
Cubic-time Parsing and Learning Algorithms

for Grammatical Bigram Models

Technical Report UCB==CSD-01-1148
Department of Computer Science

University of California, Berkeley

Berkeley, CA 94720

Mark A. Paskin

paskin@cs.berkeley.edu

June 20, 2001

Abstract

This technical report presents a probabilistic model of English gram-
mar that is based upon \grammatical bigrams", i.e., syntactic relation-
ships between pairs of words. Because of its simplicity, the grammatical
bigram model admits cubic-time parsing and unsupervised learning algo-
rithms, which are described in detail.

1 Introduction

This paper presents a probabilistic model of English grammar that is based upon
\grammatical bigrams", i.e., syntactic relationships between pairs of words. Be-
cause of its simplicity, the grammatical bigram model admits cubic-time parsing
and unsupervised learning algorithms, which are described in detail.

Like other probabilistic language models, the grammatical bigram model
ascribes a probability model to a formal notion of sentence syntax. We begin by
describing the dependency grammar formalism used by the grammatical bigram
model (Section 2) and then its probability model (Section 3). Then, we present
O(n3)-time parsing (Section 4) and learning (Section 5) algorithms.

2 Dependency Grammars

In this section, we outline the simple dependency grammar formalism upon
which the grammatical bigram model is based. The formalism described here
(which is the same used in [Eis00, Col99]) is impoverished compared to the

1

the quick brown fox jumped over the lazy dog

Figure 1: An example parse; arrows are drawn from head words to their depen-
dents. The root word is jumped; brown is a predependent (adjunct) of fox; dog
is a postdependent (complement) of over.

sophisticated models used in Linguistics; we refer the reader to [Hud90] for a
comprehensive treatment of English syntax in a dependency framework.

The primary unit of syntactic structure in dependency grammars is the de-
pendency relationship: a binary relation between a pair of words in the
sentence. In each dependency relationship, one word is designated the head,
and the other is its dependent. (Typically, di�erent types of dependency are
distinguished, e.g, subject, complement, adjunct, etc.; in our simple model, no
such distinction is made.) Dependents that precede their head are called prede-
pendents, and dependents that follow their heads are called postdependents.

A dependency parse consists of a set of dependency relationships that
satis�es three properties:

1. Every word except one (the root) is dependent to exactly one head.

2. The dependency relationships are acyclic; no word is, through a sequence
of dependency relationships, dependent to itself.

3. When drawn as a graph above the sentence, no two dependency relations
cross|a property known as projectivity or planarity.

The �rst two constraints ensure that when drawn as a graph (see Figure 1 for an
example), dependency relationships form a tree; the planarity constraint ensures
that a head word and its (direct or indirect) dependents form a contiguous
subsequence of the sentence.

The notion of head words originates in phrase structure grammars, where it
is often held that every constituent has one head word, and that its head word
is the sole (or primary) determinant of how the constituent may combine with
other constituents. (We will call this assumption the head word hypothesis.)
Examples of particular head words in English include:

� the head noun of a noun phrase, e.g., [The ugly duckling]NP swam away;

� the preposition of a prepositional phrase, e.g., He ran [to the store]PP;
and,

� the �nite verb of a verb phrase, e.g., They [played pool all day]VP.

The notion of a head word is exactly the same in dependency grammar, but it is
formulated in terms of dependency relationships instead of constituents: a head

2

word is the primary determinant of how all of its dependents (direct or indi-
rect) may be syntactically combined with other words to form a sentence. The
equivalence arises because the planarity assumption insures that a head word
and all of its (direct or indirect) dependents form a contiguous subsequence of
the sentence. Thus, there is a natural way to extract constituent structure from
a dependency parse: each word with all of its (direct or indirect) dependents
forms a constituent. For example, in Figure 1 we see that the constituent headed
by the noun dog is the noun phrase the lazy dog.

Before proceeding, it is worth identifying some
aws in this simple depen-
dency grammar formulation. The assumption that dependency parses are pla-
nar is akin to a context-free assumption, and therefore is violated by certain
(infrequent) English constructions. Moreover, the lack of an explicit notion of
constituency makes certain constructions, e.g., conjunctions, diÆcult to model.
These and other problems are handled in sophisticated dependency grammars
by augmenting the theory with further constructs; for the sake of simplicity, we
will satisfy ourselves with the simple dependency grammar described above.

In order to formalize our dependency grammar model, we will view sentences
as sequences of word tokens drawn from some set of word types. Let V =
ft1; t2; : : : ; tMg be our vocabulary of M word types. A sentence with n words
is therefore represented as a sequence S = hw1; w2; : : : ; wni, where each word
token wi is a variable that ranges over V . We use the notation

wi:j
4
= hwi; wi+1; : : : ; wji

as shorthand for contiguous subsequences of words. And, we use the notation
(i; j) 2 L to express that wj is a dependent of wi in the parse L.

Because it simpli�es the structure of our model, we will make the following
three assumptions about S and L (without loss of generality):

1. the �rst word w1 of S is a special symbol root 2 V ;

2. the root of L is w1; and,

3. w1 has only one dependent.

These assumptions are merely syntactic sugar: they allow us to treat all words
in the true sentence (i.e., w2:n) as dependent to one word. (The true root of
the sentence is the sole child of w1.) We will use the notation L

n to denote
the set of all dependency parses over sentences with n words that satisfy the
assumptions above.

3 Grammatical Bigram Probability Model

A probabilistic dependency grammar is a probability distribution P (S;L) where
S = hw1; w2; : : : ; wni is a sentence, L is a parse over S, and the words w2:n are
random variables ranging over V . (Recall that w1 = root by assumption.) Of

3

course, S and L exist in high dimensional spaces; therefore, tractable represen-
tations of this distribution make use of independence assumptions.

Conventional probabilistic dependency grammar models use the head word
hypothesis as an independence assumption; it implies that the lexical model can
be safely decomposed into a product over constituents:

P (S;L) =

nY
i=1

P (hwj : (i; j) 2 Li is the dependent sequence jwi is the head)

For example, the probability of a particular sequence can be governed by a
�xed set of probabilistic phrase-structure rules, as in [Col99]; alternatively, the
predependent and postdependent subsequences can be modeled separately by
Markov chains that are speci�c to the head word, as in [Eis96].

Consider a much stronger independence assumption: that all the dependents
of a head word are independent of one another and their relative order. This is
clearly an approximation; in general, there will be strong correlations between
the dependents of a head word. More importantly, this assumption prevents
the model from representing important argument structure constraints. For
example: many words require dependents (for example, prepositions); some
verbs can have optional objects, whereas others require or forbid them. However,
this assumption relieves the parser of having to maintain internal state for each
constituent it constructs, and therefore reduces the computational complexity
of parsing and learning.

We can express this independence assumption in the following way: �rst, we
forego modeling the length of the sentence, n, since in parsing applications it
is always known; then, we expand P (S;L jn) into P (S jL)P (L jn) and choose
P (L jn) as uniform; �nally, we select

P (S jL)
4
=

Y
(i;j)2L

P (wj is a [pre/post]dependent jwi is the head)

This distribution factors into a product of terms over syntactically related word
pairs; therefore, we call this model the \grammatical bigram" model.

The parameters of the model are

 xy
4
= P (predependent is ty j head is tx)

!xy
4
= P (postdependent is ty j head is tx)

We can make these parameters explicit by introducing the indicator variable

wxi
4
=

�
1 if wi = tx
0 otherwise

Then we can express P (S jL) as

P (S jL)
4
=

Y
(i;j)2L
j<i

MY
x=1

MY
y=1

�

 xy
�wx

i w
y

j

Y
(i;j)2L
i<j

MY
x=1

MY
y=1

�

!xy
�wx

i w
y

j

4

4 EÆcient parsing

Parsing a given sentence S consists of computing

L�
4
= argmax

L2Ln
P (L jS; n)

= argmax
L2Ln

P (L; S jn)

= argmax
L2Ln

P (S jL)P (L jn)

= argmax
L2Ln

P (S jL)

since P (L jn) is uniform.

Using a result by Yuret [Yur98], it is trivial to show that if f(n)
4
= jLn j, then

f(n) =
n� 1

2(n� 2) + 1

�
3(n� 2)

n� 2

�

As one would expect, exhaustive search for L� is intractible.
Fortunately, our grammar model falls into the class of \Bilexical Grammars",

for which eÆcient parsing algorithms have been developed. The parsing algo-
rithm we describe here is derived from the span-based chart-parsing algorithm
of [Eis00], and can �nd L� in O(n3) time.

4.1 Spans

A span is a portion of a dependency parse that covers a contiguous subsequence
of words wi:j with the span property: in the complete parse, no word in the
interior of the span, i.e., wi+1:j�1, has a parent outside the span. Formally, a
span over wi:j is a directed, acyclic, planar graph whose nodes are the words wi:j
with the property that all words in wi+1:j�1 have exactly one parent. A span is
connected if there is an undirected path between its endwords. A dependency
parse is therefore a connected span over the words w1:n.

Two adjacent spans that share an endword can be joined to form a larger
span, so long as at least one of them is connected. (If both were not connected,
their joining would strand words; i.e., there would be words that were unreach-
able from the new span's endwords). This longer span will be connected if both
of its subspans were connected; if it is not, it can optionally be closed by adding
an edge between its endwords wi and wj .

Spans play a role analogous to that of constituents in phrase structure pars-
ing: every dependency parse has a unique span decomposition. Consider a span
over the words wi:j , and let wk be the right-most word in wi+1:j�1 such that
there is an edge between wj and wk . (If there is no such word, let k = i+ 1.)
Because of the planarity property, wi:k and wk:j must also be spans. Therefore,
the span over wi:j can be composed by joining the subspans over wi:k and wk:j
and optionally closing the result, i.e., adding an edge between words wi and wj .

5

By this decomposition, the left subspan must have an edge between its end-
words or else consist of two words; spans with this property are called simple.
When the parser joins spans, it will require that the left span is simple in order
to ensure that each span is derived only once. The span decomposition of the
parse in Figure 1 is shown in Figure 2 (where a root word has been added).
Notice that in each joining, the left input span is simple.

doglazy

doglazylazytheover the

doglazythe

lazy dogthe

lazy dogover the

jumped over

over the lazy dog

jumped over

fox jumpedfoxbrown

foxbrown

brownquick

foxbrownquick

brown foxquick

the quick brown fox

quickthe

the quick brown fox

fox jumped

the quick brown fox jumped over the lazy dogjumped

jumpedfoxthe brownquick

jumpedfoxthe brownquick

dogover the lazyjumpedfoxthe brownquick

the

root

root

root

root

a

b

c

d

e

Figure 2: The span decomposition of the parse in Figure 1 (updated with a
root word). Each rounded rectangle represents a span; hollow-tipped arrows
between spans indicate that one is used to create another by a joining or closing
operation.

4.2 Span signatures

As usual, the key to eÆcient parsing is to use dynamic programming to avoid
constructing spans more than once. Doing so requires abstracting away all
information about a span that is irrelevant in deciding how it may participate
in larger spans. To that end, each span is characterized by a signature of the
form � = hi; j; bL; bR; si, where:

� i and j are the indexes of its endwords wi and wj (with i < j);

� s = T if the span is simple and s = F otherwise; and

6

� bL; bR 2 fT; Fg where bL = T i� wi has a parent within the span and
bR = T i� wj has a parent within the span.

The values of bL and bR (when combined with the span property) have implica-
tions about the internal structure of a span. We will examine each case, using
the spans in Figure 2 as examples:

� If bL = bR = F , then the span consists of two half-constituents; an example
is the span labeled a .

� If bL = T and bR = F , then wi is a descendant of wj ; the span labelled b

is an example.

� If bL = F and bR = T , then wj is a descendant of wi; the span labelled c

is an example.

� Finally, if bL = bR = T , then both wi and wj are descendants of a word
in the span's interior; the span property implies that that word must be
the root of the sentence. Because we are only interested in parses whose
root is w1, we will never derive a span with this signature.

For a sentence of length n, we will call signatures of the form h1; n; F; T; �i top-
level signatures, since such signatures characterize valid parses. Note that
the span labelled d in Figure 2 has a top-level signature.

4.3 Span operators

Our parser will build larger spans out of smaller ones by joining and closing
spans. To formalize these notions, we introduce four span operators, called
seed, join, close-left and close-right. The application of an operator to
a speci�c set of arguments is called an operation. Because signatures sum
up all the characteristics of a span necessary to produce larger spans, parser
operations take signatures rather than spans as input, and produce signatures
as well. If ! is an operation, we will write ! ! � to indicate that the operation
! produces a span with signature �.

The seed operator (which takes no span signatures as input) creates a new
unconnected, simple span over two adjacent words wi and wi+1:

seed(i)! hi; i+ 1; F; F; T i

The leaf nodes in the span decomposition of Figure 2 are the results of seed
operations.

The close-left and close-right operators take as input an unconnected
span and add an edge between its endwords; close-leftmakes the left endword
the parent of the right endword by adding an edge (i; j) to L:

close-left (hi; j; F; F; �i)! hi; j; F; T; T i

7

and close-right makes the right endword the parent of the left endword by
adding an edge (j; i) to L:

close-right (hi; j; F; F; �i)
i>1
�! hi; j; T; F; T i

These operators require that neither endword in their input has a parent within
the span. (If one or both did, the tree property or the span property would be
violated.) Additionally, the close-right operation requires that its input span
not start the sentence; this prevents w1 from being chosen as the dependent of
another word. In Figure 2, the span labelled b is the result of a close-right

operation; the span labelled e is the result of a close-left operation.
Finally, the join operator takes as input two spans that share an endword

and joins them:

join (hi; k; bL; b; T i ; hk; j;:b; bR; si)
i>1
�! hi; j; bL; bR; F i

This de�nition enforces that:

1. the input spans share an endword;

2. the shared endword has one parent; and,

3. the left input is simple (to ensure no span is constructed more than once|
see Section 4.1).

The join rule above only applies when the left input span does not start the
sentence; for example, the span labelled c was produced by the rule above. For
cases when it does, we de�ne two special join rules that ensure w1 will have
exactly one child:

join (h1; k; F; T; T i ; hk; n; F; T; si) ! h1; n; F; T; F i

join (h1; 2; F; F; T i ; h2; j; T; F; si) ! h1; j; F; F; F i

The span labelled d was produced by the �rst of these two rules, and the span
labelled a was produced by the second.

4.4 Derivations and dynamic programming

The operator presented in the previous section constitute an algebra over span
signatures which we will call the span signature algebra. A derivation D is
an expression in the span signature algebra; like operations, derivations evaluate
to span signatures. For example, consider the span labelled b in Figure 2; its
derivation is

D = close-right(join(seed(3);close-right(seed(4)))) (1)

As with operations, we will write D ! � to notate that the derivation D

evaluates to a span of signature �.

8

As with other algebras, we can represent expressions in the span signature
algebra (i.e., derivations) as trees, where the nodes are operations. For example,
the tree corresponding to expression (1) would look like that shown in Figure
3. Because our operations are de�ned in such a way to derive every dependency
parse exactly once, there is an isomorphism between dependency parses and
their corresponding derivations; thus, DL will identify the derivation that yields
parse L.

join(h7; 8; F; F; T i ; h8; 9; T; F; T i) ! h7; 9; F; F;F i

seed(8) ! h8; 9; F; F; T i

seed(7) ! h7; 8; F;F; T i

close-right(h7; 9; F; F;F i) ! h7; 9; T; F; T i

close-right(h8; 9; F; F;T i) ! h8; 9; T; F;T i

Figure 3: A tree representation of the derivation (1); its structure matches the
structure of subtree rooted by span b in Figure 2.

We can associate potentials with parser operations such that the probability
of a sentence given a particular parse is equal to the product of the potentials
of operations in the parse's derivation. For example, seed and join operations
do not make any edge commitments, so we set

�(seed(�))
4
= 1 �(join(�; �))

4
= 1

Close operations do make edge commitments; therefore, we set

�(close-left(hi; j; F; F; �i))
4
=

MY
x=1

MY
y=1

�

!xy
�wx

i w
y

j

�(close-right(hi; j; F; F; �i))
4
=

MY
x=1

MY
y=1

�

 xy
�wx

jw
y

i

If we de�ne the potential of a derivation D as the product of potentials of the
operations in D,

�(D)
4
=

Y
!2D

�(!) (2)

then we see that

P (S;L jn) = P (S jL)P (L jn) =
�(DL)

f(n)

Thus, in order to maximize the left hand side over L, it is suÆcient to �nd the
derivation DL with maximum potential, as de�ned by equation (2).

9

The derivations corresponding to spans with a particular signature will have
common subexpressions; building this shared structure once is what permits
us to explore all possible parses eÆciently. Derivations have an optimal sub-

structure property: the optimal derivation of a particular signature must
consist of an operation over the results of optimal sub-derivations; if it did not,
we could substitute a better sub-derivation and achieve a better result. There-
fore, for each signature �, our parser need only record the parse operation !�(�)
yielding the most likely derivation with signature � (and its probability ��(�))
in order to reconstruct the most likely derivation of the entire sentence.

Algorithm 1 Chart-parsing

Require: 8� : ��(�) = 0
for i 1 to n� 1 do
add(seed(i))
if i 6= 1 then
add(close-right(hi; i+ 1; F; F; T i))

add(close-left(hi; i+ 1; F; F; T i))
for length 2 to n� 1 do
for i 1 to n� length do

j i+ length

for k i+ 1 to j � 1 do
for bL; b; bR; s 2 fT; Fg do
�L = hi; k; bL; b; T i
�R = hk; j;:b; bR; si
if join(�L; �R) is de�ned then

add(join(�L; �R))
add(close-left(hi; j; F; F; F i))
if i 6= 1 then
add(close-right(hi; j; F; F; F i))

return extract-opt-parse()

proc add(!)
� evaluate(!)
if ! = seed(i) then
� 1

else if ! = close-left(�U) or ! = close-right(�U) then
� �(!)��(�U)

else if ! = join(�L; �R) then
� �(!)��(�L)�

�(�R)
if � > ��(�) then fcheck for a new best derivationg
��(�) �

!�(�) !

Algorithm 1 gives the chart-parsing algorithm. The extract-opt-parse()
subprocedure constructs the optimal parse by �nding the top-level signature �

10

with maximum optimal probability ��(�) and recursively backtracking through
the optimal derivation de�ned by !�(�). When close operations are encoun-
tered, edges are recorded in the parse. This algorithm requires O(n3) time and
O(n2) space.

5 Training the model

Suppose that we have a labelled i.i.d. data set

Dlabelled = f(S1; L1; n1); (S2; L2; n2); : : : ; (SN ; LN ; nN)g

where Sk = (w1;k ; w2;k; : : : ; wnk;k) and Lk 2 L
nk . The maximum likelihood

values for our parameters
 can be calculated by maximizing the likelihood
P (D j
) with respect to
 subject to some normalization constraints; we must
have

MX
y=1

!xy =

MX
y=1

 xy = 1 for all 1 � x �M (3)

Our likelihood P (D j
) can be written

P (D j
) =

NY
k=1

P (Sk; Lk jnk) =

NY
k=1

1

f(nk)
P (Sk jLk)

=

NY
k=1

1

f(nk)

Y
(i;j)2Lk
j<i

MY
x=1

MY
y=1

�

 xy
�wx

i;kw
y

j;k

Y
(i;j)2Lk
i<j

MY
x=1

MY
y=1

�

!xy
�wx

i;kw
y

j;k

To maximize P (D j
) with respect to
, we can equivalently maximize its log-
arithm:

logP (D j
) =

NX
k=1

� log f(nk) +
X

(i;j)2Lk
j<i

MX
x=1

MX
y=1

wxi;kw
y
j;k log

xy

+
X

(i;j)2Lk
i<j

MX
x=1

MX
y=1

wxi;kw
y
j;k log

!
xy

Let us introduce the following indicator variables:

ekij
4
=

�
1 if (i; j) 2 Lk
0 otherwise

11

Then, we must maximize

logP (D j
) =
NX
k=1

� log f(nk) +
X

1�j<i�nk

ekij

MX
x=1

MX
y=1

wxi;kw
y
j;k log

xy

+
X

1�i<j�nk

ekij

MX
x=1

MX
y=1

wxi;kw
y
j;k log

!
xy

subject to (3). Forming the Lagrangian and setting partial derivatives equal to
zero leads to the following maximum likelihood parameter estimates:1

b
!xy =

PN

k=1

P
1�i<j�nk

ekijw
x
i;kw

y
j;kPN

k=1

P
1�j<i�n e

k
ijw

x
i;k

(4)

b
 xy =

PN

k=1

P
1�j<i�nk

ekijw
x
i;kw

y
j;kPN

k=1

P
1�i<j�nk

ekijw
x
i;k

(5)

In the unsupervised acquisition problem, our data set has no parses:

Dunlabelled = f(S1; n1); (S2; n2); : : : ; (SN ; nN)g

Our approach will be to introduce a hidden variable Lk for each Sk and to
employ the EM algorithm to learn (locally) optimal values of the parameters
.
As we have shown above, the ekij are suÆcient statistics for our model; given
them, we can compute maximum likelihood estimates of the
 parameters.

Thus, our EM algorithm will repeatedly perform the following two steps:

� E-step (state estimation): compute the conditional expectation of the
suÆcient statistics ekij (denoted "

k
ij) given the training data and the current

value of the parameters;

� M-step (maximization of the expected complete likelihood): update the
parameters to maximize the likelihood of the data given the current values
of the "kij . (This is accomplished simply by substituting the computed "kij
values for ekij into equations (4) and (5).)

In describing the computation of the expected suÆcient statistics "kij , we �rst de-
�ne a useful quantity called a conditional signature probability; then we give an
eÆcient dynamic programming algorithm to calculate these quantities; �nally,
we relate the expected suÆcient statistics to conditional signature probabilities.

1In reality, the maximum-likelihood estimates are not very useful by themselves because
of the zero-frequency problem: many dependency relationships that are possible (yet infre-
quent) will not be present in the test set and will therefore be given zero probability in the
optimization de�ned above. A standard ad hoc smoothing solution seems to work quite well:
a Katz backo� model [Kat87] that uses Witten-Bell smoothing (i.e, Model C of [WB91]).

12

5.1 Inside, outside, and

conditional signature probabilities

First, let us de�ne some useful quantities:

� The inside probability �(�) of a signature � is the sum of the potentials
of all derivations D evaluating to �:

�(�) =
X
D!�

�(D)

� Let �out(�; S) be the set of derivations of S evaluating to a top-level
signature but which are missing a subtree evaluating to �. The outside
probability �(�) of � is the sum of the potentials of all these derivations:

�(�) =
X

D2�out(�;S)

�(D)

� The conditional signature probability P (� 2 D jS) of � is the proba-
bility that an operation yielding a span with signature � is present in the
derivation given the sentence.

(Note that the inside and outside \probabilities" are actually potential functions,
and not probability mass functions; however, we will follow convention in this
abuse of terminology.) Figure 5.1 gives a picture of how the inside and outside
probabilities relate to a generic derivation.

�(�)

�

�(�)

Figure 4: An iconic depiction of the inside and outside probabilities.

From the de�nitions of the inside and outside probabilities, we see that the
joint probability of a sentence S and a span with signature � appearing in its
derivation is:

P (� 2 D;S jn) =
X

L:�2DL

P (L; S jn) =
1

f(n)

X
L:�2DL

P (S jL)

=
1

f(n)

X
D:�2D

�(D) =
�(�)�(�)

f(n)

13

Furthermore, we can compute the probability of a sentence S as

P (S jn) =
X
L2Ln

P (S;L jn) =
1

f(n)

X
L2Ln

P (S jL) =
1

f(n)

X
top-level

signatures �

�(�)

Thus, if we can compute the inside and outside probabilities, we can compute
the conditional signature probability

P (� 2 D jS) =
P (� 2 D;S jn)

P (S jn)
=

�(�)�(�)P
s2fT;Fg

�(h1; n; F; T; si)
(6)

of any �.

5.2 An eÆcient Inside-Outside algorithm

We can derive a dynamic programming algorithm to compute the conditional
signature probabilities in analogy to the Inside-Outside algorithm for PCFG
state estimation [LY90]. Let us start by expressing the inside probabilities via
a recurrence:

�(�) =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

1 if � = hi; j; F; F; T iP
�U such that

close-left(�U)! �
is de�ned

�(�U)�(close-left(�U)) if � = hi; j; F; T; T i

P
�U such that

close-right(�U)! �
is de�ned

�(�U)�(close-right(�U)) if � = hi; j; T; F; T i

P
�L; �R such that
join(�; �R)! �

is de�ned

�(�L)�(�R)�(join(�L; �R)) if � = hi; j; �; �; F i

Because the inside probabilities are de�ned in terms of a bottom-up recurrence,
our chart parsing algorithm can be modi�ed in order to compute them at mini-
mal extra cost. We introduce variables �(�) which store the inside probabilities
(and are initialized to zero) and update the add(!) procedure as shown in Al-
gorithm 2. This change does not a�ect the time or space complexity of the
parsing algorithm.

Using the inside probabilities, the outside probabilities can be computed by
top-down recursion. Consider a �xed operation ! (yielding a signature �) and
its role in a �xed derivation D. Depending upon the value of �, ! might have
served as the left or right child of a join operation, and it might have served as
the child of a close-left or close-right operation. Since only one of these
cases occurs in any �xed D, the outside probability of � can be computed as
the sum of the outside probabilities computed when these cases are considered

14

Algorithm 2 Reimplementation of add that computes inside probabilities

proc add(!)
� evaluate(!)
if ! = seed(i) then
� 1
�(�) 1

else if ! = close-left(�) or ! = close-right(�) then
� P (!)��(�)

�(�)
+
 P (!)�(�) fa

+
 b is shorthand for a a+ bg

else if ! = join(�L; �R) then
� P (!)��(�L)�

�(�R)

�(�)
+
 P (!)�(�L)�(�R)

if � > ��(�) then fcheck for a new best derivationg
��(�) �

!�(�) !

return �

exclusively:

�(�) =
X

D2�out(�;S)
join(�;�)2D

�(D) +
X

D2�out(�;S)
join(�;�)2D

�(D) +
X

D2�out(�;S)
close-left(�)2D

�(D) +
X

D2�out(�;S)
close-right(�)2D

�(D)

=
X

�R such that
join(�;�R) ! �J

is de�ned

�(�J)�(�R)�(join(�; �R))

+
X

�L such that
join(�L; �) ! �J

is de�ned

�(�J)�(�L)�(join(�L; �))

+
X

�C such that
close-left(�) ! �C

is de�ned

�(�C)�(close-left(�))

+
X

�C such that
close-right(�) ! �C

is de�ned

�(�C)�(close-right(�))

Thus, we have a top-down recursion, because the outside probability of each
signature can be computed using the outside probabilities of signatures that are
\larger". Our base case for this recursion is that for all top-level signatures �,
�(�) = 1. Algorithm 3 is a top-down dynamic programming algorithm that
computes the outside probabilities in O(n3) time and O(n2) space.

5.3 Calculating "kij with conditional signature probabilities

The conditional probability of an edge (i; j) being in the parse given the sentence
is equal to the conditional probability of a close-left(hi; j; F; F; �i) operation

15

Algorithm 3 Outside Algorithm

Require: �(�) = 0 for all �
for s 2 fT; Fg do
�(h1; n; F; T; si) 1

for length n� 1 down to 1 do
for i 1 to n� length do

j i+ length

s (length = 1)

�(hi; j; F; F; si)
+
 �(hi; j; F; T; T i) � �(close-left(hi; j; F; F; si))

�(hi; j; F; F; si)
+
 �(hi; j; T; F; T i) � �(close-right(hi; j; F; F; si))

if length > 1 then
for bL; bR; s 2 fT; Fg do
� hi; j; bL; bR; si
for k i+ 1 to j � 1 do
for b; sR 2 fT; Fg do
�L hi; k; bL; b; T i
�R hk; j;:b; bR; sRi
if � is a valid signature and join(�L; �R) is de�ned then

�(�L)
+
 �(�R) � �(�) � �(join(�L; �R))

�(�R)
+
 �(�L) � �(�) � �(join(�L; �R))

appearing in the derivation (if i < j) or a close-right(hj; i; F; F; �i) operation
appearing in the derivation (if j < i). However, these operations are uniquely
identi�ed by their output signatures, i.e.,

P (close-left(hi; j; F; F; �i) 2 D jS) = P (hi; j; F; T; T i 2 D jS)

P (close-right(hi; j; F; F; �i) 2 D jS) = P (hi; j; T; F; T i 2 D jS)

Thus, we can compute "kij as:

"kij
4
= E[ekij jS] = P (ekij = 1 jS) =

�
P (hi; j; F; T; T i 2 D jS) if i < j

P (hi; j; T; F; T i 2 D jS) if j < i
(7)

Therefore, the E-step proceeds as follows:

1. Compute the inside probabilities.

2. Compute the outside probabilities using the inside probabilities.

3. Compute the "kij using equations (7) and (6) and the inside and outside
probabilities.

This computation requires O(n3) time and O(n2) space.

16

References

[Col99] Michael Collins. Head-driven Statistical Models for Natural Language

Parsing. PhD thesis, University of Pennsylvania, Philadelphia, Penn-
sylvania, 1999.

[Eis96] Jason M. Eisner. An empirical comparison of probability models for de-
pendency grammars. Technical Report ICRS-96-11, CIS Department,
University of Pennsylvania, 220 S. 33rd St. Philadelphia, PA 19104{
6389, 1996.

[Eis00] Jason Eisner. Bilexical grammars and their cubic-time parsing algo-
rithms. In Harry Bunt and Anton Nijholt, editors, Advances in Prob-

abilistic and Other Parsing Technologies, chapter 1. Kluwer Academic
Publishers, October 2000.

[Hud90] Richard A. Hudson. English Word Grammar. B. Blackwell, Oxford,
UK, 1990.

[Kat87] S. M. Katz. Estimation of probabilities from sparse data for the lan-
guage model component of a speech recognizer. IEEE Trans. Acoustics,

Speech, and Signal Processing, ASSP-35(3):400, 1987.

[LY90] K. Lari and S. J. Young. The estimation of stochastic context-free
grammars using the Inside-Outside algorithm. Computer Speech and

Language, 4:35{56, 1990.

[WB91] Ian H. Witten and Timothy C. Bell. The zero-frequency problem: Es-
timating the probabilities of novel events in adaptive text compression.
IEEE Transactions on Information Theory, 37:1085{1094, 1991.

[Yur98] Deniz Yuret. Discovery of Linguistic Relations Using Lexical Attrac-

tion. PhD thesis, Massachusetts Institute of Technology, May 1998.

17

