
Flow-Sensitive Type Quali�ers

Je�rey S. Foster Tachio Terauchi Alex Aiken

Report No. UCB/CSD-01-1162

November 2001

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Flow-Sensitive Type Quali�ers�

Je�rey S. Foster Tachio Terauchi
EECS Department

University of California, Berkeley
Berkeley, CA 94720-1776

fjfoster,tachio,aikeng@cs.berkeley.edu

Alex Aiken

November 2001

Abstract

We present a system for extending standard type systems with ow-sensitive type quali�ers. Users
annotate their programs with type quali�ers, and inference checks that the annotations are correct.
In our system only the type quali�ers are modeled ow-sensitively|the underlying standard types are
unchanged, which allows us to obtain an eÆcient constraint-based inference algorithm that integrates
ow-insensitive alias analysis, e�ect inference, and ideas from linear type systems to support strong
updates. We demonstrate the usefulness of ow-sensitive type quali�ers by �nding a number of new
locking bugs in the Linux kernel.

1 Introduction

Standard type systems are ow-insensitive, meaning a value's type is the same everywhere. However, many
important properties are ow-sensitive. Checking such properties requires associating di�erent facts with a
value at di�erent program points.

This paper shows how to extend standard type systems with user-speci�ed ow-sensitive type quali�ers,
which are atomic properties that re�ne standard types. In our system users annotate programs with type
quali�ers, and inference checks that the annotations are correct. The critical feature of our approach is
that ow-sensitivity is restricted to the type quali�ers that decorate types|the underlying standard types
are unchanged|which allows us to obtain an eÆcient type inference algorithm. Type quali�ers capture a
natural class of ow-sensitive properties, while eÆcient inference of the type quali�ers allows us to apply an
implementation to large code bases with few user annotations.

For an example of type quali�ers, consider the type File used for I/O operations on �les. In most
systems File operations can only be used in certain ways: a �le must be opened for reading before it
is read, it must be opened for writing before it is written to, and once closed a �le cannot be accessed.
We can express these rules with ow-sensitive type quali�ers. We introduce quali�ers open, read, write,
readwrite, and closed. The type open File describes a �le that has been opened in an unknown mode,
the type read File (respectively write File) is a �le that is open for reading (respectively writing), the
type readwrite File is a �le open for both reading and writing, and the type closed File is a closed �le.
These quali�ers capture inherently ow-sensitive properties. For example, the close() function takes an
open File as an argument and changes the �le's state to closed File.

These quali�ers have a natural subtyping relation, shown in Figure 1. The quali�er closed is incompa-
rable to other quali�ers because a �le may not be both closed and open. Quali�ers that introduce subtyping
are very common, and our framework supports subtyping directly; in addition to a set of quali�ers, users
can de�ne a partial order on the quali�ers.

�This research was supported in part by NSF CCR-9457812, NASA Contract No. NAG2-1210, NSF CCR-0085949, and
DARPA Contract No. F33615-00-C-1693.

1

open
kkkk TTTT

read SSS write
jjj

readwrite closed

Figure 1: Subtyping relation among File quali�ers

Our results build on recent advances in ow-sensitive type systems [CWM99, SWM00, DF01] as well as
our own previous work on ow-insensitive type quali�ers [FFA99]. The main contribution of our work is
a practical, ow-sensitive type inference algorithm, in contrast to the type checking systems of [CWM99,
SWM00, DF01].

Our ow-sensitive type inference algorithm is made practical by solving constraints lazily. As in any ow-
sensitive analysis, explicitly forming a model of the store at every program point is prohibitively expensive
for large code bases. By generating a linear-size constraint system from the original program and solving
only the portion of the constraints needed to check quali�er annotations, our algorithm is able to scale to
large examples.

Finally, our system is designed to be sound; we aim to prove the absence of bugs, not just to be heuris-
tically good at �nding bugs. For example, we believe that our system could be integrated into Java in a
sound manner. We have shown soundness for restrict (Section 4), a key new construct in our system (see
technical report [FA01]). Since the remainder of our system can be viewed as a simpli�cation of [SWM00],
we believe it is straightforward to prove soundness for our full type system using their techniques.

In Section 5 we report on experience with two applications, analyzing locking behavior in the Linux
kernel and analyzing C stream library usage in application code. Our system found a number of new locking
bugs, including some that extend across multiple functions or even, in one case, across multiple �les.

1.1 System Architecture

Our ow-sensitive quali�er inference algorithm has several interlocking components. We �rst give an overview
of the major pieces and how they �t together.

We expect programmers to interact with our type system, both when adding quali�er annotations and
when reviewing the results of inference. Thus, we seek a system that supports eÆcient inference and is
straightforward for a programmer to understand and use. Our type inference system integrates alias analysis,
e�ect inference, and ideas from linear type systems.

� We use a ow-insensitive alias analysis to construct a model of the store. The alias analysis infers
an abstract location for the result of each program expression; expressions that evaluate to the same
abstract location may be aliased.

� We use e�ect inference [LG88] to calculate the set of abstract locations an expression e might use
during e's evaluation. These e�ects are used in analyzing function calls and restrict (see below).
E�ect inference is done simultaneously with alias analysis.

� We model the state at a program point as an abstract store, which is a mapping from abstract locations
to types. We can use the abstract locations from the ow-insensitive alias analysis because we allow
only the type quali�ers, and not the underlying standard types, to change during execution. We
represent abstract stores using a constraint formalism. Store constructors model allocations, updates,
and function calls, and store constraints C1 � C2 model a branch from the program point represented
by store C1 to the program point represented by store C2.

� We compute a linearity [SWM00] for each abstract location at each program point. Informally, an
abstract location is linear if the type system can prove that it corresponds to a single concrete location
in every execution; otherwise, it is non-linear. We perform strong updates [CWZ90] on locations that
are linear and weak updates on locations that are non-linear. A strong update can change the quali�er

2

on a location's type arbitrarily. Weak updates cannot change quali�ers. Computing linearities is
important because most interesting ow-sensitive properties require strong updates.

� The system described so far has a serious practical weakness: Type inference may fail because a
location on which a strong update is needed may be inferred to be non-linear. We address this with
a new annotation restrict. The expression restrictx =e in e0 introduces a new name x bound to
the value of e. The name x is given a fresh abstract location, and among all aliases of e, only x and
values derived from x may be used within e0. Thus the location of x may be linear, and hence may be
strongly updated, even if the location of e is non-linear. We use e�ects to enforce the correctness of
restrict expressions|soundness requires that the location of e does not appear in the e�ect of e0.

� We use e�ects to increase the precision of the analysis. If an expression e does not reference location
�, which we can determine by examining the e�ect of e, then it cannot change the value stored at �,
and the analysis of � can simply ow from the store preceding e to the one immediately after e without
passing through e. If e is an application of a function called in many di�erent contexts, then this idea
makes e fully polymorphic in all the locations that e does not reference.

2 Related Work

We discuss three threads of related work: type systems, dataow analysis, and tools for �nding bugs in
software.

Type Systems. Our type system is inspired by region and alias type checking systems designed for low-
level programs [CWM99, SWM00, WM00]. Two recent language proposals, Vault [DF01] and Cyclone
[GMW+01], adapt similar ideas for checking high-level programs. Both of these languages are based on
type checking and require programmers to annotate their programs with types. In contrast, we propose
a simpler and less expressive monomorphic type system that is designed for eÆcient type inference. Our
system incorporates e�ect inference [LG88, Wri92] to gain a measure of polymorphism.

The type state system of NIL [SY86] is one of the earliest to incorporate ow-sensitive type checking. Xu
et al [XRM01] use a ow-sensitive analysis to check type safety of machine code. Type systems developed
for Java byte code [SA98, O'C99] also incorporate ow-sensitivity to check for initialization before use and
to allow reuse of the same local variable with di�erent types.

Igarashi and Kobayashi [IK02] propose a general framework for resource usage analysis, which associates
a trace with each object specifying valid accesses to the object, and checks that the program satis�es the
trace speci�cations. They provide an inference algorithm, although it is unclear how eÆcient it is in practice
since it invokes as a sub-step an unspeci�ed algorithm to check that a trace set is valid.

Flanagan and Freund [FF00] use a type checking system to verify Java locking behavior. In Java locks are
acquired and released according to a lexical discipline. To model locking in the Linux kernel (as in Section 5)
we must allow non-lexically scoped lock acquires and releases.

The subset of our system consisting of alias analysis and e�ect inference can be seen as a monomorphic
variant of region inference [TT94]. The improvements to region inference reported in [AFL95] are a much
more expensive and precise method for computing linearities.

Dataow Analysis. Although our type-based approach is related to dataow analysis [ASU88], it di�ers
from classical dataow analysis in several ways. First, we generate constraints over stores and types to model
the program. Thus there is no distinction between forward and backward analysis|information may ow
in both directions during constraint resolution, depending on the speci�ed quali�er partial order. Second,
we explicitly handle pointers, heap-allocated data, aliasing, and strong/weak updates. Third, there is no
distinction between interprocedural and intraprocedural analysis in our system.

The strong/weak update distinction was �rst described by Chase et al [CWZ90]. Several techniques that
allow strong updates have been proposed for dataow-based analysis of programs with pointers, among them
[EGH94, AL95, WL95]. Jagannathan et al [JTWW98] present a system for must-alias analysis of higher-
order languages. The linearity computation in our system corresponds to their singleness computation, and
they use a similar technique to gain polymorphism by owing some bindings around function calls.

3

Bug-Finding Tools. The AST Toolkit provides a framework for posing user-speci�ed queries on abstract
syntax trees annotated with type information. The AST Toolkit has been successfully used to uncover many
bugs [Wei01].

Meta-level compilation [ECCH00] is a system for �nding bugs in programs. The programmer speci�es a
ow-sensitive property as an �nite state automaton. A program is analyzed by traversing control paths and
triggering state transitions of the automata on particular actions in program statements. The system warns
of potential errors when an automaton enters an error state. In [ECCH00] an intraprocedural analysis of lock
usage in the Linux kernel uncovered many local locking bugs. Our type-based system found interprocedural
locking bugs that extended across multiple functions or even, in one case, across multiple �les (Section 5).1

Newer work on meta-level compilation [ECH+01] includes some interprocedural dataow, but it is unclear
how their interprocedural dataow analysis handles aliasing.

LCLint [Eva96] is a dataow-based tool for checking properties of programs. To use LCLint, the pro-
grammer adds extra annotations to their program, just like our type quali�er system. LCLint performs
ow-sensitive intraprocedural analysis, using the programmer's annotations at function calls.

3 Type System

We describe our type system using a call-by-value lambda calculus extended with pointers and type quali�er
annotations. The source language is

e ::= x j n j �x:e j e1 e2 j ref e j !e j e1 := e2 j assert(e;Q) j check(e;Q)

Here x is a variable, n is an integer, �x:e is a function with argument x and body e, the expression e1 e2 is
the application of function e1 to argument e2, the expression ref e allocates memory and initializes it to e,
the expression !e dereferences pointer e, and the expression e1 := e2 assigns the value of e2 to the location
e1 points to.

We introduce quali�ers into the source language by adding two new forms [FFA99]. The expression
assert(e;Q) asserts that e's top-level quali�er is Q, and the expression check(e;Q) type checks only if e's
top-level quali�er is at most Q.

Our type inference algorithm is divided into two steps. First we perform an initial ow-insensitive alias
analysis and e�ect inference. Second we generate and solve store and quali�er constraints and compute
linearities.

3.1 Alias Analysis and E�ect Inference

We present the ow-insensitive alias analysis and e�ect inference as a translation system rewriting source
expressions to expressions decorated with locations, types, and e�ects. The target language is

e ::= x j n j �Lx:t:e j e1 e2 j ref� e j !e j e1 := e2
j assert(e;Q) j check(e;Q)

t ::= � j int j ref (�) j t �!L t0

L ::= j f�g j L1 [L2 j L1 \ L2

The target language extends the source language syntax in two ways. Every allocation site ref� e is annotated
with the abstract location � that is allocated, and each function �Lx : t:e is annotated with both the type
t of its parameter and the e�ect L of calling the function. E�ects are unions and intersections of e�ect
variables , which represent an unknown set of e�ects, and e�ect constants �, which stands for a read, write,
or allocation of location �.

Foreshadowing ow-sensitive analysis, pointer types are written ref (�), and we maintain a separate global
abstract store CI mapping locations � to types; CI(�) = � if location � contains data of type � . If type
inference requires � = �0, we also require CI (�) = CI (�

0). Function types t �!L t0 contain the e�ect L of
calling the function.

1The bugs were found in a newer version of the Linux kernel than examined by [ECCH00], so a direct comparison is not
possible, though these bugs cannot be found by purely intraprocedural analysis.

4

x 2 dom(�)

� ` x) x : �(x); ;
(Var)

� ` n) n : int; ;
(Int)

� ` e) e0 : t;L CI(�) = t � fresh

� ` ref e) ref� e0 : ref (�);L [f�g
(Ref)

� ` e) e0 : t;L t = ref (�) �; � fresh

� ` !e) !e0 : CI(�);L [f�g
(Deref)

� ` e1) e01 : t1;L1 � ` e2) e02 : t2;L2
t1 = ref (�) CI(�) = t2 � fresh

� ` e1 := e2) e01 := e
0
2 : t2;L1 [L2 [f�g

(Assign)

�[x 7! �] ` e) e0 : t;L L � �; fresh

� ` �x:e) � x:�:e0 : � �! t; ;
(Lam)

� ` e1) e01 : t1;L1 � ` e2) e02 : t2;L2
t1 = t2 �!

 � ; � fresh

� ` e1 e2) e01 e
0
2 : �;L1 [L2 [

(App)

� ` e) e0 : t;L

� ` assert(e;Q)) assert(e0; Q) : t;L
(Assert)

� ` e) e0 : t;L

� ` check(e;Q)) check(e0; Q) : t;L
(Check)

� ` e) e0 : t;L L0 = L \ locs(�; t)

� ` e) e0 : t;L0
(Down)

Figure 2: Type, alias, and e�ect inference

Figure 2 gives rules for performing alias analysis and e�ect inference while translating source programs
into our target language. This translation system proves judgments � ` e) e0 : t;L, meaning that in type
environment �, expression e translates to expression e0, which has type t, and the evaluation of e may have
e�ect L.

The set of locations appearing in a type, locs(t), is

locs(int) = ;
locs(ref (�)) = f�g [locs(CI (�))

locs(t1 �!L t2) = locs(t1) [locs(t2) [L

We assume that locs(�) is empty until � is equated with a constructed type. We de�ne locs(�) to beS
x 7!t2� locs(t).
We briey discuss the rules in Figure 2:

� (Var) and (Int) are standard. In lambda calculus, a variable is an r-value, not an l-value, and accessing
a variable has no e�ect.

� (Ref) allocates a fresh abstract location �. We add the e�ect � of the allocation to the e�ect and record
in CI the type to which the location � points.

� (Deref) evaluates e, which yields a pointer to a location �. We look up the type of location � in CI

and add � to the e�ect set.

5

fun f w =
let x = ref 0

y = ref(assert(1; qa))
z = ref(assert(2; qb))

in

/* Write to x's cell */
x := 3
w := 4
y := assert(5; qc)
if (� � �)
f z

check(!y; qc)

(a) Source program

funf�zgf w : ref (�z) =
let x = ref�x 0

y = ref�y (assert(1; qa))
z = ref�z(assert(2; qb))

in

x := 3
w := 4
y := assert(5; qc)
if (� � �)
f z

check(!y; qc)

(b) Target program

CI(�x) = CI(�y) = CI(�z) = int

Figure 3: Example alias and e�ect analysis

� (Assign) writes a location. Note that the type of e2 and the type that e1 points to are equated. Because
types contain locations, this forces potentially aliased locations to be modeled by one abstract location.

� (Lam) de�nes a function. We annotate the function with the e�ect of the function body and the
type � of the parameter. Function types always have an e�ect variable on the arrow, which makes
e�ect inference easier. Notice that creating a function has no e�ect.

� (App) applies a function to an argument. The e�ect of applying e1 to e2 includes the e�ect of calling
the function e1 represents. Notice that e1's argument type is constrained to be equal to the type of e2.
As before, this forces possibly-aliased locations to have the same abstract location.

� (Assert) and (Check) are translated unchanged into the target language. Quali�ers are ow-sensitive,
so we do not model them during this �rst, ow-insensitive step of the algorithm.

� (Down) hides e�ects on purely local state. If evaluating e produces an e�ect on some location � neither
in � nor in t, then � cannot be accessed in subsequent computation. By intersecting the e�ects L
with e�ects that may be visible locs(�; t), we increase the precision of e�ect inference, which in turn
increases the precision of ow-sensitive type quali�er inference. Although (Down) is not a syntactic
rule, it only needs to be applied once per function body [FA01].

Figure 3 shows an example program and its translation. We use some syntactic sugar; all of these
constructs can be encoded in our language (e.g., by assuming a primitive Y combinator of the appropriate
type). In this example the constant quali�ers qa, qb, and qc are in the discrete partial order (the quali�ers
are incomparable). Just before f returns, we wish to check that y has the quali�er qc. This check succeeds
only if we can model the update to y as a strong update.

In Figure 3, we assign x, y, and z distinct locations �x, �y, and �z, respectively. Because f is called with
argument z, our alias analysis requires that the types of z and w match, and thus w is given the type ref (�z).
Finally, notice that since x and y are purely local to the body of f , using the rule (Down) our analysis hides
all e�ects on �x and �y. The e�ect of f contains �z because f writes to its parameter w, which has type
ref (�z).

Let n be the size of the input program. Applying the rules in Figure 2 generates a constraint system of
size O(n), using a suitable representation of locs(�; t) (see [FA01]). Resolving the type equality constraints
in the usual way with uni�cation takes O(n�(n)) time, where �(�) is the inverse Ackerman's function. The
remaining constraints are e�ect constraints of the form L � . We solve these constraints on-demand|in
the next step of the algorithm we will ask queries of the form � 2 L. We can answer all such queries for a
single location � in O(n) time.

6

Q � Q0

Q int � Q0 int
(Int�)

Q � Q0

Q ref (�) � Q0 ref (�)
(Ref�)

Q � Q0 �2 � �1 � 01 � � 02
C2 � C1 C0

1 � C0
2

Q (C1; �1) �!
L (C0

1; �
0
1) � Q0 (C2; �2) �!

L (C0
2; �

0
2)

(Fun�)

�i � � 0i �i � �0i i = 1::n

f��11 :�1; : : : ; �
�n
n :�ng � f�

�0

1

1 :� 01; : : : ; �
�0

n

n :� 0ng
(Store�)

Figure 4: Store compatibility rules

3.2 Stores and Quali�ed Types

Next we perform ow-sensitive analysis to check the quali�er-related annotations. In this second step of the
algorithm we take as input a program decorated with types, locations, and e�ects by the inference algorithm
of Figure 2. Throughout this step we treat the abstract locations � and e�ects L from the �rst step as
constants. We analyze the input program using the extended types shown below:

� ::= Q �

Q ::= � j B
� ::= � j int j ref (�) j (C; �) �!L (C 0; � 0)
C ::= " j Alloc(C; �) j Assign(C; � : �) j Merge(C;C 0; L) j Filter(C;L)
� ::= 0 j 1 j !

Here quali�ed types � are standard types with quali�ers inserted at every level. Quali�ers Q are either
quali�er variables �, which stand for currently unknown quali�ers, or constant quali�ers B, speci�ed by the
user. We assume a supplied partial order � among type quali�ers.

Flow-sensitive analysis associates a store C with each program point. This is in contrast to the ow-
insensitive step, which uses one global store CI to give types to locations. Function types are extended to
(C; �) �!L (C 0; � 0), where C describes the store the function is invoked in and C 0 describes the store when
the function returns.

Each location in each store has an associated linearity �. There are three linearities: 0 for unallocated
locations, 1 for linear locations (these admit strong updates), and ! for non-linear locations (which admit
only weak updates). The three linearities form a lattice 0 < 1 < !. Addition on linearities is as expected:
0 + x = x, 1 + 1 = !, and ! + x = !.

Formally a store is a vector assigning a type and a linearity to every abstract location computed by the
alias analysis:

f��11 :�1; : : : ; �
�n
n :�ng

We call such a vector a ground store. If G is a ground store, we write G(�) for �'s type in G, and we write
Glin(�) for �'s linearity in G.

Rather than explicitly associating a ground store with every program point, we represent stores using
a constraint formalism. As the base case, we model an unknown store using a store variable ". We relate
stores at consecutive program points either with store constructors (see below), which build new stores from
old stores, or with store constraints C1 � C2, which are generated at branches from the program point
represented by store C1 to the program point represented by store C2.

A solution to a system of store constraints is a mapping from store variables to ground stores. A solution
S satis�es a system of store constraints if for each constraint C1 � C2 we have S(C1) � S(C2) according to
the rules in Figure 4.

In Figure 4, constraints between stores yield constraints between linearities and types, which in turn yield
constraints between quali�ers and between stores. In our constraint resolution algorithm, we exploit the fact

7

S(Alloc(C; �0))(�) = S(C)(�)

S(Merge(C;C0; L))(�) =

�
S(C)(�) � 2 L
S(C0)(�) otherwise

S(Filter(C;L))(�) = S(C)(�) � 2 L

S(Assign(C; �0 : �))(�) =

�
� � = �0

S(C)(�) otherwise

(a) Types

S(Alloc(C; �0))lin(�) =

�
1 + S(C)lin(�) � = �0

S(C)lin(�) otherwise

S(Merge(C;C0; L))lin(�) =

�
S(C)lin(�) � 2 L
S(C0)lin(�) otherwise

S(Filter(C;L))lin(�) =

�
S(C)lin(�) � 2 L
0 otherwise

S(Assign(C; �0 : �))lin(�) = S(C)lin(�)

(b) Linearities

S(C)lin(�) = ! =) � = S(C)(�) for all stores Assign(C; � : �)

(c) Weak updates

Figure 5: Extending a solution to constructed stores

that we are only interested in quali�er relationships to solve as little of the expensive store constraints as
possible.

In (Ref�) we require that the locations on the left- and right-hand sides of the � are the same. Alias
analysis enforces this property, which corresponds to the standard requirement that subtyping becomes
equality below a pointer constructor. We emphasize that in this step we treat abstract locations � as
constants, and we will never attempt (or need) to unify two distinct locations to satisfy (Ref�).

In (Fun�) we require that the e�ects of the constrained function types match exactly.
Figure 5 formalizes the four kinds of store constructors by showing how a solution S mapping store

variables to ground stores is extended to constructed stores.
The store Alloc(C; �) is the same as store C, except that location � has been allocated once more.

Allocating location � does not a�ect the types in the store but increases the linearity of location � by one.
The store Merge(C;C 0; L) combines stores C and C 0 according to e�ect L. If � 2 L, then Merge(C;C 0; L)

assigns � the type it has in C, otherwise Merge(C;C 0; L) assigns � the type it has in C 0. The linearity
de�nition is similar.

The store Filter(C;L) assigns the same types and linearities as C for all locations � such that � 2 L. The
types of all other locations are unde�ned, and the linearities of all other locations are 0.

Finally, the store Assign(C; � : �) is the same as store C, except location � is given type � . If � is
non-linear in C, then we require that � be equal to the type of � in C; this corresponds to a weak update.

3.3 Flow-Sensitive Constraint Generation

Figure 6 gives the type inference rules for our system. In this system judgments have the form �; C ` e : �; C 0,
meaning that in type environment � and with initial store C, evaluating e yields a result of type � and a new
store C 0. We write C(�) for the type associated with � in store C; we discuss the computation of C(�) in

8

x 2 dom(�)

�; C ` x : �(x); C
(Var)

� fresh

�; C ` n : � int; C
(Int)

�; C ` e : �; C0 � � C0(�) � fresh

�; C ` ref� e : � ref (�);Alloc(C0; �)
(Ref)

�; C ` e : Q ref (�); C0

�; C ` !e : C0(�); C0
(Deref)

�; C ` e1 : Q ref (�); C0 �; C0 ` e2 : �; C
00

�; C ` e1 := e2 : �;Assign(C
00; � : �)

(Assign)

� = sp(t) "; "0; � fresh
�[x 7! �]; " ` e : � 0; C0 C0 � "0

�; C ` �Lx:t:e : � ("; �) �!L ("0; � 0); C
(Lam)

�; C ` e1 : Q ("; �) �!L ("0; � 0); C0 �; C0 ` e2 : �2; C
00

�2 � � Filter(C00; L) � "

�; C ` e1 e2 : �
0;Merge("0; C00; L)

(App)

�; C ` e : Q0 �; C0

�; C ` assert(e;Q) : Q �; C0
(Assert)

�; C ` e : Q0 �; C0 Q0 � Q

�; C ` check(e;Q) : Q �;C0
(Check)

Figure 6: Constraint generation rules

Section 3.4. We use the function sp(t) to decorate a standard type t with fresh quali�er and store variables:

sp(�) = � � � fresh
sp(int) = � int � fresh

sp(ref (�)) = � ref (�) � fresh
sp(t �!L t0) = � ("; sp(t)) �!L ("0; sp(t0)) �; "; "0 fresh

We briey discuss the rules in Figure 6

� (Var) and (Int) are standard. For (Int), we pick a fresh quali�er variable � to annotate n's type.

� (Ref) adds a new location � to the store C 0, yielding the storeAlloc(C 0; �). The type � of e is constrained
to be compatible with �'s type in C 0.

� (Deref) looks up the type of e's location � in the current store C 0. Any quali�er may appear on e's
type; quali�ers are checked only by (Check), see below.

� (Assign) produces a new store representing the assignment of type � to location �.

� (Lam) type checks function body e in fresh initial store " and with parameter x bound to a type with
fresh quali�er variables.

� (App) constrains �2 � � to ensure that e2's type is compatible with e1's argument type. The constraint
Filter(C 00; L) � " ensures that the current state of the locations that e1 uses, which are captured by
its e�ect set L, is compatible with the state e1 expects. The �nal store Merge("0; C 00; L) joins the store
C 00 before the function call with the result store "0 of the function. Intuitively, this rule gives us some
low-cost polymorphism, in which functions do not act as join points for locations they do not use.

9

Merge

kkkkk

<<
<<

<<
<<

<< SSSSS��
L = f�zg

"0 L

Filter
kkk

��

Assign
kkk

ee

L

Assign
kkk

�y :qc int

Assign
nn

�z :�4 int

Alloc
rr

�x :�3 int

Alloc
qq

�z

Alloc
xx

�y

" �x

�0 int � "(�x)
qa int � Alloc("; �x)(�y)
qb int � Alloc(Alloc("; �x); �y)(�z)
"0(�y) � qc int

Figure 7: Store constraints for example

� (Assert) adds a quali�er annotation to the program, and (Check) checks that the inferred top-level
quali�er Q0 of e is compatible with the expected quali�er Q.

Figure 7 shows the stores and store constraints generated for our example program. We have simpli�ed
the graph for clarity. Here " is f 's initial store and "0 is f 's �nal store. We use undirected edges for store
constructors and a directed edge from C1 to C2 for the constraint C1 � C2.

We step through constraint generation. The store Alloc("; �x) models the allocation of �x. Location
�x is initialized to 0, which is given the type �0 int for fresh quali�er variable �0. (Ref) generates the
constraint �0 int � "(�x) to require that the type of 0 be compatible with "(�x). We model the allocation
and initialization of �y and �z similarly. Then we construct three Assign stores to represent the assignment
statements. We give 3 and 4 the types �3 int and �4 int, respectively, where �3 and �4 are fresh quali�er
variables.

For the recursive call to f , we construct a Filter and add an inclusion constraint on ". The Merge store
represents the state when the recursive call to f returns. We join the two branches of the conditional by
making edges to "0. Notice the cycle, due to recursion, in which state from "0 can ow to the Merge, which
in turn can ow to "0. Finally, the quali�er check requires that "0(�y) has quali�er qc.

3.4 Flow-Sensitive Constraint Resolution

The rules of Figure 6 generate three kinds of constraints: quali�er constraints Q � Q0, subtyping constraints
� � � 0, and store constraints C � " (the right-hand side of a store constraint is always a store variable). A set
of m type and quali�er constraints can be solved in O(m) time using well-known techniques [FFA99, RM96],
so in this section we focus on computing a solution S to a set of store constraints.

Our analysis is most precise if as few locations as possible are non-linear. Recall that linearities nat-
urally form a partial order 0 < 1 < !. Thus, given a set of constructed stores and store constraints, we
perform a least �xpoint computation to determine S(C)lin(�). We initially assume that in every store,
location � has linearity 0. Then we exhaustively apply the rules in Figure 5(b) and the rule S(")lin(�) =
(maxfCjC�"g S(C)lin(�)) until we reach a �xpoint. This last rule is derived from Figure 4.

In our implementation, we compute S(C)lin(�) in a single pass over the store constraints using Tarjan's
strongly-connected components algorithm to �nd cycles in the store constraint graph. For each such cycle
containing more than one allocation of the same location � we set the linearity of � to ! in all stores on the
cycle.

10

Given this algorithm to compute S(C)lin(�), in principle we can then solve the implied typing constraints
using the following simple procedure. For each store variable ", initialize S(") to a map

f�1 :sp(CI (�1)); : : : ; �n :sp(CI(�n))g

thereby assigning fresh quali�ers to the type of every location at every program point. Replace uses of C(�)
in Figure 6 with S(C)(�), using the logic in Figure 5(a).

Apply the following two closure rules until no more constraints are generated:

C � " =) S(C)(�) � S(")(�) for all �
S(C)lin(�) = ! =) � = S(C)(�) for all stores

Assign(C; � : �)

Given a program of size n, in the worst case this naive algorithm requires at least n2 space and time to
build S(�) and generate the necessary type constraints. This cost is too high for all but small examples. We
reduce this cost in practice by taking advantage of several observations.

Many locations are ow-insensitive. If a location � never appears on the left-hand side of an assign-
ment, then �'s type cannot change. Thus we can give � one global type instead of one type per program
point. In imperative languages such as C, C++, and Java, function parameters are a major source of ow-
insensitive locations. In these languages, because parameters are l-values, they have an associated memory
location that is initialized but then often never subsequently changed.

Adding extra store variables trades space for time. To compute S(C)(�) for a constructed store
C, we must deconstruct C recursively until we reach a variable store or an assignment to � (see Fig-
ure 5(a)). Because we represent the e�ect constraints compactly (in linear space), deconstructing Filter(C;L)
or Merge(C;C 0; L) may require a potentially linear time computation to check whether � 2 L. We recover
eÆcient lookups by replacing C with a fresh store variable " and adding the constraint C � ". Then rather
than computing S(C)(�) we compute S(")(�), which requires only a map lookup. Of course, we must use
space to store � in S("). However, as shown below, we often can avoid this cost completely. We apply this
transformation to each store Merge(C;C 0; L) constructed during constraint inference.

Not every store needs every location. Rather than assuming S(") contains all locations, we add needed
locations lazily. We add a location � to S(") the �rst time the analysis requests "(�) and whenever there is
a constraint C � " or " � C such that � 2 S(C). Stores constructed with Filter and Merge will tend to
stop propagation of location, saving space (e.g., if Filter(C;L) � ", � 2 S("), but � 62 L, then we do not
propagate � to C).

We can extend this idea further. For each quali�er variable �, inference maintains a set of possible
quali�er constants that are valid solutions for �. If that set contains every constant quali�er, then � is
uninteresting (i.e., � is constrained only by other quali�er variables), otherwise � is interesting. A type � is
interesting if any quali�er in � is interesting, otherwise � is uninteresting. We then modify the closure rules
as follows:

C � " =) S(C)(�) � S(")(�)

for all � 2 S(C) or S(") s.t.
S(C)(�) or S(")(�) interesting

S(C)lin(�) = ! =) � = S(C)(�)

for all Assign(C; � : �) s.t. � or S(C)(�) interesting

In this way, if a location � is bound to an uninteresting type, then we need not propagate � through the
constraint graph.

Figure 8 gives an algorithm for lazy location propagation. We associate a mark with each � in each
S(") and with � in Assign(C; � : �). Initially this mark is not set, indicating that location � is bound to an
uninteresting type.

11

If a quali�er variable � appears in S(")(�), we associate the pair (�; C) with �, and similarly for Assign

stores. If during constraint resolution the set of possible solutions � changes, we call Propagate(�; C) to
propagate �, and in turn �, through the store constraint graph.

If Propagate(�; C) is called and � is already marked in C, we do nothing. Otherwise, Back-prop() and
Forward-prop() make appropriate constraints between S(C)(�) and S(C 0)(�) for every store C 0 reachable
from C. This step may add � to C 0 if C 0 is a store variable, and the type constraints Back-prop() and
Forward-prop() generate may trigger subsequent calls to Propagate().

Consider again our running example. Figure 9 shows how locations and quali�ers propagate through
the store constraint graph. Dotted edges in this graph indicate inferred constraints (discussed below). For
clarity we have omitted the Alloc edges and the base types.

The four type constraints in Figure 7 are shown as directed edges in Figure 9. For example, the constraint
�0 int � "(�x) reduces to the constraint �0 � �x, which is a directed edge �0 ! �x. Adding this constraint
does not cause any propagation; this constraint is among variables. Notice that the assignment of type
�3 int to �x also does not cause any propagation.

The constraint qa int � Alloc("; �x)(�y) reduces to qa int � "(�y), which reduces to qa � �y. This
constraint does trigger propagation. Propagate(�y; ") �rst pushes �y backward to the Filter store. But
since �y 62 L, propagation stops. Next we push �y forward through the graph and stop when we reach the
store Assign(�; �y : qc int); forward propagation assumes that this is a strong update.

Since Assign(�; �y : qc int) contains an interesting type, �y is propagated from this store forward through
the graph. On one path, propagation stops at the Filter. The other path yields a constraint qc � �0y. Notice
that the constraint �0y � qc remains satis�able.

The constraint qb � �z triggers a propagation step as before. However, this time �z 2 L, and during
backward propagation when we reach Filter we must continue. Eventually we reach Assign(�; �z : �4 int) and
add the constraint �4 � �z. This in turn triggers propagation from Assign(�; �z : �4 int). This propagation
step reaches "0 and adds �z to S("

0) and generates the constraint �4 � �0z.
Finally, we determine that in the Assign stores �x and �y are linear and �z is non-linear. Thus the update

to �z is a weak update, which yields an equality constraint �z = �4, indicated with a double-dotted line.
This example illustrates three kinds of propagation. The location �x is never interesting, so it is not

propagated through the graph. The location �y is propagated, but propagation stops at the strong update
to �y and also at the Filter, because the (Down) rule in Figure 2 was able to prove that �y is purely local
to f . The location �z, on the other hand, is not purely local to f , and thus all instances of �z are conated,
and �z admits only weak updates.

4 Restrict

As mentioned in the introduction, type inference may fail because a location on which a strong update
is needed may be non-linear. In practice a major source of non-linear locations is data structures. For
example, given a linked list l, our alias analysis cannot distinguish l->lock from l->next->lock, hence
both are non-linear.

Our solution to this problem is to add a new form restrictx =e1 in e2 to the language. Intuitively, this
declares that of all aliases of e1, only the particular value bound to x will be used within e2. For example:

restrict x = y in

x := ...; /* valid */

y := ...; /* invalid */

The �rst assignment through x is valid, but the assignment through y is forbidden by restrict.
We check restrict using the following type rule, which is integrated into the �rst inference pass of

Figure 2:
� ` e1) e01 : t1;L1 t1 = ref (�) �; �0 fresh CI(�

0) = CI(�)
�[x 7! ref (�0)] ` e2) e02 : t2;L2

� 62 L2 �0 62 locs(�; �; t2)

� ` restrict x =e1 in e2) restrict�
0

x =e01 in e
0
2 : t2;L1 [L2 [f�g

(Restrict)

12

Propagate(�, ") =
case C of

":
add � : sp(CI(�)) to S(") if not already in S(")
if � is not marked in "

mark � in S(")
Forward-prop(C, �, S(")(�))
for each C0 such that C0 � "

Back-prop(C0, �, S(")(�))
Assign(C0; � : �):

if � is not marked in Assign(C0; � : �)
mark � in Assign(C0; � : �)
Forward-prop(C, �, �)

Back-prop(C, �, �) =
case C of

":
add � : sp(CI(�)) to S(") if not already in S(")
S(")(�) � �

Alloc(C0; �0):
Back-prop(C0, �, �)

Merge(C0; C00; L):
if � 2 L

then Back-prop(C0, �, �)
else Back-prop(C00, �, �)

Filter(C0; L):
if � 2 L

then Back-prop(C0, �, �)
Assign(C0; �0 : � 0):

if � = �0

then � 0 � �

else Back-prop(C0, �, �)

Forward-prop(C, �, �) =
for each " such that C � "

add � : sp(CI(�)) to S(") if not already in S(")
� � S(")(�)

for each C0 such that C0 is constructed from C

case C0
of

Alloc(C; �0):
Forward-prop(C0, �, �)

Merge(C1; C2; L):
if � 2 L and C = C1

then Forward-prop(C0, �, �)
if � 62 L and C = C2

then Forward-prop(C0, �, �)
Filter(C;L):

if � 2 L
then Forward-prop(C0, �, �)

Assign(C; �0 : � 0):
if � 6= �0

then Forward-prop(C0, �, �)

Figure 8: Lazy location constraint propagation

13

qc Merge

ooooooooooo

55
55

55
55

55 PPPP

��

L = f�zg

L

f�y :�0y;

OO

�z :�
0
zg "0 Filter

mmm

��

Assign
nn

rr

L

Assign
mm

�y :qc

__

Assign

�
�

�
�z :�4

ff

��
�x :�3

" f�x :�x; �y :�y; �z :�zg

�0

OO

qa

OO

qb

OO

Figure 9: Constraint propagation

Here we bind x to a type with a fresh abstract location �0 to distinguish dereferences of x from dereferences of
other aliases of e1. The constraint � 62 L2 forbids location � from being dereferenced in e2; notice dereferences
of �0 within e2 are allowed. We require that �0 not escape the scope of e2 with �

0 62 locs(�; �; �2), and we also
add � to the e�ect set. We translate restrict into the target language by annotating it with the location �0

that x is bound to. A full discussion of restrict, including a soundness proof, can be found in a technical
report [FA01].

We use restrict to locally recover strong updates. The key observation is that the location � of e1 and
the location �0 of x can be di�erent. Thus even if the linearity of � is !, the linearity of �0 can be 1. Therefore
within the body of e2 we may be able to perform strong updates of �0. When the scope of restrict ends,
we may need to do a weak update from �0 to �.

For example, suppose that we wish to type check a state change of some lock deep within a data structure,
and the location of the lock is non-linear. The following is not atypical of Linux kernel code:

spin_lock(&a->b[c].d->lock); /* invalid; */

... /* non-linear loc */

spin_unlock(&a->b[c].d->lock);

Assuming the ... above contains no accesses to aliases of the lock and does not alias the lock to a non-linear
location, we can modify the code to type check as follows:

restrict lock = &a->b[c].d->lock in

spin_lock(lock); /* valid */

...

spin_unlock(lock);

In our ow-sensitive step, we use the following inference rule for restrict:

�; C ` e1 : Q ref (�); C0

C00 = Alloc(C0; �0) C0(�) � C00(�0)
�[x 7! ref (�0)]; C00 ` e2 : �2; C

000

�; C ` restrict�
0

x =e1 in e2 : �2; Assign(C000; � : C000(�0))
(Restrict)

In this rule, we infer a type for e1, which is a pointer to some location �. Then we create a new store
C 00 in which the location �0 of x is both allocated and initialized C 0(�). In C 00, and with x added to the
type environment, we evaluate e2. Finally, the result store is the store C

000 with a potentially weak update
assigning the contents of �0 to �.

14

S(Merge(C;C0; L))(�) =

�
S(C)(�) al(�) 2 L _ rw(�) 2 L
S(C0)(�) otherwise

S(Filter(C;L))(�) = S(C)(�) al(�) 2 L _ rw(�) 2 L

S(Merge(C;C0; L))lin(�) =

�
S(C)lin(�) al(�) 2 L
S(C0)lin(�) otherwise

S(Filter(C;L))lin(�) =

�
S(C)lin(�) al(�) 2 L _ rw(�) 2 L
0 otherwise

Figure 10: New de�nition of S with allocation and read-write e�ects

5 Experiments

We have used a prototype implementation of our analysis to check two program properties: locking in the
2.4.9 Linux kernel device drivers and uses of the C Stream Library. Our implementation is sound up to the
unsafe features of C: type casts, variable-argument functions, ill-de�ned pointer arithmetic, and conversions
from arbitrary integers to pointers. We currently make no attempt to track the e�ect of any of these features
on aliasing, except for the special case of type casting of the result of malloc-like functions. In combination
with a system for enforcing memory safety, such as CCured [NMW02], our implementation would be sound.

In our implementation, we do not allow strong updates on locations containing functions. This improves
eÆciency because we never need to recompute S(C)lin(�)|weak updates will not add constraints between
stores.

Additionally, observe that allocations a�ect linearities but not types, and reads and writes a�ect types but
not linearities. Thus in our implementation we also improve the precision of the analysis by distinguishing
read-write and allocation e�ects. Formally, instead of e�ects of the form �, we introduce e�ects rw(�) for a
read or write of location �, and al(�) for an allocation of location �. We modify Figure 2 so that (Ref) yields
e�ect al(�) and (Deref) and (Assign) yield e�ect rw(�).

Then we modify the de�nition of S for Merge and Filter as shown in Figure 10. The �rst, second, and
last case are as before. In the third case, we use only the allocation e�ects of L when computing the linearity
of a location in a Merge store. Intuitively this means that functions that do not allocate a location � do
not act as join points for location � with respect to linearities. We could also improve the precision of the
analysis further by distinguish read and write e�ects from each other.

5.1 Linux Kernel Locking

The Linux kernel includes two primitive locking functions, which are used extensively by device drivers:

void spin_lock(spinlock_t *lock);

void spin_unlock(spinlock_t *lock);

We use three quali�ers locked, unlocked, and > (unknown) to check locking behavior. The subtyping
relation is locked < > and unlocked < >. We assign spin lock the type

(C; ref (�)) �!f�g (Assign(C; � : locked spinlock t); void)
where

C(�) � unlocked spinlock t

We omit the function quali�er since it is irrelevant. The type of spin lock requires that the lock passed as
the argument be unlocked (see the where clause) and changes it to locked upon returning. The signature for
spin unlock is the same with locked and unlocked exchanged. Since our implementation currently lacks
parametric polymorphism, we inline calls to spin lock and spin unlock.

15

Using these type signatures we can check for two kinds of errors: deadlocks from acquiring a lock already
held by the same thread, and attempting to acquire or release a lock in an unknown (>) state.

We analyzed 513 whole device driver modules (a whole module includes all the �les that make up a single
driver). A module must meet a well-speci�ed kernel interface, which we model with a main function that
non-deterministically calls all possible driver functions registered with the kernel.

We have not yet �nished reviewing the analysis results for all modules. So far we have found 14 apparently
new locking bugs, including one which spanned multiple �les. Five of the apparent bugs involve deadlocks,
in which a function tries to acquire a lock already held by a function above it in the call chain. For example,
the emu10k1 module contains a deadlock: void):

void emu10k1_mute_irqhandler(struct emu10k1_card *card) {

struct patch_manager *mgr = &card->mgr;

... spin_lock_irqsave(&mgr->lock, flags);

emu10k1_set_oss_vol(card, ...); ...

}

void emu10k1_set_oss_vol(struct emu10k1_card *card, ...) {

... emu10k1_set_volume_gpr(card, ...); ...

}

void emu10k1_set_volume_gpr(struct emu10k1_card *card, ...) {

struct patch_manager *mgr = &card->mgr;

... spin_lock_irqsave(&mgr->lock, flags); ...

}

Note detecting this error requires interprocedural analysis.
One of our goals is to understand how often, and why, our system fails to type check real programs. We

have categorized every type error in an earlier experiment where we separately analyze each of 910 driver
�les and remove the > quali�er so that locked and unlocked are incomparable. In this experiment, of the
52 �les that fail to type check, 11 �les have locking bugs and the remaining 41 �les have type errors. Half of
these type errors are due to incorrect assumptions eliminated by moving to whole module analysis, and the
remaining type errors fall into two main categories.

In most cases the problem is that our alias analysis is not strong enough to type check the program, often
because our current implementation does not have parametric polymorphism for store locations. We plan
to add this feature using the techniques of [FRD00, RF01]. In another common situation there are multiple
aliases of a location, but only one alias is actually used in the code of interest; we can type check this pattern
using restrict. Not surprisingly, larger programs have more problems with spurious aliasing, so we believe
both polymorphism and restrict are most important for large programs.

A less common class of type errors arises when locks are conditionally acquired and released. In this case,
a lock is acquired if a predicate P is true. Before the lock is released, P is tested again to check whether
the lock is held. Our system is not path sensitive, and our tool signals a type error at the point where the
path on which the lock is acquired joins with the path on which the lock is not acquired (since we did not
use > in these single �le experiments). Most of these examples could be rewritten with little e�ort to pass
our type system. In our opinion, this would usually make the code clearer and safer|the duplication of the
test on P invites new bugs when the program is modi�ed.

Even after further improvements, we expect some dynamically correct programs will not type check. As
future work, we propose the following solution. The quali�er > represents an unknown state. We can use
the information in the constraints to automatically insert coercions to and from > where needed. During
execution these coercions perform runtime tests to verify locks are in the correct state. Thus, our approach
can introduce dynamic type checking in situations where we cannot prove safety statically.

We added restrict annotations to the emu10k1 module, which is the Linux kernel module that yielded
the largest number of false positives because non-linear locations could not be strongly updated. Using
restrict, we eliminated all of these false positives. This supports our belief that restrict is the right
tool for dealing with (necessarily) conservative alias analysis. Many of these restrict annotations were
needed because of the current lack of location polymorphism; we must leave an accurate assessment of how
burdensome restrict is to future work.

16

$open u
gggggg WWWWWW

www
ww

ww
ww

ww
w

$read u
WWWW

wwwwwwwwwwww
$write u

gggg

wwwwwwwwwwww
$readwrite u

wwwwwwwwwwww WWWWW
$open

gggggggg
WWWWWWW $closed

$read
WWWWW $write

ggggg

$readwrite

Figure 11: Subtyping relation among C stream library quali�ers

5.2 C Stream Library

As mentioned in the introduction, the C stream library interface contains certain sequencing constraints.
For example, a �le must be opened for reading before being read. A special property of the C stream library
is that the result of fopen must be tested against NULL before being used, because fopen may or may not
succeed.

We model C stream library �le states using the quali�er partial order given in Figure 11. This partial
order extends the partial order in Figure 1 with four additional quali�ers $open u, $read u, $write u, and
$readwrite u. The quali�er $X u stands for a �le opened in state X that has not yet been checked against
NULL.

The type signature for fclose is

(C; ref (�)) �!f�g (Assign(C; � : $closed FILE); int)
where

C(�) � $open FILE

and the type signature for fopen is

(C;mode) �!f�g (Assign(Alloc(C; �); � : mode FILE); ref (�))
where

C(�) � $closed FILE

The mode is passed as a parameter to the fopen function. In practice the mode is usually a constant string,
and therefore we can determine the correct mode quali�er, $read u, $write u, or $readwrite u, by a simple
syntactic comparison against possible mode strings. If we cannot determine the mode quali�er syntactically,
we issue a warning and mark the �le as $open u.

Finally, functions that read and write �les require appropriate quali�ers for their �le arguments. For
example, the fgetc function, which reads a character from a stream, has the signature

(C; ref (�)) �!f�g (C; int)
where

C(�) � $read FILE

Using these quali�ers we can type check the following C code fragment:

if ((file = fopen(filename, "r")) != NULL) {

... fgetc(file); ...

fclose(file);

} else {

printf("Failed to open %s", filename);

}

At the call to fopen, we syntactically recognize the string "r" and determine that the �le is being opened
for read. Thus the location � corresponding to the opened �le is given the type $read u FILE. We treat

17

0

20

40

60

80

100

120

140

160

180

200

0 100k 200k 300k 400k 500k 600k 700k 800k

Size (preprocessed lines of code)

T
im

e
(s

ec
)

Flow sensitive Flow insensitive Parsing

0

100

200

300

400

500

600

700

800

900

1000

0 100k 200k 300k 400k 500k 600k 700k 800k

Size (preprocessed lines of code)

S
pa

ce
(M

by
te

s)

Figure 12: Resource usage for whole module analysis

the comparison between the pointer to location � and NULL as a kind of type case. We analyze the true
branch starting in the store Assign(C; � : $read FILE), and we analyze the false branch starting in the store
Assign(C; � : $closed FILE). We use conditional constraints to relate the $read u quali�er in C to $read

at the true branch.
The class of C stream library usage errors our tool can detect includes �les used without having been

opened and checked against NULL, �les opened in an incompatible mode, and �les accessed after being closed.
We tried our tool on two application programs, man-1.5h1 and sendmail-8.11.6. We were primarily

interested in the performance of our tool on a more complex application (see below), as we did not expect
to �nd any latent stream library usage bugs in such mature programs. However, we did �nd one minor bug
in sendmail, in which an opened log �le is never closed in some circumstances.

5.3 Precision and EÆciency

The algorithm described in Section 3.4 is carefully designed to limit resource usage. Figure 12 shows time
and space usage of whole module analysis versus preprocessed lines of code for 513 Linux kernel modules.
All experiments were done on a dual processor 550 MHz Pentium III with 2GB of memory running RedHat
6.2.

18

We divide the resource usage into C parsing and type checking, ow-insensitive analysis, and ow-
sensitive analysis. Flow-insensitive analysis consists of the alias and e�ect inference of Figure 2 together
with ow-insensitive quali�er inference [FFA99]. Flow-sensitive analysis consists of the constraint generation
and resolution described in Sections 3.3-3.4, including the linearity computation.

The graphs show the space overhead of ow-sensitive analysis is relatively small and appears to scale well
to large modules. For all modules the space usage for the ow-sensitive analysis is within 30% of the space
usage for the ow-insensitive analysis. The running time of the analysis is more variable, but the absolute
running times are within a factor of 2.3 of the ow-insensitive running times.

The analysis of sendmail-8.11.6, with 175,493 preprocessed source lines, took 168 seconds and 266MB;
man-1.5h1, with 16,411 preprocessed source lines, took 1.99 seconds and 32MB. The time usage for sendmail
suggests that C stream library analysis is more expensive than Linux kernel locking analysis. The higher
running time is most likely because sendmail uses stream operations more often and more freely than a
typical Linux kernel module uses spin locks. Because our algorithm is demand driven, more demand means
more computation.

6 Conclusion

We have presented a system for extending standard type systems with ow-sensitive type quali�ers. We
have given a lazy constraint resolution algorithm to infer type quali�er annotations and have shown that our
analysis is e�ective in practice by �nding a number of new locking bugs in the Linux kernel.

References

[AFL95] Alexander Aiken, Manuel F�ahndrich, and Raph Levien. Better Static Memory Management: Improving
Region-Based Analysis of Higher-Order Languages. In Proceedings of the 1995 ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, La Jolla, California, June 1995, pages
174{185.

[AL95] Rita Altucher and William Landi. An Extended Form of Must Alias Analysis for Dynamic Allocation.
In Proceedings of the 22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 74{84, San Francisco, California, January 1995.

[ASU88] Alfred V. Aho, Ravi Sethi, and Je�rey D. Ullman. Compilers: Principles, Techniques, and Tools. Addison
Wesley, 1988.

[CWM99] Karl Crary, DavidWalker, and Greg Morrisett. Typed MemoryManagement in a Calculus of Capabilities.
In Proceedings of the 26th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, San Antonio, Texas, January 1999, pages 262{275.

[CWZ90] David R. Chase, Mark Wegman, and F. Kenneth Zadeck. Analysis of Pointers and Structures. In Pro-

ceedings of the 1990 ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 296{310, White Plains, New York, June 1990.

[DF01] Robert DeLine and Manuel F�ahndrich. Enforcing High-Level Protocols in Low-Level Software. In Pro-

ceedings of the 2001 ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 59{69, Snowbird, Utah, June 2001.

[ECCH00] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking System Rules Using System-
Speci�c, Programmer-Written Compiler Extensions. In Fourth symposium on Operating System Design

and Implementation, San Diego, California, October 2000.

[ECH+01] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as Deviant
Behavior: A General Approach to Inferring Errors in Systems Code. In Proceedings of the 18th ACM

Symposium on Operating Systems Principles, Ban�, Canada, October 2001.

[EGH94] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. Context-Sensitive Interprocedural Points-to
Analysis in the Presence of Function Pointers. In Proceedings of the 1994 ACM SIGPLAN Conference

on Programming Language Design and Implementation, pages 242{256, Orlando, Florida, June 1994.

[Eva96] David Evans. Static Detection of Dynamic Memory Errors. In Proceedings of the 1996 ACM SIG-

PLAN Conference on Programming Language Design and Implementation, pages 44{53, Philadelphia,
Pennsylvania, May 1996.

19

[FA01] Je�rey S. Foster and Alex Aiken. Checking Programmer-Speci�ed Non-Aliasing. Technical Report
UCB//CSD-01-1160, University of California, Berkeley, October 2001.

[FF00] Cormac Flanagan and Stephen N. Freund. Type-Based Race Detection for Java. Proceedings of the 2000
ACM SIGPLAN Conference on Programming Language Design and Implementation, Vancouver B.C.,
Canada, June 2000, pages 219{232.

[FFA99] Je�rey S. Foster, Manuel F�ahndrich, and Alexander Aiken. A Theory of Type Quali�ers. In Proceedings

of the 1999 ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
192{203, Atlanta, Georgia, May 1999.

[FRD00] Manuel F�ahndrich, Jakob Rehof, and Manuvir Das. Scalable Context-Sensitive Flow Analysis using
Instantiation Constraints. In Proceedings of the 2000 ACM SIGPLAN Conference on Programming

Language Design and Implementation, Vancouver B.C., Canada, June 2000, pages 253{263.

[GMW+01] Dan Grossman, Greg Morrisett, Yanling Wang, Trevor Jim, Michael Hicks, and James Cheney. Cy-
clone user's manual. Technical Report 2001-1855, Department of Computer Science, Cornell University,
November 2001. Current version at http://www.cs.cornell.edu/projects/cyclone.

[IK02] Atsushi Igarashi and Naoki Kobayashi. Resource Usage Analysis. To appear in Proceedings of the

29th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Portland,
Oregon, January 2002.

[JTWW98] Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright. Single and loving it: Must-
alias analysis for higher-order languages. In Proceedings of the 25th Annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, San Diego, California, January 1998, pages 329{
341.

[LG88] John M. Lucassen and David K. Gi�ord. Polymorphic E�ect Systems. In Proceedings of the 15th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 47{57, San Diego,
California, January 1988.

[NMW02] George Necula, Scott McPeak, and Westley Weimer. CCured: Type-Safe Retro�tting of Legacy Code.
To appear in Proceedings of the 29th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, Portland, Oregon, January 2002.

[O'C99] Robert O'Callahan. A Simple, Comprehensive Type System for Java Bytecode Subroutines. In Proceed-

ings of the 26th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
San Antonio, Texas, January 1999, pages 70{78.

[RF01] Jakob Rehof and Manuel F�ahndrich. Type-Based Flow Analysis: From Polymorphic Subtyping to CFL-
Reachability. In Proceedings of the 28th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 54{66, London, United Kingdom, January 2001.

[RM96] Jakob Rehof and Torben �. Mogensen. Tractable Constraints in Finite Semilattices. In Radhia Cousot
and David A. Schmidt, editors, Static Analysis, Third International Symposium, volume 1145 of Lecture
Notes in Computer Science, pages 285{300, Aachen, Germany, September 1996. Springer-Verlag.

[SA98] Raymie Stata and Mart��n Abadi. A Type System for Java Bytecode Subroutines. In Proceedings of

the 25th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Diego, California, January 1998, pages 149{160.

[SWM00] Frederick Smith, David Walker, and Greg Morrisett. Alias Types. In Gert Smolka, editor, 9th European

Symposium on Programming, volume 1782 of Lecture Notes in Computer Science, pages 366{381, Berlin,
Germany, 2000. Springer-Verlag.

[SY86] Robert E. Strom and Shaula Yemini. Typestate: A Programming Language Concept for Enhancing
Software Reliability. IEEE Transactions on Software Engineering, 12(1):157{171, January 1986.

[TT94] Mads Tofte and Jean-Pierre Talpin. Implementation of the Typed Call-by-Value �-Calculus using a
Stack of Regions. In Proceedings of the 21st Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 188{201, Portland, Oregon, January 1994.

[Wei01] Daniel Weise, 2001. Personal communication.

[WL95] Robert P. Wilson and Monica S. Lam. EÆcient Context-Sensitive Pointer Analysis for C Programs. In
Proceedings of the 1995 ACM SIGPLAN Conference on Programming Language Design and Implemen-

tation, La Jolla, California, June 1995, pages 1{12.

[WM00] David Walker and Greg Morrisett. Alias Types for Recursive Data Structures. In International Workshop

on Types in Compilation, Montreal, Canada, September 2000.

20

[Wri92] Andrew K. Wright. Typing References by E�ect Inference. In Bernd Krieg-Br�ucker, editor, 4th European

Symposium on Programming, volume 582 of Lecture Notes in Computer Science, pages 473{491, Rennes,
France, February 1992. Springer-Verlag.

[XRM01] Zhichen Xu, Thomas Reps, and Barton P. Miller. Typestate Checking of Machine Code. In David Sands,
editor, 10th European Symposium on Programming, volume 2028 of Lecture Notes in Computer Science,
pages 335{351, Genova, Italy, 2001. Springer-Verlag.

21

