
SafeTP: Transparently Securing FTP Network Services

Dan Bonachea and Scott McPeak
CS Division, EECS Department

University of California, Berkeley
{bonachea,smcpeak}@cs.berkeley.edu

Report No. UCB/CSD-01-1152

February 2001

Computer Science Division (EECS)
University of California
Berkeley, California 94720

SafeTP: Transparently Securing FTP Network Services
Dan Bonachea and Scott McPeak

Computer Science Department
UC Berkeley

Berkeley, CA 94720

U.C. Berkeley Tech Report ID: UCB/CSD-01-1152

Abstract
One of the most challenging practical aspects of providing end-
to-end network security for legacy client-server protocols such
as non-anonymous FTP (File Transfer Protocol) is convincing
end users to actually use the secure alternatives, rather than
abandoning them in favor of simpler, more familiar, or more
fully featured insecure clients. A number of secure alternatives
to the FTP protocol have been developed, but thus far have met
with only limited success – we feel this is primarily due to the
fact that these solutions almost universally require the end user
to learn a new, unfamiliar client interface or tweak complicated
settings in order to make the security work. The average end
user is interested in maintaining the security of their account,
but is unwilling to invest a significant effort to setup a
complicated system or the time to learn a whole new interface.

SafeTP is a unique new FTP security system that strikes at the
heart of this problem by providing completely transparent FTP
security for users of Microsoft Windows1. SafeTP operates by
installing a transparent proxy in the Windows networking stack
which detects outgoing FTP connections from any legacy
(insecure) Windows FTP client, and silently secures them using
modern cryptographic techniques (the server must also support
SafeTP in order for a secure connection to be successfully
established). SafeTP is 100% compatible with existing
(insecure) FTP servers, and will operate in an insecure mode if
the server does not yet support the SafeTP protocol. One key
feature of the SafeTP client proxy is that it was designed to be
completely transparent to the client FTP application. This way,
users can reap the benefits of FTP security, while continuing to
use their existing FTP software.

Since its recent release on the internet, SafeTP has become
extremely popular and is rapidly gaining acceptance in a
diverse user community that includes numerous corporations,
educational institutions and private users. In this paper, we
describe the design of SafeTP and our experiences in
implementing and maintaining this successful system. We
discuss various challenges encountered in designing a fully
transparent and interoperable security layer, and the solutions
we implemented. We also describe various aspects of the

1 The transparent client runs on MS Windows 9x/ME/NT/2000.
A non-transparent, command-line SafeTP client is also
available for UNIX. The SafeTP server proxy is available on
UNIX and Windows NT/2000. All are freely available for
download on the web (see [BM98] for details).

hybrid public-key and shared-key cryptosystem used to provide
confidentiality, integrity, and authenticity for FTP sessions.

1. Introduction:
FTP is Insecure
This section presents some problems with FTP as it exists
today, as motivation for the solution.

1.1 FTP Compromises Passwords
File Transfer Protocol (FTP) [RFC 959], is commonly used to
transfer files from one system to another. It is convenient in a
wide range of circumstances because it does not require any
initial mutual trust relationship, as opposed to, say, NFS [RFC
1094].

However, this flexibility
comes at a price: the user
must enter a username and
password at the start of
every session. What’s
more, this information is
sent over the network in
the clear.

These characteristics make FTP particularly vulnerable to an
eavesdropping attack, such as packet sniffing. Anybody on the
network between the user and the server, with sufficient access
to put a network card in promiscuous mode, can easily get your
password. As a result, insecure FTP has been recognized as one
of the largest remaining security holes in many server systems.

1.2 Data is Sent in the Clear
A problem of secondary importance to the compromise of one’s
password, is the privacy, integrity, and authenticity of the FTP
data itself.

With unprotected FTP, the data is sent in the clear, just like the
password. Additionally, unprotected FTP is particularly
vulnerable to unintended corruption of data, because it signals
end-of-file by closing the TCP connection.2 Such a closure
need not be the result of a hack; any network outage that causes
connection closure (e.g. a modem that hangs up) in the middle
of a download will have the same effect.3

2 FTP uses one connection for all control information during
the session. However, it uses a separate connection for each
data transfer, including directory listings.
3 Most FTP clients protect against losing part of a file by
waiting for the 226 (file transfer successful) reply from the

Client Server

USER johndoe
PASS yomama

220 User?
331 Pass?

Joe Hacker
Jackpot!

Figure 1 : Joe Hacker

2

Finally, after the user issues a PORT4

command, anyone can potentially connect to
that port and send data, which the FTP client
will happily write to disk. This could be used
to, for example, substitute a Trojan horse for a
downloaded program.

1.3 Existing Solutions are Non-ideal
Of course, there currently exist encrypted data
transfer agents. Some, such as HTTPS do not
use FTP at all. Others, such as FileDrive
[Diff98], carry on a normal FTP session via a
secure sockets implementation such as SSL
[Nets98]. Still others, such as Kerberized FTP
[SNS88], require a special client application
which can handle Kerberos security tickets and
negotiate secure sessions. The basic problem
with these alternatives is the lack of support for
interoperability with existing FTP clients and
servers, and the lack of transparency for users.

On the client side, alternative solutions require
learning and using new client software.
Inexperienced users are inconvenienced by
having to learn a different interface, and
experienced users are often frustrated at the
lack of features that they so valued in their
favorite client.

On the server side, installing a new daemon is
yet another potential avenue for whole-system compromise.
New implementations of server daemons must typically run as
root for part or all of their running time, which is by itself a
security risk. Further, the correct installation and support of a
new system is a drain on limited resources.

2. The Solution: SafeTP
In this section we outline the high-level design of the SafeTP
system, which had three primary goals: security, transparency
and interoperability with existing FTP services.

Security
The new system must protect users’ passwords.

We also wanted to protect users’ data, though this should be
optional if the performance impact is significant.

server, before they tell the user the transfer succeeded. But
since the 226 usually precedes the actual end of file by a few
kilobytes, the ends of files are still vulnerable (i.e. the control
and data channels are not synchronized).
4 FTP file transfers are preceded by a PORT command, which
tells the server to which port on the client machine it should
connect. The client then sends, e.g., RETR (retrieve file) or
LIST (directory listing), which causes the server to actually
begin the transfer.

Transparency
The new system should appear to end users just like the old.
Users should not have to switch to new client software, or
connect to a different server (or different port on the same
server), etc. Ideally, end users need not even be aware that
their connection is being secured. Finally, system
administrators should be able to continue using their current
version of ftpd,5 which is presumably tried and true.

RFC 959 Interoperability
SafeTP users should be able to connect to existing (insecure)
FTP servers without telling the software in advance. They
should be able to seamlessly and simultaneously connect to both
secure and insecure servers.

Similarly, SafeTP servers must be able to support insecure
client software. It is clear that any attempt to secure a widely-
used service must offer a smooth transition path, and support
for existing client software is absolutely essential for this.
However, the server should also allow administrators to enforce
connection security requirements as they see fit.

Our solution is to use transparent proxies on both the client and
the server (see Figure 2). That is, we interpose an additional
layer between the legacy software and the network, but hide the
presence of that layer from both.

5 ftpd is the name of the normal UNIX FTP daemon.

Network

Standard
Winsock-Compliant

FTP Client

Winsock 2.0

Transparent Proxy

Network Interface

Network Interface

Legacy ftpd
Server

Port 21 Port x

RFC
959

SPI
Interface

RFC
2228

Server
File System

Client
File System

RFC
959

RFC
2228

sftpd Server

UNIX

Windows

Crypto
Keys

UNIX

Crypto
Keys

Windows

SafeTP Process

FTP
Traffic

Non-FTP
Traffic

John Doe

Figure 2: High Level System Architecture of SafeTP

3

The proxies communicate via a secure protocol. The framework
for the protocol is specified by RFC 2228 [RFC 2228], and the
details are specified by the SafeTP protocol [MB98]. The
protocol’s full name, as used during the negotiation, is “X-
SafeTP1.”6 For brevity, we refer to it as X-SafeTP1 from here
forward.

Each proxy allows the legacy software do its job normally. The
server (typically) does not care, and the client can not know,
that it is talking to a proxy. The SafeTP client proxy
implementation is very careful to hide itself from the client,
because it must interoperate with a wide variety of client
software. The SafeTP server proxy can afford to be less
transparent, because the variety of server software is less
diverse and the administrator configuring it is assumed to be
somewhat knowledgeable. The proxies encapsulate the
communications in the secure protocol.

The proxies also accept the responsibility of distinguishing
secure RFC 2228 peers from insecure RFC 959 peers. This
determination is made before the legacy software gets involved,
so the proxy always know how to maintain the illusion. When
operating in RFC 959 compatibility mode, both proxies simply
forward control traffic from one peer to the other, with minimal
further examination (just enough to maintain the illusion).

The next three sections examine the goals of transparency,
interoperability, and security in more detail. We then
summarize some of the policy decisions in SafeTP. Finally, we
present a performance evaluation and our conclusions.

3. Transparency
3.1 Completely Transparent Client Proxy
One key feature of the SafeTP client proxy is that it was
designed to be completely transparent to the client FTP
application. The purpose was to allow users to reap the benefits
of FTP security, while continuing to use their existing FTP
software. This transparency was accomplished using the
Winsock 2.0 SPI interface [Micr97], which allows software
“service providers” (such as our client proxy) to register with
the OS to intercept socket calls (e.g. socket(), connect(), recv(),
send(), etc.) and replace or augment the default behavior with
additional processing. Winsock 2.0 comes with Windows
98/2000 and NT 4.0, and can be quickly and easily installed on
Windows 95.

The client proxy implementation was divided into two modules:
a call-interception DLL layer which implements the SPI
interface and a proxy application that implements all the RFC
2228 and X-SafeTP1 semantics. This separation was made
primarily for transparency reasons - the SPI interface implies
the service provider shares an address space, TCP stack and

6 RFC 2228 specifies that names be registered with the IANA
(http://www.iana.org), and that protocols not registered must
begin with “X”. IANA registration of X-SafeTP is still
pending.

other per-process resources with the Winsock client application
(i.e. the FTP client software). This makes it very difficult for
the proxy code to invisibly carry on its network activities
without affecting the Winsock-TCP state of the FTP client. By
isolating the proxy code in a separate process, we’ve made it
virtually impossible for Winsock clients to detect the presence
of the call-interception layer. Furthermore, the separation
optimizes network startup time - the layer code is very
lightweight, but the proxy code takes about 2 seconds to load
and startup. By placing the proxy code in a separate,
multithreaded process, a single instance can persist across
multiple FTP sessions, handling all the FTP traffic for the
system while amortizing a single startup cost.

Because the layer has no way to determine a priori whether a
particular network application will open an FTP connection, it
must run beneath all network applications and passively
monitor their connection behavior, intervening at the correct
moment if an FTP connection is initiated and redirecting this
connection to the proxy process for handling. Once redirected,
the layer takes steps to maintain the illusion that the Winsock
application is connected directly to the remote server, such as
intercepting the getpeername() function and substituting the
server’s address for the proxy’s.

Table 1 lists the socket calls that are monitored by the layer,
and gives the overhead it imposes on FTP (with data channel
protection) and non-FTP sockets for those calls. With the
exception of the first socket() call made by an application
(which causes the layer to be loaded by the OS) the overhead
imposed on non-FTP network applications is too small to be
measured using the millisecond-granularity Windows clock.
When data channel protection is enabled, the accept() function
has a 2 ms overhead because the incoming data connection is
being routed through the client proxy for decryption. The
getsockname() overhead is an artifact of the separation between
layer and proxy, but is called relatively infrequently by FTP
clients so it makes little difference.

3.2 Mostly Transparent Server Proxy
The SafeTP server proxy (sftpd) sits between the insecure ftpd
and the client proxy. The client proxy connects to sftpd at the
standard, well-known FTP port (21). sftpd then connects to
ftpd, which has been configured to listen on a different port.

During the initial negotiation, sftpd exchanges encryption
information with the client proxy. Once negotiation is
complete, sftpd proceeds to forward traffic back and forth,
encrypting and decrypting as necessary.

While the connection between sftpd and ftpd uses the insecure
RFC 959 protocol, this communication is assumed secure
because it never goes over the network; in this case, network
sockets essentially behave as an expensive form of interprocess
communication.

Installation of sftpd on a Unix machine is straightforward and
fully automated with installation scripts. First, /etc/services is
modified to direct ftpd to listen on a new TCP port other than

4

21. An entry for sftpd is added to /etc/services, at port 21.
Finally, an sftpd entry is added to /etc/inetd.conf, which will
cause inetd to spawn sftpd when an incoming connection is
detected on port 21.

Since inetd, and not sftpd, listens to port 21, sftpd need not run
as root. Further, since it forwards FTP commands to ftpd,
which performs the bulk of the “real” file work on user’s files,
sftpd doesn’t even need to assume the user’s identity. The only
file access sftpd needs is to its keys. Therefore, the ideal
configuration creates a new user (called, e.g., safetp), who may
access only his home directory, where the keys are stored,
readable only by the safetp user. We see this as an important
feature because it limits the potential for damage in the event
the sftpd process is somehow compromised.

3.3 Transparent Proxies in General
We feel transparent proxies are a general technique that can be
used to add security to existing insecure protocols and software.
It applies on the client side whenever the proxy can intercept
transport layer calls, and on the server side whenever the proxy
can intercept the inbound connections.

Under the above conditions, even a fairly primitive set of
proxies can secure a single TCP connection. However, multi-
connection protocols, such as FTP, that imply a trust
relationship across related parallel connections must be
interpreted at both ends by both proxies, to detect imminent use
of another connection. This requires the proxies to have some
knowledge of the semantics of the insecure protocol. In SafeTP,
for example, we interpret PORT and RETR (among others) to
secure each data connection. The asynchronous nature of the
parallel connections also implies an additional level of
engineering complexity required to provide a robust forwarding
layer that correctly handles all possible timings.

Interoperability also requires protocol knowledge. SafeTP takes
advantage of FTP’s request / reply model to insert an extra step
into the early stages of negotiation. A similar approach for a
protocol such as telnet could insert this request into the
terminal negotiation sequence.

4. Interoperability
This section examines the issues associated with providing
interoperability with the RFC 959 insecure FTP standard.

4.1 RFC 2228
RFC 2228 is an Internet standards track protocol, written by M.
Horowitz and S. Lunt, and published as a Request For
Comments (RFC) in October 1997. The standard proposes
extensions to RFC 959, which defines FTP as it is widely
deployed today.

RFC 2228 specifies a framework, not a complete protocol. It
defines the syntax for some new FTP commands and describe
what they generally mean in terms of security, but not how that
security is achieved. It is left up to the implementer to define
what RFC 2228 calls a “security mechanism,” which must

specify both the key exchange protocol (if there is one) and the
particular algorithms to use.

RFC 2228 defines eight new commands, which we summarize
here.

AUTH
The AUTH command requests that the server use a particular
named security mechanism. The server must agree to a
mechanism proposed by the client, or reject them all.

ADAT
The ADAT command is one half of the key-exchange protocol
framework. A negotiation sequence consists of one or more
AUTH’s and zero or more ADAT’s.

PROT
The PROT command enables data channel protection, and
specifies the level of protection desired.

PBSZ
The PBSZ command defines the maximum encryption block
size for data channel protection.

CCC
CCC is Clear Command Channel. It is used to disable control
channel protection, and is not recommended.

MIC, CONF, ENC
MIC, CONF, and ENC are three variants of a general encoded
request. They specify different levels of security for control
channel requests and replies. ENC is the most secure,
providing both integrity and confidentiality. RFC 959 FTP
commands are encapsulated inside MIC, CONF, and ENC
commands.

RFC 2228 also defines several new reply codes. The most
important are:

534: Security mechanism unknown
If the client tries to AUTH a mechanism that the server does
not know, it responds with a 534 reply. The client is then free
to try another mechanism, or give up.

234, 235, 334, 335: ADAT replies
These replies form the second half of the key-exchange
protocol. The different codes indicate whether the negotiation
is finished, among other things.

631, 632, 633: Protected replies
These are the counterpart replies to MIC, ENC, and CONF.
Protected requests provoke protected replies, to maintain the
security of both. RFC 959 FTP replies are encapsulated inside
631, 632, and 633.

4.2 Compatibility with RFC 959 Server
When the SafeTP client proxy connects to an FTP server, it
issues an AUTH command. If the server responds with a 500
(unknown) or 502 (unimplemented) error code, the client
deduces the server does not support SafeTP-secured
connections, and reverts to (insecure) RFC 959 compatibility
mode. The user can opt to receive a warning when this

5

happens, to prevent inadvertently transmitting their
login/password over an insecure session.

4.3 Compatibility with RFC 959 Client
When the SafeTP server proxy receives a connection, it relays
the legacy server’s initial 220 (hello) response, and waits for
the first request. If the first request is an AUTH, it proceeds
with RFC 2228 negotiation. If the first request is USER
(username) or ACCT (account identifier), the server reverts to
RFC 959 compatibility mode. The server proxy can optionally
be configured to refuse insecure FTP connections to enforce the
use of secure client connections.

5. Security
5.1 Cryptographic Algorithms
In this section we briefly describe the encryption algorithms
used in the X-SafeTP1 security mechanism. It is intended for a
reader with a basic, but not necessarily thorough,
understanding of modern cryptography (i.e. that the reader
knows the difference between public-key and shared-key
encryption). For each algorithm, we describe who created it,
what it does, and how we use it.

DSA: Authentication
Digital Signature Algorithm (DSA) is part of the Digital
Signature Standard (DSS), proposed by the National Institute of
Standards and Technology (NIST) [NIST94]. NIST has made
the algorithm publicly available, royalty-free. It is a public-key
signature and verification algorithm based on discrete
logarithms. An important feature of this algorithm is that each
signature uses a random number, k. If an attacker ever
recovers k, or ever sees two messages signed with the same k,
the private DSA key is compromised.

We use DSA for server authentication.

ElGamal: Public Key Encryption
ElGamal, invented by T. ElGamal, is a public-key encryption
algorithm that like DSA is based on discrete logarithms
[ElGa85]. It is publicly available, and not covered by any
patents. Like DSA, it uses a random number, k, for each
encryption. If k becomes known, the private key is
compromised.

We use ElGamal to encrypt the master session key.

Triple-DES: Shared Key Encryption
Data Encryption Standard (DES) is a shared-key, block cipher,
using 56-bit keys, standardized by the National Bureau of
Standards (now the NIST) in 1976 [BGK76]. Triple-DES, a
stronger version of DES, uses three 56-bit keys. A particular
optimization makes a brute-force attack on Triple-DES
comparable to a brute-force attack on a shared-key algorithm
with 112 bits.

We use Triple-DES to encrypt the ftp commands and data.

SHA1: One-Way Hash Function
Secure Hash Algorithm (SHA) is part of the Secure Hash
Standard (SHS), proposed by the National Institute of

Standards and Technology (NIST) [NIST94]. It is a one-way
hash function, similar to, but believed more secure than, MD5.
SHA1 is a slight variation on the original SHA.

We use SHA1 to construct the challenges, the master session
key, and the session keys themselves.

SHA1HMAC: Message Authentication
A Hash Message Authentication Code (HMAC) is a one-way
hash function, with a key that is required to compute and to
verify the digest. SHA1HMAC uses the SHA1 hash function,
and does something slightly more complicated than hashing the
key as well as the message, to produce the digest.

We use SHA1HMAC to protect the integrity of the ftp
commands and data.

Base64: ASCII Encoding of Binary Data
Base64 is a simple encoding scheme defined by RFC 2228.7 It
encodes three bytes of 8-bit data as four bytes of 6-bit data. The
intent is this 6-bit data will then survive the various mutations
applied by proxies, firewalls, and the like.

We use Base64 in the way prescribed by RFC 2228.
Specifically, we encode all encrypted requests and replies with
Base64.

5.2 Key Management
Keys are Not Encrypted on Disk
Keys are stored on disk (or, for the client, in the Windows
Registry) in unencrypted form. The rationale for this is
different for client and server.

On the server, it would be very inconvenient if the system
operator were required to type a password at the console to
decrypt the keys. It would require manual intervention on
every reboot. This is prohibitive.

On the client, it is conceivable that the user would type a
password to decrypt keys. However, the client’s key is simply
an ElGamal encryption key (as opposed to the server’s more-
important DSA authentication key); its compromise affects just
that user, rather than an entire user community. Furthermore,
regeneration of a key is a cost paid by just that user. Therefore,
we chose to rely on the physical security of the user’s machine.

Branded keys
In our system, DSA public keys are accompanied by the
server’s name, signed with the corresponding DSA private key.
For this purpose, the server name may be simply its host name,
or an organization name (e.g., “UCB CS Dept.”), or some
combination. The point is the key is permanently associated
with its creator’s human-readable name. We call this
association “branding.”

7 There are several other encodings in existence that also use
this name.

6

5.3 Key Exchange Protocol
In this section we explain the X-SafeTP1 key exchange
protocol. The rationale behind the design should become clear
in section 5.6 where we demonstrate how it defends against
various forms of attack.

Client: Connect
First, the client connects a socket to sftpd, at port 21.

Server: 220
inetd then accepts the connection, and spawns sftpd to handle
it. sftpd connects to ftpd’s port (as listed in /etc/services) and
inetd then spawns ftpd to handle this connection. ftpd sends an
initial 220 (hello) response, which sftpd forwards to the client.

Client: Mechanism Proposal
Upon receipt of the 220, the client sends “AUTH X-SafeTP1”.

Server: DSA Public Key
The server, seeing the AUTH command, recognizes that the
client understands the RFC 2228 protocol. Recognizing the
named security mechanism as well, it begins by sending, in a
334 (first ADAT) reply, its DSA public key. As mentioned
above, this public key is branded with the server’s name.

Client: ElGamal Public Key
The client tries to match the server’s DSA public key with keys
it has already seen. This is a crucial moment for the client in
terms of policy; see Section 6 (Policy) for more detail. For
now, we will assume that the client is happy with the server’s
DSA key.

The client sends, in an ADAT request, its ElGamal public key,
and a randomly chosen challenge string.

Server: Master Key
The server replies, in a 335 (middle ADAT), with its own
challenge string, the client’s challenge string, its IP address,
and a randomly chosen master key. The master key is
encrypted with the client’s ElGamal public key. The whole
message is signed with the server’s DSA private key.

At this point, the server computes the session keys from the
master key.

Client: Verify Challenge
The client compares its original challenge to what the server
sent. If they match, the server is authenticated. The client also
compares the server’s IP address to what was contained in the
server’s reply; these must also match. Finally, it decrypts the
master key using its ElGamal private key.

At this point, the client computes the session keys from the
master key.

The client then sends, as an ADAT request, the server’s
challenge string, encrypted with the client’s Triple-DES key.

Server: Verify Challenge
Finally, the server decrypts and compares what the client sent
against its original challenge string. If they match, the client is
authenticated (in the sense that the client cannot be a hacker

using a replay attack). The server completes the initial
negotiation phase by sending a 235 (negotiation complete)
reply.

Protect Data Channel (optional)
At this point, the client and server have a secure
communications link. However, the client may want to protect
the data channel as well. This requires two more RFC 2228
commands: PBSZ (protection buffer size) and PROT (data
protection level). Both are straightforward.

USER and PASS are Secure
The client’s commands, especially USER (username) and
PASS (password), will now be encrypted, as will the server’s
replies.

5.4 Protocol Block Packaging

Control Block
Every RFC 959 request and reply is tagged with a sequence
number and a flags block, signed with SHA1HMAC, encrypted
with Triple-DES, and encoded with Base64. Requests are
preceded by “ENC “, a new (for RFC 2228) FTP command that
means the request is encrypted. Replies are preceded by “632 “,
a new (for RFC 2228) reply code that means the reply is
encrypted.

Data Block
When data channel protection is on, the data is divided into
blocks. The size of the block is, in practical terms, between 4
kb and 128 kb. Each data block is tagged with a file and block
sequence number and a flags block, signed with SHA1HMAC,
and encrypted with Triple-DES. Each encrypted block is then
preceded by a 32-bit block length.

The end-of-file is indicated by encoding a block of zero length.
Both the server and client proxies stall the 226 (file transfer
succeeded) reply until they have received the EOF block. This
provision is not really security-related, but fixes the irritating
problem of distinguishing a prematurely closed connection
from the real end-of-file.

5.5 Random Number Generation
Strong (i.e. not predictable) random number generation is
central to our security system. DSA, ElGamal, both challenges,
and the key generation itself all require a source of
cryptographically strong random numbers.

During installation on both the client and server, the user is
asked to type some sentences. Entropy is extracted from the

"632 " "\r\n"

Base-64

3DES

Sha1HMac

RFC 959 FTP Command or Response
4-Byte

sequence number
4-Byte

flag block*

Figure 3: Control Block Packaging

4-Byte Block Length
(not including

 these 4 bytes)

3DES

Sha1HMac

File Data Block 4-Byte
sequence number

4-Byte
file number

4-Byte
flag block*

Figure 4: Data Block Packaging

7

variations in the timing of the user’s keystrokes and serves to
bootstrap the key generation process.

However, as the system is used over time, entropy is gradually
lost as the random number generator is used. So, our system
continues to gather entropy whenever the opportunity presents
itself. We sample a variety of sources, including mouse
position, window contents, start and connect times, network
latency, and disk access latency, among others. The entropy
from these sources is accumulated in a “pool” of randomness,
which is itself stirred by a one-way hash function.

5.6 Some Particular Attacks and Defenses
This section discusses some potential attacks and describes how
SafeTP defends against them. It is not meant as an exhaustive
list, simply an exposition of various aspects of the protocol.

Eavesdropping
A simple eavesdropping attack is defeated by the encryption of
data. First, the master session key is encrypted with ElGamal,
and after that everything is encrypted with a Triple-DES
session key. Only by attacking the algorithms themselves, or
the random generator (in the case of ElGamal), can an
eavesdropper learn more than the approximate data sizes and
conversation duration.

Modification
Attacks involving selective deletion, modification, or
retransmission of bytes in transit are more complicated. We
consider such an attack at the protocol negotiation level and at
the data block level.

During protocol negotiation, from the client’s point of view, the
danger is submitting their username and password to a hacker.
But this can only happen if the server can decrypt the username
and password, which requires the master key. If the hacker
supplied the master key, he would be unable to sign the server’s
2nd ADAT, because it requires the server’s DSA private key. If
he doesn’t, he cannot decrypt the master key, because it
requires the client’s ElGamal private key.

An alternative attack is to substitute data after the negotiation is
complete. However, doing so requires a SHA1HMAC key and
a Triple-DES key. Both require access to the master key,
which can only be set by the holder of the DSA private key, and
can only be read by the holder of the ElGamal private key.

Packet Replay
A possible replay attack is to repeat the last control request or
data block. This is defeated by including sequence numbers in
each request, reply, and data block.

File Replay
To prevent the attacker from replaying an entire file transfer
(block sequence numbers reset to zero each time), each file
transfer block includes a file sequence number.

Echo Replay
Another possible replay attack is to send the data just sent by,
say, the client, right back to the client. This is prevented by
Triple-DES and SHA1HMAC, since the client and server use

different keys for each. As an additional layer of security, each
request, reply, and data block contains a flags block, which
specifies (1) whether the sender is the client or the server, and
(2) whether this is a control or data block.

Session Replay
The final replay attack is a whole-session attack. If the hacker
records an entire session, he can then replay it for either the
client or the server. Both the client and the server protect
themselves against this attack by generating random challenge
strings. This forces the server to sign new data, and the client
to encrypt new data, for every session.

Coerced RFC 959 Fallback
A possible attack is to swallow all of the AUTH’s, forcing the
client and server to drop down into RFC 959 compatibility
mode. The first defense is for the client to refuse to drop down
if it has a DSA public key for that host. The second (optional)
defense is to disallow RFC 959 FTP connections altogether.

Denial of Service
Like all internet-based services, SafeTP is subject to denial of
service attacks. SafeTP is no more or less vulnerable to this.

5.7 The Weakness: Trust First Time
The main weakness of our protocol, present also in SSH
[SSH98], is that we trust the server we reach is actually the
server we intended to reach the first time we connect.
Assuming the first connection is not tampered with, the client
has a branded DSA public key which is saved in a key database
and used to validate future connections to that same IP address.

Because trust first time may be a questionable policy in
security-critical settings, we provide a interface for managing
the key database – users may add server DSA keys acquired
through other secure means, thus preventing the vulnerability
on the first connection to those servers. SafeTP can be
configured to automatically install a default key database at
client installation time.

A Domain Name Service (DNS) attack (where the client is
redirected to a new IP address using a DNS spoof) can still
succeed because the client proxy always operates at the
(numeric) IP address level. However, the user will receive a
trust-first-time message in this situation to indicate the attack.
A possible defense is to infer domain names by some means.

Our first, and in some situations only, line of defense is the
user. The client proxy does not add new keys without user
approval, and can be configured to not replicate (see Section 6,
Policy) keys without user approval. The brands that accompany
the DSA public keys can substantially improve the quality of
the information available to the user at the time a decision must
be made.

In the final analysis, the X-SafeTP1 protocol as it stands is
vulnerable because it tries to avoid the inconvenience of using a
Certification Authority. As SafeTP is now reaching wider
deployment, it may soon make sense to work towards a

8

certification infrastructure capable of closing the trust-first-time
vulnerability.

5.8 Drop-in Security Mechanisms
Figure 5 shows the two most important interfaces within our
RFC 2228 framework. Any particular security mechanism,
such as X-SafeTP1, will create an object that is a subclass of
ControlSecurity.

Transform is a general data transformation object, with enough
functionality to allocate all required memory before the first
transformation begins (this reduced the number of data copies).
ControlSecurity has methods to support key-exchange protocols
in a protocol-independent way.

With the X-SafeTP1 object, the proxy client and server can
engage in a well-formed ADAT negotiation. They do not need
to know anything about DE3S, only that it implements
ControlSecurity.

Similarly, if a new security mechanism is created, it can ignore
RFC 2228 protocol syntax, and instead just implement
ControlSecurity’s methods.

5.9 Why Not SSL?
Given the existence of Netscape’s Secure Sockets Layer (SSL)
[Nets98], the question is obvious: Why not just use SSL? The
benefits are clear: SSL is a defined standard, it is generally
regarded as secure, and a free implementation, SSLeay [HY98],
is available.

Even so, we did not use SSL. While there is not a simple
reason why, we present some of the rationale. It is not our
contention that SSL could not have been used, but rather that,
for this project with these design goals, it was not the best
solution.

RFC 959 Interoperability
One of the key design goals is to allow SafeTP clients to work
with RFC 959 servers, and SafeTP servers to work with RFC
959 clients. Using RFC 2228, this is very easy, because we
simply shift to using a different command set once both parties
are seen to support it. With SSL, we would need to define an
FTP command to signal such support, and upon affirmative
reply, upgrade both sides of the connection to SSL. Upgrading
such a connection after it is already established may be difficult
or impossible with some implementations.

Socket Startup Cost
FTP uses a new data connection for every file and directory
listing. SSL is not optimized for fast socket setup and
teardown; it was designed to be used for HTTP, which uses
connections very differently. SSL contains provisions for
session reuse, which may satisfy this issue, but the matter
remains unclear.

Extensibility
We wanted a system that has a clear path for extending its
security provisions with a minimum of effort. Implementing
X-SafeTP1 within the RFC 2228 framework required 3 person-
days and 800 lines of C++.8 SSL’s extension mechanisms are
more complicated and seem to be able to leverage less of the
infrastructure.

Blocking Semantics
Because SSL operates at the transport layer instead of the
application layer, the semantics of individual operations (such
as blocking on a recv9 call), are affected. Especially in sftpd,
which runs under UNIX, we were wary of a system that might
require non-portable solutions to implement the semantics we
need. With RFC 2228, there is no such concern.

RFC 2228 Compatibility
RFC 2228 defines a draft standard for secure extensions to
FTP. There may be other implementations of RFC 2228, either
now or in the future. We would like to be interoperable with as
many other secure FTP implementations as possible, and
adhering to an existing RFC is a good way to promote that
objective.

5.10 DIGT command
Because the security mechanism negotiation happens in the
clear, a possible attack is to force the client and server to fall
back on a weak mechanism, if more than one exists. To
prevent this, we propose an extension to RFC 222810: the DIGT
request. This request causes the server to send a digest of all
the requests and replies up to, but not including the DIGT
request itself. The client then only proceeds if the server’s
digest matches his own.

If several security mechanisms are possible, for example an
export11 version and a non-export version, it is possible for an
attacker to swallow all of the AUTH’s, until the client tries the

8 We used crypto++, a C++ cryptographic algorithm library
[Dai98], and GNU’s GMP multi-precision library [GMP00]
9 recv is the Berkeley Sockets call to read from a network
socket (connection).
10 We’ve proposed and implemented several minor extensions
to RFC 2228, which are documented in an internet draft
[BM99].
11 Until recently, the U.S. strictly limited the strength of
exported encryption technology. This was, naturally enough, a
sore point with the encryption community.

class Transform {
 virtual int maximumEncodedSize(int decodedSize) const=0;
 virtual int maximumDecodedSize(int encodedSize) const=0;
 virtual void encode(DataBlock &data)=0;
 virtual void decode(DataBlock &data)=0;
 };

class ControlSecurity : public Transform {
 virtual bool hasOutgoingAdat() const;
 virtual void getNextOutgoingAdat(DataBlock &block);
 virtual bool expectingIncomingAdat() const;
 virtual void incomingAdat(DataBlock &block);
 };

Figure 5: Security Interfaces

9

weaker protocol. This lets the attacker choose the protocol he
can attack most easily.

The protection against this is the DIGT command. Once
security negotiation is complete, the client asks the server for a
digest of all the previous messages. If the attacker has modified
any of the AUTH’s, the digests computed by the server and the
client will not match.

This defense only works if the attacker is not fast enough to
actually break the mechanism by the time the DIGT is issued.
This is not a problem in the current implementation because we
do not currently have more than one protocol.

6. Policy summary
6.1 Key length
3DES: (effectively) 112 bits, length fixed by algorithm

DSA: 1024 bits

ElGamal - user-definable: 768, 1024 or 2048 bits. The system
administrator may set a minimum ElGamal key length required
for incoming FTP sessions.

6.2 Trust First Time
The general security policy for the acquisition of new server
keys is trust first time - the first time a user connects to a
particular server which supports the X-SafeTP1 protocol, he
will see a message box prompting him to accept or refuse the
new server DSA key. The key is then stored in that user’s
section of the Windows registry, where it will be checked on all
future connects to that same server IP as part of the server
authentication process.

Multihomed Servers
Some servers have multiple IP addresses which all access the
same system services. The SafeTP software was designed to
handle such servers with minimal user interaction necessary.
When connecting to a particular IP address for the first time,
the DSA key database is searched using the branded DSA key
provided by the server during negotiation, and if a match is
found, the client decides this is a multihomed host and silently
accepts the new IP address. This is called key replication This
does not open any security holes because the DSA key is the
unit of trust in our system - if the party we’re connected to can
prove though challenge/response that they possess the private
key for a trusted DSA key, then they pass the authentication
test, regardless of the IP address we used to reach them. The IP
address is merely a method for detecting key changes on servers
to which we’ve previously connected.

Out-of-band Key Entry
For the ultra-paranoid, SafeTP allows the use of other, out-of-
band methods for acquiring new keys. The SafeTP Manager
user interface allows users to view their current keys, delete
keys and add new keys.

6.3 Unknown FTP Commands
The sftpd server software recognizes all the FTP commands
defined by RFC 959, which is the most widely accepted

standard for the FTP protocol. In addition, sftpd also
recognizes a subset of the “special-purpose” FTP commands
defined by other RFC’s (for example, the XPWD command).
When data channel protection is inactive, sftpd allows all client
requests to pass directly to the legacy ftpd server, regardless of
whether it recognizes them or not (at which point ftpd will
reply, possibly with an error). This is not a problem because
once negotiation has completed, it is not possible for the client
to issue any command that would cause the control channel to
become insecure. However, when sftpd accepts data channel
protection, it makes a commitment that all data transfers for the
remainder of this FTP session will be secure. In order to ensure
this, sftpd must recognize and take control of all data transfers -
if it were to allow unrecognized commands to pass to ftpd, then
it may be possible for these commands to initiate data transfers
outside of sftpd’s knowledge. For this reason, unrecognized
client requests are denied by sftpd and not forwarded to ftpd
when data channel protection is active.

6.4 RFC 959 Compatibility
For system administrators seeking extra security, we provide a
setting to enable/disable the RFC 959 drop-down capabilities of
sftpd. By configuring ftpd to accept only connections from the
local machine, users will be forced to use secure ftp
connections. We recommend 959 compatibility mode be
enabled as part of a transition period, after which the
administrator may switch to requiring all FTP connections to
be secure.

6.5 No CCC
sftpd explicitly refuses the CCC command defined by RFC
2228, whose purpose is to remove control channel encryption
after the USER/PASS commands have been sent. It was felt
there was no reason to warrant implementing this potentially
dangerous command, especially because the performance
penalty incurred by the control channel encryption after
negotiation is minimal (very low bandwidth).

6.6 Disallow 3rd Party Transfers
RFC 2228 explicitly disallows 3rd party (server-to-server) file
transfers when data channel encryption is enabled.

6.7 Policy Recommendations
The sftpd user’s home directory should be securely replicated to
the local disk of every machine running sftpd, to avoid
compromising the keys through NFS (may not be necessary
when using a secure network file system). If sftpd is running
on physically insecure workstations, each workstation should
have its own DSA key.

The sftpd DSA keys should never be changed unless absolutely
necessary (such as if a compromise is detected), because this
will cause a security warning the next time previous users try to
log in, and could eventually breed user apathy towards SafeTP
security warnings.

The users should be provided with an out-of-band method for
obtaining the server DSA public key - for example a read-only
file in a public directory, or a page on a secure web site. Users

10

can cut and paste this key into the SafeTP Manager for future
use in authentication.

7. Performance
As with most encryption and integrity systems, the security
provided by SafeTP comes at a price of decreased performance.
This section is intended to illustrate that the overheads imposed
by SafeTP are not unreasonable, with the caveat that the
current implementation is largely unoptimized, and the authors
expect performance improvements in future revisions. All
performance measurements were performed on a dedicated 10-
MBit Ethernet LAN connecting two Pentiums. Performance
measurements are given for the client and server proxies
operating together in X-SafeTP1 mode, both with and without
data protection enabled, as well as for the proxies operating
independently in 959-compatibility mode, and a baseline
measurement for regular FTP with no proxies (Note the figures
use “DE3S” to mean X-SafeTP1).

Figure 6 demonstrates the latencies of initial connection
negotiation associated with the various FTP options, measured
as the time from the FTP client issuing connect() to the time
where it receives the server’s 220 message. Our network
demonstrated about a 2-second cost associated with the X-
SafeTP1 negotiation, which appears to be mostly encryption
overhead - delays associated with the 2 extra round-trip times
will obviously vary with network conditions.

Figure 7 shows the response time latency associated with
regular FTP commands (such as PWD) on the control channel.
The additional latencies added by the client and server are due
to encryption-decryption overhead (in the X-SafeTP1 cases)
and extra trips up and down the network stack (address space
crossings) in routing the command and reply.

Figure 8 illustrates a brief investigation into the optimal PBSZ
(maximum data block size) for large encrypted data transfers.
The competing factors causing performance to vary with block
size are the increasing fraction of header bytes to data bytes
(header overhead) with smaller block sizes, and the increasing
fraction of the first and last block size to the entire file size,
because the encryption of the first block and the decryption of
the last block can’t be overlapped with other computation or
network communication. The optimal PBSZ for a 1.5MB file
appears to be about 32 KB.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

512 bit 768 bit 1024 bit

Client Elgamal Key Size

N
eg

o
ti

at
io

n
 T

im
e

(s
ec

o
n

d
s)

Plain FTP
Server in 959 mode
Layer in 959 mode
768 bit Server DSA Key
1024 bit Server DSA Key

Figure 6: Control Channel Negotiation Time

Control Channel Response Time (PWD command)

0.1962

0.4081

0.3242

0.5509 0.5573

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Plain FTP Server in 959
Mode

Client in 959
Mode

DE3S, no data DE3S w/ data

T
im

e
(s

ec
on

ds
)

Figure 7: Control Channel Response Time

50

50.5

51

51.5

52

52.5

53

53.5

54

54.5

55

0 20 40 60 80 100 120 140

PBSZ (KB)

T
im

e
(s

ec
on

ds
)

1.5MB file transfer time

Figure 8: Transfer Time vs. PBSZ

0

100

200

300

400

500

600

700

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800

File Size (KB)

B
an

dw
id

th
 (

K
B

/s
ec

)
Plain FTP

Client in 959 Mode

Server in 959 Mode

DE3S, no data

DE3S w/ data

Figure 9: Data Connection Bandwidth

11

Figure 9 demonstrates the data connection bandwidth of the
various configurations for different file sizes. These bandwidth
measures were derived from time measurements that include
the overhead associated with the control channel activity
necessary to initiate the file transfer (i.e. PORT, RETR, and the
server replies), which is why the proxy configurations without
data encryption differ slightly from the ideal case which does
not encrypt this control activity (these cases are otherwise
identical - recall the data connection does not pass through
either proxy when data protection is disabled). Clearly, the
relative fraction of this difference diminishes as the control
time is amortized over larger file sizes. The true difference
comes in the encryption overheads imposed by data channel
protection, which we unfortunately found to be rather large.
This result argues for implementing different levels of data
protection to take advantage of situations where a weaker
protection guarantee (such as integrity without secrecy) is
sufficient.

8. Conclusion
Transparent, protocol-aware proxies offer a good way to add
security to existing protocols and software. They allow the
security mechanism to remain largely orthogonal to the
protocol being secured, let users continue to use tried and true
software and permit an orderly transition period by
interoperating with both old and new systems.

SafeTP is an example of such a
system. We built a secure
cryptosystem, implemented
transparent proxy layers at both
ends and leveraged RFC 2228 to
interoperate with existing RFC
959 systems.

The SafeTP system has been incredibly successful, and has
been installed in many systems worldwide. The feedback from
our users has been very positive, and seems to indicate this
paradigm of transparent security is a valuable one. The SafeTP
distribution and full documentation are freely available on the
SafeTP web page [BM98].

9. Acknowledgments
We wish to thank David Wagner and Ian Goldberg for sage
advice on cryptographic algorithms and protocol evaluation.
All errors or omissions in either are, however, ours and not
theirs. We also thank the countless users who’ve provided
invaluable feedback concerning their experience with SafeTP.

References
[BGK76] D.K. Branstad, J. Gait, and S. Katzke. “Report on
the Workshop on Cryptography in Support of Computer
Security.” NBSIR 77-1291, National Bureau of Standards, Sep
21-22, 1976, September 1977.

[BM98] Dan Bonachea and Scott McPeak. “SafeTP Webpage”
http://safetp.cs.berkeley.edu/

[BM99] Dan Bonachea and Scott McPeak. “Protocol
Negotiation Extensions to Secure FTP”, Internet Draft,
http://safetp.cs.berkeley.edu/draft-bonachea-sftp-00.txt

[ElGa85] T. ElGamal. “A Public-Key Cryptosystem and a
Signature Scheme Based on Discrete Logarithms.” Advances
in Cryptology: Proceedings of CRYPTO 84, Springer-Verlag,
1985, pp. 10-18

[Dai98] Wei Dai. “Crypto++ 2.3” http://www.eskimo.com/
~weidai/cryptlib.html

[Diff98] Differential Inc. “FileDrive.” http://www.downloader.
com/filedrive_client.html

[GMP00] Gnu Multi-precision library
http://www.swox.com/gmp/

[HY98] T.J. Hudson and E.A. Young. “SSLeay and SSL apps
FAQ.” http://www.psy.uq.oz.au/~Eftp/Crypto/

[MB98] Scott McPeak and Dan Bonachea. “X-SafeTP1
Protocol Specification”,
http://safetp.cs.berkeley.edu/protocol.txt

[Micr97] Microsoft, Inc. “Windows Sockets 2 API.”
ftp://ftp.microsoft.com/bussys/winsock/winsock2/wsapi22.doc

[Micr97] Microsoft, Inc. “Windows Sockets 2 Service Provider
Interface (SPI).”
ftp://ftp.microsoft.com/bussys/winsock/winsock2/wsspi22.doc

[Nets98] Netscape Communications Inc. “SSL 3.0
SPECIFICATION.” http://home.netscape.com/eng/ssl3/

[NIST94] National Institute of Standards and Technology,
NIST FIPS PUB 186, “Digital Signature Standard,” U.S.
Department of Commerce, Feb. 94.

[RFC 959] J. Postel, J. Reynolds. Request for Comments 959,
“File Transfer Protocol (FTP).” October 1985.

[RFC 1094] Sun Microsystems, Inc. Request for Comments
1094, “NFS: Network File System Protocol Specification.”
March 1989.

[RFC 2228] M. Horowitz, S. Lunt. Request for Comments
2228, “FTP Security Extensions.” October 1997.

[SSH98] SSH Communications Security, Inc. “SSH Protocols
and Secure Shell.” http://www.ssh.fi/sshprotocols2/index.html

[SNS88] J. Steiner, C. Neuman and J. Schiller “Kerberos: An
Authentication Service for Open Network Systems”, January,
1988.

Figure 10 : Joe Hacker

Client Server

ENC dBq1asOiz
ENC bL04xgrJw

632 F4ds1gJKm
632 t6kvR3dssp

Joe Hacker
… Eh? ...

