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Abstract

Vector IRAM integrates vector processing with embedded DRAM on a single chip to provide

high multimedia performance at low energy cost. This report presents the design and the

implementation of the VIRAM Vector Register File. Our design successfully faces many

challenges such as the need for speed, low power consumption, compact design and multi-

ported access. Using a 0.18µm technology and a 1.3 Volts supply voltage, it operates at

200 MHz, consumes an average power of 330 mW and 8 mm2 of area, and provides eight

read and three write ports. A number of available CAD tools were used, including layout

tools from CADENCE, extraction tools from Avant!, hspice, timemill and powermill. This

report gives emphasis on implementation issues and evaluates the performance and power

consumption of our design.



Contents

1 Introduction 1

2 The Architecture 3
2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Datapaths for the read and write accesses . . . . . . . . . . . . . . . . . . 5

3 Logic Style 7
3.1 Dynamic Logic in the Vector Register File . . . . . . . . . . . . . . . . . 7
3.2 Dynamic Storage Elements in the Vector Register File . . . . . . . . . . . 8

4 Design Components 9
4.1 Flip-Flops and Latches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Read Address Mapping Block . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Read Data Mapping Block . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Address Decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.5 Memory Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6 Clock Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.7 Floorplan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 CAD Flow and Verification Approach 24

6 Performance 25
6.1 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6.2 Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7 Related Work 30

8 Conclusions 31

A Layout 33

B Simulation Results 33

References

Acknowledgments



1 Introduction

Vector machines exploit data parallelism by executing multiple homogeneous operations
on an array of elements within a single vector instruction at the same time. Since one

instruction describes a whole set of operations, the requirement on the instruction fetch
bandwidth is greatly reduced. Moreover, eliminating off-chip accesses, embedded DRAM

technology provides high memory bandwidth at low power. VIRAM [Koz99] provides high
multimedia performance with low energy consumption by integrating vector processing

with embedded DRAM technology. Both high performance multimedia processing and
low power consumption make VIRAM an ideal candidate for future PDA-like devices.

VIRAM supports 3.2 GOPS (single-precision) peak performance and 25.6 GByte/s
peak memory bandwidth. The target power consumption for the vector unit and the mem-

ory system is 2 Watts, achieved by using a modest clock frequency of 200MHz at a 1.3V
supply voltage.

There are four vector functional units in VIRAM: two arithmetic, one flag processing,

and one load-store. All vector functional units have multiple parallel datapaths to process
multiple vector elements per cycle. The vector instruction set has been designed to support
a clustered implementation of the vector unit. VIRAM contains four hardware clusters,

referenced as lanes (see Figure 1). All lanes are identical and are given the same control
signals. Figure 1 shows the floorplan of the VIRAM chip, which consists of a vector unit, a

scalar core, an FPU, eight DRAM banks, and four vector lanes. Each vector lane contains
two 64-bit integer execution units, two floating point execution units, a flag register file and

one fourth of the vector register file.

Vector architectures require large multiported register files since they concurrently per-
form operations on many registers. In particular, VIRAM vector register file has a total
capacitance of 8 KBytes and contains 32 vector registers, each holding 32 64-bit elements.

The vector register file is split into four parallel 64-bit slices, one for each of the four par-
allel lanes in the vector unit. It is partitioned so that each lane stores the register elements

that are processed by the local datapaths. The elements of a vector register are partitioned
among the lanes in a round-robin fashion. Each lane contains a total of 256 64-bit registers

(32 vector registers with eight elements per vector register). Vector registers can be subdi-
vided to hold 64 32-bit elements or 128 16-bit elements. For this reason, the vector register
file supports write operations on 16-bit granularity with the use of write masks, as we will

explain in Section 2.

The vector register file operates at 200 MHz, which is the clock frequency of the
VIRAM chip. It occupies 2mm2 in each lane, or 8mm2 in total.

The VIRAM chip is scheduled for fabrication by IBM in summer 2001. It uses a state-
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Figure 1: The floorplan of the VIRAM chip. Each vector lane contains one fourth of the vector

register file which occupies 2mm
2, or 18% of the lane area, and is accessed by the two Integer

Execution Units that reside in the same vector lane, the two Crossbars, and the Control Logic.

of-the-art 0.18µm technology with six metal layers. The two integer execution units, the
vector register file inside each vector lane, and the crossbars were designed using custom

layout technology. The DRAM banks were provided as macro-cells by IBM, and the rest of
the logic was designed using a standard cell library from IBM [IBM00]. The multiported

nature of the register file and the small lane area resulted in routing many control and data
signals on top of the register file. For this reason, we decided to design the register file

using only the three bottom metal layers from the six available, and leave the top three
metal layers for routing the control and data signals, the clock and the power supply.

The remainder of this report is organized as follows. Section 2 presents the architecture

of the VIRAM vector register file. Section 3 explains the logic style, as well as the timing,
of the vector register file. Section 4 discusses the implementation of the register file in de-

tail. Section 5 shows the simulation and verification environment, and Section 6 evaluates
the performance and measures the power consumption of the vector register file. Finally,

Section 7 describes related work.
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2 The Architecture

Table 1 shows the worst-case port requirements for the blocks that access the vector register

file. As we see, a total of 8 read and 3 write ports are enough to eliminate any structural
hazards that might result from port contention.

Max number of read Max number of write
Block ports needed ports needed

Integer Exec Unit 1 3 1

Integer Exec Unit 2 3 1
Crossbars & Control Logic 2 1

Table 1: Worst-case port requirements for the blocks that access the register file.

However, a preliminary design of the memory cell revealed that a 256× 64 register file
with 8 read and 3 write ports would require approximately 3mm2 of area, and would be

very difficult to fit in the vector lane. To make matters worse, the huge number of read
ports attached to each read bit line (8 read ports per word times 256 words) would result
in increased bit line capacitance and dramatically impact the timing and power budget.

Splitting the register file into two 128 × 64 banks, with each bank providing 8 read and 3
write ports, could potentially improve the speed and power consumption by decreasing the

bit line capacitance, but would result in more area which is unacceptable.

For this reason, we decided to split the register file into two 128 × 64 banks, where
each bank would only provide half the number of read ports, thus 4 read ports and 3 write

ports. If more than 4 read accesses contend for the same bank a structural hazard will have
to occur, but fortunately this does not seem to happen often.

Splitting the register file into two 128 × 64 banks, greatly improves all aspects of the

design. The smaller number of read ports results in dramatic reduction of the memory cell
area by approximately 40%. Also, the reduced bit line capacitance, since each bit line is
connected to 128 memory cells instead of 256, results in reduced power consumption and

increased speed.

2.1 Block Diagram

Figure 2 shows the block diagram of the register file inside a lane. It consists of two

128 × 64 banks, one read address mapping block that routes the external read addresses
to the correct bank ports, one read data mapping block that routes the data read from the
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Figure 2: The block diagram of the register file. It provides 8 read and 3 write ports, using two

banks with 4 read and 3 write ports each, thus allowing at most 4 read accesses to contend for the

same bank. Two mapping blocks are used to route the read addresses from the external ports to the

correct bank ports, and the read data from the banks to the correspoding external data buses.

banks to the correct external read data buses, seven address decoders per bank (not shown),

and some write-mask logic to allow 16-bit write granularity.

We will next briefly explain the functionality of these components by describing how a

read and a write access operate.

Read Access For a read access to occur, the 8-bit address rd addr[7 : 0] is placed on

one of the 8 external read ports and the corresponding read enable signal is set. The most
significant bit of this address specifies the bank that will be accessed. Since each bank

provides 4 read ports, the address will have to be mapped to one of these ports. A 2-bit
mapping signal per read port, rd map[1 : 0], determines the port number for each address.

When more than one addresses contend for the same bank, they will need to be mapped
to different ports. The logic that selects the correct port for each address and provides the
eight mapping signals, is external to the register file logic. This external logic will have to

deal with the structural hazards when more than four accesses contend for the same bank
and decide which accesses to stall. The read address mapping block of the register file

assumes that there are no conflicts in the mapping provided, and will route each address to
the corresponding bank port. The read data mapping block will do the reverse operation to

map the data read from the banks to the corresponding external read data buses.

Write Access Since the number of external write ports is the same as the number
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of write ports that each bank provides, there is no need for mapping blocks for the write

accesses. The seven least significant bits of all three write addresses, wr addr[6 : 0], are
routed to each bank. The most significant bit of each address specifies the bank that will be
accessed if the corresponding write enable signal is set. A 4-bit write mask per write port,

wr mask[3 : 0], will determine which 16-bit fields of the 64-bit write data, wr din[63 : 0],
will be written.

2.2 Datapaths for the read and write accesses

A vector register is subdivided in a big number of smaller elements, and spans 32 words
in the register file. Each vector operation on such a register would require reading from

or writing to all these register file words, and would thus need multiple cycles to execute.
Chaining, the extension of forwarding to vector architectures [HP96], allows overlapping
the execution of dependent instructions, making it possible for two instructions to simul-

taneously operate on different elements of the same register. An instruction can start ac-
cessing the elements of a vector register, as soon as the previous instructions have finished

accessing these elements. Depending on the type of accesses, chaining introduces three
types of hazards for the vector elements: read after write, write after read and write after

write.

The vector register file does its best to improve the performance for chaining. It supports
one access per cycle for each read or write port, thus allowing up to four read (since each

bank has four read ports) and one write accesses per cycle for the same word. Write-through
capability allows a write and a read access to access the same word during the same cycle,

in which case the read will get the new value.

Write Access Figure 3 shows the datapath for a write access. The write address and
enable are available from the vector unit one cycle earlier than the write data and mask. The

register file takes advantage of this by pipelining the access into two cycles: the address
and enable signals are decoded in the first cycle, and the data is written in the second cycle.

In fact, the data is written during the first half of the second cycle, making it possible for
a read access on the same word to use the second half of the cycle to get the new value

(write-through).

Read Access Figure 4 shows the datapath for a read access. Contrary to a write
access, all inputs become available in the same cycle, and a read takes place in one cycle:

the address is routed to the decoder of the correct bank port where it is decoded during the
first half of the cycle, and the data is read from the memory array and routed to the correct

external read data bus during the second half of the cycle. Negative edge-triggered registers
and latches are used to split the cycle in two parts.
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In order to facilitate the timing of the logic that interfaces to the register file, the inputs

and outputs of all read and write ports are directly connected to or driven by positive edge-
triggered registers.

3 Logic Style

3.1 Dynamic Logic in the Vector Register File

The periphery circuitry of the vector register file, including the mapping blocks and the de-

coders, was implemented in dynamic and pass-transistor logic styles. This choice allowed
us to have a fast periphery circuitry, without compromising on the power requirements.

Dynamic logic uses a sequence of precharge and conditional evaluation phases [Kra82]
to realize complex logic functions with fewer transistors than standard CMOS logic. The

clock ϕ usually determines the boundaries of these two phases. The dynamic circuit con-
cept results in simple, small and fast structures at the expense of a reduced robustness with
regards to noise. One could argue that dynamic logic consumes more power than stan-

dard CMOS logic because it has higher switching activity ([Rab96], pages 234-40), and
therefore it may not be appropriate for low power designs. However, a dynamic design

can usually operate at a lower voltage supply than a standard CMOS design, causing the
overall power to drop in a quadratic way. A fast logic, such as dynamic and pass-transistor

[RWM93] logic styles, can adequately compensate for the loss of speed due to the lower
voltage supply.

The read/write operations for each memory cell are also implemented in dynamic logic
and therefore function in two phases. The read/write bit line is precharged during the

precharge phase, and is discharged in the evaluation phase, if the read/written value is 0.
The memory cell implementation is discussed in detail in Section 4.5.

The datapaths in Figures 3 and 4 are split by dynamic registers or latches into two
portions. When the dynamic logic of a portion in a datapath evaluates or precharges, the
dynamic logic of the other portion precharges or evaluates respectively. This timing is

depicted in Figure 5 that shows the timing of each block.

As shown in Figure 5, the address and the enable signal of a write operation are received
one cycle earlier than the input data. The address is decoded during the evaluation phase of
the decoder and the new value is written in the first half of the next cycle. In parallel, the

external read addresses are mapped to the internal read addresses and they are decoded. In
the next half cycle the value of a word is read and mapped to an external output data bus.

Figure 5 also shows that a word can be written in the first half of a cycle and read in the
second half of the same cycle.

7



prechwrite prechwrite prechwrite prechwrite write

decode decode decodedecodeprech prech prech prech prech

prech
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

map prech prech
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

map
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

map
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

map
	�	�	
	�	�	
	�	�	
	�	�	
	�	�	


�
�


�
�


�
�


�
�


�
�


map

prech prech prech prech
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

dec

�
�
�


�
�
�


�
�
�


�
�
�


�
�
�


�������
�������
�������
�������
�������

dec
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

dec
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

dec
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������

dec

prech

prech
�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

map

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

read

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

map

�������
�������
�������
�������
�������
�������

�����
�����
�����
�����
�����
�����

read

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

map

�����
�����
�����
�����
�����
�����

 � � 
 � � 
 � � 
 � � 
 � � 
 � � 

read

!�!�!
!�!�!
!�!�!
!�!�!
!�!�!
!�!�!

"�"�"
"�"�"
"�"�"
"�"�"
"�"�"
"�"�"

map

#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#
#�#�#�#

$�$�$
$�$�$
$�$�$
$�$�$
$�$�$
$�$�$

read

prech

prech prech prech prech

prech prech prech prech

WRITE OPERATION

address decoder

wr_mask/wr_din

phi

READ OPERATION

address decoder

rd_dout

wr_enable/wr_addr

rd_enable/rd_addr/rd_map

prech WBL and write RF

read data mapping

read address mapping

prech RBL and read RF

Figure 5: The timing diagram of the write and read operations. Dynamic logic operates in a

sequence of precharge and evaluation phases. A cell can be written and read in the same cycle as

shown in the Figure.

3.2 Dynamic Storage Elements in the Vector Register File

Storage in static sequential circuits relies on the concept that a cross-coupled inverter pair
produces a bistable element and can thus be used to memorize binary values. The major
disadvantage of a static flip-flop or latch over their dynamic counterparts is complexity.

Its large size, as well as the large clock capacitance, becomes a dominant and restrictive
feature. Storage in dynamic sequential circuits relies on the concept that capacitance can

act as a memory element as well. The absence of charge denotes a 0, while its presence
stands for a stored 1. Dynamic flip-flops and latches are fairly small, but they are sensitive

to noise and leakage currents. The vector register file uses dynamic registers and latches
because of their simplicity and small clock capacitance.

Dynamic CMOS flip-flops and latches can be implemented in many different ways.
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Two-phase dynamic flip-flops and latches operate using two clocks that should usually not

overlap. Malfunction may occur when the clocks overlap, and therefore some constraints
are usually imposed such as the even-inversion constraints between latches ([Rab96], pages
355-9) or small clocks overlap. Single-phase dynamic flip-flops and latches use a single

clock. Compared to two-phase dynamic flip-flops and latches, the only disadvantage of this
approach is an increased number of transistors per flip-flop or latch. On the other hand, this

design has the advantage that virtually all constraints are removed. For this reason we used
single-phase dynamic edge-triggered flip-flops and latches in the register file.

Different dynamic storage elements were used throughout the register file, depending
on the timing requirements imposed by the inputs and outputs of each block. Registers

were used to store the input and output data of the two banks, as well as the inputs of the
write address decoders. The word lines are connected to latches, while the inputs of the

two mapping blocks come from dynamic flip-flops that latch their inputs at the start of the
evaluation phase and reset their outputs to either zero or one at the start of the precharge

phase. The next section describes these special flip-flops in detail.

4 Design Components

4.1 Flip-Flops and Latches

Figure 6 shows the schematics of the flip-flops and latches that were used in the design of
the register file. They are all dynamic and use a single clock phase.

The charge-discharge flip-flops, which we introduce here, combine the flip-flop func-
tionality with the charging or discharging required in dynamic logic. They latch the input

value to their output at the clock edge marking the beginning of the evaluation phase, and
charge or discharge their output during the precharge or predischarge phase. For example,
a latch-discharge flip-flop latches the input value at the positive edge of the clock, and dis-

charges its output during φ̄. This kind of flip-flops was used to latch the addresses of all
read and write ports (8× rd addr[7 : 0], 3× wr addr[7 : 0]), as well as the read mapping

signals (8 × rd map[1 : 0]), the write masks (3 × wr mask[3 : 0]) and the enable signals
(8× rd enable, 3×wr enable), resulting in a total of 127 charge-discharge flip-flops. An-

other 192 true single-phase clocked logic (TSPCL) flip-flops [YS89] per bank, were used
to latch the write data inputs (3× wr data[63 : 0]).

All the input ports are latched using positive edge-triggered flip-flops. Similar to the
input ports, all output ports (i.e., 8 × rd dout[63 : 0]) are also driven by positive edge-

triggered flip-flops. Since these signals are internally produced by dynamic logic, however,
and will thus be precharged to VDD during φ̄, we were able to use the simpler single-phase

9
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Figure 6: The schematics of the dynamic single-phase storage elements used in the design of the

register file. The charge-discharge flip-flops combine the flip-flop functionality with the charging

or discharging required in dynamic logic. They latch the input value to their output at the clock

edge marking the beginning of the evaluation phase, and charge or discharge their output during the

precharge or predischarge phase.

version of the TSPCL flip-flop shown in Figure 6.

Internal to the register file logic, the outputs of the address decoders are latched, as can
be seen in Figures 3 and 4. Since, as Figure 5 shows, the address decoders outputs will

be precharged to VDD during φ̄ (for the read address decoders) or during φ (for the write
address decoders), we were able to use the simple single-phase latches shown at the bottom

of Figure 6.

However, using latches for the output of the read address decoders introduces some
static power consumption. The reason is that latches, being transparent through the evalua-

tion phase of the decoders, may result in activating a read word line and thus starting a read
access before the precharge phase of the read bit lines is over. Doing so will lead to static
power consumption, since both the memory array and the precharge logic will be simul-

taneously driving the read bit lines to different values. To avoid this, we could have used
negative edge-triggered flip-flops which would capture the result of the evaluation phase of

the decoder at its end. The reason we opted for latches is that latches have about one fourth
the clock capacitance of the flip-flops, and thus result in great clock power savings, while
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on the other hand the static power consumed on the bit lines is minimal, as we will show in

Section 6.2.

4.2 Read Address Mapping Block

As we discussed in Section 2, the external to internal read address mapping block is used
to route each read address to the correct bank port. The MS bit of the address selects the

bank, and the 2-bit mapping signal specifies the port.

Figure 7 shows the schematic of this block for a single read port. It consists of a 3-bit

decoder to decode the MS address bit and mapping signal, and a 7-bit 1-to-8 demux to
route the seven LS address bits to the port specified by the decoder. One more 1-bit 1-to-8

demux is used for the read enables.

The decoder is implemented in static CMOS logic. For the pull-down tree network it

uses a binary reduction scheme to reduce area and present a small capacitive load to the
flip-flop outputs.

The 1-to-8 demultiplexer is implemented using dynamic pass-transistor logic. All out-

puts are precharged to VDD during precharge phase φ̄, and the bits of one of the outputs are
selectively discharged during discharge phase φ depending on the decoder output and the

read address. Using only a single pass-transistor to selectively discharge each output line
makes it possible for the read address mapping to finish at the first half of the evaluation

phase, leaving the second half to the address decoders, as we saw in the timing diagram of
Figure 5.

4.3 Read Data Mapping Block

The read data mapping block does the reverse mapping, by routing the data read from a
bank to the external read port that requested it. The block consists of eight 64-bit 1-to-8
demultiplexers that map each of the eight 64-bit data-out buses of the two banks to the

correct external data-out bus.

Figure 8 shows the schematic of this block for a single data-out bus. The demultiplexer

is implemented using dynamic pass transistor logic, which makes it fast enough to operate
in the second half of the evaluation phase φ̄, as we saw in the timing diagram of Figure

5. The 8-bit select signal of the demultiplexer comes from the decoder of the read address
mapping block (Figure 7), in order to avoid decoding the same signal twice.
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Figure 7: The schematic of the read address mapping block for a single read port consists of a 3-bit

static CMOS decoder and a 7-bit 1-to-8 dynamic pass-transistor demultiplexer. It is used to route

read port address to the bank port specified by the MS address bit and the 2-bit mapping signal. This

design is replicated eight times for the eight read ports.

12



64−bit 1−to−8 demux

discharge−latch FF

mapping
read address

64

8

rd_dout1

VDD

φ

rd_dout7

rd_sel

rd_dout6

rd_dout5

rd_dout4

rd_dout3

rd_dout2

rd_dout0  

rd_port3

rd_port1

rd_port2

rd_port0

rd_port3

rd_port2

rd_port1

rd_port0

BANK 1

BANK 0
data−out

Figure 8: A 64-bit 1-to-8 demux implemented in dynamic pass transistor logic is used to map each

bank data-out bus to the read port that initiated the read access. The Read Data Mapping Block

consists of eight such demultiplexers, one for each data-out bus of the two banks.

4.4 Address Decoders

A 7-bit address decoder per read or write port is used to decode the port address and enable
the corresponding word line, for a total of seven decoders per bank. Each address decoder

is implemented as a dynamic NAND decoder, using one 3-bit and two 2-bit static CMOS
predecoders ([Rab96], pages 591-4).

Figure 9 shows the design of the 7-bit address decoder. The 7-bit address is partitioned
into three segments which are predecoded by the CMOS decoders at the bottom of the

Figure. The partitioning shown was carefully selected to minimize the decoding delay.
The outputs from the predecoders are then combined using dynamic 3-input NAND gates
to produce the fully decoded array of word line signals. In order to resolve charge sharing

problems, exposed in dynamic 3-input NAND gates, we also precharge some internal nodes
during the precharge phase.

A challenging part of the design involved the floorplanning of the seven decoders for
each bank. As Figure 9 shows, every decoder uses two columns of PMOS devices to

precharge its internal and output nodes. This mix of PMOS columns with the NMOS de-
vices in the NAND gates would result in increased area consumption if we were to place

the seven decoders one next to the other. Additionally, the decoding speed would be deter-
mined by the slowest decoder which would be the one farthest from the memory array.
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Figure 9: The 7-bit address decoder uses three predecoders. The address is partitioned into three

segments which are separately predecoded by three static CMOS decoders. The resulting signals

are then combined, using dynamic 3-input NAND gates, to pull down one of the 128 word lines.

We were able to solve these problems by interleaving the predecoders of the seven
decoders in the way shown in Figure 10. Letters A to G are used to denote the decoder

that each predecoder belongs to. As we can see the PMOS devices are combined into two
columns that are shared by all decoders. Also, the predecoders of each decoder are equally

spaced from one another resulting in smaller propagation delay.

4.5 Memory Array

The memory array in each bank consists of 128 words, where a word consists of 64 memory

cells (bits). Figure 11 shows the schematic of a generic memory cell, as it was used. Each
bit value is stored in a cross-coupled inverter pair with weak PMOS transistors and strong
NMOS transistors, and is accessed by three write and four read ports. Each write port

consists of a write word line, and two write bit lines holding the value to be written and its
inverse. When both write bit lines are charged to VDD, access to the cell is disabled. Each

read port consists of a read word line and a read bit line which holds the cell value. As we
will show shortly, a single read bit line is sufficient to read the value of the cell fast enough,
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Figure 10: Physical placement of the seven decoders of each bank. Their predecoders are in-

terleaved to reduce area consumption and increase decoding speed. The two columns of PMOS

transistors are used by all seven decoders.

while reducing significantly the cell area. The layout of the memory cell is very compact
since the word lines and bit lines are as close spaced as possible. In the next two sections
we will describe in detail how a cell is written and read.

rbl1wbl1
wbl2

wbl0

wwl2
wwl1
wwl0

rwl0

rwl2

rwl1

rwl3

rbl2
rbl3

wbl2
wbl1
wbl0 rbl0

Figure 11: The schematic of the memory cell with four read and three write ports. The read port

uses a single bit line, contrary to most designs that have two bit lines per read port.

Write Operation In order to write a cell, one of its three write word lines needs
to be charged to VDD, while the appropriate pair of bit lines is loaded with the bit value

to be written and its inverse. If both write bit lines are charged to VDD the cell value
remains unchanged. This property is used in order to mask write operations in 16-bit word
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boundaries, using a 4-bit mask. When a bit of the write mask is set to 0 all the write bit lines

of the corresponding 16-bit subword are charged to VDD, preventing all write operations to
that subword.

Notice that disabling write operations in this way leads to minimal static power con-
sumption. The reason is that one of the two NMOS transistors of the cross coupled inverters

will try to discharge the write bit line, at the same time that the write mask charges it to
prevent the write operation.

One more thing to notice is the race condition between the write bit lines and the write

word line. If the word line is enabled before the bit lines of the masked-out subwords have
been charged, old bit line values will accidentally be written to these subwords. For this
reason, all write bit lines are precharged in the clock phase before the actual write operation

takes place.

Figure 12 shows the logic used to drive each write bit line. The latch-charge flip-flop
latches its input at the positive edge of the clock and precharges its output when clock is

low. As a result the internal mask, that is fed to the NAND gates, is discharged and both
write bit lines are precharged during φ̄. The write operation takes place during φ, when the

internal mask has the correct value and the write bit lines are selectively discharged.

internal mask

wr_mask
(internal mask    data−in)

buffer

latch−charge FF

WBL

φ

φ

buffers

φ

WBL

connected to 16 bits

data−in

NAND gates

Figure 12: The schematic of the logic that sets the write bit lines. The latch-charge flip-flop

discharges the internal mask when the clock is low, which causes the write bit lines to be precharged,

thus preventing any write operation until the actual values are set at the outputs of the data-in flip-

flops.

The 3-stage buffer at the output of the memory element plays dual role. First, it is

needed due to the large fan-out of the latch-charge flip-flop. Second, it is used to delay
the charging of the internal mask until the data input to the NAND gates is stable. In this
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way, glitches at the write bit lines and their associated power consumption are avoided.

Moreover, since the NAND gates may only discharge their outputs during the evaluation
phase φ, a single pass-transistor instead of a more complex transmission gate is sufficient.

Figure 13 shows the timing diagram of the write operation. During φ̄, the 4-bit internal
mask is discharged, causing the write bit lines to precharge. During φ, the mask bits are

selectively charged, causing selective discharging of the write bit lines, to allow access to
the correct subwords.

disch disch

prech

write word line

write bit lines

wr_mask/wr_din

φ

evalevalevaleval precheval prech prech

evaleval disch eval disch eval disch eval disch

evaleval disch eval eval eval disch

write write write write writewrite RF

wr_enable/wr_addr

internal mask

Figure 13: The timing diagram of the write operation. A word is written during the first half of

a cycle, while the write bit lines are precharged during the second half. In this way, we prevent

potential race conditions between the write bit lines and the write word lines.

Read Operation The two memory arrays of the vector register file perform read

operations in two phases. All the read bit lines are first precharged. The read operation
starts by asserting the word line of a read port. If the stored value is 0 the read bit line

is discharged. Sense amplifiers are used by most memory arrays to speed-up the read
operation. A number of important functions that influence the functionality, performance,

and reliability of the memory are attributed to the sense amplifiers. Differential amplifiers
[HS97] present numerous advantages over their single-ended counterparts, one of the most
important being the common-mode rejection [DP98] which makes them less sensitive to

noise. Sources of noise can be switching spikes on the supply voltages and capacitive cross
talk between word and bit lines. Single-ended sense amplifiers are usually more sensitive in

noise, but are simpler to implement and result in smaller memory arrays since they require
a single read bit line.
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For these reasons we used the single-ended sense amplifier of Figure 14. This simple

approach is fast and has good noise characteristics, as we will shortly explain. The sense
amplifier consists of the two inverters E and F in series. When the voltage of the read bit
line drops below the threshold of inverter E, the sense amplifier reads a 0, otherwise its

output stays at 1.

B

φ

S

F

D

E

precharge BL to        + VCVT

node P

C

C

RBL1RBL0
C< VT

A

VDD

VT

data−out  E

VT

Figure 14: Precharge and read the bit line using inverters connected in series. Separate inverter

pairs with different inverter thresholds are used for reading and precharging the bit line in order to

guarantee the correct functionality of the read operation. The read bit line is precharged slightly

above V TC . The low voltage swing of the read bit line speeds up the read operation and leads to

low power consumption.

Figure 14 also shows the precharge logic of the read bit line. This logic affects directly
the performance and functionality of the sense amplifier. PMOS transistors A and B and
inverters C and D are used to precharge the bit line. During the precharge phase the read bit

line is precharged slightly above threshold V TC of inverter C. This occurs because inverters
C and D switch as soon as the voltage of the read bit line exceeds V TC . Since the read bit

line is not precharged to VDD, both inverters connected to it consume static power. In
Section 6.2 we will show that this power is usually minimal.

Figure 15 shows the timing diagram of the read operation. First the read bit line is

precharged since both gates of the PMOS transistors A and B are charged to GND. Since
the threshold of inverter E is lower than the threshold of inverter C, data-out, as well as node
P, are precharged to VDD. As shown in Figure 15, the read bit line stops being precharged

when node P is precharged to VDD. In the next half cycle a 0 is read, as soon as the
corresponding read word line is activated, and therefore the voltage of the read bit line

drops below the thresholds of inverters C and E. This causes data-out to be discharged. If
a 1 is read the voltage of the read bit line stays the same and the voltage of data-out stays
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at VDD. The low voltage swing of the read bit lines results in a fast and low power read

operations.

V(RBL1)

V(data−out)

V(node P)

<VTC

>VTE

many idle cycles

currents

φ

precharge read 0 read 1

leakage

C SVT   + V

read 1

data−out stays at VDD
node P is discharged while           

Figure 15: The timing diagram of the read operation. PMOS transistor B is open at the start of an

idle period, and therefore the bit line is not precharged. Due to leakage current, the charge of the

read bit line leaks away, resulting eventually in switching inverters C and D, but not E and F because

V TE < V TC . As a result, PMOS transistor B closes and in the next precharge phase the read bit

line is precharged back to V TC + V TS . Therefore, data-out stays to VDD during the whole period.

The additional charge VS above V TC that the bit line is precharged to plays a critical
role since it affects the speed of the read operation, the static power consumed by the invert-

ers connected to the read bit line, as well as the noise immunity of the sense amplifier. The
larger the charge VS is, the smaller the static power consumption and the sense amplifier
noise sensitivity, but the slower the read operation will be. Charge VS is determined by the

strength of the PMOS transistors A and B and the delay of inverters C and D of Figure 14.
The stronger A and B are or the slower C and D are, the bigger VS will be. All transistors

involved were carefully sized to optimize timing and power consumption, while at the same
time ensure correct operation even with the worst-case device parameters.

The reasons why we had to use two inverter pairs, one to precharge the bit line and
one to read it, with different switching thresholds, are the bit line leakage current and noise

considerations. If the same inverter pair had been used for both purposes, then leakage
current or a small noise on the bit line voltage might cause an incorrect reading of the
memory cell value. However, if two inverter pairs are used, no such danger exists, as Figure

15 shows. If the charge of the read bit line gradually leaks away, it will get precharged
when it drops below V TC , without ever affecting the voltage on data-out, assuming that the

memory cell value is 1. Thus, the voltage difference between the voltage that the read bit
line is precharged to, which is determined by V TC , and threshold voltage V TE of inverter
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E provides a safety margin against bit line leakage current or noise.

4.6 Clock Trees

The clock generator of the VIRAM chip generates a global clock which is distributed to
the various blocks of the chip, one of which is the register file of each vector lane. Even

though different blocks are supposed to see the “same” clock, mismatches in wire lengths
can result in clock skew. The global clock is guaranteed to have a clock skew of at most

0.3ns and a rise and fall time of at most 0.2ns. Each block uses this global clock as the
input to its local clock trees, which should introduce an additional clock skew of at most

0.1ns.

In the register file, the clock signal connects to all flip-flops, latches, and precharge,
predischarge or evaluation transistors of the dynamic gates. The vector register file uses

four separate clock trees, each one producing a clock optimized for use by certain types of
flip-flops or latches.

The need for these four local clocks arises as follows. Figure 6 on page 10 shows the

different types of flip-flops and latches used in the design. As we see, they use both φ and
φ̄ as their clock inputs. In order to increase speed, the clock received by a positive edge-

triggered flip-flop should be optimized for a small rise time. Similarly, the clock received by
a negative edge-triggered flip-flop should be optimized for a small fall time. For example, a

latch-discharge flip-flop should ideally receive φ̄ with optimized negative edge as its clock
input. In a similar way, latches should receive a clock optimized for their latch phase, and
dynamic gates should receive a clock optimized for their evaluation phase. Optimizing only

one of the two clock edges allows for a clock tree design that uses inverters sized to favor
a certain edge, thus resulting in smaller area and reduced power consumption.

Figure 16 shows spice waveforms for the four different local clocks that are generated.
Each clock is either φ or φ̄ with optimized positive or negative edge. There is a fixed delay

between the global clock and the optimized edge of any local clock, which is 1.12ns when
simulated with a supply voltage of 1.3V and worst-case technology parameters.

The global clock is received in the center of the register file, where it is bufferred and

split into four clock trees, one per local clock. Each local clock is distributed in the vector
register file and buffered close to the clock inputs of the flip-flops or latches that it connects

to. Some local clocks are slightly modified according to the requirements of each block.
For example, the clock of the precharge logic in the 7-bit decoders was delayed in order
to avoid precharging the decoder outputs before their value is captured by the subsequent

latches.

In order to keep clock skew introduced by the local clocks at a minimum, the four clock
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Figure 16: Spice waveforms of the received global clock and the four locally generated clocks.

Each local clock is optimized for the positive or the negative edge of the global clock or its inverse.

There is a fixed delay of 1.12ns between the global clock and the four local clocks.
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trees were designed to be as balanced as possible. When a local clock reached an array of

closely spaced latches or flip-flops, it would not be practical to separately drive the clock
input of each individual latch or flip-flop of the array. Instead, their clock inputs are shorted
by connecting them all together, and the local clock will connect to several points of this

connection.

4.7 Floorplan

Figure 17 shows the floorplan of the register file, drawn slightly off-scale. It occupies a

rectangular area of 1.03mm × 1.93mm = 1.99mm2. The two memory arrays are the
largest blocks and occupy 50% of the total area. Another 20% is occupied by the address
decoders, 9% by the two mapping blocks, 12% by the flip-flops, latches and the precharge

logic of the bit lines, and 9% by the unused area on top of and below the read address
mapping block.

All address, enable and mapping input signals are routed to the left side of the register
file. The write data and mask inputs of all three write ports are routed to both the top and

the bottom of the register file, as the Figure shows, since they might be used by any of the
two banks. Finally, the read data outputs are generated between the two memory arrays
and are routed on top of the register file.
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Figure 17: The floorplan of the register file inside a vector lane. It occupies a total of 1.03mm ×

1.93mm = 1.99mm
2, with the memory arrays of the two banks being the largest blocks and

consuming 50% of this area.
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5 CAD Flow and Verification Approach

Figure 18 depicts the CAD flow used for the design and simulation of the vector register
file. The layout was done using the Cadence layout tools. Avant! starex tool was used to

extract a spice model with the ideal netlist of the layout, and starrc for a more accurate
spice model which included all the parasitics.

layout

hspice

design rules
check

hercules

cadence

ideal netlist
extraction

starex
parasitic

extraction

starrc

functional
verification

power

powermill

timemill

speed

timemill

functional verification    
timing

Figure 18: The CAD flow used for the design and simulation of the register file. Cadence layout

tools were used for the layout and Avant! extraction tools, starrc and starex, for the generation of

spice models with or without parasitics. Functional verification was performed at various levels of

block integration using hspice and timemill. Timemill and Powermill were also used for speed and

power measurements.

All blocks were individually simulated and functionally verified with hspice, using their
more accurate spice models. The largest scale of block integration that was verified using
hspice was the full path for writing and reading a single cell. However, simulating the

whole register file with hspice was too slow to simulate. Instead, we were able to simu-
late it using Synopsys timemill and powermill tools, which are less accurate but faster than

hspice. The functionality for the whole register file under different operating conditions
was mainly verified in timemill using its less accurate (ideal netlist) spice model. A num-

ber of operating conditions were created by varying supply voltage, clock frequency and
technology parameters. Timemill and powermill were also used with the more accurate

spice model in order to measure its speed and power consumption.

In order to automate and improve the coverage of the register file functionality verifica-

tion, we followed a randomized self-checking verification approach. As Figure 19 shows, a
Perl script was built to generate a random sequence of input test vectors, which are used to

stimulate the spice model of the register file. The simulation is then performed in timemill
and produces the output vectors that consist of the values on the data-out buses of the eight
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read ports. If these output vectors are correct the process starts over, otherwise the layout

is fixed to behave correctly.

A verilog behavioral model (not shown in the Figure) of the register file was also built
and verified against the layout design. Such a model is necessary to allow cosimulation of

the register file with the rest of the IRAM chip.

compare

output vectors
expected

start of test

perl

perl

timemill

change layoutrun new test

differentsame

input test vectors

stimulus.sp reg_file.sp

Cadence tools

register file
layout

output vectors
measured

merge

Avant! tools

Figure 19: Flowchart for the randomized self-checking verification approach. A Perl script is used

to generate random stimulus to the spice model of the register file and verify its functionality. The

process is repeated until a design problem is found, at which point the layout is fixed.

6 Performance

6.1 Speed

The maximum operating frequency of the vector register file was derived from simulations
performed with Timemill and Hspice. Since Hspice is significantly slower than timemill,
only parts of the design were simulated using it, while the full design was simulated with

the much faster Timemill. However, the part of the design simulated with Hspice was
sufficient to fully read and write one cell. Both tools verified that the vector register file

operates at the target frequency of 200 MHz and supply voltage of 1.3 V, with the worst-
case technology parameters.
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Figure 20 shows the maximum operating frequency of the vector register file as a func-

tion of the supply voltage for varying technology parameters. We derived the operating
frequency of our design for the worst-case (slowest), the typical, and the best-case (fastest)
technology parameters provided by IBM. The operating frequency changes almost linearly

to the supply voltage, as expected.
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Figure 20: Maximum operating frequency versus supply voltage for the worst-case, typical and

best-case technology parameters. The register file can operate at up to 300 MHz with the typical

technology parameters and a nominal supply voltage of 1.3 V.

Table 2 shows the delays of the various blocks in the register file for read and write
operations, at a supply voltage of 1.3 V with the worst-case technology parameters.

Write Operation Read Operation
decoder enabling 0.2ns address mapping 0.6ns

address decoding 0.7ns address decoding 0.7ns

WWL charging 0.4ns RWL charging 0.4ns

WBL discharging 0.9ns RWL sensing (read 0) 1.2ns

cell value loading 0.6ns data mapping 0.3ns

Table 2: The delays of the main operations performed by the register file, using the worst-case

technology parameters at 1.3 V supply voltage.
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6.2 Power

Low power consumption was one of the main challenges and considerations throughout the

design of the vector register file, and greatly influenced most of our design decisions, as
has already been discussed. When operating at the target clock frequency of 200 MHz and

supply voltage of 1.3 V, it consumes between 60 and 430 mW, depending on the frequencies
of read and write accesses. The VIRAM target applications are expected to generate about
4 read and 3 write accesses per cycle, in which case the estimated power consumption is

330 mW (the exact number also depends on the actual data values that are being written
and read).

Figure 21 shows the break-down of the power consumption into the individual blocks
of the design, for various access frequencies. The numbers shown are the average power

consumed during randomized simulations of the register file, at the nominal operating con-
ditions of 1.3 V at 200 MHz with typical technology parameters. In these simulations the
write and read addresses were randomly picked from a random set of 5 to 10 addresses,

write data values were set at random, and a write mask bit would disable a subword write
access with a 25% probability. Due to the small set of addresses used per simulation, the

same address would be often used for multiple read accesses and (at most) one write access
during a cycle. We will next briefly discuss the power consumed by each block.
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Figure 21: Power versus activity at 200MHz with a 1.3V supply voltage and the typical technology

parameters. A write operation per cycle consumes 30mW and a read per cycle consumes 15mW.

The write bit lines along with the logic that drives them (see Figure 12 on page 16) are
responsible for a big portion of the power consumption. They consume close to 30 mW
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for each additional write access per cycle, ranging from 6 mW when no write accesses

are performed, to 92 mW when all 3 write ports are constantly active. The power they
consume is due to the charging and discharging of the write bit lines. One small portion is
also attributed to the static power consumption caused by the write-mask when disabling

access to certain subwords.
The read bit lines consume 15 mW for each additional read access per cycle, ranging

from 0.4 mW when no read accesses are performed to 136 mW when all 8 read ports
are constantly active. Both dynamic and static power consumption contribute to these

numbers. Precharge logic and fast sense amplifiers were used in an effort to operate the
read bit lines in as low voltage swing as possible, and thus minimize the dynamic power
consumption which is usually the main contributor. However, this unavoidably resulted

in some minimal static power consumption, of 0.4 mW, by the inverters of the precharge
logic, as we discussed in Section 4.5, which is present even when the read ports are inactive.

Another source of static power consumption, which increases with the read activity, is the
one that results from using latches at the outputs of the address decoders (Section 4.1).

The clock consumes a constant of only 50 mW, which is a result of the extra effort that
went into designing the appropriate types of flip-flops or latches for each block (Section

4.1), and generating multiple optimized local clocks depending on their usage (Section
4.6).

Finally, the memory array and the periphery circuitry, that consists of the address de-

coders and the two mapping blocks, will consume at most 25 mW.
Figure 22 shows how the power consumption varies with the supply voltage for different

read and write activites. As expected, the power increases with V 2.
Figure 23 shows how power consumption is affected by varying technology parameters.

The reason why it stays practically the same is that varying the technology parameters
mainly affects the static power consumption, which is a small portion of the total. Using
the worst-case parameters results in slowing down the read bit line precharge logic, which

stops at a lower voltage of 0.77 V instead of 0.9 V with the typical technology parameters.
This value is closer to the switching threshold of the inverters connected to the read bit

lines, leading to up to 50mW of static power consumption. On the other hand, using worst-
case technology parameters also slows down the address decoders and leads to decreasing

the static power consumed by latching their outputs.
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Figure 22: Power versus supply voltage at 200MHz with the worst-case technology parameters.
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Figure 23: Power versus technology parameters at 200Mhz with a 1.3V supply voltage. The

power is practically independent of the technology parameters when the activity is high. The static

power of the inverters connected to the read bit lines is high with worst-case and slow technology

parameters, resulting in an increased power consumption when the activity is low.
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7 Related Work

Many register file designs are presented in the literature. Multi-ported register files play

a significant role for parallel processing of instructions in high-speed microprocessors or
digital signal processors (DSP).

The architecture of the vector register file, as well as the architecture of the whole IRAM

chip, was influenced by the design of T0 (Torrent-0) Microprocessor at the University of
California, Berkeley [Asa98], the first single-chip vector microprocessor. T0 is a compact

but highly parallel processor that can sustain over 24 operations per cycle while issuing
only a signle 32-bit vector instruction per cycle. The chip was implemented at a 0.8µm

technology with three metal layers and runs at 40MHz with a 5V supply voltage.

The T0 vector register file contains 16 vector registers, each holding 32 32-bit elements.
It is split into eight parallel 32-bit wide slices, one for each of the eight parallel lanes in the

vector unit. Each lane contains a total of 60 32-bit elements (15 vector registers with four
elements per vector register).

The T0 vector register file provides five reads and three write ports. Its storage is

partitioned across the eight lanes, using a single bank per lane. In contrast, the VIRAM
vector register file uses two banks per lane with half the number of total read ports per

bank. This results in potential conflicts when more than four read operations contend for
the same bank, but greatly improves speed, area and power consumption, as we discussed

in Section 2.

The address decoders of T0 vector register file are shared between the lanes, driving
global decoded word select lines across all lanes, where these selects signals are gated

locally with a per-lane enable signal to form local word selects. Our design used separate
decoders for each bank of the vector register file because driving global word select lines

would dramatically impact the timing.

The write through operation in T0 vector register file can be supported by adding ex-
ternal multiplexers. Such multeplexers would affect its performance, power and area. The

VIRAM vector register file supports this functionality internally as explained in Section
2.2.

Both vector register files have sigle-ended read ports and differential write ports. The
word and bit lines of T0 vector register file are time-multiplexed at twice the clock fre-
quency in order to provide both a read and a write access in the same cycle, using a small

number of word and bit lines. This technique saves area but requires self-timing with
dummy rows to provide the extra timing edges necessary to control read precharge and

write drive. Our design uses separate word and bit lines for each port. It would need more
design effort to support this technique and the dynamic periphery circuit would likely not
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VIRAM T0
Techn, Supply, Freq 0.18µm, 1.3V, 200MHz 0.8µm, 5V, 40MHz

Configuration 4 Lanes x 2 Banks 8 Lanes x 1 Bank

Elements 32 regs x 32 elems x 64 bits 16 regs x 32 elems x 32 bits

Size 8 KBytes 2 KBytes

Ports eight read / three write five read / three write

Conflicts Yes (rarely) No

Mapping blocks Yes No

Decoding seven decoders per bank 5 global time-multiplexed dec.

Write-through Internally supported Need of external muxes

bit/word line
time-multiplexing No Yes

Total area 997 Mλ2 = 8mm2 167.6 Mλ2 = 41.9mm2

Table 3: Differences between the VIRAM and T0 vector register files.

be suitable.

Table 3 summarizes the differences between the two designs.

IBM technology library [IBM00] provides macro-cells for register arrays. These regis-
ter arrays are multi-ported register files with asynchronous write and read functions. Each

write port has a write clock pin that specifies the start of a write function. In this way, when
the write clock pins are inactive the register file does not consume any power.

Using a gated input clock, the vector register file could consume minimal power when

it is idle. However, if any port is accessed the clock will consume about 50 mW, as shown
in Figure 21. If the vector register file had separate gated clocks per port, similar to the

write clock pins provided by the IBM register files, the clock power consumption would
depend on the number of ports that are used during a cycle. As a result, the clock would

consume less power, if some but not all of the ports were accessed. Since it would be hard
to generate a separate clock tree for each port and the clock power consumption is a small

portion of the total, we decided not to follow this approach.

8 Conclusions

VIRAM is a microprocessor optimized for multimedia applications by integrating vector

processing with embedded DRAM on a single chip. This report presented the vector regis-
ter file of this processor, which has a total capacity of 1024 64-bit words and provides eight
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read and three write ports. We described its architecture and discussed its implementation

in detail. We also evaluated its speed and power consumption. It operates at 200 Mhz with
a 1.3 V supply voltage and consumes 8 mm2 of area and 330 mW of power on average.
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Appendices

A Layout

The layout was implemented using CAD layout tools from Cadence. Our design is very
compact, using the first three metal layers from the six available. The first metal layer was
used for local routing and the second and third for vertical and horizontal global routing

respectively. In this way, routing was greatly simplified since we did not have to worry
about one direction colliding with the other. Figure 24 shows the layout of the memory

cell and Figure 25 shows an annotated layout of the whole register file that is included in a
vector lane.

Figure 24: Layout of the memory cell. The schematic for the cell can be seen in Figure 11.

B Simulation Results

The exact values of the quantities plotted in Figures 20, 21, 22 and 23, are included in
Tables 4, 5, 6 and 7 respectively.
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Figure 25: Annotated layout of the register file included in a lane. See Figure 17 on page 23 for

the corresponding floorplan.
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1.3V 1.6V 1.8V
worst-case 227MHz 294MHz 333MHz

typical 294MHz 357MHz 416MHz

best-case 357MHz 454MHz 500MHz

Table 4: Frequency versus supply voltage for the worst-case, typical and best-case technology

parameters.

Activity Clock WBL buf/FF’s RBL prech logic Mem arrays periphery total (mW)
0r/0w 49.7 6.3 0.4 0.7 1.8 59.0

1r/0w 49.7 6.2 18.2 7.9 4.0 86.0

0r/1w 49.7 36.5 0.4 23.5 4.2 114.4

1r/1w 49.7 36.5 18.3 30.4 6.9 141.9

2r/2w 49.7 58.6 37.5 65.9 9.8 221.6

2r/3w 49.7 89.7 37.4 90.5 12.2 279.5

4r/2w 49.7 59.1 71.8 79.9 14.2 274.8

4r/3w 49.7 92.2 70.4 101.8 16.3 330.6

8r/3w 49.7 92.5 136.6 129.0 25.4 433.2

Table 5: Power in milliwatts versus activity at 200MHz with the typical technology parameters.

1.3V 1.6V 1.8V
0r/0w 59.1 145.2 219.5

4r/3w 330.6 564.2 809.3

8r/3w 433.2 722.3 1040.2

Table 6: Power versus supply voltage at 200MHz with the typical technology parameters.

worst-case slow typical fast best-case
0r/0w 112.4 112.4 59.0 78.2 59.3

4r/3w 318.2 319.4 330.6 359.0 345.2

8r/3w 407.5 402.5 433.2 460.4 437.2

Table 7: Power versus device parameters at 200MHz with a 1.3V supply voltage.
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