size of 1024 bytes. We varied
the number of ows to generate varying loads. As the number of ows increased, the amount of
policing and state needed at the edge router also increased.
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Figure 10: Response Time of Flow Allocation for varying loads

Figure 9 shows a comparison of the throughput of our Click implementation with the monitoring
tools and the default Click. From the �gure, we can infer that the percentage overhead (percentage
di�erence in throughput) is negligible for a large range of loads. The maximum percentage di�erence
observed in our experiments was 5%. This occured at a load of 400 ows. The default Click gave
a peak throughput of 32 Mbps while our implementation gave 30:5 Mbps. At higher loads, the
throughput of both decreased.

In the second experiment, we measured the response time for ow allocation at varying loads. We
maintained a particular load in the system by maintaining a constant number of active ows and
sent dummy ow requests to the Click router from the TraÆc generator. There are three stages
in the process of obtaining a response for a ow request: the RA in Click forwards the request to
the RM, the RM performs admission control on the ow and sends the response to the requesting
entity through the RA.

In Figure 10, we plot the cumulative distribution of the response time at three di�erent loads. We
speci�cally chose three characteristic values of load - 200 ows (small load), 400 ows (saturation
point) and 500 ows (very high load). From the graph, we can observe that the mean response
time increases as the load increases and the CDF shifts to the right. In all our experiments, we
observed a minimum response time of 2:5 ms and a maximum of 7:2 ms. Our results indicate that
the standard deviation of our response time is high. This can be attributed to the batching of
responses at the RM and timer-based processing of ow requests at the Click router. These two
routines increase the variance of the response time for ow requests. This variance is tolerable since
the mean response time is small.

6.3 Discussions

We found it extremely easy to build extra router mechanisms on top of Click. Our entire imple-
mentation consists of 4463 lines of C++ code and the e�ort taken to integrate our code with Click
was minimal. Our experimental results indicate that the performance overhead incurred by adding
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our monitoring tools to Click router is less than 5% at peak throughput. At smaller loads, the
overhead is negligible.

We performed all our measurements in the user and kernel modes of Click. In our implementation,
we observed a negligible di�erence in performance between the interrupt-driven kernel mode and the
interrupt-driven user modes of Click. However, we did not use the Poll-device element optimization
of Click. Our implementation also used a much larger routing table than the one used in [8].
Studies in [22, 23] have shown that increasing the size of the routing table can adversely a�ect the
throughput of the system. Click does not support many optimizations for fast table lookups. The
performance of Click has also been optimized for DEC 21140 Tulip 64-bit PCI controllers and our
setup used a 32-bit 3com Ethernet controller. Though these issues may a�ect the net throughput
of the system, we believe that it will not change the percentage di�erence of the throughput.

7 Deployment Issues

This section describes some of the issues involved in deploying Furies in the existing Internet.
Changes to Routers: To deploy Furies, all the routers must support at least simple priority
scheduling. No changes are required in the core routers, while the policing and admission control
software need to be added to the edge routers. The Resource Manager module can be added to
control points of the various POPs in an ISP. From our implementation experience, we infer that
the overhead of implementing Furies in an edge router is minimal.
Virtual Private Networks: Furies can be deployed within an ISP to support Virtual Private
Network (VPN) customers. The mechanisms of Furies can be applied to provide an abstraction of
a VPN overlay network by treating the VPN endpoints as IE-Pipes. We do not need to change any
of the underlying admission control or traÆc policing mechanisms.
Multiple ISPs: If indeed Furies is deployed, its deployment will be incremental and not all
ISPs will be Furies-enabled. A ow that passes through multiple ISPs may not receive the best
performance guarantees if some intermediary ISPs do not support Furies. Furies can be extended
to support a Confederation of ISPs, which is a group of ISPs that coordinate among each other to
set up a larger virtual ISP through peering agreements. Every peering point is associated with a
set of SLAs, and a ow that is admitted in one ISP can be guaranteed its level of service within the
confederation. Furies also provides a way for sharing resources across ISPs and does not assume
any trust relationships between ISPs.

8 Related Work

Providing better QoS assurance as o�ered by stateful networks like Int-Serv, while maintaining
the scalability of a stateless network architecture like Di�-Serv, the Furies architecture performs
admission control only at the edge router. Furies does not perform active probing nor make any
admission control decisions based on direct congestion detection. Our admission control decisions
are based on passive measurements of existing traÆc rather than the worst case bounds describing
the ows, as in parameter-based admission control. Many algorithms and principles outlined in
the measurement-based admission control (MBAC) literature apply in our work, and we de�nitely
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bene�t from results in [15, 24, 25], to name a few. We chose measurement-based over parameter-
based for two reasons. First, MBAC yields higher network utilization, and secondly it is diÆcult
to describe Internet traÆc with such diversity and unpredictability with a reasonably small set of
parameters.

Reference [26] proposed a service model, called hose, which speci�es the capacity required for
aggregate traÆc from one endpoint to the set of other endpoints in the VPN customer sites. Each
hose is associated with a performance guarantee. Furies follows the same fundamental idea, but
uses a di�erent abstraction. We infer traÆc demands from direct ow-level measurements using
the same methodology described in [10], which was successfully applied to a large, operational ISP
network. We then use this knowledge to construct a traÆc matrix that captures the bandwidth
requirement between every pair of ingress-egress ARs, i.e., IE-Pipe. The admission threshold is
determined based on this traÆc matrix so that the link bandwidth is allocated to the competing
IE-Pipes in proportion to their traÆc demands.

Terzis, et al. de�ned the primitives of a two-tier resource allocation model in [6]. A simpli�ed RSVP
is used as an intra-domain resource allocation protocol for aggregate traÆc between access routers,
and admission control is performed on a hop-by-hop basis. The bandwidth broker (BB) in each
domain is responsible for establishing bilateral resource agreements using a proposed inter-domain
protocol. Although Furies adopts the fundamental principle of the two-tier model for intra- and
inter-domain resource allocation, its mechanisms and emphasis are signi�cantly di�erent from [6]
or other BB literature [3, 4]. First, admission control is only performed by the Resource Manager
(RM), without propagating the reservation request from end-to-end. Secondly, resource allocation
decisions are made based on the estimated traÆc demand and global knowledge of intra-domain
topology, instead of a hysteresis process as detailed in [6]. Finally, Furies proposes a scalable
approach to perform traÆc policing and detect misbehaving ows, which are not addressed in the
previous BB literature.

The most relevant work with respect to our traÆc policing mechanism is Stochastic Fair Blue (SFB)
proposed by W. Feng, et al. in [12]. SFB provides a scalable way to identify and rate-limit non-
responsive ows using BLUE, which marks or drops packets based on loss rate and link utilization
history. The goal of SFB is to manage congestion, while Furies attempts to identify misbehaving
ows based on utilization history. The idea of classifying good versus bad (non-responsive in SFB
or misbehaving in Furies) ows is similar, but the associated algorithm is di�erent.

9 Conclusion

In this paper, we developed Furies, a framework for scalable traÆc policing and admission control,
which can be incrementally deployed in the current Internet. Though detection of malicious ows
has long been recognized as an important component, a practical and scalable way of implement-
ing it has not been studied in great detail. Furies only requires O(

p
n) state information to be

maintained at edge routers, which is substantially better than previous approaches.

In our simulations, we tested our admission control and malicious ow detection schemes using a
variety of source models. The basic results hold across di�erent extreme cases and therefore justify
the robustness of Furies. However, we found it hard to detect long-range dependent and bursty
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malicious sources. Our implementation experience indicates the practicality and ease of deployment
of Furies.
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