
Interactive Walkthrough Environments for Simulation

by

Richard William Bukowski

B.S. (Cornell University) 1992
M.S. (University of California, Berkeley) 1995

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor Of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Carlo H. Śequin , Chair
Professor John Canny
Professor Patrick Pagni

Fall 2001

The dissertation of Richard William Bukowski is approved:

Chair Date

Date

Date

University of California at Berkeley

Fall 2001

Interactive Walkthrough Environments for Simulation

Copyright 2001

by

Richard William Bukowski

1

Abstract

Interactive Walkthrough Environments for Simulation

by

Richard William Bukowski

Doctor Of Philosophy in Computer Science

University of California at Berkeley

Professor Carlo H. Śequin , Chair

This thesis describes a second-generation walkthrough framework that provides extensive

facilities for integrating many types of third-party simulation codes into a large-scale virtual environ-

ment model, and puts it in perspective with first-generation systems built during the last two decades.

The framework provides an advanced model database that supports multiple simultaneous users with

full consistency semantics, system independent storage and retrieval, and efficient prefetching and

object reconstruction techniques to support second and third-generation walkthrough systems. Fur-

thermore, our framework integrates support for scalable, distributed, interactive models with plug-in

physical simulation to provide a large and rich environment suitable for architectural evaluation and

training applications.

A number of third-party simulations have been integrated into the framework, includ-

ing dynamic physical interactions, fire simulation, multiple distributed users, radiosity, and online

tapestry generation. All of these simulators interact with each other and with the user via a data dis-

tribution network that provides efficient, optimized use of bandwidth to transport simulation results

to clients as they need them for visualization. These diverse simulators provide proof of concept for

the generality of the framework, and show how quickly third-party simulations can be integrated

into our system. The result is a highly interactive distributed architectural model with applications

in research, training, and real-time data visualization.

Finally, an outlook is given to a possible third generation of virtual environment architec-

tures that are capable of integrating different heterogeneous walkthrough models.

Professor Carlo H. Śequin
Dissertation Committee Chair

i

Contents

List of Figures v

1 Introduction 1
1.1 Motivation . 1
1.2 Driving Applications . 3

1.2.1 Fire Safety . 3
1.2.2 Applied City Models . 4

1.3 Technical Challenges . 4

2 Background and Related Work 6
2.1 First Generation Systems . 7

2.1.1 Outdoor Environments . 7
2.1.2 Indoor Environments . 8
2.1.3 Simulation-Enhanced Environments . 9
2.1.4 Shortcomings of First Generation Systems 11

2.2 Citywalk: A Second Generation Architecture . 12
2.3 Overview . 12

3 Database Support 14
3.1 Design Goals . 14

3.1.1 Large Model Visualization . 15
3.1.2 Efficient On-Line Model Updates . 15
3.1.3 Multiple Interactive Agents . 16

3.2 Why Not Use An Off-The-Shelf Product? . 17
3.3 Specification . 18

3.3.1 API Overview . 18
3.3.2 Basic Design . 21
3.3.3 Object Service Layer . 25
3.3.4 Modification and Transaction Semantics 31
3.3.5 Locking Semantics . 31
3.3.6 Watch Semantics . 32

3.4 Programming Concerns . 33
3.4.1 Ease of Extension . 33

ii

3.4.2 Visualization During Database Mutation 35
3.4.3 Effects of Dynamic Update on Frame Rate 38
3.4.4 Updates and Viewing Processes . 39
3.4.5 Scalability . 40

3.5 Performance . 42

4 Simulation Data Management and Control 44
4.1 Motivation . 44
4.2 Assumptions and Summary of Approach . 46

4.2.1 Integration of Visualization and Simulation 46
4.2.2 Walkthru as a Model Client Environment 48
4.2.3 Simulation Types . 51
4.2.4 Simulator Output . 52

4.3 Communication and Control . 54
4.3.1 Primitive Channels . 54
4.3.2 The Simulation Manager . 55
4.3.3 Client to Simulator Communication . 56
4.3.4 Simulator to Client Communication . 58

4.4 Real-Time Data Management . 62
4.4.1 “Just-In-Time” Simulation Data Management 62
4.4.2 Bandwidth Management . 64
4.4.3 Performance Analysis . 66
4.4.4 Results . 68
4.4.5 Conclusions and Observations . 73

5 Simulator Integration 75
5.1 Integration API . 75

5.1.1 Framework Modules . 75
5.1.2 Choosing an Interface . 76
5.1.3 Simulator Component . 78
5.1.4 Generic Interface Components . 80
5.1.5 Walkthru Interface Components . 81

5.2 CFAST (The Consolidated Model of Fire and Smoke Transport) 82
5.2.1 Overview and Capabilities . 82
5.2.2 Database Integration . 85
5.2.3 Simulation Service . 88
5.2.4 User Interface Module . 89
5.2.5 Application . 91

5.3 IMPULSE (Impulse-based dynamics simulation) 92
5.3.1 Overview and Capabilities . 92
5.3.2 Database Integration . 93
5.3.3 Simulation Service . 93
5.3.4 User Interface . 93
5.3.5 Results . 94

5.4 Real-time Multiuser Walkthru . 95

iii

5.4.1 Overview and Capabilities . 95
5.4.2 Simulation Service . 95
5.4.3 User Interface . 96
5.4.4 Results . 97

5.5 Tapestries: On-line Imposter Generation . 97
5.5.1 Tapestry Construction . 98
5.5.2 Tapestries in the Framework . 99

5.6 Radiosity on Demand . 100
5.6.1 Overview . 100
5.6.2 Incremental Radiosity Updates . 101
5.6.3 View-Based Radiosity Updates . 102
5.6.4 Radiosity Updates in a Dynamic Model 103
5.6.5 Radiosity Results . 104

5.7 The Generic Metasimulator . 106
5.8 Overall Integration Experiences . 107

6 Model Construction with Floorsketch 108
6.1 Motivation . 108
6.2 Basic Modeling with Floorsketch . 110
6.3 Extrusion . 113
6.4 Advanced Applications . 117
6.5 Results . 118

7 Discussion 120
7.1 Architectural Analysis . 120
7.2 Relationship to Existing Techniques . 123

7.2.1 Database Techniques . 123
7.2.2 Communication and Interaction Techniques 124
7.2.3 Distributed Simulation Techniques . 124

7.3 New Directions . 124
7.3.1 Simulation Triggering . 124
7.3.2 Temporal Navigation and Representation 126
7.3.3 Integrated Rendering Frameworks . 126

7.4 Summary . 128
7.5 A Final Thought . 128

Bibliography 129

A Library API Reference 136
A.1 System Library (system) . 136

A.1.1 Compatibility Functions (system.h, compat.[h,c]) 136
A.1.2 Error Reporting (errors.[h,c]) . 136

A.2 Core Class Library (gsim) . 137
A.2.1 Socket Abstraction (rtsocket.[hpp, cpp]) 138
A.2.2 Channel Abstraction (rtchannel.[hpp, cpp]) 138

iv

A.2.3 Timer Facilities (rttimer.[hpp,cpp]) . 139
A.2.4 Threading Facilities (rtthread.[hpp,cpp]) 139
A.2.5 Universal Base Class (wkobject.[hpp,cpp]) 139
A.2.6 Packable Interface and Smart Buffers (rtbuffer.[hpp,cpp]) 140

A.3 Database Library (ndf) . 140
A.3.1 Block Services (dfblockservice.[hpp,cpp], dfblockserviceex.[hpp,cpp]) . . 141
A.3.2 Blob Services (dfblobservice.[hpp,cpp]) 142
A.3.3 Universal Blob Server (dfservermain.[hpp,cpp]) 143
A.3.4 Transaction Stack Object (dftransaction.[hpp,cpp]) 143
A.3.5 Persistent Object Base Class (dfobject.[hpp,cpp]) 144
A.3.6 Database Shell Object (dfdatabase.[hpp,cpp]) 144
A.3.7 Smart Pointers (dfsmartptr.[hpp,cpp]) . 145

A.4 Simulator Library (newsim) . 146
A.4.1 General Architecture . 146
A.4.2 Summary of Optional Overloadable Classes 150
A.4.3 Simulation Manager (rtsimulationmanager.[hpp,cpp]) 150
A.4.4 Bandwidth Manager (rtbwmanager.[hpp,cpp]) 152
A.4.5 Condition Chunk Base Class (rtconditions.[hpp,cpp]) 153
A.4.6 Simulation Service Base Class (rtsimulationservice.[hpp,cpp]) 153
A.4.7 Simulation Client Base Class (rtsimulationclient.[hpp,cpp]) 153
A.4.8 Local Simulation Service Base Class (rtlocalsimservice.[hpp,cpp]) 153
A.4.9 Remote Simulation Service Base Class (rtremotesimservice.[hpp,cpp]) . . 154
A.4.10 Real-Time Simulation Components (rtrtcomponents.[hpp,cpp]) 154
A.4.11 Real-Time Simulation Client Base Class (rtrtsimulationclient.[hpp,cpp]) . 155
A.4.12 Virtual-Time Simulation Components (rtvtcomponents.[hpp,cpp]) 156
A.4.13 Virtual-Time Simulation Client Base Class (rtvtsimulationclient.[hpp,cpp]) 157
A.4.14 Simulation View Base Classes ([rtsimview,rtbasicsimview].[hpp,cpp]) . . . 157

v

List of Figures

2.1 Snapshots from the Virtual Los Angeles Project.. 8

3.1 First and second generation Berkeley Walkthru databases. The first generation con-
centrated on a homogeneous interior environment; the second generation scales up
to a heterogeneous, indoor and outdoor environment.. 14

3.2 Multiple different types of agents active within the same environment; multiple
users, dynamics, and fire.. 17

3.3 Interrelated constellations describing an object in the Citywalk database. Constel-
lation boundaries are dashed; the master object for each constellation has a thick
border. 19

3.4 Multiple processes connecting to a database. The blob service is replicated through
a socket connection; local database objects provide namespaces in which each
database object can be in an independent load and lock state.. 22

3.5 A typical watch firing sequence. When a transaction commits, some objects are
modified; these trigger watches set on that object by other processes, which are
notified via a message in an asynchronous thread. How they respond to the watch
is defined by the individual process. Note that neither the time to receipt nor the
order of the notifications is guaranteed; processes must anticipate this and be ready
to operate on incomplete information in time-critical situations.. 23

3.6 Different referential spaces for different processes. Particular portions of the model
may or may not be loaded in each space, or may be older versions awaiting update.25

3.7 Assignment and identity of objects. When an object is assigned, it takes on a uni-
versal identity that it shares in all referential spaces. On assignment, the object
acquires a DbRef value that identifies it to all processes (e.g. theRef field). The
first assignment also establishes version 0 of the object in the persistent store.. . . 28

3.8 Serialization of objects converts them to a machine independent form that can either
be stored in the database or transferred to other processes via sockets. Note that
references external to the constellation are stored inRef form. 30

3.9 Dynamic update taking place over multiple frames. In intermediate frames, the
system may render outdated information in exchange for reducing the visual impact
of frame rate discontinuities.. 39

vi

3.10 Models can be split over multiple servers, providing scalability for viewers that can
incrementally load local regions of the database. References to objects in other
databases can be embedded by combining a database location with aRef within
that database.. 41

4.1 Our model of the machines comprising the data network. Note that we assume there
is only one limited-bandwidth physical link between machines, particularly to client
machines, and that data and simulation servers can reside anywhere.. 47

4.2 The output of many types of simulation can be grouped by the same volumes that
partition the model for visibility. If this is the case, the viewer only needs to receive
simulation data for the volumes they can see.. 49

4.3 The just-in-time concept provides minimal latency by sending only just as much
information at each timestep as the client can receive. Traditional buffering can
result in large backups of data that result in high latency if the viewer suddenly
needs different information while the buffers are still packed.. 50

4.4 Dynamic updates vs. persistent updates. Dotted borders represent machine bound-
aries; arrows between them require network communication. Dynamic updates are
much faster, due to data sharing and minimal network communications; Persistent
updates are easier to closely synchronize, via database locking and transactions,
and do not require simulation-specific connections.. 53

4.5 Telemetry objects provide the simulation server with knowledge of what interest
regions the client is exploring.. 58

4.6 Intermediate nodes can merge telemetry nodes to improve bandwidth usage within
the service network.. 59

4.7 An example of the set of chunks generated over time in the dynamics simulator. The
chunks generated for a particular object, which can be located in the condition set
by the objects’ unique ID in the subvolume field of the chunk, can show changing
internal data over time, and change volume as the object moves between cells.. . . 61

4.8 Chunk importance is based on proximity to the user’s immediate interest and near-
future lookahead interest sets.. 64

4.9 Trace data of simulator-visualizer data transfer for three strategies: the oldest-
data-first strategy (top), the visibility-guided strategy (middle), and the bandwidth-
managed-importance strategy (bottom). The horizontal axis is real time; the vertical
axis is simulation (i.e. virtual) time. Three functions are plotted for each strategy:
the amount of simulation time completed by the simulator, the viewer’s current vi-
sualization time, and the timestamp of the latest chunk that has been transmitted
from simulator to visualizer. Note the vertical lines in the requested visualization
time, which denote user-created time discontinuities, and the horizontal lines in the
requested visualization time, which show regimes for which data is available from
the simulator, but for which that data had not been transmitted in time to be viewed.
The “maximum simulation time transmitted” curves give an indication of how re-
sponsive each strategy is to user movement in space and time.. 69

vii

4.10 Trace data of communication pipe backup (i.e. clogging) for the oldest-data-first
and visibility-guided strategies. The former is much worse than the latter, although
it is in the latter that it actually makes a difference. Pipe blockage in the bandwidth-
managed-importance case is negligible (less than 1.5 kB/s on this graph, where the
others peak at about 550 kB/s and 250 kB/s respectively), and can in fact be reduced
to an arbitrarily small amount on a fast computer by increasing the manager’s call-
back frequency.. 70

4.11 Trace data of the percentage of spacetime volumes visible to the user that have
simulation data available, but for which that data has not yet been transmitted
to the visualizer. The oldest-data-first strategy exhibits massive gaps in viewable
data; the visibility-guided strategy fares better, but there is still a 40-second period
where the user should be seeing smoke and flame, but instead sees nothing. The
bandwidth-managed-importance case shows only brief 1- to 2-second gaps at time
discontinuities (i.e. where the user unpredictably drags the time slider far into the
untransmitted data).. 71

5.1 A diagram of how the system components connect simulator to visualizer. Com-
ponents in bold outline are created by the user; components in dotted outline are
provided by the integration framework.. 76

5.2 VCR controls that control the flow of “virtual” time.. 81
5.3 The zone model finite element method used for fire simulation. Each room maintains

two zones, with up to three qualitatively discrete exchange regions between volumes
through doorways or windows.. 84

5.4 CFAST’s original input and output, as it is distributed by NIST. These forms are
difficult for an untrained user to create and understand.. 85

5.5 The plugin UI for setting CFAST’s chemical properties.. 86
5.6 How CFAST (bottom) maps volumes onto the world cell structure (top). The Walk-

thru model contains detailed geometric information, but little else; the CFAST
model is geometrically much simpler, but contains chemical and materials infor-
mation that Walkthru lacks.. 87

5.7 CFAST view modes. Left, realistic mode; right, thermal mode.. 90
5.8 IMPULSE simulating bears and balls bouncing in a laboratory.. 94
5.9 Left, multiuser chat window. Right, avatars interact with each other and the door-

ways in the MIT LCS model.. 96
5.10 View location and projection surface for portal and cell tapestry construction. . . . 100
5.11 An example interaction between a user, the radiosity agent, and the tapestry agent. . 105

6.1 The Building Model Generator (BMG) converts modified CAD floorplans into 3D
Citywalk models, but not without substantial help from the user.. 109

6.2 A basic floorplan in Floorsketch, and its components.. 111
6.3 Portals move with the room they are in; this makes adding rooms to central hallways

easier, and prevents the user from having to track two-sided entities if the floor
layout is modified.. 111

6.4 The three flavors of portal (“Door”, “Window”, and “Full Wall”), and how they
extrude into 3D from different 2D configurations.. 112

viii

6.5 Rooms in Floorsketch, populated with tokens representing furniture and view frustums.113
6.6 Using a JPEG image in the background, the user can more easily “trace” an exist-

ing floorplan into a 3D model.. 114
6.7 Example of portals that lead to other volumes vs. portals that lead to the outside.. 115
6.8 The 12-story MIT Laboratory for Computer Science (LCS), modeled in Floorsketch

from JPEG images of its floorplans in less than 1 day. Left, the stacked floors
extruded from Floorsketch. Right, the exteriors of the buildings in Tech square (LCS
building is circled). The interior fits inside the exterior shell to within 6 inches on
all sides. 119

A.1 The object configuration resulting from a request to create and connect to a service
on the local machine.. 148

A.2 The object configuration resulting from a request to create and connect to a service
on a remote machine.. 149

A.3 Classes and inheritance patterns in thenewsim library. 151

ix

Acknowledgements

This work was done under the guidance of Professor Carlo Séquin , who has been an

advisor, mentor, and friend for the last 9 years. He has the patience of a saint, and his unique

combination of enthusiasm for tackling new challenges and down-to-earth sensibility about what is

important in life and research have been inspirational. I consider myself extremely fortunate to have

been one of his students; the experience has been truly remarkable. Thanks also to his wife Greti

for many wonderful evenings having fondue with friends.

I am also grateful to the entire Berkeley Walkthru research group, who, over the years,

have helped make my experience here as wonderful as it has been. Seth Teller and Tom Funkhouser

started the whole thing, and have never hesitated to help me understand aspects of the system. Seth

in particular has gone above and beyond the call of duty and I salute him as a colleague and friend.

More recently, Maryann Simmons, Laura Downs, and Mike Wittman have contributed invaluable

insights and hard coding time to the Citywalk effort.

I received extensive financial support for this work from the National Institute of Stan-

dards and Technology, in particular Walter Jones of the Building and Fire Research Lab there.

Their funding has enabled the bulk of this thesis, and I thank them heartily for it.

Last but certainly not least, thanks to my family, particularly my parents, Richard and

Maria Bukowski; my grandparents, Guy and Virginia Agostino and Richard and Helen Bukowski;

and my wife, Laura Downs, for all their support. I could not have come this far without them.

1

Chapter 1

Introduction

1.1 Motivation

Until a few years ago, virtual environments (VEs) were used primarily for visualization

tasks. Recently, VE technology has begun to propagate into design tasks (such as AutoCAD’s 3D

visualization of a proposed construction, or the many ”home improvement” programs you see on

the shelves of your local software stores, which do ”still-frame” walkthroughs of small, 1 or 2 room

additions to houses, remodeled kitchens, or the like). As the technology grows in capability and our

computers grow in processing power, these systems will also become useful as integrated simulation

and design evaluation environments. In the future, we see a second generation of VE systems being

used to train firefighters in how to combat raging building fires without ever setting foot near a

flame [1], or to determine how changes in lighting, airflow, or noise will affect the comfort levels of

occupants of a building [2, 3, 4].

One application domain with a particularly high expected payoff is building design eval-

uation, where scientists, engineers, architects, and other professionals can enter a virtual space and

evaluate many of its physical properties with no danger, minimal cost, and a small investment of

time. With such a system, users can preview architectural designs, evaluate their performance under

various metrics, and do potentially destructive ”what-if” experiments without cost or risk. To obtain

useful answers to such experiments, we need to integrate good physical simulations with virtual

environment interfaces. Integration of powerful simulation technology with virtual reality visual-

ization systems affords the possibility of intuitive interpretation and visualization of the results of

complex and powerful simulations via 3D computer graphics.

While the combination of virtual reality and environmental simulation constitutes a frame-

CHAPTER 1. INTRODUCTION 2

work for very powerful tools, it also raises many implementation challenges. The interactivity of

the environment must be improved to allow users to affect simulations in progress by performing

relevant actions, like opening doors and windows or moving objects. These dynamically changing

conditions must be efficiently propagated from the client to a simulator, and the results must be

transported back to the viewer efficiently. The system must integrate the simulator’s results with

the virtual environment, and display those results in a useful way; either symbolically, in the case

of scientific visualization applications, or photorealistically, in the case of training or entertainment

applications. These problems are compounded by the need to distribute both the virtual environ-

ment and the simulation over multiple computers – potentially connected by relatively high-latency,

low-bandwidth networks such as the Internet – when attempting to simulate and visualize large

buildings with hundreds of rooms.

Another major hurdle is the difficulty of walkthrough model construction. Building an

accurate architectural walkthrough model is a challenging task. Typically, it requires the user to

either model the environment with complex 3D modeling software, or acquire CAD architectural

plans and use semi-automated tools to extract building structure. Proper use of these tools requires

intimate knowledge of the 3D software in question (CAD or another modeling system) and the

nature of the 3D visualization database toolkit. Furniture and details must also be added, often

without the benefit of any sort of interactive software; for example, the first-generation Berkeley

architectural walkthrough (Walkthru) system requires users to enter instance statements into a text

file and use a UNIX batch-mode build process [5]. “Naive” users (e.g. those who wish to use

a VE system without acquiring a degree in computer science) have a very hard time using these

construction methods; this strongly limits the utility of the technology outside the academic world.

Hence, one of our goals is to simplify this process to get users quickly building models that conform

to the needs of both the simulation engine and our second-generation walkthrough viewer.

Finally, we would also like this framework to be flexible enough to allow programmers

to rapidly integrate additional third-party simulations into the environment, such as physical simu-

lations, acoustics simulations, or lighting simulations. This allows us to leverage the work of other

research groups, add a larger spectrum of interactions to the world, and offer the technology to other

classes of user, thus making the walkthrough environment more interesting and more useful.

CHAPTER 1. INTRODUCTION 3

1.2 Driving Applications

1.2.1 Fire Safety

The primary driving application behind this work has been building fire safety. The

fire protection community in both the United States and the world at large is moving towards

performance-based standards from the current prescription-based standards. This creates a need

to use simulations such as the National Institute of Standards and Technology Consolidated Model

of Fire and Smoke Transport (NIST CFAST [6]) fire simulator to evaluate performance in the de-

sign and review phase. However, these simulation programs are typically written with rudimentary

input and output mechanisms, and are hard to learn and use. We believe that applying a tool based

on virtual environment technology like the Berkeley Walkthru can permit us to streamline the input

techniques, process the output into more useful and intuitive forms, and improve the scope and ease

of interaction with the system.

Thus, CFAST was the first third-party simulation we integrated into our second-generation

Berkeley Citywalk system. CFAST provides an accurate simulation of the impact of fire and its

byproducts on a building environment. Integrated into Citywalk, it provides real-time, intuitive,

realistic and scientific visualization of building conditions in a fire hazard situation from the per-

spective of a person walking through a burning building. The viewer can observe the natural visual

effects of flame and smoke in fire hazard conditions. Alternatively, scientific visualization tech-

niques allow the user to ”observe” the concentrations of toxic compounds such as carbon monoxide

and hydrogen cyanide in the air, as well as the temperatures of the atmosphere, walls, and floor.

Warning and suppression systems such as smoke detectors and sprinkler heads can be observed in

action to help determine their effectiveness. This technology can be used to improve fire safety

by helping engineers and architects evaluate a building’s potential safety and survivability through

performance-based standards (i.e. how well the building protects its occupants from the fire). With

more development, it could also be used to help train personnel in firefighting techniques and res-

cue operations by presenting them with practice situations that are too risky to be simulated in the

real world. Another very interesting safety application is predicting and assisting human behavioral

responses under emergency conditions; these simulations could help predict response patterns of

building occupants in emergencies, or, with realistic visualization tachniques, help teach residents

where to go and what conditions to expect during an emergency building evacuation (e.g. “virtual

fire drills”).

CHAPTER 1. INTRODUCTION 4

1.2.2 Applied City Models

The ability to explore an entire campus, or a whole city, rather than a single building

is another key application driving this work. This requires a 2 to 3 order of magnitude increase

in database size. The state of the art in city model construction is on the verge of taking a leap,

with the advent of 3D laser scanners and automated reconstruction technologies [7, 8, 9]. These

applications need a system framework that can combine the techniques used in interior architec-

tural walkthroughs, such as cell and portal culling, with techniques used for exterior scenes, such

as impostors and horizon culling, into a coherent whole. These city-scale models can then be used

for new, large-scale training and maintainence applications, including military ground training, in-

tegrated maintainence models for campuses and cities, and entertainment applications. They also

hold the promise of combining with wide-area wireless networks and “smart building” technology

to advance the state of the art in public works, safety, and maintainence. For example, a fire starts

in a building. The building systems send information about which sprinklers are active and which

detectors are seeing toxic gases via a broadband network to a fire station, which has access to a

networked full virtual model of the city and buildings. The model can help the crew find the way

to the building, communicate situational information to the chief, while she is on the fire truck on

the way to the scene. Meanwhile, integrated simulation can predict the likely future conditions to

help plan where the firefighters should stage their assault on the flames to maximize both safety and

firefighting effectiveness. We would like to construct a system that could support such a scenario

given the emerging technologies that are coming into widespread use today.

1.3 Technical Challenges

This thesis focuses on providing a support framework that is the basis for an second-

generation walkthrough system providing integration of the universe of traditional, first-generation

virtual environment visualization and data management techniques, and support for rapidly inte-

grating diverse third-party simulation engines into a unified and highly distributed virtual environ-

ment that provides for efficient, emergent behavior arising from the interaction of multiple human

and simulation agents with each other and the world model. The result is a two-tiered framework

combining a robust, distributed persistent database substrate emphasizing availability and a general-

purpose, extensible structure, with a high-performance real-time data distribution layer that provides

intelligent routing of data between interactive agents to cope with performance issues on modern

CHAPTER 1. INTRODUCTION 5

wide-area networks in the face of time-critical simulation appilcations.

6

Chapter 2

Background and Related Work

Over the last few decades, the evolution of powerful personal workstations equipped with

advanced graphics hardware has given us low-cost systems on which fairly complex virtual worlds

can be explored at interactive speeds. This capability is used for both professional design applica-

tions as well as entertainment.

The earliest such “walkthrough” systems date back to the 1970’s and evolved with the

goal of providing real-time flight simulators [10, 11]. Training in a virtual environment helps pilots

gain skill without the physical danger and cost of actual training flights. In the late 1980’s, the

research community began to publish work that described and analyzed techniques by which near

real-time performance could be achieved on relatively rich and complex models [12, 13, 14]. These

research systems typically focused on a single issue for which they advanced the state of the art.

Some systems introduced new model abstractions and culling mechanisms to improve rendering

performance [12, 14, 15]. Others focused on incorporating many users or providing a high level

of interactivity with the world [16, 17, 18]. A few special-purpose systems allowed the real-time

exploration of specific very large and complex environments [19, 15, 20].

These early systems were struggling to address basic problems in virtual environment

visualization, and they were often pushing the bounds of contemporary hardware or algorithms to

achieve their goals. We refer to these systems asfirst generation. In the last few years, advances

in performance and reductions in cost are finally providing enough system resources to generalize

and merge these varied techniques into a coherent whole. This creates a new set of structural and

theoretical problems, as these disparate techniques all have their own requirements and may interact

with each other in complex ways. The promise of thesesecond generationsystems is to provide

greatly enriched interactivity and realism with large numbers of users on very large, distributed

CHAPTER 2. BACKGROUND AND RELATED WORK 7

models.

2.1 First Generation Systems

Existing walkthrough systems can be roughly split into two general types: indoor and

outdoor environments. While their application domains differ, all of these systems achieve scalable

performance by partitioning the model such that only a relatively small portion of the database

needs to be resident in memory at one time (visibility culling) and by applying level of detail (LOD)

abstractions to those elements that are visible to reduce rendering time.

2.1.1 Outdoor Environments

The first outdoor virtual world applications were flight simulators. Their development re-

sulted in pioneering work in levels of detail and abstraction that allowed a large, complex landscape

to be loaded and simplified in real-time such that it was renderable on contemporary graphics hard-

ware. The large scale of the environment in these systems was handled by combining locality-based

databases (i.e. the world is “tiled”, and users see only the tile they are over, plus the adjacent tiles,

at any one time [21]) with level of detail techniques to simplify distant geometry and objects. The

simplicity of the environment (typically a textured terrain map with a few detail objects) and the

relatively slow speed of the user (it takes a long time to cross a tile) makes it straightforward to load

terrain tiles as the user approaches them.

Recently, virtual city walkthrough projects such as the Virtual Los Angeles Project [22]

explored more advanced database techniques for streaming large models to clients, as well as new

simplification techniques such as impostors [23]. These systems offer much more complex world

models than flight simulators; the virtual Los Angeles model, for example, contains over a ter-

abyte of data (Figure 2.1). This complexity is needed because the user is in close proximity to the

buildings, so the geometry must be much more detailed than in a flight simulator, which can get

away with simply texturing the distant ground tiles. The Los Angeles system pioneered the use

of a streaming media database, which enables them to stream small sections of the model for the

area around the user’s current location with extremely low latency. Simplification techniques such

as impostors allow the database to use less disk or network bandwidth for the same level of visual

detail in these large outdoor models.

Another approach to outdoor environments is simulators such as NPSNet [24], which

CHAPTER 2. BACKGROUND AND RELATED WORK 8

Figure 2.1:Snapshots from the Virtual Los Angeles Project.

focus on a large number of users in the world with high interactivity. These high-performance in-

teractive systems provide a high-speed communication layer using IP multi-cast to provide rapid

distribution of the state of users and other entities within localized cells [25]. This allows very low

latency (under 100 ms) and provides realistic interactions at the speed of combat for hundreds of

users at once [26]. Model scaling is done via “zones”, which are terrain tiles much like those used

for flight simulators, and within which the multi-cast is performed; this serves to limit the multi-cast

bandwidth to a reasonable level, since clients only multi-cast to other clients that are “nearby”. Re-

cent commercial multi-player on-line computer games involving thousands of simultaneous users,

such as Ultima Online or Everquest, attempt similar interactions. Due to hardware and bandwidth

constraints, they are even more strongly partitioned into localized zones. These systems cannot

benefit strongly from multi-cast techniques because their users are often widely distributed and use

low-speed modems; they sacrifice range of visibility (often only a few dozen feet) and interaction

latency (which can slow to seconds if the scene gets crowded) to achieve “reasonable” interactivity

at extremely low cost compared to the military systems.

2.1.2 Indoor Environments

Indoor environments, which are primarily found in architectural walkthroughs, are treated

separately because they have a densely occluded structure that lends itself to various forms of strong

portal culling [27, 14]. These environments pose conceptually similar problems in database man-

agement and rendering complexity, but they rely less on level of detail and instead on a more pow-

erful set of culling techniques that can take advantage of the densely occluded nature of the models.

CHAPTER 2. BACKGROUND AND RELATED WORK 9

Systems such as the Berkeley Walkthru program [5] and the several University of North Carolina ar-

chitectural walkthrough systems [20] have proven that systems using on-disk or on-network object

databases, combined with integrated level of detail abstractions, prefetching, and user motion pre-

diction, can provide interactive (10 frame per second or better) visualization of very large, complex

architectural databases, just as the virtual city projects provide fast visualization of huge outdoor

databases.

Funkhouser’s RING system [28] provides distributed multi-user functionality in the in-

door domain, using a system of central servers with both high-speed interconnections and higher

level geometric information about world structure. This allows the system to distribute the same

information more intelligently, and limit the amount of data that is transferred to individual client

machines based on client regions of interest. The approach also improves on the multi-cast tech-

niques in that it works better for clients with slow and/or nonlocal network links, which is a problem

for the IP multi-cast systems used in outdoor databases.

2.1.3 Simulation-Enhanced Environments

The most frequent application of virtual reality technology so far has been visualization

of static spatial environments. Even where they offer simulated or interactive agents, current virtual

worlds are typically nearly-static environments with a few movable objects and avatars inside. The

most common applications of these systems are either peer-to-peer simulation of the user’s interac-

tion with other users or simulated entities, or systems that use physics to make the world seem more

“real” to an immersed user. Some more famous examples of the former include the Iowa driving

simulator [29], where the user’s vehicle interacts with other independently-simulated road vehicles,

and the Department of Defense’s NPSNET [17, 13], where “units” of military vehicles engage in

simulated combat on static terrain. Each simulated unit (or vehicle) communicates its status to all

other units. Since the environment (i.e. the terrain) is fixed, the communication requirements are

bounded by the number of simulation entities, not the size of the environment. Though these sys-

tems may be doing some actual physical simulations, because only a few “detail objects” in the

world are actually changing, the amount of data being transferred is relatively small. Other systems

are typically concerned with the physics of everyday object interaction, such as impenetrability

and collisions [30, 31, 32]. They have been used to evaluate the ergonomics of environments like

kitchens, automobiles, or work spaces. In these systems, simulations are typically limited to objects

being directly manipulated, and the computations are simplified, so that they can be done directly

CHAPTER 2. BACKGROUND AND RELATED WORK 10

in the visualization environment without seriously loading down the computer.

On the other hand, many virtual-reality visualization systems have been built to allow

the user to perform and interact with complex physical simulations, but they tend not to involve

what we would consider “interactive simulation;” that is, the user is simply exploring precomputed

data, without being able to interactively change the conditions under which that data was derived.

NASA’s virtual windtunnel [33], in which airflow around a particular object is calculated, is a well

documented example of this approach. An observer can enter a “black void” in which the ob-

ject is suspended, insert “ink” sources to produce streamers along flow lines, and view the airflow

computations from within the air space around the object. This system visualizes a precomputed

computational fluid dynamics solution, and only allows the user to explore the space of the com-

puted solution, without the ability to interactively modify the object or wind conditions for which

the solution had been generated.

The architectural community is very interested in full-scale interactive environmental sim-

ulation of planned environments from the point of view of an immersed human observer. Parameters

of interest include lighting, temperature, and airflow throughout an entire building, and the compu-

tations can become very complex. Some architectural firms have constructed non-interactive, pre-

defined video-tape visualizations comprising many moving people [3]. Realistic world simulation,

where the environment itself is changing based on a reasonable subset of physical and chemical

laws, and under the possible influence of user-initiated changes to the scenario set-up, is a much

more difficult task. Combining such simulations with immersive visualization by one or more ac-

tive observers adds particular challenges with respect to synchronization and data management.

For systems that do offer interactive, real-time scientific visualization of complex simu-

lations, the data transmission problem is well documented [34, 35, 27]. As the simulated system

grows more complex, the amount of data needed to describe the full simulation state of the system in

each time step can easily exceed the available bandwidth between simulator and visualizer. Efficient

encodings, even lossy compression, have been employed to alleviate this communications bottle-

neck [35]. Another approach is to run the visualizer on the same (super)computer that performs

the simulation, thereby hopefully gaining access to any needed data for visualization on demand in

less than a frame time. However, this requires that the observer be physically close to the simula-

tion engine, or that there exist a fast video link between the visualizer and the display screen used

by the observer [30]. The video link approach also requires a low-latency command line from the

observer to the simulator to make the user’s normal movements and interactions with the environ-

ment reasonably responsive. In such a set-up, it would be more difficult to realize a collaborative

CHAPTER 2. BACKGROUND AND RELATED WORK 11

environment in which individual observers can sign on at will from anywhere in the country at any

time.

Densely occluded interior environments such as buildings, boats, planes, or caves offer

certain advantages for immersive environmental simulation. They can take advantage of the same

kind of preprocessing that has already been demonstrated in the context of visualization of static

models [12]. Only those simulation results that affect the currently visible set of spaces need to be

transmitted to the visualizer. A cell-based decomposition of the densely occluded world allows an

effective estimation of a tight yet still conservative superset of the data that is absolutely necessary

for visualization at any moment in time. As long as the number and complexity of the cells visible at

any time remains bounded, the size of the whole world model can be, in principle, arbitrarily large

– as long as there is sufficient (super)computer power to keep the ongoing simulation up-to-date.

2.1.4 Shortcomings of First Generation Systems

While first generation systems provided basic tools and solutions to many of the funda-

mental problems facing specific virtual environment applications, they were usually unconcerned

with the way in which these tools and solutions inter-operated. For example, none of the aforemen-

tioned systems allows the model to be changed by the observer in any meaningful way at run-time.

Such changes would result in a need to recompute sections of the database structure; this often in-

volves complex precomputations which would be slow and difficult to distribute to the other affected

clients. Indeed, the model environment itself was typically not even centrally served to the users;

almost all of these systems use a replicated world database that must be present in its entirety at each

client when the simulation starts. Only a few systems have also distributed world state [36, 27, 22]

and those have not considered scaling to large models of the size of cities or buildings, nor to many

hundreds or thousands of users sharing and modifying the space.

The ability to distribute multiple clients and servers provides a second level of scalability

for those models that cannot fit on a single server, or have so many clients that a single server

would be a performance bottleneck for the system. This functionality is addressed indirectly by

virtual walkthrough systems in that they address the need to page information in real-time from a

slow secondary storage system, and store only a portion of the environment in RAM at any time.

One can substitute “network” for “disk” in this work, since the issues are similar. However, these

systems provide read-only performance for a single user; they do not address interactivity between

users, nor do they address the integration of simulators into the world model. User-user and user-

CHAPTER 2. BACKGROUND AND RELATED WORK 12

world interaction add another level of complexity; having multiple entities that interact in real-time

in and with the virtual environment involves making efficient use of available bandwidth at each

machine in the network. This, in turn, can impact the scale of what can be distributed and rendered

in real-time.

Finally, for many applications, the environment will only be truly useful if it supports

physically realistic behavior. The types of realistic behaviors that are important depend on the spe-

cific application; in a flight simulator, it is important that the flight dynamics of the aircraft be

realistic, whereas in a firefighter training application, the flame and smoke spread and combustion

chemistry are the important elements to get right. Research systems have not generally addressed

this area; production systems have been confined to small, localized models and focus on the inter-

action of a single user with a small but complex model. Where multiple users are concerned, they

are generally sharing the output device and are observers rather than actors.

2.2 Citywalk: A Second Generation Architecture

We have now reached the point where networks and workstation hardware can support

systems that combine these techniques to provide a richer, more useful virtual world experience.

To support a functional and robust fusion of these first generation approaches, we need a system

that combines aspects of a distributed persistent database, that can provide model storage and sup-

port intelligent model loading and unloading, with a high-performance network layer that provides

interactive speeds for time-critical aspects of agent-agent and agent-world interactions. This leads

naturally to a two-tiered architecture with a tightly linked object database paired with a data distri-

bution layer that can rapidly propagate critical information between clients over limited-bandwidth

links. Practical applications involving realistic physics also demand that the system provide a frame-

work for integrating physical simulations that can be “plugged in” to the system and act as agents

in parallel with the users, reacting to user inputs as well as with each other.

2.3 Overview

This thesis presents an integrated system that attempts to address these factors. Chapter 3

discusses the database substrate that provides the foundation for the scalable, interactive, distributed

world model. Chapter 4 describes the real-time simulation layer that provides the ability to integrate

distributed physical simulations and clients with intelligent use of bandwidth and system resources

CHAPTER 2. BACKGROUND AND RELATED WORK 13

to provide realism and real-time interactivity. Chapter 5 describes the practical experiences with

integrating multiple third-party simulations into the environment. Chapter 6 describes Floorsketch,

a utility tool for rapid prototyping of databases, and chapter 7 contains a final summary, analysis of

the system architecture, and concluding thoughts on the project.

14

Chapter 3

Database Support

3.1 Design Goals

Many first generation walkthrough database systems were designed to address the prob-

lem that an interesting virtual environment model is too large to fit in memory at once, and too large

to render naively with existing hardware graphics pipelines. This issue remains relevant even in the

face of order of magnitude advances in PC technology over the last decade. Though the original

flat-shaded single-building databases rendered by the Berkeley walkthru program are much easier

to render on modern machines, interesting world models have increased dramatically in both scope

(entire cities versus individual structures) and in detail level (radiositized, fully textured models

instead of flat shaded models) (Figure 3.1).

Figure 3.1:First and second generation Berkeley Walkthru databases. The first generation concen-
trated on a homogeneous interior environment; the second generation scales up to a heterogeneous,
indoor and outdoor environment.

CHAPTER 3. DATABASE SUPPORT 15

First generation systems developed a set of techniques developed to solve the model size

problem for a single freely moving user in a static environment. Solutions for issues that arise in

having multiple users interacting within a shared environment, or having simulation agents interact-

ing with users and the world, have not been well integrated with these “large model” walkthrough

techniques. One of our goals in developing a second generation walkthrough system was to improve

upon the strengths of the first generation systems (e.g. larger, more detailed models, and more va-

riety and speed in the types of spaces and visibility methods used) while introducing integrated

techniques that support multiple simulation and viewing agents; robust, rich interactions between

agents and the world; and which run efficiently on distributed platforms.

3.1.1 Large Model Visualization

The database underlying a second generation walkthrough system must subsume the func-

tionality represented by a first generation database. Funkhouser asserts in [19] that the critical

aspects of a database storage system include “1) Store very large models; 2) Support persistent ad-

dition, deletion, and modification of data; 3) Support efficient access to data by application-defined

functions; 4) Allow asynchronous, application-defined memory management functions; and 5) Per-

form efficient transfers from disk into memory.” He also asserts that “traditional” database systems

provide excessive feature sets that reduce performance significantly, to wit: 1) Crash recovery,

2) Application-defined functions must be able to run outside of the database address system, and

3) General purpose queries require execution of a query engine, and copy the resulting data into

buffers. As a result of this analysis, Funkhouser built the customized database engine that drove the

first-generation Berkeley Walkthru program. This engine provided the ability to define “segments”

that were not interpreted by the database, but could be stored or loaded as a unit.

3.1.2 Efficient On-Line Model Updates

First generation systems supported persistent addition, modification, and deletion of data

in the world model database. However, most were not designed to do these thingsinteractively,

maintaining consistent, up-to-date views for the clients as the model is being manipulated. These

systems typically add data to the model in an offline (batch) fashion; modifying the database and

viewing it are mutually exclusive activities. Some systems provided rudimentary support for modi-

fying some parts of the database (c.f. Berkeley Walkthru Editor [37]). However, interactively mod-

ifying the world structure in such a way that the visibility data structures are themselves modified

CHAPTER 3. DATABASE SUPPORT 16

was not supported, limiting the user to adjusting details such as color and positions of furniture.

A second generation system should supporton-line modification ofall portions of the

model, including structural or visibility elements. While it may not be possible to provide algorith-

mic updates to visibility structures, in cases where the computationscanbe performed in real time,

the database layer should not pose an obstacle. For example, in the original Berkeley Walkthru, sup-

porting real-time modification of the building structure (moving walls and floors) is algorithmically

quite tractable, as it consists merely of readjusting a few KD-tree cell partitions and changing some

coordinates. Unfortunately the database and viewer lacked a mechanism for discovering, loading,

and integrating modifications of visibility structures in real-time. Thus, any change to the database

would require stopping the viewer and reloading the entire visibility structure, which is impossible

to do while maintaining an interactive frame rate. Furthermore, the viewer cached and pipelined in-

formation on the assumption that these structures would not change. This makes interactive changes

to the visibility structure infeasible.

Partially as a result of this batch mode of database modification and lack of on-line

changes, efficient updates in the presence of dynamic model changes was often a low concern in

first generation systems. The first generation Berkeley database did not support efficient deletion

of objects; the database file grew monotonically over time, as new segments were allocated con-

tiguously at the end of the file. While this did improve the monolithic load performance of the

database (continuous segments are faster to load than non-contiguous segments), it meant that an

actively modified database rapidly grew to an unwieldy size, and contained an ever-growing fraction

of “dead space.” A second generation database needs to be able to support efficient modifications

of the database, and efficient garbage collection.

3.1.3 Multiple Interactive Agents

Furthermore, a second generation system should supportmultiple agentsoperating on a

database at the same time. This requires the ability to operate in a server/client mode on a database

with state, as well as requiring locking and transaction functions, which are necessary to maintain

database consistency in the face of simultaneous accesses.

Finally, we wish to make integration of multiple different types of agents as easy as pos-

sible for the developer. There are many groups working on real-time simulators for various aspects

of reality; physics, fire, lighting, and so on. A versatile second generation database should be able

to leverage the work and expertise of these other groups by allowing the integration of their code

CHAPTER 3. DATABASE SUPPORT 17

into the world model with a minimum of conversion and rewriting overhead (Figure 3.2). The more

difficult the integration process, the less likely it is that these codes will be successfully integrated

into the system. Note that this was also a concern in some first-generation systems, primarily for the

purpose of integrating different visibility and rendering systems. Advances in common languages

(i.e. java and C++) and careful thought have allowed us to improve upon this aspect of our database

design.

Figure 3.2:Multiple different types of agents active within the same environment; multiple users,
dynamics, and fire.

3.2 Why Not Use An Off-The-Shelf Product?

Many of the capabilities needed for a second generation walkthrough database are pro-

vided by commercial general-purpose object database systems, such as POET, Objectivity, and Ob-

jectstore [38]. These databases all provide persistence models that are straightforward to apply to

existing C++ code, allowing the programmer to add persistence to bodies of legacy code that were

not designed to operate on persistent objects. They all provide server-client functionality, efficient

notification mechanisms, locking and transaction semantics, and multiuser capabilities. Since they

are commercial products, they are generally well optimized and provide good performance.

In the first generation walkthrough, a custom object database was used instead of a more

general-purpose object database. This design decision was necessary because, at the time, the gen-

eral purpose databases on the market did not offer sufficient performance on desktop workstations;

the visibility system could not load objects quickly enough to support a consistent rendering rate

of at least ten frames per second. In general, commercial databases have not been used for high-

performance walkthrough systems because of performance concerns. These concerns are largely

attributable to the fact that such databases are performing much more work than necessary, due to

the fact that they support additional capabilities such as SQL query functionality and global object

CHAPTER 3. DATABASE SUPPORT 18

indexing mechanisms. These functions slow performance without offering the walkthrough system

any real benefit.

Of course, in the intervening time period workstations have become faster, and a com-

mercial ODBMS could now support a first-generation walkthrough system at a reasonable detail

level. However, a custom database is still useful for several reasons. First, it remains the case that

a custom database system that does not implement functions that are not useful to the walkthrough

system will provide better performance. Second, with our custom database we have been able to add

useful functions that are not available in existing commercial systems, such as the ability to have

nonpersistent objects that are managed by the database and have a lifetime equal to that of the client

process that created them. Third, with a custom database it is possible to freely move functionality

between client and server, and minimize traffic across the relatively slow network link. Finally, it is

a hard reality that commercial databases are expensive to license and expensive to support, whereas

a custom database requires only an investment of time on our part. Thus, while it would be possible

to use a commercial ODBMS as the underlying database model, we decided to go with our own

database system in order to provide optimal functionality and performance.

3.3 Specification

3.3.1 API Overview

A database object corresponds to a small set (a “constellation”) of C++ objects that are

arbitrarily interrelated via C++ pointers. One of the objects in the constellation is themasterobject;

this object must be inherited from a persistence-capable base class that provides identity tracking,

storage management, and lock and watch management for the entire constellation via a virtual

interface. Constellations have a unique, universal identity that can be used by any other object

to refer to the constellation. Each constellation constitutes an atomicmodel componentthat can

be loaded or unloaded independently of other model components. For example, one KD-cell in a

Berkeley architectural walkthrough model (the DBCELL class in the Walkthru code), along with

its contents and adjacency lists, precomputed visibility structures, and modification information, is

implemented as a single constellation, with several types of separate component objects managed

by the DBCELL master object (Figure 3.3). Each DBCELL in the building model is a separate

constellation, as are other major types of object like class master definitions (DBCLASS objects),

geometry (DBGEOMETRY) and material definitions (DBMATERIAL), and other objects that were

CHAPTER 3. DATABASE SUPPORT 19

stored in segments in the original Berkeley walkthru database. Thus, each individual DBCELL

object may be loaded or not loaded in each client, and a cell may be loaded independently of any

particular model object in the cell; but a cell may not be loaded independently of its contents list or

its visibility structure.

DbObject

LOD List

Animation

Bounding Box

Transform

DbGeometry Facet List

Bounding Box

DbClass

Geometry List

Animation

Bounding Box

Transform

DbMaterial

DbGeometry Facet List

Bounding Box

Material Data

DbTexture

Texel Data

DbMaterial

Material Data

Figure 3.3:Interrelated constellations describing an object in the Citywalk database. Constellation
boundaries are dashed; the master object for each constellation has a thick border.

Any object that has a handle to the database may request a C++ pointer to the constella-

tion’s master object by querying the database with the constellation’s identity. If the constellation is

currently memory resident, the database simply retrieves a pointer to it from a lookup table. If the

constellation is not resident, the database must execute a load cycle to make the object resident. A

constellation’s memory residence status can be also be queried without forcing it to be loaded. Ejec-

tion from memory is handled by reference counting to allow sharing of objects between independent

threads; dereferencing the identity into a pointer causes a reference increment. Constellation iden-

CHAPTER 3. DATABASE SUPPORT 20

tities are assigned at the time that the object is first committed to a database. Once an identity is

assigned, that identity forever specifies that particular constellation in that database, and will never

be reused to refer to a different constellation. By storing an identity reference rather then a C++

pointer, constellationA can refer to a constellationB without forcing constellationB to be memory

resident at any time that constellationA is resident.

A C++ object that is acting as a constellation master must implement virtual function

overloads for functions that serialize the constellation to a specified buffer (i.e., turn the set of

linked C++ objects into a contiguous block of data), return the current size of the constellation’s

serialization, or de-serialize it from a buffer. This interface is used by the database engine to pack the

objects into “blobs” that can be committed to disk, transmitted across network links, or reconstituted

later into the original object. The master object’s packing interface is responsible for serializing the

entire contents of the constellation into a form that can be uniquely reconstructed from just the

contents of the buffer. To provide for system independence, our database core provides a special

binary buffer class that provides XML-compatible toolkit functions for converting member variables

to and from serial binary representations. As long as the object’s author uses these toolkit functions

to serialize member variables to and from the buffer, the constellation blobs are in “network form”

and can be transmitted to and reconstituted on machines of different architectures. In practice, we

use our databases interchangeably on both Silicon Graphics machines (which use MIPS processors

with little-endian byte encoding) and generic Intel PCs (which use Pentium processors, which are

big-endian). Moreover, we use two different operating systems on the Intel machines (Windows

and Linux). All servers and clients on these machine/OS pairs are compiled from the same source

code base. This system-independent nature of the database library and format has proven to be very

convenient.

Our second-generation database library also allows for bothlocal andserver-clientmode.

In local mode, the operations take place directly to a database disk file; local mode access allows

only a single user to be operating on the database to avoid file system collisions. Inserver-client

mode a database server proxy operating in local mode provides the same interface to multiple clients

that the local mode library does, but with full multiprocess-safe locking semantics. Each client is

connected via a network socket to the server, potentially running on a separate machine. This

distinction is transparent to the visualization engine.

CHAPTER 3. DATABASE SUPPORT 21

3.3.2 Basic Design

Blob Service Layer

The core of our second generation database design is similar in many respects to the first

generation database. The lowest layer is called theblob service. This service provides the ability to

add, delete, modify, fetch, and store binary blocks (called blobs) between memory and some shared

persistent storage medium. Blobs are permitted to be of any size, and are opaque to the blob service

layer. When a blob is created, it is assigned a permanent reference tag within the database called

a ref. The ref is guaranteed never to be reused for the lifetime of that particular persistent store;

this prevents referring objects or processes from accidentally retrieving an object which was deleted

from the database, but had its reference recycled by the blob service. Refs are not guaranteed to

be unique between stores; thus, an object can be uniquely identified over all time and space by a

combination of a persistent store identifier and a ref within that store. To provide for very large

databases, refs are implemented as 64-bit identifiers, with a dynamically expandable binary storage

representation to allow for efficient use in small databases.

Persistent stores may be accessed through two implementations of the blob service. One

implementation is the more simple local file implementation; this opens (and locks) a file on a local

file system and uses it as a persistent store. This corresponds to a traditional mode of access; the

process reading the database is the only process that can access or write to the store, thus there

is no need for locking or transaction functionality within the store. The second implementation is

more interesting, and the common mode of access in a second generation implementation; that is

the server-client mode implementation. The blob service library includes a server executable that

can provide distributed access to a persistent store file to many simultaneous user processes. The

API access to the database for either implementation is identical. In fact, the server itself is a client

for an instance of a local file store, which replicates the API over a TCP/IP socket link to multiple

external processes (Figure 3.4).

In addition to the basic add, retrieve, store, and delete functionality, all of which operate

on refs and binary blobs, three additional basic functions are supported: Locks, watches, and trans-

actions. There are 3 types of lock that can be applied to a blob ref; read, write, and delete. Read

locks prevent other processes from acquiring write or delete locks; write locks prevent other pro-

cesses from acquiring any type of lock. Delete locks are special in that they only prevent other delete

locks; they are used to garantee that an object will continue to exist, though it may be changed.

Watches are used to provide efficient asynchronous notification of database changes to

CHAPTER 3. DATABASE SUPPORT 22

Blob Service
(Local)

Database
File

(On Disk)

C
h

an
n

el

S
erver

C
lient

Blob Service
(Remote)

Viewer Agent

C
h

an
n

el

Database
Service API

Viewer

Client

Server MachineClient Machine

Database
Service API

Database
Service API

Figure 3.4:Multiple processes connecting to a database. The blob service is replicated through a
socket connection; local database objects provide namespaces in which each database object can
be in an independent load and lock state.

processes that need to do work in response to such changes. Watches can be targetted at an indi-

vidual ref, or, for storage convenience, at a set of refs. Watches come in 5 types: Load watches,

which fire when a process reads a blob for the target ref; Store watches, which fire when a process

writes a blob for the target ref; Delete watches, which fire when a process deletes the blob for the

target ref; Lock watches, which fire when a process locks the blob for the target ref; and Unlock

watches, which fire when a process unlocks the blob for the target ref. When a watch is set, the

setting process provides a function pointer to the database. When the watch fires, this function is

called with two parameters: the type of watch fired (which may be more than one) and the ref that

caused the triggering of the watch. The set of watches is stored in an associative table indexed on

ref for efficient access. Note that watches are not ordered, nor do they provide any time guarantees.

It is guaranteed that the watch will fire exactly once for each triggering event, but the call of the

function may happen an arbitrary amount of time after the operation actually occurs, and multiple

watches on the same operation will fire in an unpredictable order (Figure 3.5).

Transactions allow the grouping of sets of blob operations into atomic operations that

either fail or succeed as a whole, preventing database corruption via either partial modification of

CHAPTER 3. DATABASE SUPPORT 23

Chair
Ref: 100
Ver: 1

Db Ref Space
(Storage)

Db Ref Space
(Thread A)

Db Ref Space
(Thread B)

Chair
Ref: 100
Ver: 1

Chair
Ref: 100
Ver: 1

Chair
Ref: 100
Ver: 2

Db Ref Space
(Storage)

Db Ref Space
(Thread A)

Db Ref Space
(Thread B)

Chair
Ref: 100
Ver: 1

Chair
Ref: 100
Ver: 2

Chair
Ref: 100
Ver: 2

Db Ref Space
(Storage)

Db Ref Space
(Thread A)

Db Ref Space
(Thread B)

Chair
Ref: 100
Ver: 2

Chair
Ref: 100
Ver: 2

(1) Thread A Moves and Stores the Chair

Watch:100 Watch:100

Watch:100 Watch:100

Watch:100 Watch:100

1. Store

2. Watch Messages Sent: Ref 100 Versioned 1 to 2

3. Load

(3) Thread B Refreshes Chair

Figure 3.5:A typical watch firing sequence. When a transaction commits, some objects are modi-
fied; these trigger watches set on that object by other processes, which are notified via a message
in an asynchronous thread. How they respond to the watch is defined by the individual process.
Note that neither the time to receipt nor the order of the notifications is guaranteed; processes must
anticipate this and be ready to operate on incomplete information in time-critical situations.

CHAPTER 3. DATABASE SUPPORT 24

the database or partial writing of the disk file. Transactions have only 3 operations:Begin, which

starts the batch;Commit, which causes all blob operations between the last Begin and the Commit

to be either successfully executed, or not executed at all with an error generated; orAbort, which

causes all operations since the last Begin to remain unperformed and cleared from the todo list.

The implementation of the transactions is done on the file level; a multi-stage commit mechanism

guarantees that the file always represents a valid database regardless of where in the commit process

it may be interrupted. Any Store or Delete watches on objects which are stored or deleted during

the body of the transaction will not fire until the transaction successfully commits, since the changes

are not actually made to the database before that time.

Each client process that attaches to the database is provided with a unique key value

which is used to apply locks, watches, and transactions to the database; this key value establishes

the identity of the locking, watching, or transacting process. The tables of active locks, watches,

and transactions are indexed by the ref of the blob. Note that a blob’s existence in the database

doesn’t affect the lock and watch functions; thus, a database may have no blob for refx, yet some

process may still have active watches and locks onx. This means that locks and watches can outlive

the objects to which they were applied, or can be applied before the object is actually committed to

the database. This property can be very convenient for two reasons. First, due to the asynchronous

nature of watches, more than one operation can occur between the event and the receipt of the watch

for that event, and those events could cause problems if the watches were automatically mutated or

invalidated to keep them consistent with the presence of a blob in the database. For example, an

object will be deleted before its delete watch notification is received by the client. The object may

even be deleted, then reinstated and deleted again. If delete locks were automatically removed

without indication to the client, then this situation would be difficult to deal with, as it means

that valid notifications might be lost; if the delete, reinstatement, and a modification all happened

before the receipt and processing of the delete message, that process might miss notification of

the modification because the watch was invalidated and the process was never given a chance to

reinstate a write watch after the object had been restored. The same reasoning applies to reference

counts on watches or locks, which can become out of sync if they are forcibly removed when a blob

is deleted. The separation of watch and lock tracking from the blobs themselves also means that

the lock and watch service can be separated from the blob service itself; if the clients are consistent

about applying the appropriate type of lock before executing the database operation, then watch

and/or lock traffic can be diverted to a separate server from the read/write traffic, allowing improved

scalability in a multi-server system by partitioning “ref space” among one or more lock and watch

CHAPTER 3. DATABASE SUPPORT 25

servers (Figure 3.6).

Db Reference
Space (Storage)

Db Reference
Space (Thread A)

Object 1
Ptr: N/A
Ref: 100
Ver: 5

Db Reference
Space (Thread B)

Db Reference
Space (Thread C)

Object 2
Ptr: N/A
Ref: 103
Ver: 12

Object 3
Ptr: 1000
Ref: 200
Ver: 0

Object 1
Ptr: 5000
Ref: 100
Ver: 4

Object 1
Ptr: 3000
Ref: 100
Ver: 5

Object 2
Ptr: 4000
Ref: 103
Ver: 12

Object 2
Ptr: 6000
Ref: 103
Ver: 8

Figure 3.6:Different referential spaces for different processes. Particular portions of the model may
or may not be loaded in each space, or may be older versions awaiting update.

The final major feature of this layer is the prefetching interface. A load may be issued as a

prefetching load; this will initiate the load command to the server or file without blocking the caller,

and return a value indicating that the blob is not yet present. With this call, the caller can attach an

event callback which is invoked at arrival time of the blob. If additional requests come in before the

object arrives, the event is simply added to the set of events waiting for the object; of course, any or

all of the callers can simply block until the object arrives, as well.

Since the blobs are opaque to the database service, this layer is also capable of supporting

language-independent services via the socket interface. The simple request API at the socket level

can be used by any language that can make socket connections. As an example, we have successfully

used the database at this level with a Java client.

3.3.3 Object Service Layer

The object service layer is built on the blob service layer and provides the C++ object-

level interface to the core database functions.

CHAPTER 3. DATABASE SUPPORT 26

Object Factory and Schema ID

In order to reconstruct objects from binary buffers, an object factory is needed. This is a

global object that can construct an instance of a class on the heap, given an ID code that is universal

and unique to a class over all programs that use that class. In our system, the codes are integer values

that are assigned when the class is created and are never repeated. Our object base class provides

virtual functions that return the precise schema ID for a given object.

Persistent Objects

The storage and reconstruction mechanism is based on a virtual interface called the pack-

ing interface. This interface implements functions for asking an object how much buffer space it

needs for storage, serializing the object to a stream, and deserializing the object from a stream.

Each object is also derived from a base class that stores three things: a reference count, a pointer

to the database object to which the object belongs, and the database ref which is the object’s iden-

tity within that database. Finally, a database-capable class must be registered with the system’s

object factory, with a schema ID that is unique to that class over all the client programs that will ac-

cess this database. These interfaces are combined into a single base class, DfObject, from which all

database-capable objects in the system must inherit and implement the appropriate virtual functions.

Assigning the object to an open database consists of simply constructing the object with

a standard construction method and calling the Assign() function to make the object persistent.

Assign allocates a new ref from the database, stores that ref and the database pointer in the object,

sets the object’s reference count to 1, and records that object as the current memory instantiation

of that database ref. Once an object has an identity and a home database, it is a fully capable

persistent object (Figure 3.7). Note that assignment results in a reference on the object; the function

that assigns the object to the database automatically starts with an active reference to the object

and is responsible for tracking that reference and eventually releasing it once the object is fully

initialized (i.e. linked appropriately into the database’s application structure). Note also that a newly

created C++ object also has a reference count of 1; in the case of an object that is unassigned to a

database, dereferencing an object to 0 will delete the object. This means that any object inherited

from the DfObject base class may be tracked (referenced and dereferenced) in the same way as an

assigned object would be, and the dereferencing operation does the appropriate work (i.e. deletes

the object when it is no longer of interest to the program). This makes application programming

and member function programming easier, as a uniform set of code may be used for both persistent

CHAPTER 3. DATABASE SUPPORT 27

and nonpersistent data structures.

Writing a persistent object’s state to the database is initiated by the user calling the mem-

ber function Store(). First, the store function queries the object for its size and creates a buffer of

that size, plus a small portion for storing the schema ID of the object. The ID is written at the

beginning of the buffer, then the object’s packing function is called on a stream adaptor attached to

the rest of the buffer. This stream adaptor performs conversion of the data to network byte ordering

as it is written into the buffer; this makes the data system independent. Once the write is complete,

the buffer size is compared to the expected size as a sanity check; if it passes, the buffer is written

to the blob layer under the appropriate ref.

Reconstructing an object from the database given its ref proceeds in a similar fashion. It

is initiated by a client process with an open database object and a ref to the desired object. The

first thing the database does is check if the object is already memory resident; if it is, it increments

the ref count and returns the object pointer. If it is not, it calls the lower layer to retrieve the blob

buffer for the specified ref. After attaching a network-byte-order converting stream adaptor to the

buffer, the schema ID is read and the object factory is called to construct a generic instance of that

object type. The remainder of the buffer is then passed to the deserialization function of the generic

object to load the data into the object. The object is assigned a reference count of 1 and placed in

the memory table of the database as the current memory instantiation of that database ref, and the

new isntance is returned to the caller.

Smart Pointers

The smart pointer is an important component of the database system. When porting code

or writing new code, objects will point to each other to form data structures. In the case of per-

sistent objects, we want the ability to have a pointer reference an object without forcing the object

to be memory resident. In the classic walkthru system, this was achieved by explicitly “swizzling”

and “unswizzling” the pointers between actual references to valid objects and an opaque value that

referred to an abstract object in the database. The client program was responsible for determin-

ing when to swizzle or unswizzle; legacy code typically required the complete data structure to be

unswizzled before any operations could take place, because legacy operations assume that all point-

ers are either NULL or reference valid objects. In the case where an object was referenced by more

than one other object, or by multiple threads, the referring objects had to explicitly maintain refer-

ence counts to make sure they didn’t unload an object that was in use by another referring object.

CHAPTER 3. DATABASE SUPPORT 28

Db Reference
Space (Thread)

Object
Ptr: 1000
Ref: N/A
Ver: 0

Db Reference
Space (Storage)

Db Reference
Space (Thread)

Db Reference
Space (Storage)

Db Reference
Space (Thread)

Object
Ptr: 1000
Ref: 100
Ver: 0

Db Reference
Space (Storage)

Object
Ptr: 1000
Ref: 100
Ver: 0

Object
Ptr: N/A
Ref: 100
Ver: 0

1. Initial S
tate

2. A
fter A

ssignm
ent

3. A
fter S

tore/C
om

m
it

Figure 3.7:Assignment and identity of objects. When an object is assigned, it takes on a universal
identity that it shares in all referential spaces. On assignment, the object acquires a DbRef value
that identifies it to all processes (e.g. theRef field). The first assignment also establishes version 0
of the object in the persistent store.

CHAPTER 3. DATABASE SUPPORT 29

This structure required a great deal of bookkeeping and led to odd errors, because it was impossible

to determine whether a pointer was a valid memory reference or an opaque swizzled reference.

In the second generation database, this functionality is replaced by the templated smart

pointer class. The smart pointer is overloaded to behave like a regular pointer with regards to

dereferencing and member access operations, which allows legacy code to operate unchanged on

the objects. Internally, the smart pointer contains a database pointer and database ref that denotes

the object’s identity. The pointer may or may not at any given time actually have the object loaded;

if it is loaded, the reference is tracked and the object is dereferenced when the smart pointer is

unloaded, freeing the calling code from having to track references explicitly.

During a regular C++ access to the pointer value, the smart pointer checks to see if it has

the object loaded, and loads it if necessary before returning the memory pointer. This allows legacy

code to operate transparently without requiring preloading of the data structures. Furthermore, the

code can go back and unload smart pointers without affecting the operation of legacy functions.

Finally, a smart pointer has an access interface that allows conclusive determination of whether the

object is loaded or not, as it can check whether its tracked pointer is NULL without actually losing

track of the object reference.

The smart pointer implements the full packing interface, so it is trivial to include it in the

packing functions of the container class. Internally, the pointer stores the database ref in the buffer,

a value that is typically only as large as an integer for smaller databases.

Object Serialization

Object member data such as floating point numbers, arrays, or integers are straightfoward

to serialize into a buffer; given the correct network byte ordering, the data is simply appended to

the buffer, and can be read back in the same order it was written in. However, storing links between

objects is slightly more complicated.

When an object contains pointers to other objects, the serialization process depends on

two factors. First, the designer must consider whether the object being referenced is persistent or

not. For example, the DBCELL object points to a number of other data structures that are pointed to,

rather than contained in, the DBCELL itself. These include a separate contents record and a linked

list containing condensed descriptions of all the visible paths from this cell to other cells in the model

(Figure 3.8). Since it is not useful to load the visible path list without loading the DBCELL itself,

and the list is referenced only through member functions of the cell, the list is not made persistent; it

CHAPTER 3. DATABASE SUPPORT 30

is considered part of the DBCELL. Similarly, it isn’t useful to be able to load the contents structure

independently of the KD-cell description, nor can the contents structure be accessed directly from

outside the DBCELL, so the contents structure is also nonpersistent. Conversely, the contents lists

of the cell contain references to detail objects (i.e. furniture) that are either contained in or incident

to the cell. Since itis useful to be able to load a furniture object independently of any particular

cell that contains it, these detail objects are implemented as persistent objects (i.e. constellation

masters).

DbObject

LOD List

Animation

Bounding Box

Transform

DbObject Type ID

Bounding Box

Animation

LOD List

Ref Ref Ref Ref Ref

Transform

Figure 3.8:Serialization of objects converts them to a machine independent form that can either be
stored in the database or transferred to other processes via sockets. Note that references external to
the constellation are stored inRef form.

When a nonpersistent object is referenced and maintained by a master object, but is not a

part of that master object, the master object must take responsibility for storing and reconstructing

the slave object when the master is stored or loaded. For example, the packing interface of the

DBCELL is responsible for reserving enough buffer space to encode the size and contents of the

visible path list, to write the size and contents to the buffer on a store operation, and to reallocate

and reconstruct the list on a retrieve operation. In the case of a persistent object, such as a detail

object in the DBCELL contents list, the designer will typically use a smart pointer object rather than

a typical C++ pointer. Thus, while the DBCELL is responsible for packing the contents list itself,

it is not packing individual objects; rather, it is storing a list of references to external objects which

can be loaded independently of the cell itself.

Platform-Independent Persistence Model

The platform independence of the persistence model relies on the fact that the blob service

layer is transmitting, storing, and retrieving opaque binary blobs by their ref tags and schema type

IDs. Thus, any client of any language or architecture can use the socket API to request a blob by

tag, for which it can reconstruct the class represented by the schema ID in any appropriate local

CHAPTER 3. DATABASE SUPPORT 31

fashion by (1) creating an object of the class represented by that schema ID, and (2) Decoding the

contents of the blob as appropriate into that local class. The local object can provide any desired

or needed representation of the data, in any byte order or layout. At storage time, the local class is

back-converted via a local API call into the common XML layout for that object type and presented

back to the blob layer as an opaque unit once again. This approach even admits multiple bindings

of the class in different threads, so long as the universal data representation defined by that schema

ID is obeyed.

In theory, each language and machine architecture can have its own implementation of the

object service layer. In practice, we have created a full implementation for C++ and a rudimentary

implementation for Java. As most client architectures can compile our C++ implementation, we

have been able to provide database functionality on several machine and operating system types

with minimal effort, including SGI Irix, Linux, and Win32 platforms.

3.3.4 Modification and Transaction Semantics

Modifications to the database are typically executed with transaction semantics. Trans-

actions are nestable and provide the ability to atomically update a set of database objects. This

capability guarantees consistency among constellations. Additionally, the capability minimizes the

damage that can be caused by bugs and crashes in individual clients. Once a transaction is begun by

a process, all object modifications executed within the transaction are buffered rather than written

to the database. The transaction may be committed or aborted at any time. If aborted, the database

remains unchanged; if committed, the database appears to atomically update the state of all objects

modified in the transaction. This capability becomes increasingly important as more clients are

simultaneously using a database; without it, a single client crash or bug could render the database

inconsistent and unusable, even given proper use of locking semantics. It would also be very dif-

ficult to guarantee consistent updates of the database, as any given client might see only a partial

view of the changes if they were not executed atomically.

3.3.5 Locking Semantics

Object locking occurs at the level of a constellation, which can be locked by a process

via its identity. Several types of lock are available, corresponding to a “many readers, one writer”

locking model. A read lock is non-exclusive, allowing other processes to also obtain read locks, but

preventing other objects from obtaining write or exclusive delete locks. Exclusive write locks may

CHAPTER 3. DATABASE SUPPORT 32

be obtained only if no other process has a read lock, and prevent any other process from getting

any type of lock; non-exclusive write locks allow other processes to obtain read locks, but no other

type of lock. Exclusive delete locks prevent other processes from obtaining any type of lock, while

non-exclusive delete locks simply prevent any other process from deleting the object.

Locks are applied to a section of the database when consistency of reading or writing

across a set of more than one constellation is necessary. For example, if the editor needs to move an

object from one cell to another, it must write lock both cells, ensure it has the most current version

of those cells, and delete lock the object before making the change. This prevents inconsistencies

caused by collisions with other edit processes. Weak locks should be used when possible so that

processes that are interested only in reading the database are not blocked by the editing process; for

example, if a write lock were used on the object in the above example, a reader would be blocked

from reading the object even though the edit process is not actually going to change the object.

3.3.6 Watch Semantics

Constellations may also be “watched” by processes via the constellation identity. The

blob service maintains a set of watches on objects in that database, indexed by the database ref. A

watch request includes a mask of desired events (possible events are read, write, delete, lock, or

unlock) and a call-back function. While a watch is in effect, whenever any of the specified events

happens to the constellation, the call-back is invoked by the database core from a separate thread.

Watches are fired asynchronously in the database core; due to the vagaries of network traffic and

machine load, there are no absolute guarantees about the amount of time between the event and

the time that the watch arrives at the client, nor are there any guarantees of the order of watch

receipt in the case of multiple changes being made atomically, as is the case when a transaction

is used. However, in practice, store and delete modifications tend to happen fairly quickly and in

bursts when transactions are committed to the database, because all the store and delete operations

in the transaction happen atomically at that time, which causes the set of watch callbacks for those

operations to happen at once.

Watches are the mechanism by which clients are notified of changes made to the database

by other clients. Because watches can be applied at constellation granularity, notification traffic

can be dynamically tailored by the client to just those portions of the database of interest to that

client. This provides scalability in the network traffic and client portion of the notification process.

Scalability on the server itself can be provided by using remote or hierarchical watch servers. This

CHAPTER 3. DATABASE SUPPORT 33

will increase latency between the execution of the operation and the arrival of the watch, but would

be necessary in the event of a very large number of clients watching the same portion of the database.

3.4 Programming Concerns

3.4.1 Ease of Extension

The ease with which new visibility algorithms and simulation or active agent codes can be

integrated with the walkthrough is vital to the success of the system as both a research platform and

an integration framework. Funkhouser pointed to integration as a major challenge of these database

systems, as there is a great deal of sophisticated legacy code which could contribute to an interactive

world database.

Ease of integration was achieved in the first generation Berkeley Walkthru database by

using a packing system whereby objects were binary-copied into segments, then a user-definable

postprocessing function converted internal pointers to offsets within the binary segment. Loading

the object back consisted of running the same function to convert the offsets back into pointers.

The advantages of this approach are twofold. One, object reconstruction is extremely

quick, as new memory allocations are not necessary and copying of non-pointer data is kept to a

minimum. Second, existing data structures could be binary copied verbatim into and out of database

segments with the exact layout they had in memory; in general, elements such as KD-tree cells could

be read from the database and operated on directly by the code written for the nonpersistent versions

of these objects.

There are a number of disadvantages, though. First, when going to a fully object-oriented

language such as C++, binary copies of objects are invalid when moved between runs of the pro-

gram, as their virtual function tables and internal layouts can differ depending on inheritance and

code placement in memory. Thus, the reconstructed objects are often nonfunctional. Second, an

object may have internal structure such as linked lists that are presumed by the legacy code to be

separate heap structures with certain invariants. Binary copying the lists into a segment, then re-

constructing them by altering the pointers to point within the segment, will often lead to the legacy

code trying to deallocate part of the segment that it assumes is a separate object, but is actually a

portion of a larger allocated block. This leads to segmentation faults and heap corruption which can

be difficult to diagnose and impossible to rectify without extensive changes to either the segment

unpacking process, which will negate the performance advantage of the approach, or to the legacy

CHAPTER 3. DATABASE SUPPORT 34

code, which is undesirable.

Third, this approach generates databases that can only be read by a particular build of the

database on a particular architecture. Any change to object layouts or recompilation with a different

compiler will render all existing databases invalid, and databases are not portable between machines.

This is undesirable for a second generation database because it strongly limits the universe of clients

that can access the database.

Conversely, the packing interface foundation of the second generation database provides

an explicit unpacking of the objects via an object factory and user-defined virtual functions, operat-

ing through an XML-based byte code converter. This approach sacrifices speed of reconstruction,

but addresses all of the above concerns. Since objects are validly created through an object factory,

the layouts are always correct, both with respect to invisible portions of the objects (e.g. virtual

function tables) and variances between compilers or different builds of the system. The reconstruc-

tion code rebuilds the internal structure exactly, including separate heap blocks if the object calls for

them, which results in a reconstruction that is completely indistinguishable from the original object

and is much more likely to work properly with unaltered legacy functions. The XML conversion in

the unpacking process yields databases that are binary compatible with any machine architecture,

thus expanding the universe of machines on which the system can run. Finally, the fact that schema

IDs are explicitly embedded in the objects means that not only can older databases be read into

current builds, but current builds can actually convert old databases “on the fly” to new schemas

and object layouts if the programmer writes code to convert the older binary data to the new schema

format.

In the first generation database, inter-segment references were encoded into 32-bit values

that fit precisely in the space taken by the actualy object pointers, so that those pointers could be

swizzled and de-swizzled in place. This created a limitation that the database could only hold232

segments. For future expandability, it was desirable to extend these segment identifiers to more than

32 bits; however, this was infeasible in the first generation database. To remove the 32-bit limitation

would require either abandoning the binary copy scheme and going to a more complex unpacking

method, or altering the objects to place pads or unions wherever the objects have pointers, which

would increase the memory footprint of the objects and create potential incompatibilities in legacy

functions. In the second generation database, which uses 64-bit extensible identifiers, the explicit

unpacking scheme means we can store 64-bit values but leave the 32-bit pointers in the objects. In

the case where we want to replace the pointers with on-demand references rather than always-on

references, the smart pointer class provides excellent compatibility with legacy code by overloading

CHAPTER 3. DATABASE SUPPORT 35

standard pointer functions such that they operate indistinguishably from regular C++ pointers.

In practice, our conversion of the system has shown excellent compatibility with legacy

code. Adapting a nonpersistent object to a persistent form is generally simply a matter of adding an

inheritance from the persistent base class, overloading the packing functions, and replacing interob-

ject pointers with their smart pointer equivalents. In fact, in porting codes from the first generation

walkthrough database to the second, most of the required modification of the old data structures

were the removal of reference counting and load managing structures that had been added into the

original, nonpersistent objects to provide the same functionality that our smart pointer classes pro-

vide automatically. The conversion process actually reverted these objects to be more like they were

in their original, nonpersistent form, with suitable replacement of pointers with their smart pointer

equivalents. The other major issue that comes up involves understanding the layout of a legacy

code’s data structures well enough to write packing and unpacking routines for that code. This issue

is shared with the first generation database system; in fact, in many cases we used the old pointer-

swizzling functions as templates for their counterparts in the new system. With a preprocessing

step such as the one used by POET, it would probably be possible to automate this process for most

legacy codes; however, we have not implemented such an approach.

In addition to providing a simpler, more effective upgrade path to converting nonpersistent

legacy objects to persistent objects in the new database, the new objects are much easier to trou-

bleshoot. The unpacking routines are now “safe” in the sense that no assumptions are made about

runtime layout, which makes it easier to debug the unpacking process itself, as standard debugging

tools can decode the data structures at any step of the process. The smart pointers are also superior

to the “swizzling” method for two reasons. First, a smart pointer can be definitively checked at run

time to determine whether the object is loaded or not without consulting extra indexing structures,

which is impossible with a swizzled pointer. Second, a smart pointer can provide on-demand object

loading with no intervention or modification of legacy code, which is also impossible with a swiz-

zled pointer. It has been our experience that the conversion process is easier to comprehend and

easier to troubleshoot with the smart pointer tools.

3.4.2 Visualization During Database Mutation

In a first generation system, the preparation of a frame for display is typically initiated by

a trigger function. This trigger function is called either by the UI (when the user manipulates the

mouse such that the viewpoint changes) or by one of the installed packages, such as the editor (when

CHAPTER 3. DATABASE SUPPORT 36

the package has made alterations to the scene or needs to render a new frame, so that it can add to

or modify the current display via the display call-backs in the frame procedure). Once a frame is

initiated, the cull process determines the set of visible cells, the objects in those cells are added to

the display list, and the display list is rendered by the draw process.

This process is insufficient for a system that incorporates distributed editing and modifica-

tion. There is no way for external processes to invoke the trigger function in a particular client, nor

is there any way for an external process to determine whether the changes that have been made will

affect any particular client. Even if such information was available, there is a severe scalability issue

when each client must obtain, in real time, enough state information from all other client processes

to determine when those client processes must update their displays. Thus, updates must be handled

by each client’s interaction with the database itself, rather than by interactions with other clients.

The solution to this issue is found in the watch and notification system. A client is con-

ceptually partitioned into two sets of processes; processes that display database contents (display

processes), and processes that alter database contents (editing processes). Note that there may be

many modules (editors, simulators, etc.) within one “client” that each have one or more display or

editing processes.

For editing processes, the job is actually simplified from first-generation systems. The

editing process is now freed from any responsibility to notify display processes of changes in

database conditions. It uses a transaction to make its changes, and must only observe proper locking

semantics to ensure that the database is not corrupted; but otherwise it is written to behave as if the

display process were not there at all.

The display process is responsible for using the watch mechanism provided by the database

to keep track of of any database modifications that may affect the display, and to update the database

image that it is currently rendering when those notifications are triggered.

For example, consider the UCB Walkthru rendering system [5]. In this environment, a

subsystem maintains a view window and a user view frustum in the database, moves the frustum

in response to user input, and renders frames corresponding to what is visible from that frustum.

Internally, a display list is constructed for each frame given the frustum by the following basic

process:

1. Locate the eye point of the frustum in the KD tree for the space.

2. Given the corresponding cell, traverse adjacent cells via portals, adding those cells to the

visible cell list, until the visible region has been exhausted, indicating that no additional cells

CHAPTER 3. DATABASE SUPPORT 37

are visible.

3. Traverse the contents lists of the visible cells and add the objects to the display list.

Understanding this process gives us enough information to write the notification mecha-

nism for the rendering subsystem. Ideally (under the full UCB Walkthru prefetching and memory

management system [27]), this subsystem will be maintaining its own memory resident image of a

portion of the database consisting of:

1. the database root, which points to...

2. the KD tree for eye point location, which points to...

3. the set of potentially visible cells from the eye point for a certain span of time, given a maxi-

mum user velocity and a lookahead time, which point to...

4. the set of detail objects and geometry contained in those cells.

The remainder of the database is swapped out; i.e. it has no memory image in the process’

address space. As the user frustum moves through the database, elements (2) and (3) in the above

list change as cells and their contents are swapped in and out, as the user moves away from cells

behind them and towards cells in front of them.

Clearly, since these database elements are exactly those that affect the rendered view, we

must update the view in response to an alteration to any of them. Thus, we apply watches to all

database structures in that list. As long as the database is not altered, we may proceed normally,

rendering frames and swapping elements in and out as the user frustum moves and the visible sets

dictate which new elements must be swapped in, and which are far enough away to swap out. When

an element is swapped in, a watch is dynamically applied to that element; likewise when an element

is swapped out, the watch is removed.

When a notification is received, we know that some element of the portion of the database

that is of interest to the current view has been modified by some external process. Because we are

maintaining local images of these objects, we have enough information to complete any current

render pass without being concerned about objects changing under the display list and rendering

it inconsistent. Thus, we gather notifications in a set until the current frame is finished. Because

the update process is completely asynchronous with the editing process that triggered the update,

neither the display process nor the editing process needs to block on the other, except for relatively

short refresh periods during transaction commit or during the refresh of a resident set.

CHAPTER 3. DATABASE SUPPORT 38

In the next frame interstice, we update the resident set, proceeding in order from earlier

elements in the list to later elements (i.e. KD-cells to detail objects to geometry) . The refresh

operator is applied to each constellation for which we have received a notification. Note that this

may result in ejection of certain database elements, as KD cells may contain different database

cells, objects may have switched parents or been removed entirely, and so on. It may also result in

instantiation of completely new objects if elements have been added to cells in the resident set.

Changes that are made outside the resident set are not of interest to the update process for

this client, because the objects are not resident in memory. Should we need to access those objects

in the future, the standard load process that causes the object to become resident will instantiate

the most current version of the object. This provides a scalable solution to updating any number of

clients at the client level, as any particular client’s watch set is only as big as its resident set, and it

has been shown [39] that the resident set is of small, fixed size relative to the overall database size

for Walkthru databases.

3.4.3 Effects of Dynamic Update on Frame Rate

Even though updating the resident set during the frame interstice results in correct be-

havior, it can result in an irregular frame rate, because the time required to update a portion of the

model via database access is unpredictable and will generally be high relative to the desired frame

rate. This is a natural consequence of the fact that potentially large changes need to be propagated

more quickly than the communication channel between clients allows.

To bridge this gap, we continue to render frames while the update is taking place. These

frames render the visual representations of the “old” objects while they are being refreshed (Figure

3.9). This requires the old visual representation to be cached. We maintain a cache of visual rep-

resentations indexed by database ref; if an object is encountered during a frame rendering traversal

of the scene, and that object is currently undergoing a refresh operation, the frame renderer draws

the cached representation. Once the object is refreshed consistently with the rest of the scene, the

cache is invalidated during a frame interstice and the next frame render will display the new view

of the object. This cache also retains client-specific information such as the knapsack counters used

by the rendering algorithms from the first-generation walkthrough rendering engine. This approach

prevents incomplete frames, and prevents the entire visualization engine from “hanging up” while

an update occurs. If an object passes out of the visualization working set before it is updated, its

cached representation will be destroyed, and queued update requests for that object can be discarded

CHAPTER 3. DATABASE SUPPORT 39

without processing.

Frame 1
Frame 2

(1-2 Refreshed)
Frame 4

Replace
Model 1,2

Replace
Model 3,4

Notifications
Objects 1-4

Refresh
Model 1

Refresh
Model 2

Refresh
Model 3

Refresh
Model 4

Frame 3
(1-4 Refreshed)

Render Thread

Update Thread

Idle Idle

Figure 3.9:Dynamic update taking place over multiple frames. In intermediate frames, the system
may render outdated information in exchange for reducing the visual impact of frame rate disconti-
nuities.

3.4.4 Updates and Viewing Processes

One of the key concerns in a multiuser system is how to quickly and accurately convey

changes made by one user to all other interested observers who might be affected by those changes.

We will deal separately with the issues of changing the database and with viewing those changes.

When the database is not being changed, rendering proceeds as in any first-generation walkthrough

system. However, the protocols to handle database object updates must be made more powerful

to handle the presence of distributed, autonomous update processes typical for second-generation

walkthrough systems.

Communications between processes can occur in two different modes, one indirect, the

other direct. The indirect mode occurs via changes made to database objects (i.e. committed trans-

actions). Assuming that all interested clients have proper watches on the objects being committed,

this communication channel provides a nonblocking, asynchronous means of modifying the world

state seen by any appropriately connected viewers. Direct communication occurs through a simu-

lation process manager, where the client process can send messages to and receive messages from

any simulator to which an active client connection has been established. These messages can con-

sist of anything from a one-byte command code, all the way up to an arbitrary constellation that

implements the packable interface.

All communication travels along an abstraction layer that provides control over how band-

CHAPTER 3. DATABASE SUPPORT 40

width is split between the various simulation client connections and the database update process.

This gives the user a measure of control over which elements (database updates or simulations) are

most important to have up-to-date in the client view. Each process is limited by the communica-

tions subsystem to a certain bandwidth budget per time slice. Packets are dispatched on receipt in a

separate dispatch thread, and the receiver is expected to deal with the incoming data immediately.

3.4.5 Scalability

The core principle behind scalability in the walkthrough is that the process has only to

maintain and operate on a small subset of the total database at any given time. The cell-and-portal

culling scheme, along with the densely occluded nature of the building model and a database layer

that allowed a tight superset of the visible set to be loaded at any time, achieved this goal for viewing

the static world database.

In the second generation database, the ability to modify the world on the fly, as well as

the ability to have many users operating in a server-client mode with a remote database, created the

need for consistency across users and the propagation of updates from the database back to clients.

The database structures that support these abilities must also follow the scalability principle; e.g.

the newly added operations and structures cannot take time proportional to the database size. They

must operate in time proportional to the visible sets of the client processes.

Clients interact with each other via two mechanisms; writes to the database, which are

propagated to other clients via watch notifications, and direct data distribution via the simulation

subsystem, which is addressed in chapter 4. The database system must provide scalable service

given the assumption that the world model is structured such that the visible set of world model

elements is small relative to the entire world model. Cell and portal culling is an example of a

structure that meets this criterion for architectural world models.

If the model is structured in that fashion, then each client will have a small resident set of

database elements that it is interested in at any given time. Each client will be setting and removing

watches as they move through the database and their resident set changes. Assuming the clients

are distributed relatively evenly throughout the world (if they are not, the problem itself fails to

scale, since clearly each client must receive updates from each other client’s actions), the server’s

performance will scale well if the work to propagate modifications to an object to the set of clients

that are interested in that object is proportional to the number of interested clients. Furthermore,

any single server that contains any portion of the world model will not scale well if too many of the

CHAPTER 3. DATABASE SUPPORT 41

Index Database
Terrain DB

Building DB

Client A

Client B

Figure 3.10:Models can be split over multiple servers, providing scalability for viewers that can
incrementally load local regions of the database. References to objects in other databases can be
embedded by combining a database location with aRef within that database.

clients are interacting continuously with that server (Figure 3.10).

Our database design admits partitioning of the database services along two axes to help

the system’s network traffic scale with the size of the problem. First, the world model can be

partitioned among several servers. If we partition the model spatially among several servers, then

the client traffic will naturally partition among those servers, since clients’ working sets will focus

on the server that they are “in”, potentially plus a few nearby servers [28].

Within a server, there are three major sources of traffic; database reads and writes, lock

request traffic, and watch notification traffic. A database modification transaction and its resulting

updates typically follow this pattern:

1. Write lock requests are made by the modifying client.

2. Writes are performed by the modifying client.

3. Watches are sent to the receiving clients, and write locks are removed by the modifying client.

4. Read lock requests are made by the receiving clients.

5. Reads are performed by the receiving clients.

6. Read locks are removed by the receiving clients.

CHAPTER 3. DATABASE SUPPORT 42

Since we are using transactions to modify the database, steps (3) through (6) are quite

“bursty” in nature. Many objects will be changed atomically in the database, and all those notifi-

cations go out at that moment to many clients, who will all try to refresh those objects at the same

time. This causes a big momentary load on the server as it attempts to service all of those lock

and watch requests, as opposed to the more distributed load of the clients roaming through the data

space. This can impact the frame rate of unrelated clients, since now the “roaming” clients must

contend with the impaction of the server caused by this burst of watch notifications.

To mitigate this problem, we can separate the server into two separate subservers, which

should be tightly linked to each other with a high-bandwidth link. The primary subserver serves

locks, transactions, and object data; the second subserver serves watch applications and watch noti-

fications. When a transaction commits in the primary subserver, instead of dispatching the watches

directly, it dispatches the transaction data to the second subserver, which aggregates the notifica-

tions for each client together into a single package that also contains the updated object data for

each watched object from that client for that transaction. These packages are then sent to the clients

from the secondary subserver. This transfers the notification load entirely to the second subserver,

leaving the primary subserver to continue handling requests from roaming clients, at the expense

of adding the latency of a transmission between the two subservers to the latency of the watch

notification.

3.5 Performance

The conversion of the first generation visualization engine to the new database resulted

in a small degradation of performance. This was expected, since the new database provides more

functionality; however, the impact was relatively minor, since the bottleneck is still the speed at

which data can be streamed from the disk or network connection. To assess performance relative

to an off-the-shelf database, we tested basic read and write performance versus the POET com-

mercial database on a typical target system (a Pentium 3/850 PC running Windows 2000). The

benchmarks showed our database outperforming POET by about 10 percent on similar operations.

This is attributable to POET functionality that is absent in our API specification.

It is important to note that the retrofit of the first generation Berkeley walkthrough func-

tionality on the second generation substrate resulted in immediate and substantial gains in database

load time. For example, when operating on the full Soda Hall model database (a 360 megabyte

model), the load time decreased from several minutes to a fraction of a second. This “fast start”

CHAPTER 3. DATABASE SUPPORT 43

ability is attributable to the smart pointer abstraction, which allowed the system to load objects on

demand as the legacy visibility code needed them, rather than having to conservatively load large

sections of the visibility structures before invoking visibility functions.

44

Chapter 4

Simulation Data Management and

Control

4.1 Motivation

Evaluating the performance of architectural designs is one of the most interesting appli-

cations of virtual environments. The purpose of the first-generation Berkeley Walkthru system was

to help evaluate how well the proposed structure of Soda Hall met its design criteria, and to allow

aesthetic evaluation of the design. Projects such as the UNC walkthrough [40] and various virtual

city projects [22, 41] have similar purposes, and are also geared towards evaluating architectural

spaces. These evaluations require only the basic ability to have a user interactively “walk through”

the space; there was no need for physical behavior in the model. The visual quality, size, and layout

of the space can be evaluated without being able to move furniture or light fires.

The next logical step is to use the model to evaluate more interesting performance proper-

ties of the environment. For example, we could evaluate airflow, sound propagation, or radio trans-

missions and reflections through the structure. We could evaluate how well the structure performs

in hazardous situations, such as earthquakes or fires. We could see how objects in the environment

react to physical interactions between each other and users, or how large numbers of users interact

with each other in the space.

Simulations such as these tend to fit well into the data model of a walkthrough system,

in that they simulate the propagation of a physical effect through the space, similar to the way a

traditional walkthrough simulates the propagation of light and visibility. Though these simulators

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 45

can describe more complex interactions, they are also strongly or completely constrained by the

structure of the building. For example, all building-scale fire simulators operate on either a cell-and-

portal or finite element model that maps closely or directly onto the spatial structure the walkthrough

system builds for visibility purposes. This principle is true for all of these simulators; they all can

make use of a spatial partition like the one the Berkeley Walkthru uses for visibility computation,

database partitioning, and prefetching.

One application domain with a particularly high expected payoff is building design eval-

uation, where scientists, engineers, architects, and other professionals can evaluate a proposed or

existing structure without handling or damaging physical materials. With such a system, users could

preview architectural designs, evaluate their performance with various metrics, and do simulations

and potentially destructive “what-if” experiments, such as fire safety studies, cheaply and with no

risk. The visualization system can also contribute a more intuitive visualization of the results of

complex simulations. Finally, a realistically reactive virtual environment could also be used for

training of personnel for scenarios that are too dangerous, difficult, or expensive to simulate in real

life.

It typically takes many years, a large budget, and a great deal of specialized expertise to

author a simulation engine that provides high-quality, verifiably accurate output. It is unreasonable

to assume that the planners of a new building or the authors of a virtual environment system will

create these simulators on their own; they already have their hands full with interactive rendering

and visualization of large environments in real time. Moreover, it would be highly uneconomical to

ignore the huge body of tried and tested simulation code that already exists. Unfortunately, these

simulators were not designed to work as interactive agents within a virtual world. It is thus very

useful to provide a framework into which simulations can be tightly coupled into a virtual world

model with a minimum of effort and of code rewriting. This approach leverages the work already

done by physicists and engineers in designing the simulators with the latest approaches in computer

graphics to provide a rich and productive user experience. Designing a general-purpose framework

that allows these disparate systems to work well together is the challenge we are addressing in this

portion of the work.

One driving application behind this work was to realize some of these advantages for the

benefit of fire safety in architectural environments. Our initial target simulator was the National

Institute of Standards and Technology’s (NIST) Consolidated Model of Fire and Smoke Transport

(CFAST) [6]. CFAST currently provides the world’s most accurate real-time simulation of the im-

pact of fire and its byproducts on a building environment. CFAST as a standalone package suffers

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 46

from unintuitive simulation setup and very rudimentary graphical output. Integrated into the walk-

through system, it can provide real-time, intuitive, realistic, scientific visualization of building con-

ditions in a fire hazard situation from the perspective of a person walking through a burning building.

The viewer can observe the natural visual effects of flame and smoke in fire hazard conditions; alter-

natively, scientific visualization techniques allow the user to “observe” the concentrations of toxic

compounds such as carbon monoxide and hydrogen cyanide in the air, as well as the temperatures

of the atmosphere, walls, and floor. Warning and suppression systems such as smoke detectors and

sprinkler heads can be observed in action to help determine their effectiveness. This technology can

be used to improve fire safety by helping engineers and architects evaluate a building’s potential

safety and survivability through performance-based standards.

Throughout this chapter, we will be using the CFAST simulator as a running example to

illustrate how a physical simulator that was not designed for a virtual environment is integrated into

our framework.

4.2 Assumptions and Summary of Approach

4.2.1 Integration of Visualization and Simulation

We assume one or more simulators and a visualization client, each of which operates on a

cell-and-portal style environment database. This database may be arbitrarily large, i.e., we could be

operating on a building that will not fit into memory, and each of the two component systems can

deal with the paging problem in its own way. However, due to occlusion, the visible “working set”

of volumes will be tractable for any observer position. There is a mapping between the volumes

of the visualization database and the simulation database, but the two are not be expected to be the

same (i.e. a simulator “cell” might cover multiple visualizer “cells”, or vice versa). Presently, we do

not support arbitrarily complex geometric mappings between the two databases; we assume that one

or more visualizer cells correspond to one simulator cell. We assume that the visualizer will transmit

any setup information needed to begin simulation before issuing the start command. Furthermore,

the visualizer may provide a front end by which the scenario being simulated may be changed on-

the-fly. For example, the user may start a wastebasket fire in some room and then explore how the

spread of the fire is influenced by opening or closing various doors or windows in the visualizer,

thus repeatedly changing the situation being simulated. In such a case, the visualizer must transmit

such an environment update to the simulator in real time, and the simulator must then recalculate

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 47

previously computed simulation results that are affected by the change, as well as alter the course of

the simulation in progress. For simulators that do not explicitly support recomputation of parts of the

data based on changes in the environment, we can stop the simulator engine, reset the internal state

to the world state as stored in the simulation data set for the time the change was made, and restart

the engine from that point. This solution is rather brute-force, as it requires complete recomputation

of all conditions from that point forward. Hopefully in the future, simulators designed to work in

interactive environments will directly support interactive modification without requiring discarding

all simulation results beyond the time of the change.

Simulation
Service

Computer (SGI)

Simulation
Service

Client
Simulation

Service

Computer (SGI)

Client

Computer (SGI)

Client

Computer (PC)

Client
Simulation

Service

Computer (PC)

Database Client

Computer (PC) Computer (PC)

Database

Network

(High Bandwidth Connections)

(Low Bandwidth Connections) (Very Low Bandwidth
Connections)

Figure 4.1:Our model of the machines comprising the data network. Note that we assume there
is only one limited-bandwidth physical link between machines, particularly to client machines, and
that data and simulation servers can reside anywhere.

Either one or both of the two component systems may be distributed, and may be operat-

ing on computers connected by anything from a LAN to a potentially high-latency, low-bandwidth

network such as the Internet (Figure 4.1). We would also like to be able to attach and detach visu-

alizers to a simulation in progress, to allow multiple observers to independently observe different

portions of the data from the ongoing simulation. The simulator generates data about subsequent

world states observing relevant dependencies. Most existing simulators operate with a fixed time

step and produce results in time slices that span all volumes in the database. Since the viewer can

only see a portion of the model in any given frame, only a subset of that information will be of rele-

vance to the visualizer at any particular time (Figure 4.2). We refer to a discrete piece of simulated

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 48

information that is associated with one time slice and one spatial cell, a simulation “chunk.” These

chunks might be generated in different order depending on the demands of the visualizer.

The bottleneck in getting simulation data to the visualizer for rendering in real time may

be in one of two places: either the simulator is too slow to generate data in real time, or the com-

munication process between the simulator and visualizer has insufficient bandwidth to transmit

the necessary chunks in a timely fashion. The simulation speed bottleneck is likely to hold for

single-CPU simulations of reasonably sized databases; CFAST on a single 150MHz R4400 can

only simulate about 16 cells (depending on degree of interconnection and density of furniture) in

real time. Our goal in this situation is to increase the simulator’s potential effectiveness by letting it

know what areas of the world are of current interest to the visualizer. Specifically, the visualizer will

inform the simulator of the currently visible cells and of the cells that may become visible in the

very near future. The simulator can then concentrate on calculating and shipping the corresponding

chunks with higher priority. In the future, we expect simulator technology to improve; simulators

will become faster, and their designs will evolve to provide better support for interactive visualiza-

tion. Recent work has shown that this can be a promising approach for modeling the dynamics of

physical structures [42].

For the case where communication bandwidth is the bottleneck, the framework provides

mechanisms that are easy to use and that optimally exploit the available bandwidth, while hiding

communications concerns from the simulation designer. Of course, it is not possible to guarantee

that all needed simulation chunks will be at the visualizer in time: the user might jump to a different

part of the building or suddenly advance the time slider far into the future. To minimize the visible

discontinuities associated with such a switch, we use a “just-in-time” chunk transmission scheme

(Figure 4.3). Our scheme keeps the communication channel in a state of near-starvation, allowing

unanticipated “emergency” chunks to be sent through a nearly-empty transmission queue. This

approach minimizes latency in a time-critical situation, while still transmitting chunks at the highest

possible rate for the channel.

4.2.2 Walkthru as a Model Client Environment

The Berkeley Walkthru program was designed to support real-time interactive visualiza-

tion of large (several million polygons), densely occluded building models at interactive frame rates

(greater than 10 frames per second). To accomplish this goal, the Walkthru subdivides the “world”

into rectilinearcells, connected byportals. In a preprocessing step, the system associates with each

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 49

1

3

2

4

1

3

2

4

CFAST

Dynamics

1

3

2

4

Multiple Users

Vol:2 Id:0 Time:0
Fire: Yes, at (x,y,z)

(Smoke Layer Height 0.5m)
(Atmospheric Conditions: Poor)

Vol:1 Id:0 Time:0
Fire: No

(Smoke Layer Height 1.5m)
(Atmospheric Conditions:Fair)

Vol:3 Id:0 Time:0
Fire: Yes, at (x,y,z)

(Smoke Layer Height 1.75m)
(Atmospheric Conditions:Fair)

Vol:3 Id:0 Time:0
Fire: No

(Smoke Layer Height 2m
(Atmospheric Conditions:Good)

Vol:1 Id:0 Time:0
Object: Sphere
Position: (x,y,z)

Velocity: (vx, vy, vz)

Vol:2 Id:0 Time:0
Object: Sphere
Position: (x,y,z)

Velocity: (vx, vy, vz)

Vol:2 Id:1 Time:0
Object: Box

Position: (x,y,z)
Velocity: (vx, vy, vz)

Vol:4 Id:2 Time:0
Object: Triangle
Position: (x,y,z)

Velocity: (vx, vy, vz)

Vol:2 Id:2 Time:1
Object: Triangle
Position: (x,y,z)

Velocity: (vx, vy, vz)

Vol:2 Id:0 Time:0
Person: Bob

Position: (x,y,z)
Avatar: Smiley

Vol:3 Id:1 Time:0
Person: Al

Position: (x,y,z)
Avatar: Frowny

Vol:3 Id:2 Time:0
Person: Carl

Position: (x,y,z)
Avatar: Indecisive

Vol:4 Id:2 Time:1
Person: Carl

Position: (x,y,z)
Avatar: Indecisive

Figure 4.2:The output of many types of simulation can be grouped by the same volumes that parti-
tion the model for visibility. If this is the case, the viewer only needs to receive simulation data for
the volumes they can see.

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 50

Simulator (Data Source)

2
C

hu
nk

s/
se

c
B

an
dw

id
thTransmit Buffer

Client (Interested in: Type 1)

1a 1b 1c 1d 1e 1f

2a 2b 2c 2d 2e 2f

Starting Condition, t=1

Simulator (Data Source)

2
C

hu
nk

s/
se

c
B

an
dw

id
thTransmit Buffer

Client (Interested in: Type 1)

1a1b1c1d1e1f
2a 2b 2c 2d 2e 2f

Naïve Buffering, t=1 + δ

Simulator (Data Source)

2
C

hu
nk

s/
se

c
B

an
dw

id
thTransmit Buffer

Client (Interested in: Type 2)

1a 1b

1c1d1e1f2a2b
2c 2d 2e 2f

Naïve Buffering, t = 2

Simulator (Data Source)

2
C

hu
nk

s/
se

c
B

an
dw

id
thTransmit Buffer

Client (Interested in: Type 1)

1a1b

1c 1d 1e 1f

2a 2b 2c 2d 2e 2f

Just-In-Time, t=1 + δ

Simulator (Data Source)

2
C

hu
nk

s/
se

c
B

an
dw

id
thTransmit Buffer

Client (Interested in: Type 2)

1a 1b
1c 1d 1e 1f

2a2b
2c 2d 2e 2f

Just-In-Time, t = 2

Figure 4.3:The just-in-time concept provides minimal latency by sending only just as much infor-
mation at each timestep as the client can receive. Traditional buffering can result in large backups
of data that result in high latency if the viewer suddenly needs different information while the buffers
are still packed.

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 51

cell the set of all other cells that can be seen by an observer from any point within that cell. From

this information, plus constraints on how quickly the observer can move through the database, the

Walkthru can compute, for each frame, a set of cells that tightly, but conservatively bound the set

of cells visible in the next few frames. There are only two types of object in the Walkthru: “major

occluders,” which are two-dimensional wall, ceiling, or floor polygons, whose planes define cell

boundaries; and “detail objects,” which are 3D models of building contents (such as furniture and

light fixtures), and which are associated with the cells that intersect the object’s bounding box. Dur-

ing each frame, the detail objects and major occluders incident to any visible cell are drawn, and

visibility is reevaluated from the new position. If the user wishes to voluntarily disallow changes in

major occluders by the database editor and any in-use simulators during a visualization run, many

visibility relationships can be precomputed for the database. Otherwise, the update rate of the vis-

ibility computations is still quick enough to support relatively small-scale changes in the visibility

structure of the world (i.e. punching some new holes in walls, or opening a new shaft in the floor

or ceiling). In the last few years, Walkthru has provided a testbed for several applications including

database construction [37], large scale radiosity computation [43], and scalable distributed walk-

throughs with up to thousands of simultaneous users [5].

4.2.3 Simulation Types

Although all simulations that we are interested in integrating into this framework share

the property that their results can be partitioned spatially into chunks that tile the environment, there

are two distinct ways they treat time. Some simulators, such as fire or dynamics simulators, operate

on avirtual time scale; that is, simulation time does not necessarily run one to one with real time.

A user may wish to pause, rewind, play slowly, or jump around within the time axis defined by

the simulation. Other simulators operate inreal timerather than virtual time. This is defined as a

simulator for which there is one “current” set of data across the entire set of volumes, and the user

is uninterested in being able to look either ahead or behind the current time. The canonical example

of a real-time simulator is the multiuser simulator; each client is interested in where all the avatars

of visible users are at the moment, but is not interested in where they were in past times.

Real time can be treated as a special case of virtual time, where neither the user nor the

system has any control over the visualization time; the visualization time moves in lockstep with real

time. However, the distinction between virtual-time and real-time admits two optimizations that can

be applied to data transmission for real-time simulators. First, the simulation data set may discard

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 52

any chunk for which the set has a more current chunk (i.e. “old” data may be discarded without

worrying about the user moving the time slider backwards or putting it into reverse). Second, chunks

for these types of simulation may be transmitted via a protocol that does not guarantee delivery or

sequencing. Since we are only interested in the most recent world data, we can transmit updates

continuously and not worry about getting acknowledgements of old data, since by the time the

acknowledgement was received, the data would be out of date anyway.

4.2.4 Simulator Output

There are two basic ways for the simulation to produce output. First, it can modify the

world database to which the clients are attached, and let the normal update mechanisms render the

results. The second is to directly feed additional information to the clients through a connection that

is external to the database (Figure 4.4).

Each approach has advantages and disadvantages, and is appropriate in different situa-

tions. Modifying the world database can be appropriate for real-time simulators that want to make

persistent changes in the environment, such as lighting simulations; making regular editing-type

modifications to the database is easy to code, and if the results are intended to be permanent any-

way, it is a very appropriate mechanism to use. However, this adds a lot of latency to the process of

transmitting results to the simulation client; a typical update cycle involves making the modification,

having a notification propagate to the clients, and, if the notification message itself did not carry the

necessary information for the update, having the clients request the changed information from the

database. Each of these steps requires its own set of two-way network communication between the

database server and a client process; thus, the entire process involves at least 3, and possibly 5, cy-

cles of network transmissions and acknowledgements, compared with the single cycle needed when

transmitting the results directly to the client. Furthermore, in this scenario all communications are

routed through the database server, which is, most likely, already heavily loaded with visualization

traffic.

Another issue with direct database modification is that of the virtual time axis. Many

simulations do not make a single, permanent modification to the database; they create a time profile

of conditions that the user wishes to interactively explore. None of the world databases we have

used have any notion of time; the model world is an environment that changes in real time as the

user modifies it, but there is no way to look into the past or branch users out into multiple temporal

spaces, as you may want to do if you are doing comparison studies of different simulation scenarios

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 53

Simulation
Service

Data
Dist.
Layer

Database

Client
Data
Dist.
Layer

Client

Client

Data
Dist.
Layer

Simulation
Service

Data
Dist.
Layer

Database

Client
Data
Dist.
Layer

Client

Client

Data
Dist.
Layer

1 2 3

3

3

1 2,3,4

2,3,4

2,3,4

D
yn

am
ic

 U
pd

at
e

P
er

si
st

en
t U

pd
at

e

Figure 4.4:Dynamic updates vs. persistent updates. Dotted borders represent machine boundaries;
arrows between them require network communication. Dynamic updates are much faster, due to
data sharing and minimal network communications; Persistent updates are easier to closely syn-
chronize, via database locking and transactions, and do not require simulation-specific connections.

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 54

within the same environment. In the case of a virtual time simulation, our data management system

must serve as a temporal database of conditions evolving over many timelines at once, give the

user the ability to control where their visualization is in virtual time, and provide efficient delivery

mechanisms for data that can cull the output in time. The basic world database acts as a repository

for elements that do not change; the simulation network acts as a database and delivery mechanism

for deltas in world conditions over many disparate timelines.

4.3 Communication and Control

Communication and control between database servers, simulators, and visualization clients

all go through a unified communication layer that provides more control over system communica-

tions than the raw socket abstraction does. This section describes those primitives.

4.3.1 Primitive Channels

The lowest level primitive of our communication model is thechannel. This is a 2-way,

buffered, asynchronous mechanism that can operate in either a nonblocking polling or an interrupt-

driven mode. Each channel has one or morebands. Bands can be allocated on the fly by system

components once the channel has been opened to another machine. Each band can be set up as ei-

ther a sequenced, guaranteed communication line (based on Internet Transmission Control Protocol

[TCP] [44]), or as a nonsequenced, nonguaranteed communication line (based on User Datagram

Protocol [UDP] [45]). The former can be used for setup, control, and non-real-time components,

while the latter can be used by real-time components that require the performance of UDP. The

channel is instrumented to track the latency and bandwidth usage of the individual bands, so that

client processes can estimate how much bandwidth is being used by each part of the system. Each

band also has a bandwidth manager object associated with it; the manager may be instructed to limit

the bandwidth available to the band to a given value, and can be instructed to issue a callback at a

specified interval if there is “spare” bandwidth that has not been used in a given time period.

This abstraction has two major advantages. First, it provides a machine-independent inter-

face to write the client processes against; this improves the portability of the system, as the channel

is the only abstraction that needs to be rewritten for a different architecture. Second, the centralized

channel object allows instrumentation and tracking of latency and bandwidth usage as well as the

ability to apportion bandwidth to particular bands from a central location. Since multiple socket

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 55

connections between machines are always multiplexed onto a single physical line anyway, there is

no loss of performance inherent in adding this abstraction layer to the socket connection, and the

additional statistics and control it provides allows us to better balance communication resources

between Citywalk components.

A general-purpose server class is provided that allows the process as a whole to open a

server port on a machine and wait for connections, as well as to provide for services to be provided

on each band. Channels can be opened locally or over a network; the appropriate low-level protocol

is automatically selected by the system when it connects. Our typical server process allocates bands

dedicated to both database service and simulation management services.

4.3.2 The Simulation Manager

The simulation manager is the central management thread that controls the simulation

agents running in a particular process. Each running process in the network has one global instance

of the simulation manager, which runs in its own thread. When a pair of processes are linked

in order to provide for distributed simulations, the simulation managers establish two bands of

communication within the channel connecting the two processes, one data band and one control

band. The control band is used by the managers to execute high-level commands such as launching

instances of simulations, establishing links between clients and running simulations, and describing

which simulations are available and running on which machines in the network. The data band is

where all actual communication between clients and simulators takes place, and is allocated as a

TCP or UDP band depending on simulator type.

Once started, the simulation manager provides an indexing and launching service to any

machines that are connected to the established network of managers. A client on any machine can

request and receive lists of simulators that are available on any other machine in the network, as well

as lists of actual running simulations on those machines. The client can then use that information

to either remotely launch new simulations or to attach to running simulations in the same database

space. Once a client is attached to a simulation, all communication between the client and that

simulation is routed through the manager’s data channel to the target machine.

This centralized architecture provides three important benefits over an architecture that

allows simulators and clients to connect directly to each other. First, it allows monitoring and

control of aggregate bandwidth between machines. Without such a centralized communication

mechanism, there is no way to control or optimize how much data particular client-simulation pairs

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 56

are transmitting between each other; if there are many links in the network, the data may overload

the available hardware link and add arbitrary amounts of latency to each band. Second, it allows for

the elimination of redundancy in framework communication. For example, if a client on machinea

is running three simulationss1 throughs3 on machineb, those three simulations each need to know

the visible and lookahead sets of the client. If the client had established three separate connections,

it would have to communicate these sets three times, using three times the bandwidth. In our

scheme, however, the client transmits the sets only once, and that information is distributed to each

simulation by the manager. This works the other way as well; if two clients on one machine are

accessing the same simulation on another machine, these client visible sets are unionedbeforethey

are transmitted. Thus, any overlap between the two clients’ visible sets results in bandwidth savings

over the channel in both directions; overlapping visible set entries are transmitted only once, and

corresponding data chunks are only transmitted back to the clients’ machine once. The latter savings

can be substantial, particularly in simulations with large data sets; this scheme is much like the one

used in Funkhouser’s RING system [28]. Third, the system can launch and terminate simulations

independently of the establishment of a channel between machines, and can index simulations begun

by other clients on different machines.

The simulation manager itself has a view window that provides the controls for connecting

to other simulation managers on other machines, displaying a catalog of simulations available and

simulations that are running, launching new simulations, and connecting to running simulations. By

entering an IP address and port, a new connection can be established to a server that serves one or

more types of simulation or running simulations. The user is presented with a list of provided and

running simulations and an index of the machines they are available on. From this list the user may

select a simulation and connect to it with a particular type of view. This creates a local instance of a

client and a view that are attached to the Walkthru view window. The view will automatically close

the client connection if the view’s UI window is closed.

4.3.3 Client to Simulator Communication

Control Traffic

Any client can communicate with the service asynchronously by handing command codes,

raw packets, or packable objects to the interface on the client machine. This data is then encoded

and transmitted through the communication subsystem at the first opportunity. These methods are

primarily used for higher-level control of the simulation (for example, applying a user-specified

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 57

force during a physics simulation, or opening or closing a door during a fire simulation) and for the

initial simulation setup phase to transmit case information to the service (for example, sending the

trigger fire location when starting up a fire simulation). The server receives the data annotated with

the ID of the client who sent it.

Client Telemetry

During a simulation run, the client must maintain an up-to-date record of which spacetime

regions are of interest; without this information, the server cannot prioritize transmission of data

to the client, as it cannot determine which chunks are most important. Thus, simulation clients

maintain a data structure that is kept up-to-date on the server by a reversed version of the data

distribution method used for real-time simulators. This is referred to asclient telemetry(Figure

4.5). There are two default telemetry types; the first is used by real-time simulators, and consists

of a currently visible volume set and a potentially visible set (e.g. set of volumes that may become

visible in the near future if the user moves). The second type is actually a subclass of the first type;

it adds a current viewing time and time velocity of interest. This second type is used by virtual

time simulators, as they require knowledge of what the client visualization time is as well as their

visible sets. Though it is straightforward to overload these telemetry classes to provide additional

information, only one of our simulators currently takes advantage of this; that being the multiuser

simulator, which adds the currently selected avatar model ID and the client’s current location and

velocity to the client telemetry object.

When a client changes its telemetry object (e.g. when the visible set changes, or the VCR

control is manipulated), the framework transmits an update to the server. This allows the service to

access a current local image of the telemetry object for each client attached to it.

Telemetry objects can also define a merge function, which allows interest regions to be

combined at internal nodes in the network (Figure 4.6). This increases efficiency by allowing the

service to only process volumes in overlap regions once. Telemetry can also be merged across

different simulators if the telemetry objects are of compatible types; thus, only one set of telemetry

is necessary for a given visualization client, even though more than one simulator may be running

on that client. This further reduces bandwidth usage and increases efficiency at internal network

nodes.

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 58

Simulation
Service

Data
Dist. Layer

Client
Data
Dist.
Layer

1

3

2

4

Location: Vol 1
Time: 0

Sees: 1, 2
Will soon see: 4

Client
Data
Dist.
Layer

1

3

2

4

Location: Vol 4
Time: 0

Sees: 3, 4
Will soon see: 2

2 clients:

Location: Vol 1
Time: 0

Sees: 1, 2
Will soon see: 4

Location: Vol 4
Time: 0

Sees: 3, 4
Will soon see: 2

C
lie

n
t

1:
C

lie
n

t
2:

Figure 4.5:Telemetry objects provide the simulation server with knowledge of what interest regions
the client is exploring.

4.3.4 Simulator to Client Communication

General Communication

There are three mechanisms for the server to transfer information to its clients. The first

two are indirect and are handled automatically by the framework; that is, communication via chang-

ing the database directly (which is propagated to clients via watches), and communication via the

real-time data distribution subsystem (discussed in the remainder of this section). The third type

is direct transmission of packets. The server interface provides functions to transmit data packets

or packable objects to a specific client (by client ID) or broadcast to all current clients. This type

of manual communication is typically used for “one shot” data such as the chat channel for the

multiuser service (which receives lines of text from the clients and rebroadcasts them to everyone

currently in range of the sender).

Real-Time Data: The Simulation Data Set

In order to provide efficient data exchange between simulator and visualizer, we need a

general structure for simulation data that can be easily managed and which is flexible enough to

accommodate any information that a particular simulator may want to convey to the visualizer. This

structure, called thesimulation data set, is designed to hold and index simulation results from one

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 59

Virtual
Simulation

Service

Used Bandwidth:14

Client B
Data
Dist.

Interest:
1,2,4,5

Interest:3,4,5,6

Return:
1,2,4,5

Return:3,4,5,6

Interest:
1-6

Return:
1-6

Data
Dist.

Actual
Simulation

Service

Used Bandwidth:11

Data
Dist.

Client A
Data
Dist.

Data
Dist.

Virtual
Simulation

Service

Used Bandwidth:14

Client D
Data
Dist.

Interest:
6,7,9,10

Interest:8,9,10,11

Return:
6,7,9,10

Return:8,9,10,11

Interest:
6-11

Return:
6-11

Data
Dist.

Client C
Data
Dist.

Data
Dist.

Figure 4.6:Intermediate nodes can merge telemetry nodes to improve bandwidth usage within the
service network.

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 60

run of one simulator.

The data nodes being indexed are the aforementioned “simulation chunks;” they are

variable-size data structures that represent part of the simulation output for a particular volume at a

particular simulation time. The structure of a chunk is user-definable, so it can be easily modified

to accommodate different simulator models. Chunks are subclassed from the database-capable base

class defined in the second-generation Walkthrough database subsystem, and implement the pack-

ing API; thus, they are machine-independent and can be trivially transmitted across the network or

stored in a persistent database by the client. Chunks are indexed by three major values, all three of

which must be defined for each chunk: the volume tag, the subvolume tag, and the time value.

The simulation data set assumes that the world is partitioned into a set of volumes that

are understood by both the visualizer and the simulator. The volumes are assigned integer tags by

the designer. The framework uses these tags to identify data for a particular volume, but makes

no assumptions about the spatial relationship of the tags to each other; that meaning is determined

by the simulator and client. For example, in the case of the fire simulator, the tags are 1 through

n, corresponding to the set ofn rooms in the CFAST input data file. The Walkthru maintains a

mapping from these tags to 3D bounding boxes in the building model’s coordinate system; these

bounding boxes allow mapping from a 3D offset into a CFAST room to a 3D coordinate and cell

pointer in the Walkthru model’s coordinate system. Note that one simulator “room” may map to

more than one Walkthru cell, or vice versa. Another example is the dynamics simulator, which

uses the KD-tree tags as the volume tags. This tag set has the advantage of being “native” to the

walkthrough; each tag corresponds to exactly one visibility cell, and can be found quickly in the KD

tree. The volume tags are used by the framework to identify visible and soon-to-be visible volumes.

During a run of the visualizer, the framework extracts visibility information from the Walkthru’s

culling engine to determine which volume tags represent volumes that are visible in the current

frame, and which represent volumes that may be visible within a certain lookahead time. Because

the system has a known mapping between simulator volume IDs and Walkthru cells, the visualizer

can transmit desired simulation time and cell visibility information to the simulator, allowing the

latter to determine exactly which chunks are needed for rendering both the current frame and near-

future frames. The fact that these tags are opaque to the framework make them useful for many

kinds of simulators rather than being tailored to a specific simulation.

In addition to the volume tag, the designer may also define a subvolume tag. The sub-

volume tag is another opaque, user-defined integer value that is only used by the framework as a

searchable subkey for data indexing. It is not interpreted in any way, so it can be used by the de-

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 61

signer to represent any axis of data they wish. For example, in the CFAST interface, subvolume

tag 0 within a volume is used to store the basic information about the conditions in the volume for

each of the two gas layers; the temperature, the pressure, and so forth. Subvolume tags 1 through

n, wheren is the number of pieces of furniture in the room, describe the burn state of each of these

pieces of furniture. If a piece of furniture is not burning in a volume at a particular time, there

will be no data chunk corresponsing to that{volume, furniture ID} pair at that timestep. For the

multiuser simulator, on the other hand, these subvolume tags correspond to the user IDs of the users

logged into the virtual environment. If a particular user is in a volume, that volume will contain a

chunk tagged with a subvolume ID equal to that user’s ID, which contains information about the

position, velocity, and avatar status of that user (Figure 4.7).

1

3

2

4

Vol:1 Id:192 Time:t1
Position: (x1,y1,z1)

Velocity: (vx1, vy1, vz1)
1

2

3

Vol:1 Id:192 Time:t2
Position: (x2,y2,z2)

Velocity: (vx2, vy2, vz2)

Vol:2 Id:192 Time:t3
Position: (x3,y3,z3)

Velocity: (vx3, vy3, vz3)

Figure 4.7:An example of the set of chunks generated over time in the dynamics simulator. The
chunks generated for a particular object, which can be located in the condition set by the objects’
unique ID in the subvolume field of the chunk, can show changing internal data over time, and
change volume as the object moves between cells.

The three keys (volume, subvolume, and time) are used within the simulation data set to

index the chunks in two ways. The first index uses the keys in the order:volume, time, subvol-

ume. the second index uses the keys in the order:time, volume, subvolume. These two indices are

necessary to support the two types of query that are most often asked of the simulation data set:

1. Given a particular volume at a particular time, produce the set of chunks that correspond to

that volume at that time. This is asked by the visualizer to retrieve the set of chunks that must

be drawn for each visible volume in the current frame.

2. Given a particular time, produce the set of chunks that are defined for a particular set of

volumes within that time. This is asked by the framework to retrieve the set of chunks that

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 62

are most urgently needed for visualization, given the current visible and lookahead sets and

the current simulation time being requested by the client.

As an example, consider simulation chunks from the fire simulator, which come in two

types. The first type contains temperature, energy output, location, and fuel conversion rate of

one particular fire; there can be many of these in one spacetime volume, corresponding to active

fires from individual fuel sources such as pieces of furniture. The second type, of which there is

only one per spacetime volume, contains the chemical concentrations of nine different gases, fuel

concentration, atmospheric pressure, toxicity level, and smoke interface height for the volume as a

whole.

Note that parallelizeable simulations would work very well within this data model, since

the sets of data chunks generated by the separate simulator threads are easily recombined via simple

unions of their simulation data sets. Furthermore, since the thread that is controlling the simulation

knows how the problem is distributed, it should also be able to appropriately distribute the visibility

lookahead data provided by the simulation manager.

4.4 Real-Time Data Management

4.4.1 “Just-In-Time” Simulation Data Management

In order for the visualization manager to ensure that the appropriate simulation chunks

are either already present or en route from the simulation machine, it has to provide the remote

simulation manager with enough information to determine which chunks are most critically needed.

To do this, we define an “importance function” over spacetime, in which the chunks associated

with spacetime cells of higher importance will be transmitted to the visualizer earlier. Clearly, the

spacetime cells that are visible to the user at the current visualization time are the most important

ones, and are needed immediately by the visualizer. Given the user’s location, maximum velocities

in space and time, the current visualization time, the current visualization time velocity, and the

preprocessed volume visibility information from the viewer’s cull process, we can compute for each

spacetime cell the earliest real time in the future in which the user might be able to see that cell.

This defines the desired function; smaller “earliest-possible-time-to-visibility” values correspond to

higher importance. The information needed to compute this function is available to the visualization

manager, which is directly linked to the visualizer; one of the visualization manager’s tasks is to

transmit this information to the simulation manager, which evaluates the importance function over

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 63

the set of chunks generated by the simulator, and thereby determines which unsent chunks are most

important at any given time.

Our current system does not support the full computation of this function. We implement

a heuristic approximation by maintaining avisibility setand an up-to-date visualization time at the

simulation manager. The visibility set contains the set of Walkthru cells that are either currently

visible to the observer, or may become visible in the next several frames. This information is nor-

mally computed as part of a Walkthru frame. The visualization manager monitors the visibility set

and transmits an update to the simulation manager when the set changes between frames. Similarly,

the visualization time and time velocity are updated when the user alters the time velocity or moves

the time slider. Note that, though the visualization time changes as real time passes, the simulation

manager can keep accurate track of the current visualization time without continuous updates from

the visualization manager; updates are only necessary if the user manipulates a control setting.

The simulation manager then assigns highest importance to the transmission of chunks

that are in the visible set and whose time is closest to the current visualization time in the direction of

the current time velocity. The next highest importance is assigned to chunks in the visibility set in the

oppositedirection of the current time velocity, since the user often wants to review preceding time

slices in the current location to find out how the situation has evolved. All other chunks are of tertiary

importance. This corresponds to an approximation of the “ideal” importance function discussed

above for very high values of time velocity; it can be computed quickly and does not require the

full visibility information of the Walkthru’s visibility processing. The simulation manager uses the

communications channel to transmit those chunks that have not already been sent and are of highest

importance as denoted by the heuristic function (Figure 4.8).

A sudden change in the time, time velocity, or visibility set can result in a need to get a

new set of chunks to the visualizer as quickly as possible. If the user has been visualizing simulation

time ts = 10, for example, and the time slider is moved tots = 200, the simulation manager may

have this data, but it is unlikely that the data has been transmitted already. In this case, the simulation

managerimmediatelyevaluates the most critical chunks to be sent to the visualizer, and transmits

those chunks as soon as possible.

It is interesting to note that limiting the user’s maximum “time acceleration” (i.e. disal-

lowing direct manipulation of the time slider, allowing the user to move in time only with the VCR

buttons) has the effect of allowing us to compute a “time lookahead” to go along with the visibility

lookahead. This means that we can establish a tight superset of the number of spacetime chunks

that might be visible in the next few seconds of real time. Without such a bound, the potentially

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 64

1

3

2

4

1

2

3

4

Time: 0 1 2 3 4

V
o

lu
m

e:

T=3

T=1

T=2

T=4

T=0

Chunk Importance as a function of Time and Volume

H
V
HM

L

H

H H

H

HH

V
HM

V
HM

V
HM

L

L L

LH

V
HM

H H

Figure 4.8:Chunk importance is based on proximity to the user’s immediate interest and near-future
lookahead interest sets.

visible set from one frame to the next includes the set of potentially visible cells forall timeslices

of simulation data available, because the user can drag the time slider from any point to any point

within one frame time. With such a bound, and a bound on the number of chunks that will be sub-

mitted per spacetime volume (which is easy to derive for most simulators, including CFAST), we

can compute a minimum required bandwidth so that we canguaranteethat all of the needed chunks

will be available if there has been at least enough time since the chunk’s submission to overcome

the latency of the communication channel.

If memory is limited on the visualization machine, it is possible for our system to run the

visualization manager as acache, rather than as anaccumulatorof the entire simulation data set. In

this case, the visualization manager is allowed to “throw out” old or not recently used chunks. The

visualization manager reports to the simulation manager which chunks have been discarded, so that

they may be retransmitted if they need to be viewed again,. In the case of very large precomputed

data sets, the simulation manager can also be run on a local machine, managing access to a huge disk

file instead of an active simulation, while the visualization manager manages the set of simulation

data being cached in memory.

4.4.2 Bandwidth Management

Given only the importance function on the set of simulation chunks that have been sub-

mitted, there is no indication ofhow muchdata should be sent by the simulation manager per unit

time. Because the channel is buffered, if no bandwidth usage constraint is enforced, then every time

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 65

some conditions are submitted by the simulator, all of that data could be queued for transmission

through a channel that will not be able to actually finish transmitting that data for quite some time.

In a priority situation, when the importance function has changed due to user input, and a different

set of chunks are neededimmediately, queued “old” chunks would delay the transmission of urgent

data until those older chunks had drained through the pipe. This “clogging” reduces or eliminates

the system’s ability to respond to sudden changes in visibility or time. Unfortunately, with most

physical simulators, this situation would occur fairly often; physical simulators, including CFAST,

tend to exhibit “bursty” output, corresponding to sets of solutions for conditions across a slice of

time for the entire model. If we use our importance function to determine which chunks are to be

sent, the situation becomes even worse; sudden changes of the user’s time or position generate even

larger spikes, as new, potentially huge sets of chunks become highly important when the user walks

into a new region of the database.

An early solution we tried for this problem is to include a priority bypass that provides the

ability to interrupt the channel’s normal input queue with a second queue of chunks that are to be

transmitted first. In an interactive system, this priority bypass often proves ineffective, due to the fact

that two of the aforementioned sudden changes in the importance function could cause the system

to send priority data down an already busy priority channel, and the more recent priority packets,

which are now more critical, are delayed in the same fashion that the one-channel strategy delays

the first set of priority packets. The situation is made worse in larger databases; in the unmanaged

condition the size of these spikes grows with the size of the database. Adding bypasses on top

of bypasses quickly becomes unwieldy and inefficient; once all of the data is sitting in multiply-

bypassed queues, control of transmission order becomes impossible, the amount of storage needed

for redundant queues quickly becomes prohibitive, and the work needed to override a chunk that

has been regenerated by the simulator grows without bound.

The core of the problem is the inherent buffering of data in the communication channel.

This buffering is unavoidable due to its ubiquity in the low-level communication structures provided

by the operating system and the network itself, which use buffering to optimize throughput. Unfor-

tunately, the more buffering there is in the channel, the larger the potential latency for a high-priority

packet to be transmitted through the channel; since guaranteed-receipt network protocols guarantee

arrival in order of transmission, every bit of buffered data in the channel must clear the channel

before our high-priority packet can get through. Thus, we would like to operate the channel in a

near-starvation mode, which simultaneously minimizes buffering while using all or nearly all of the

bandwidth to transmit useful chunks as quickly as possible. This job is handled by ourbandwidth

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 66

manager, which closely controls the speed at which the simulation manager is allowed to transmit

chunks to the visualization manager. Available bandwidth is currently specified to the bandwidth

manager in total kilobytes per second (kB/s). The bandwidth number should be selected to closely

approximate real bandwidth (i.e. on two machines on an Ethernet, bandwidth might be on the order

of 1 MB/s, whereas two machines connected by 28.8 kb/s modem would only be able to manage

about 3 kB/s). Several times a second, the bandwidth manager “wakes up” and gives the simulation

manager permission to transmit anotherx kB worth of simulation chunks on the data stream, where

x is the given bandwidth divided by the manager’s wakeup frequency (typically 5 to 10 Hz). When

this happens, the simulation manager selectsx kB worth of chunks from the unsent chunk pool in

order of importance, and gives those chunks to the channel for immediate transmission. By the time

the manager wakes up again, all of the submitted chunks should have cleared or nearly cleared the

channel; thus, if an emergency situation happens while the manager is asleep, when the manager

next wakes up, the most important chunks will be transmitted on a nearly empty channel, which

minimizes the transmission latency for those chunks. At the same time, if no emergency occurs,

the channel is still being utilized at nearly its maximum capacity, with the next most important

set of chunks being sent “just-in-time” for the channel to have completed transmitting the last set;

clogging cannot occur if the bandwidth estimate is accurate or conservative.

In our current system, the bandwidth manager’s settings are provided by the user. This

is generally effective since the user knows how “wide” their connection to the server is (modem,

LAN, etc., and the speed in MB/s). Multimedia video on demand systems faced with a similar

problem have shown that the system can determine the speed of the connection in real time, and

scale the system’s notion of available bandwidth appropriately [46]. This approach is also applicable

in our framework, and should respond even better to changes in network conditions; we have not

implemented this approach, since we have been satisfied with the performance of a fixed allowance.

4.4.3 Performance Analysis

We make the following assumptions:

There is a simulator generatingb bytes per spacetime chunk overs spaces at a rate ofn

times real time (i.e.n seconds of data are generated across all volumes per second of real time). The

visible plus lookahead set is of sizesv, sv << s. The channel bandwidth isB bytes per second.

Given thatB < snb, in the naive first-in-first-out case, data will accumulate behind the

buffer at a rate ofsnb− B per second. Since this method is unresponsive to user input, the viewer

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 67

will progressively lag further and further behind the current state of the simulation. Ironically this

may not be apparent to the user unless the system is designed to display the difference between

the time that the simulator is “currently” working on versus the largest simulation time in the local

cache.

In the case where we transmit the data based on visibility, but still do not account for

channel bandwidth, the accumulation rate of data in the queue isB − svnb, which may be zero

if the visible set is small enough. However, the moment that the viewer moves such thatsv is

changed tos1
v, the system must begin transmitting the data for the missing volumes. If that data

is again transmitted in a first-simulated-first-transmitted sense, we see an immediate insertion of

(|s1
v − sv|nb)ts bytes into the channel, wherets is the current simulation time. This data must

be removed from the queue before further changes insv can be processed. Furthermore, the data

needed for viewing is not immediately present in the pipeline; it must wait for (1) the remainder of

the data for the unused portion ofsv, (svnb)(ts − tv), plus (2) the information fromt = 0 to t = tv

for the newly visible regions,(|s1
v − sv|nb)tv, to clear the channel before the needed data is present

for the current frame. Additional changes insv during the transmission of this block of data will

be further delayed by the remainder of this block that is left in the channel when the change ins

occurs.

Finally, consider a case where we partition available bandwidth into small, fixed size

timeslices. Within each timeslicetts, we haveBtts bytes of bandwidth available. At the beginning

of each timeslice, we determine what will be most important to transmit to the client over the next

tts seconds, and queue that information for transmission. Thus, assuming that we have up-to-date

information about the client’s most critically needed information, and assuming that we have enough

bandwidth to transmit that information, we can guarantee that the client always has the needed data

regardless of viewer motion over time. In the case that the client’s needs change suddenly, and

assuming it takestcn time for the client to notify the server of the changed conditions, we have a

worst-case maximum latency oftcn + tts + 2l + svnb, wherel is the latency inherent in the socket,

between the establishment of a completely new visible set and the completion of transmission of the

data necessary to support that new set. Note that, because of the just-in-time nature of the algorithm,

there is never any unneeded backup in the socket past that of the last timeslice, orBtts bytes. Thus,

this maximum latency holds regardless of how quickly the viewer’s position and visible set changes,

and the socket is guaranteed to be transmitting useful data withintcn + l + tts of any change in the

interest set.

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 68

4.4.4 Results

Figures 4.9 through 4.11 show a typical example and comparison of the performance of

three strategies for data management. The most basic is the naive,oldest-data-firststrategy (figure

4.9A) which simply queues timeslice data into the communication channel as it becomes available.

The second is thevisibility-guidedstrategy (figure 4.9B), in which simulation data is transmitted

only for visible or almost-visible volumes (i.e. in order of the basic heuristic importance function),

but with no bandwidth management, so that it queuesall unsent available data for the visible volume

set after a change in visualization time or the visible set. The third strategy is our fullbandwidth-

managed-importancestrategy (figure 4.9C), which incorporates all of the subsystems mentioned in

this paper. The data was gathered from our instrumented RTC package during identical prerecorded

runs of both the visualizer and simulator, in which all simulation data generation, user motion, and

manipulation of the time slider and VCR controls were recorded and reproduced in exactly the

same way for each run. The communication bandwidth was artificially reduced to 3 kB/s for these

runs in order to demonstrate the difference between the strategies; at present, our largest test case

is insufficient to stress the switched Ethernet in our office. The reader may wish to note that this

bandwidth was selected to correspond to that available from a 28.8 kb/s modem link.

The three graphs in figure 4.9 compare three functions of real time for each strategy:

how far the simulator has progressed through the simulation, labeledSimulated Up To; the latest

simulation time for which simulation data has actually been sent to the visualizer (i.e. the maximum

possible viewable simulation time at the visualizer), labeledMax. Simulation Time Transmitted, and

the simulation time currently being requested by the user within the Walkthru, labeledRequested

Visualization Time. If bandwidth were infinite, the user should be able to “see” simulation results

whenever the requested visualization time is less than the simulated-up-to time, and the maximum

simulation time transmitted would be identical to the simulated-up-to time (which is the most recent

simulation time available from the simulator). Under bandwidth limitations, however, it may be that

the requested visualization time is less than the simulated-up-to time, but the data is not yet available

(i.e. the maximum simulation time transmitted islessthan the requested visualization time) due to

failure of the communication channel to transport the needed data. The most visible evidence of this

in the graphs is where the requested visualization time becomes a horizontal line, indicating that the

autopause mechanism has engaged due to the visualizer not having the needed data (resulting in

a zero time velocity and unchanging visualization time). Many such flats are seen in the case of

the oldest-data-firststrategy; the channel is far too narrow at 3 kB/s to transmit the data in time.

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 69

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

S
im

ul
at

io
n

T
im

e
(s

)

A. Trace Data: Oldest-Data-First Strategy

Requested Visualization Time
Simulated Up To

Max. Simulation Time Transmitted

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

S
im

ul
at

io
n

T
im

e
(s

)

B. Trace Data: Visibility-Guided Strategy

Requested Visualization Time
Simulated Up To

Max. Simulation Time Transmitted

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

S
im

ul
at

io
n

T
im

e
(s

)

Real Time from Simulation Launch (s)

C. Trace Data: Bandwidth-Managed-Importance Strategy

Requested Visualization Time
Simulated Up To

Max. Simulation Time Transmitted

Figure 4.9:Trace data of simulator-visualizer data transfer for three strategies: the oldest-data-
first strategy (top), the visibility-guided strategy (middle), and the bandwidth-managed-importance
strategy (bottom). The horizontal axis is real time; the vertical axis is simulation (i.e. virtual) time.
Three functions are plotted for each strategy: the amount of simulation time completed by the sim-
ulator, the viewer’s current visualization time, and the timestamp of the latest chunk that has been
transmitted from simulator to visualizer. Note the vertical lines in the requested visualization time,
which denote user-created time discontinuities, and the horizontal lines in the requested visualiza-
tion time, which show regimes for which data is available from the simulator, but for which that data
had not been transmitted in time to be viewed. The “maximum simulation time transmitted” curves
give an indication of how responsive each strategy is to user movement in space and time.

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 70

0

100000

200000

300000

400000

500000

600000

0 50 100 150 200 250 300

C
ha

nn
el

 B
ac

ku
p

in
 B

yt
es

Real Time from Simulation Launch (s)

Channel Backup During Visualization

Oldest-Data-First Strategy
Visibility-Guided Strategy

Figure 4.10:Trace data of communication pipe backup (i.e. clogging) for the oldest-data-first and
visibility-guided strategies. The former is much worse than the latter, although it is in the latter
that it actually makes a difference. Pipe blockage in the bandwidth-managed-importance case is
negligible (less than 1.5 kB/s on this graph, where the others peak at about 550 kB/s and 250 kB/s
respectively), and can in fact be reduced to an arbitrarily small amount on a fast computer by
increasing the manager’s callback frequency.

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 71

0

100

0

100

0

100

0 50 100 150 200 250 300 350

%
 o

f V
is

ib
le

 b
ut

 U
nt

ra
ns

m
itt

ed
 D

at
a

Real Time from Simulation Launch (s)

Percentage of Untransmitted Data for Visible Volumes (by Strategy)

Oldest-Data-First

Visibility-Guided

Bandwidth-Managed-Imp.

Figure 4.11:Trace data of the percentage of spacetime volumes visible to the user that have sim-
ulation data available, but for which that data has not yet been transmitted to the visualizer. The
oldest-data-first strategy exhibits massive gaps in viewable data; the visibility-guided strategy fares
better, but there is still a 40-second period where the user should be seeing smoke and flame, but
instead sees nothing. The bandwidth-managed-importance case shows only brief 1- to 2-second
gaps at time discontinuities (i.e. where the user unpredictably drags the time slider far into the
untransmitted data).

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 72

Thevisibility-guidedstrategy does better toward the beginning of the run, where the fact that few

volumes are visible allows it to get more timesteps to the visualizer, since those steps contain fewer

volumes. However, when the user walks out into the hallway at time 70, the new set of visible

volumes results in a deluge of newly important data being queued into the channel. When the user

proceeds to move the time slider at time 83, the channel is clogged with the (as yet unsent, but

already obsolete) “priority” data from the hallway transition, and the system is unable to respond,

resulting in a period of no data being visible. A graph of the communication channel blockage per

unit real time (figure 4.10) shows that a large “clog” occurs at time 70 in the visibility guided case;

this clog is what prevents the adaptation to the time discontinuity at time 83. Theoldest-data-first

strategy shows much more extensive clogging. Ironically, since the naive strategy has no ability to

adapt to changing conditions anyway, the clogging is somewhat moot.

In the bandwidth-managed-importancecase, the system adds the data to the pipeline a

little at a time, never adding enough to clog it for more than a fraction of a second; when the user

enters the hallway, the system immediately switches to transmitting the needed data for the hallway,

and when the time slider is moved, a similar switch is performed that sends the data for the new

time. Since the pipe is never clogged, the needed data can be transmitted quickly in subsequent

emergency situations.

Figure 4.11 shows the crucial data of concern; that is, the percentage of volumes per unit

real time that are visible to the user and for which simulation data has been generated, but for which

that simulation data has not been transmitted yet. The top curve shows that theoldest-data-first

strategy spends almost half of the simulation run in this state; the viewer is looking at blank volumes

when they should be seeing smoke. The center curve shows that thevisibility-guidedstrategy does

well until the second discontinuity att = 83, at which point it breaks down as well; however, it

recovers just aftert = 100, whereas theoldest-data-firststrategy doesn’t recover for another 20

seconds. Finally, thebandwidth-managed-importancestrategy is shown at the bottom. The spikes

are 1 to 2 seconds long, and are only present at gross visualization time discontinuities (compare the

locations with the vertical jumps in visualization time in figure 4.9). This corresponds closely with

the minimum response latency for an emergency; it takes about 1 second just to transmit the data

for a timestep at 3 kb/s, and the bandwidth manager makes new bandwidth available once every

0.5 seconds in our system, so the total response latency in our test case has a lower bound of 1

second, and an expected time of 1.25 seconds if the channel had absolutely no latency (which is the

ideal case). Thus, our bandwidth manager approaches ideal performance under these conditions.

If we bound the user’s time velocity, we can further reduce the frequency of these spikes; with a

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 73

bandwidth of about 30 kb/s, we could eliminate them entirely for any user manipulation of the VCR

controls (i.e. any time velocity under 10 virtual seconds per real second). This claim cannot be

made for the other two strategies.

4.4.5 Conclusions and Observations

The purpose of this data management method is to provide data in a timely fashion to a

networked client, assuming the network connection is too slow to simply send all of the simulation

results to the client as they are generated. We have demonstrated a technique and ability to achieve

this goal. Of course, it is reasonable to ask if this is even a consideration given that most desktop

workstations are currently wired into networks that can provide up to one gigabit of local bandwidth.

Simulations that can run in real time will probably not be able to generate a gigabit of data, thus

they will not be able to saturate the network even if they naively transfer all simulation results to the

client as they are generated. So why are we worried about conserving bandwidth between simulator

and client?

Even a gigabit network might be saturated in two cases that are interesting to potential

users. First, there may be multiple clients viewing the results of one particular simulation. With a

naive strategy, providing the data ton clients requiresn times the bandwidth. Ten users have already

reduced the available maximum bandwidth by a factor of ten. Second, simulations are not the only

target environment for this project. We also wish to be able to transport sensor data associated with

rooms to a central location. Modern “smart building” programs are placing more and more different

environmental sensors throughout the building. These sensor networks are used to regulate building

systems such as the HVAC system, the elevators, and public lighting systems in order to provide

more efficient use of the building. In emergency situations, these sensor networks also afford the

ability to gather situational information for response crews. The quantity of data being generated in

real-time for a high-rise building may be very large depending on what types of sensor are installed.

Thus, the amount of information being generated may be quite large, even for a hardwired local

network. We also need to account for the fact that any one particular client is not the only user

of that network; they are sharing the bandwidth with other users, who may be consuming large

amounts of it at any given time. Furthermore, we would like to be able to combine many different

simulations to enhance our environment. With more than one simulator active at once, plus the

remote access to the environmental database itself, the bandwidth is divided again that many ways.

The next consideration is the cases where we may not have a fast network. Even though

CHAPTER 4. SIMULATION DATA MANAGEMENT AND CONTROL 74

local networks are fast, wide area access over the Internet may not be. It is common to be unable to

even saturate a one megabit link to a nonlocal site on the Internet (i.e. a site outside of the building).

One of our goals is to integrate databases and simulation systems at disparate sites; thus, these WAN

limitations may be telling.

There has been some effort in the emergency response community aimed at getting sit-

uational information to crew chiefs as early as possible; this would mean giving them information

not only at the fire house, but en route to the site, since in an emergency they could not afford to

spend any time sitting at a terminal before they get onto the transport to the site. The most appar-

ent technology for this is radio or cellular modem technology such as the Ricochet network, which

already covers many major metropolitan areas. This makes it ideal for these applications, since its

coverage is large enough to practically assume its availability for response crews in large cities, and

its commercial availability means that costs are relatively low. These networks operate an order of

magnitude slower than wired networks; Ricochet offers 128 kb/s transfer rate, or 13 kB/s, which is

considerably slower than many simulations and sensor networks generate output data for a building.

This makes bandwidth an important consideration for such applications.

Finally, cost considerations come into play. Both embedded building systems and equip-

ment for first response and fire research personnel are typically subject to strong financial constraints

which may prevent them from having the types of gigabit network that computer scientists are ac-

customed to having access to. It is not unreasonable to assume that the “common” technology for

these personnel is a generation behind the state of the art (e.g. they are still using 28.8 kb/s or 56

kb/s modem links); thus, a practical system designed for immediate use may have to assume a fast

modem rather than a broadband network connection. In these cases, 3 or 4 kB/s is a fair estimate of

available bandwidth.

It is also reasonable to assume that the inevitable growth in these transfer rates (as tech-

nology improves over time) will probably be accompanied by a corresponding growth in the power

and scope of the simulations available to be run in real time, and thus the size of the output data

we need to transfer to the client. This implies that the problem will likely be an issue for future

applications as well.

75

Chapter 5

Simulator Integration

We have applied our simulation framework to integrate several physical simulators and

interactive agents into the second generation walkthrough platform. All but one of these simulations

were authored outside of the Berkeley Walkthru group; the most advanced of them, the CFAST

fire simulator, has been under continuous development for the last few decades. In this chapter,

we discuss each of the agents, how they were integrated into the framework, and the results and

experiences of the integration processes.

In addition, we have developed two new programs, one for radiosity based lighting and

the other for imposter generation, which have been given the same abstract interfaces of the other

simulation agents; those will be described in more detail.

In this chapter, we will look at integrating a simulator into the framework from a user’s

perspective and describe the process for the simulators that we have integrated over the course of

the project.

5.1 Integration API

5.1.1 Framework Modules

Our integration framework is extremely modular; there are many modules and structures

that can be overloaded by the programmer if the default behavior is unsatisfactory, but for most

simulators, only two major pieces of code need to be written; the simulation service itself (e.g.

the simulator “glue” class that translates commands and data between the simulator itself and the

framework) and the simulator’s user interface plugin for the Citywalk visualizer (which adds com-

CHAPTER 5. SIMULATOR INTEGRATION 76

mands to the UI that allow the simulation to be controlled, and render the simulation data to the GL

pipeline on each frame) (see Figure 5.1).

Visualizer (Walkthr u)

Visualization
Manager

Simulator
Manager

Real−Time Channel

Simulator
(CFAST)

Bandwidth
Manager

UNIX
Sockets

Chunks

AvailableBandwidth

Commands,
ScenarioData

High−Importance
Chunks

Render
Process

Visibility
Culling

User
Interface

Visible
Chunks

Chunks

Visibility Sets
& Vis. Time

Visible
Volumes

Vis.Time
Control

CFAST Front End

Interaction
ScenarioData

Chunk
Drawing

Commands
ScenarioData

Visibility Sets
Vis. Time

BandwidthInformation

Visibility Sets
Vis. Time

Figure 5.1:A diagram of how the system components connect simulator to visualizer. Components
in bold outline are created by the user; components in dotted outline are provided by the integration
framework.

5.1.2 Choosing an Interface

Simulation agents have available to them a connection to the database to retrieve informa-

tion about the current user environment, as well as access to each client’s visible set and potentially

visible set. They generate information over time that can be either propagated persistently to the

database (“persistent updates”), or environmental data which is stored in dynamic run-time struc-

tures and propagated to the clients on demand, based on the clients’ areas of interest in space-time

(“dynamic updates” [1]).

The client’s area of interest consists of three elements: a visible set of cells, a potentially

visible set (defined by the set of cells the user could possibly reach in a given time span), and a

current time of interest, defined by a VCR-style time controller that the user can access for each

CHAPTER 5. SIMULATOR INTEGRATION 77

agent they are attached to as a client. Persistent database changes, such as radiosity computations,

are propagated directly to the database in the same way that any other editing process would modify

the database. However, the type of access that the agent has to the clients’ areas of interest allows

the agent to focus its efforts on particular regions of the database that the user is observing or editing

in real time. For example, the radiosity agent can perform gathers preferentially on the visible set of

cells, reducing the amount of time between agent startup and the time that the user sees reasonable

results in the room in which she is standing.

In the case of dynamic updates, the agent updates a localcondition setof data chunks,

sorted by database cell and time stamp; each chunk describes the physical conditions generated by

the simulator for the cell at the given time. This condition set may be asynchronously added to as

the agent computes more and more results. A separate process in the database manager propagates

this dynamic data to the client based on a prioritization of the data and the bandwidth limitations

imposed by the communication substrate. Each cycle, the manager fills the available bandwidth

with the most important (i.e. the “closest” in space-time to the viewer’s area of interest) portion

of the condition set and transmits that to each client. Each client maintains a local mirror of the

condition set, which is gradually copied over from the server process to the client process, from

the most interesting data down to the least interesting based on the interest set. If the agent stops

generating data for a period of time, eventually the client’s mirror will completely synchronize with

the agent’s local set. At any time, though, the agent can update regions of its condition set, at which

point the propagation process will restart and run until they are again synchronized. The local copy

of the condition set is used by the client to update displays and renderings of the simulation data in

real time.

Dynamic updates are normally used by agents whose information content is time-critical

in the real world, such as the multiuser service, or agents whose data sets explicitly include time as

a fourth dimension. For example, both the physics simulator and the fire simulator primarily use

dynamic updates, because they both generate space-time data; in the former case, object paths over

time, and in the latter case, environmental conditions over time. The dynamic update method offers

the additional advantage of being able to provide different “branches” of space-time to networked

clients; i.e. the user could run two fire simulators on the same area of the database under different

suppositions, and view both side-by-side in 2 different viewers (or even overlaid in the same viewer)

to perform case studies or comparative analysis. An agent may mix dynamic and persistent updates;

it is not limited to one or the other. For example, the physics simulator operates primarily dynam-

ically, allowing the user to run time forward and backward and view the time profiles of objects;

CHAPTER 5. SIMULATOR INTEGRATION 78

but the user can at any time instruct the agent to propagate the “current” simulation state to the

persistent model, causing a real, permanent change in object positions.

Note that, regardless of whether the agent chooses the persistent or dynamic update meth-

ods, it is unaware of the location of the client processes (i.e. whether they are on the local machine

or on a remote machine). Thus, the agents and clients may be distributed dynamically in any way

that the walkthrough framework or the user chooses with the goal to yield an appropriate workload

partition.

Note also that simulation agents can themselves set watches on constellations in the en-

vironment. Because the agents have access to the database, these watches can be used to trigger

updates in either persistent or dynamic data that are propagated appropriately. For example, several

radiosity renderers could be assigned to different rooms. Each would watch the elements in nearby

rooms looking for changes. If a chair is altered (moved by an editing process, or has its lighting

changed by a radiosity process), the agent can identify that change via the watch and perform local

updates by loading the changed objects, changing other objects, and committing those changes. In

turn, this may cause additional agents to “wake up” via their watches, which then may make fur-

ther modifications of their own. Alternatively, moving a chair with an editing process might notify

a simulator that is simulating a fire on that chair. This may cause the simulation to dynamically

compute the consequences of the chair’s new position with respect to the flame spread. Any change

in the database can cause a cascade of updates, all executing asynchronously on separate machines,

to yield an appropriately updated database and dynamic world model. One example of this is the

interaction between the radiosity agent and the tapestry generation agent (see figure 5.11 in section

5.6.5).

5.1.3 Simulator Component

The simulator component is typically comprised of three parts: The framework simulator

component library, which is provided to the user by the Walkthru framework; the simulator code it-

self, which is presumed to come from an external source; and the glue code to link these components

together, which must be written by the user.

The glue code is implemented by subclassing an object from the base classRtLocalSim-

ulationService. This base class includes virtual functions for:

1. Receiving direct communications from a particular client, in the form of a binary block,

packable object, or an integer command message;

CHAPTER 5. SIMULATOR INTEGRATION 79

2. Sending direct communications to a particular client or broadcast to all clients, again either

as a binary block, packable object, or command message;

3. Running a simulation.

4. Clients attaching or detaching from the running simulation.

5. The manager receiving client state information from a client. This state information is acces-

sible via separate function calls that take the identity of a client and return that client’s latest

visible set and lookahead set.

The subclassed element is compiled together with the framework library, the server libary,

and the simulation code. This produces an executable that, when run, becomes a network server that

serves the simulation. Alternatively, the same element plus the simulation code can be compiled in

with the visualization client; this gives a simulator that can be run “locally” on the visualization

client, with no changes in code.

During a typical run, the simulation agent progresses through three states. Simulation

instances are created in asetupstate. In this state, the initiating client uses the API functions

to provide the simulator with enough information to begin the simulation. When the simulator has

enough data, it places itself into therun state. In this state, it composes sets of chunks as it computes

them and submits them to the simulation manager as results for the simulation. A simulation enters

theidle state when it has computed the results of the initiating event to closure, either to a new static

world state, or to an “end time” specified in the simulation setup. If world conditions are changed

by the client, the simulator may return to the run state from the idle state until the consequences of

the change have been computed, at which point it reenters the idle state. If a simulation agent ever

has no clients attached, the simulation manager will halt its thread and deallocate it, regardless of

its current state.

The thread in which the simulation agent’s main function executes allows the simulator

to generate simulation data as rapidly as possible without worrying about how that data is being

transmitted to the visualizer. Once the main function is engaged, the simulator simply generates

data, and “submits” the data (in the form of sets of spacetime chunks) to the simulation manager.

Typically, the simulator produces chunks in batches that correspond to a slice across the volume

set at a given simulation time; however, submissions may be made for any timeslice or volume ID,

including space/time IDs that have been submitted previously. If a simulation chunk is submitted

for the same time, volume ID, and subvolume ID as a previously submitted chunk, it supersedes

CHAPTER 5. SIMULATOR INTEGRATION 80

the older chunk. In this way, a simulator may modify any subportion of the previously generated

data that is incorrect or that was generated as a quick approximation to be improved later. This will

generally happen when the user makes a change in the environment at a particular simulation time,

rendering many or all of the chunks after that time invalid. The simulator can also “retract” chunks,

in which case the chunk is marked “dirty/remove” and will be removed from the client data sets as

necessary.

During the run, the simulator may receive messages from the client that may change how

the simulation plays out, including retroactive changes. For example, the client might request that

a door be closed at simulation timet, even though the simulator has already simulated well past

time t. In this case, the simulator must recompute values starting att and retract or replace chunks

indexed from timet forward.

If the simulator has the necessary capabilities, it may request the current set of visible

volumes and the current visualization time from the simulation manager, and selectively generate

or improve the corresponding simulation data to ensure that the visualization can proceed without

pausing. We believe that this will be an important feature of future simulators that intend to provide

visualization data in real-time while operating on very large databases.

5.1.4 Generic Interface Components

There are two additional classes that can be subclassed to provide the front-end capabil-

ities required for a simulation. These classes are thesimulation clientclass (RtLocalSimulation-

Client) and thesimulation viewclass (RtSimulationView).

The simulation client base class performs all of the framework data management func-

tions that are necessary on the client side. The user may subclass the client, if they need to do

specialized setup operations on the client side for the simulator (i.e. to transmit case information

to the simulation during the setup state), if they need to receive communications from the server,

or if they wish to provide convenience functions for composing different types of messages for the

server. These functions are handled by overloading thesetupor message receiptvirtual functions

defined in the client base class. The client also provides functions for specifying and changing a

“current” client visible set and lookahead set of volume tags.

The simulation view is subclassed to provide a user interface to a running simulation. If

desired, the system provides a standardized simulation controller automatically within the simula-

tion view window which controls the simulation time being rendered in the visualizer. This control

CHAPTER 5. SIMULATOR INTEGRATION 81

consists of a panel with simulator connection status, a time slider bar that shows the time range of

the currently running simulation, and a set of VCR-style controls (play, reverse play, fast forward,

reverse, and pause) that allows the user to control the rate at which time passes (Figure 5.2). The

slider bar may be directly manipulated to change the current viewing time to any desired value;

the VCR controls alter the “time velocity” of the user in simulation time, in units of seconds of

simulation per second of real-time (Play is velocity 1, Fast Forward and Rewind are 10 and -10,

respectively, Pause is velocity 0, etc.). The portion of the slider corresponding to data that has been

computed by the running simulation is colored green; the portion corresponding to the as yet un-

simulated timespan is colored red. This provides immediate feedback to the user about how far the

simulation has progressed. The slider is prevented from entering the red region. The user can add

additional displays or controls to the view that interact with the simulation client (which can be a

generic client if the extent of the interaction is to send generic messages to the simulation). Multiple

types of view may be defined for a given type of simulation.

Figure 5.2:VCR controls that control the flow of “virtual” time.

5.1.5 Walkthru Interface Components

If the framework is being used within the Walkthru, the user will generally also wish to

overload a Walkthrumodulethat provides a menu control to identify and launch connections to

simulators, retrieve the associated clients, and apply desired views to those clients. The framework

does not depend on the walkthru, however; this step is unnecessary if the visualization is standalone.

The template module provided with the framework can generally be used with only a few changed

lines if the additional state needed by the simulation (i.e. the state not represented explicitly in the

CHAPTER 5. SIMULATOR INTEGRATION 82

virtual environment) is small.

We also provide a special simulation view subclass (RtWalkthruSimulationView) which

provides automatic propagation of the visible set from the current frame being rendered to the

attached simulation client, so the user need not worry about computing that set. Thus, when using

this special base class, the selection of which volumes are being visualized is determined simply by

“walking” to the appropriate area.

The Walkthru view base class also includes a tool intended to mitigate the inherent “bursti-

ness” of most simulations, including CFAST. This tool, called theautopausemechanism, will auto-

matically “pause” the visualization time in two situations. At the beginning of the simulation run,

autopause engages to allow the simulator to get a certain distance ahead of the current visualization

time. This provides a buffer of data that allows the visualization to proceed smoothly if the simula-

tion output becomes bursty. Furthermore, at any point where the visualization time “catches up” to

the simulator, the autopause is engaged in the same fashion. In either case, after the simulation has

provided enough of a buffer, the pause will automatically be removed and visualization time will

once again move forward.

The Walkthru view class also includes a rendering function that is called on each frame.

This function is typically overloaded by the user. It takes as input a Walkthru database cell and a

set of chunks describing the current conditions in the cell, and renders the chunks’ contents into

the GL window. During each frame, it is called with all visible cells in the frame that have simu-

lation chunks associated with them at the current visualization time. It is never called for a cell or

simulation chunk that is not visible in the current frame; this provides efficient, rapid rendering of

simulation conditions. The front-end is also provided with hooks into the visualizer’s event process-

ing system and is required to interpret any user interactions that might affect the ongoing simulation

scenario. If such an interaction happens, the necessary changes to the scenario are transmitted to the

simulator, and, by default, all simulation chunks from that simulation time forward are invalidated.

The simulator then has the option to either invalidate or regenerate any portion of that data.

5.2 CFAST (The Consolidated Model of Fire and Smoke Transport)

5.2.1 Overview and Capabilities

CFAST [6, 1] is one of the best available fire chemistry and physics simulators. Created

by the National Institute of Standards and Technology in the 1980s, it provides a description of how

CHAPTER 5. SIMULATOR INTEGRATION 83

atmospheric conditions in a building will evolve in the early stages of a fire (before major structural

damage occurs that changes the qualitative nature of the building model). It has been thoroughly

tested against physical experiments and is accurate enough that CFAST simulations have been used

as evidence in court cases and legal investigations.

A CFAST building model consists of a set of rectilinear volumes connected by “vents,”

which is a generic category for connections between volumes. A vent can be horizontal or vertical,

and has a specified height, width, and offset from the floor. Volumes are numbered from 1; volume

0 is a special volume indicating “outside” and constitutes an infinite heat and oxygen source and

sink. So, for example, a door between rooms is a horizontal vent; a window is also a horizontal vent,

but connecting to volume 0. An elevator shaft or fireplace flue is an example of a vertical vent. The

user can also specify HVAC ducting between volumes; these are like vents but have a run length and

can form a network with fans and outlets that provide certain airflows to the rooms. Each volume

specifies a material for the floor, walls, and ceiling; these materials are chosen from a library file

that contains material descriptions of common building elements such as drywall or wood paneling.

Within a volume, the user can place furniture or fire detection and supression systems.

Furniture does not have a geometric description; it is “placed” at a 3-D point offset from the corner

of the room, and each type of furniture carries with it an ignition heat flux and a set of output

functions that describe the heat and chemicals generated by the burning furniture as a function of

time from ignition. Detection and supression systems comprise smoke and heat detectors and pre-

modeled supression systems like sprinklers; they are placed in the same way as the furniture. During

the simulation, these elements are dormant until the system computes that the heat at the location

of the object is high enough to trigger either the igniton of a piece of furniture, or the activation

of a detector or sprinkler. From the activation time, the object then contributes to the conditions

in the volume by either generating a secondary fire (in the case of furniture) or supressing existing

fires in the room (in the case of supression systems). Detector activations don’t contribute to the

simulation, but they can be used to determine when people in the house would be alerted to the fire.

The user can also specify particular vents being opened or closed at certain times in the simulation;

this represents doors or windows being opened or closed during the incident.

The simulation itself is essentially a finite element solution, with a special twist. CFAST

is a “zone model” simulation, which means that instead of partitioning each room into many tiny

fixed cells, it is separated into only two cells by cutting the volume with a horizontal plane at some

height. The height is not fixed; it begins at the ceiling, and as smoke and combustion products build

up in the upper layer, the interface moves down, growing the upper subcell and shrinking the lower

CHAPTER 5. SIMULATOR INTEGRATION 84

Lower Layer Lower Layer

Upper Layer

Doorway (e.g. Horizontal Vent)
Room A Room B

Upper Layer

Interface H
eight

Fire

Plume
Exchange
Regions

Figure 5.3:The zone model finite element method used for fire simulation. Each room maintains two
zones, with up to three qualitatively discrete exchange regions between volumes through doorways
or windows.

one. This is a special optimization that is a very good approximation for real fires, in which the

hot air, which contains an even mixture of the combustion byproducts (i.e. smoke and soot), tends

to form a largely homogeneous layer at the top of the room, separate from the cool and clear air

in the lower part of the room. At the boundaries of the layers, heat and combustion products are

exchanged, and the fires draw oxygen from certain layers and inject heat and combustion byproducts

into others. The whole system forms a set of differential equations, and the heart of CFAST is a

differential equation solver. The solution is advanced until a qualitative change occurs that requires

modifying the equations (such as a door opening, or a layer moving down such that it can now vent

through a window, or a piece of furniture reaching ignition temperature), at which point the equation

set is updated and the solution continues. The equations relate the transfer of heat, pressure, and

twelve other quantities including various gas and particulate (soot) concentrations between layers

and volumes. The result is a set of time functions of these quantities in each layer of each volume

and the position of the layer boundary (Figure 5.3).

CFAST by itself is not an interactive program. Input is composed with a text editor; the

user then runs the simulator in a batch mode on the input file. This file contains rows of values

denoting the dimensions of the volumes and vents, locations of furniture and detector elements, and

the chemical and heat profiles of the “main” fire. The simulator then runs as a batch process and

outputs a raw file. This file is postprocessed with a separate program to extract graphs of desired

quantities over time. The user can also specify a small number of graphs in the text input file;

these graphs can be drawn in real time as the simulation runs. Both the simulator itself and the

CHAPTER 5. SIMULATOR INTEGRATION 85

Figure 5.4:CFAST’s original input and output, as it is distributed by NIST. These forms are difficult
for an untrained user to create and understand.

postprocessing program are written in FORTRAN and are linked with a third party user interface

and with a graphing package licensed by NIST (Figure 5.4).

5.2.2 Database Integration

In order to use CFAST with Citywalk, the user interface module for the simulator needs

to be able to generate a CFAST input case given the state of the virtual world. While the geometric

data needed by the simulator can be derived from the model geometry, the raw Citywalk model

lacks the necessary material data (e.g. structural composition of the building, and burn properties

of the furniture). Furthermore, a fire simulation requires a fire to be set at some point in the world,

and the fuel and chemical properties of that fire must be specified (Figure 5.5).

Geometrically, CFAST required the environment to be partitioned into volumes with in-

terconnected portals. While the basic form of a Citywalk database could be naively mapped directly

to a CFAST input, Citywalk volumes are much more highly partitioned than a CFAST input needs

to be. For example, a room might have a pillar in one wall that causes a spatial subdivision of the

room into three cells instead of one. A naive translation would generate three simulator volumes

from these cells, with corresponding (very large) portals between them. While technically correct,

this results in a simulation that runs more slowly and provides quantitatively very similar results to

one that considers the room one volume and ignores the minor volume intrusion of the pillar. To

combat this inefficiency, we allow the user to specify a set of bounding volumes in 3D space that

define the set of volumes to be considered for CFAST. Each cell that is contained in a bounding

volume is considered part of that room, and the volume of the bounding volume is the room volume

CHAPTER 5. SIMULATOR INTEGRATION 86

Figure 5.5:The plugin UI for setting CFAST’s chemical properties.

for the simulator. Vents between these volumes are derived from paths through cells that connect

cells tagged with a volume ID (Figure 5.6). When rendering graphics for a cell, the conditions for

the volume containing the cell are rendered within the cell. Locations within a bounding volume

can be easily mapped to locations in a Citywalk cell, and vice versa.

The material data was straightforward to integrate into the second-generation database. In

the case of structural elements (walls, floor, and ceiling), we defined a CFAST-specific data object

describing the materials of the structure that was accessible to the UI module when it exported the

information. This object associated material types from a library provided with CFAST with the

floor, walls, and ceiling of the volume to which the object was attached. In the case of detail objects

(furniture and active elements such as sprinklers and smoke detectors), a second new data object

was attached to Citywalk object classes that again referenced a furniture burn profile from a library

provided with the CFAST distribution. These mappings are controlled by list dialogs accessible

from the UI module for the simulator.

The fire chemistry data, on the other hand, is not directly related to the world model, so

there is no obvious attachment point of the case data to the world model. We implemented this as an

imported process from existing CFAST models, where the fire alone (without the world geometry)

could be imported from a CFAST case. This data is basically a set of fuel supply and chemical

CHAPTER 5. SIMULATOR INTEGRATION 87

Cell A

Cell B1

Cell B2
Cell C1

Cell C2

Cell C3

Door Pab

Pbb Door Pbc

Door Pac1 Pc1

Pc2

Volume A

Walls: Gypsum, 0.5 In.
Floor: Hardwood, 1 In.
Area: 200 Sq. Ft.
Elevation ASL: 1500 Ft.

VolumeB

Walls:Plasterboard, 1 In.
Floor: Hardwood, 1 In.
Area: 150 Sq. Ft.
Elevation ASL: 1500 Ft.
CONTAINS:
Desk: Steelcase model D5

Volume C
Walls: Plasterboard, 0.5 In.
Floor: Tile, 1 In.
Area: 400 Sq. Ft.
Elevation ESL: 1500 Ft.
CONTAINS:
Chair: Steelcase model P40

Vent Pac1

Orientation: Horiz.
Area: 20 Sq. Ft.
Height: 5 Ft.

Vent Pab

Orientation: Horiz.
Area: 20 Sq. Ft.
Height: 5 Ft.

Vent Pbc

Orientation: Horiz.
Area: 20 Sq. Ft.
Height: 5 Ft.

0 Ft. High

0 Ft. High

0 Ft. High
0 Ft. High

0 Ft. High

0 Ft. High

Window Wc

Door Pac2

Vent Pac2

Orientation: Horiz.
Area: 20 Sq. Ft.
Height: 5 Ft.

0 Ft. High
0 Ft. High

Outside
Orientation: Horiz.
Area: 20 Sq. Ft.
Height: 2.5 Ft.

Pressure: 1 ATM
Temperature: 300K

3 Ft. High

Vent Wc

Figure 5.6:How CFAST (bottom) maps volumes onto the world cell structure (top). The Walkthru
model contains detailed geometric information, but little else; the CFAST model is geometrically
much simpler, but contains chemical and materials information that Walkthru lacks.

CHAPTER 5. SIMULATOR INTEGRATION 88

functions of time that describe the main fire; this information is passed on to CFAST unchanged

when the simulation is initiated.

5.2.3 Simulation Service

The CFAST simulator module is avirtual timedynamic agent; its primary output is a set

of values for various quantites (interface height, temperatures, pressure, chemical composition, etc.)

for each volume over a span of time. Thus, the primary data chunk for each volume at each timestep

contains a simple array of each of these tracked values. In addition, the primary chunk contains an

array of detector or sprinkler activations, if any have been triggered in that volume. If a detector or

sprinkler’s ID is in the activation array, it is active for that time in the simulation. Finally, a second

array contains records for all fires that have happened in the volume as a result of furniture elements

igniting, as well as the main fire if it is in that volume. Each record in this array contains the output

values for that particular fire at that timestep (e.g. energy output, fuel burn rate, etc) and a fire ID

that is either the object ID of the furniture that is burning or a special value for the main fire.

When the user launches a CFAST simulation service, it goes into a setup state where it

waits to receive all the information about the situation from the front-end module of the initiating

client. The set of volumes and their interconnectivity, the set of objects and their class types and

locations within the volumes, the main fire chemistry, and the ignition point are all transmitted by

the receiver and compiled as a regular CFAST input case. When all the data is received, it is fed

into a standard CFAST data file which is then read back in to the FORTRAN engine by the CFAST

input routines, and the differential equation solver is launched.

Only one modification to the computation engine was needed; the insertion of a callback

function after each timestep has been computed. This callback returns to the simulation service,

where the world state for that timestep is read out of the FORTRAN data structures and converted

into spacetime chunks. The chunks are then fed back into the simulation manager as output. At this

time, any commands that have been received from clients are processed, such as modifications to

the world state (e.g. doors opening or closing). These changes are propagated into the FORTRAN

data structures, and control is returned to the differential equation solver for another iteration.

If a change is made in the past of the simulation (i.e. at a timestep that has already been

generated), the simulation must be restarted entirely at that older time, because intermediate results

may be changed by the new conditions. To do this, the system halts and resets the simulator, and

reconstructs the input case from the spacetime chunks stored for that time. The simulation can then

CHAPTER 5. SIMULATOR INTEGRATION 89

progress normally, and any new chunks being generated will overwrite previously generated chunks

as necessary.

When the simulation ends, the service enters an idle state. When all clients are discon-

nected, the service terminates. If, on the other hand, a client comes in with a command to make a

change at some simulation time, the simulation restarts at that time and new results can be gener-

ated. Additional clients can connect and disconnect from a running simulation from anywhere in

the network and view the results just as the initiator of the simulation does; this facilitates sharing

results and cooperative exploration of the data.

5.2.4 User Interface Module

Control Section

A large section of the UI module for the CFAST service is dedicated to managing the

mappings of material, volume IDs, and furniture classes to structures in the Citywalk model. Given

a Citywalk database decorated with materials information and a loaded main fire profile, the only

remaining element of the process is to place the main fire and begin the simulation. Fire placement

is as simple as clicking on a “set fire” button (which is a UI function that can be mapped to any

key), and clicking a spot on the floor. This information, together with world geometry, the material

attachments for the structure, and the class attachments for objects constitute a full description of

the input case for CFAST.

At this point, the UI module queries the simulation manager for a CFAST service available

to the machine. If more than one are available (for example, one on the local machine and one on

the network), the user can select which one they want to use. The module then launches the service,

compiles the input case from the model data, and starts the service running.

While a simulation is running, certain actions taken by the user on the environment can

affect the state of the simulation. For example, closing a door or moving a piece of furniture can

affect gas flow or the time of ignition of that furniture, respectively. To identify these conditions,

when a piece of furniture is added to the input case, a watch is applied to that furniture element. If

a user modifies the element, that information is noted by the watch function and the change is sent

to the service.

CHAPTER 5. SIMULATOR INTEGRATION 90

Rendering Section

The 3D rendering callback for an active CFAST service iterates over the cell list in the

frame, converts the cell to a volume ID, looks up the conditions for that volume in the condition

set, and renders the conditions according to the current visualization mode. The user can select

from a number of modes with a UI panel. Each mode draws the conditions into the frame in

a different way; the modes are selected to help visualize particular aspects of the conditions in

the volume. For example, the user can elect to draw the conditions in a pseudo-realistic fashion,

which overlays smoke and flame animations that represent “realistic” views of the environment.

Alternatively, a schematic view is available that uses transparent, colored polygons to represent

smoke and flame; this mode conveys similar information but doesn’t obscure the view. Another

mode is the thermal imaging mode, where no smoke is drawn at all, but the walls are colored

according to the temperature of the volume; this mode conveys normally non-visible information

in a visible way (Figure 5.7). Many more modes are conceivable; the task of choosing which ones

convey information the best is a large research task in its own right, and we hope that the framework

will be used to create more types of visualization in the future.

Figure 5.7:CFAST view modes. Left, realistic mode; right, thermal mode.

If individual model elements like fires, ignited furniture, or activated sprinklers are present

in a volume in the view, and are also present in the condition set for that volume in the frame, special

graphics are drawn at their locations as well. For example, an ignited piece of furniture will show a

fire plume coming off its surface, and a sprinkler will show a water jet if it is activated.

In addition to the rendering plugin for the 3D view, the CFAST service provides qualitative

output in the form of “probes.” The user can place a probe anywhere in the model, and get a

CHAPTER 5. SIMULATOR INTEGRATION 91

numeric reading of any of the simulated physical quantities (atmosphere composition, heat, etc) at

that location at the simulation time. A probe attached to the user position moves with him and reads

conditions at the viewpoint. This process simply adds the probe locations to the visible set on each

frame, and updates the dialog box values accordingly.

We also implemented a completely separate rendering module for CFAST that plugs into

the Floorsketch program (described in chapter 6). The result is the ability to display simulation

results directly on the schematic 2D floorplan; rooms turn yellow and red as the conditions worsen,

and icons are drawn to represent fire locations and sprinkler activations. This module demonstrates

the orthogonality of the simulation data framework; it can operate completely independently of the

Walkthru 3D visualization. The user can create cases and run simulations entirely within the simple

2D floorplan. The CFAST input geometry can be derived directly from the 2D plan, and a set of

dialogs specific to the Floorsketch-CFAST front-end plugin allows the user to set the non-geometric

properties of the simulation, such as chemistry and fuel values. This module can run independently

as a client of a simulation anywhere in the network.

5.2.5 Application

The CFAST module in the Citywalk simulation framework successfully leverages the

simulation power of CFAST with the visualization mechanisms of Citywalk to provide a powerful

simulation tool. The system has been tested and works well, even over very low bandwidth links

(e.g. modem links). It has been well received in the fire research community; interest has come

from teachers, lawyers, and researchers who wish to use the system to more easily communicate the

results of fire simulation. This simulator subsystem could also be used in a “cybernetic building,”

where the building has a network backbone that unifies control of its services and sensors. Using

real-time sensor output in the condition sets would be trivial; such a network could provide earlier

warning of real fire situations, and provide information through the Internet to remote clients in the

firefighting and emergency response services. Display panels in the lower floors of the building

and remote panels in fire trucks networked with wireless WAN technology could give crews better

information earlier and help to save lives and property.

One area that has not been well explored, but shows promise, is the ability to extend the

capabilities of the simulator with the Citywalk framework. For example, CFAST does not simulate

inter-volume heat transfer through walls because its text-file-based input mechanism is too difficult

to use. The Citywalk model has enough information to compute these form factors without any

CHAPTER 5. SIMULATOR INTEGRATION 92

extra effort on the part of the user; with this information, CFAST could improve the quality of the

simulation with little extra coding.

The CFAST service was the first service created in the Citywalk simulation framework;

as such, it acted as the testbed for many of the protocols and simulation support services. As such,

the design of the module does not make use of some of the more recent features of the network.

Were we to redesign the module today, we would have the client simply identify the model database

and the chemistry information to the service, and have the service build the input case directly by

reading the database. This would make the setup faster and more efficient, as the client would not

have to transmit all of the case information to the server at startup time.

5.3 IMPULSE (Impulse-based dynamics simulation)

5.3.1 Overview and Capabilities

IMPULSE is an object-level simulation of physical dynamics in the presence of forces in

the environment. Input to IMPULSE is a scenario consisting of a number of objects, each of which

is a rigidly connected assembly of convex bodies, each of which has physical information including

mass and moments of inertia. The user can also specify fixed forces such as gravity. IMPULSE

then simulates the positions and orientations of the objects as a function of time. It combines the

Lin-Canny algorithm (to rapidly compute collision times) with an impulse-based physics model

(i.e. objects never stay in continuous contact with each other). The result is a simulation that can

run relatively quickly, and is also quite accurate; several tests performed by the authors verified

its accuracy against both statistical and qualitative measurements of complex real-life dynamics

phenomena [47].

The basic IMPULSE system uses a combination of input files and hard-coded force func-

tions and rules to generate its simulations. Simple simulations involving only a mixture of fixed and

free objects under an initial velocity and a gravitic force are directly supported. Other simulation

types, such as pendulums, rotating disks, or special force functions, are hard-coded into the IM-

PULSE code base and activated with special codes in the input file that attach C force functions to

specific objects. Given the input file, the system then generates an OpenGL animation of the object

behavior as it is simulated. These animations can be stored and played back as movies.

CHAPTER 5. SIMULATOR INTEGRATION 93

5.3.2 Database Integration

Much like CFAST, IMPULSE can infer part of its input from the existing Citywalk

database structure (e.g. the shapes and positions of the objects in the environment), but also needs

extra information that is not provided by default (e.g. the mass and inertial properties, and the

convex decompositions of the objects in the environment).

For detail objects (e.g. furniture) this information was added to the database as an IMPULSE-

specific attachment to the Citywalk object class. The added information is generated with an exter-

nal program that performs a convex decomposition of an object, and computes its mass and intertia

properties. This results in an IMPULSE profile that can be attached to a Citywalk object class.

Fixed structural elements, such as floors and walls, are exported to IMPULSE as extremely thin

(fraction of an inch) slabs that are fixed in space. These slabs are generated on the fly by extruding

the wall patch away from the room cell.

5.3.3 Simulation Service

The IMPULSE simulation agent is avirtual timedynamic agent like CFAST. The condi-

tion set for a volume for a timestep is a set of object IDs that are in that volume at that time, plus

a transformation of that object from its pose at the start of the simulation. The database ref is used

for the object ID; this allows multiple different clients to identify the same object in the simulation

output. The service also provides an extra input; any client may send a message to the server that

assigns a force vector to an object for a period of virtual time. This results in the user being able to

“hit” an object from the UI and see the reaction in the simulation.

When the simulation is launched, it enters a setup state similar to the CFAST setup state,

where the client transfers case information to the server. The client provides a set of fixed slabs

which represent walls, and a set of object definitions and poses that describe the objects to simulate.

The service then enters run mode and provides condition sets (e.g. simulated object poses) as fast

as it can. When the last client disconnects from the service, it terminates.

5.3.4 User Interface

Control Section

The IMPULSE input case is completely derivable from the world model annotated with

physics information. Thus, aside from the mapping function that allows pairing physical definitions

CHAPTER 5. SIMULATOR INTEGRATION 94

with object classes, there is little to the setup UI than the “start” button, which initiates the transfer

of the world state and the identification and launch of the IMPULSE service from the simulation

manager.

There is one runtime function, the “kick” function. This is implemented as a mouse event

where the user can right-click on an object and kick it; this sends a force event to the simulator and

results in the object having a sharp force applied with a vector equal to the mouse-to-object vector

(i.e. the kick is away from the viewer).

Rendering Module

The rendering module hooks into the object drawing callback from the render engine. If

the object to be drawn is present in the condition set for a rendered volume, the transformation is

applied before drawing the object. If there are other objects present in the conditions that are not

being drawn by the current view, they are located in the database after the frame and drawn into the

frame with the appropriate transformation.

Figure 5.8:IMPULSE simulating bears and balls bouncing in a laboratory.

5.3.5 Results

While IMPULSE is often too slow to provide true real-time physics performance, it still

provides some physically realistic behavior for objects in the world, and for small collections of

objects it can provide real-time physics in Citywalk (Figure 5.8). A serious issue with IMPULSE is

the fact that most objects in a virtual building model are in rest states; that is, sitting on other objects

CHAPTER 5. SIMULATOR INTEGRATION 95

in a stable fashion. IMPULSE is not well suited to these objects as they stay in a state of constant

collision. We tried to mitigate this with some code that caused objects that were not moving much to

anchor themselves in the world, and thus remove themselves from the simulation, but this approach

had a number of problems with stability and accuracy.

An interesting possible use for this simulation agent is to partition the world into sections

by volume and have one agent on a separate CPU responsible for simulating the behavior in each

volume. This approach would limit the load on each agent. Database watches would allow agents to

determine when an object has entered their “field of view;” ephemeral database attachments describ-

ing current velocities would allow them to remain consistent across boundaries. This methodology

could provide seamless, large-scale physical simulation across a large model.

This agent was the second one implemented in our framework, and it is interesting to note

that it took only two weeks from receiving the IMPULSE source code for the first time to running

simulations in the Citywalk model.

5.4 Real-time Multiuser Walkthru

5.4.1 Overview and Capabilities

The Multiuser agent [28] distributes “avatars” of walkthrough clients to each other so that

viewers can see and interact directly with other viewers in the space. Each user contributes one

avatar to the environment; this avatar resides in one volume at any given time, corresponding to the

location and orientation of the view frustum on that user’s client. Other users can see that avatar

moving as the original user moves, and can communicate directly with everyone they can see via

a localized chat mechanism. Users can select which database model is used for their avatar; this

selection is reflected on the other client machines as part of the visualization.

5.4.2 Simulation Service

This is the first example of areal-timesimulation agent; clients are interested only in the

most current state of the other clients in their region of interest, so there is no time control aspect of

the simulation, and “old” data is useless to transmit.

The multiuser service is unique in that it does not actually perform “simulation” per se.

When a client connects to the service, it is allocated a unique ID. This unique ID is an integer, al-

located by the simulation server, used in the subvolume ID field of the condition set; the condition

CHAPTER 5. SIMULATOR INTEGRATION 96

set for a volume contains one record for each client in the volume. The definition of a “volume” is

up to the client system; in Citywalk, database cells are the natural choice, since the database stores

a unique integer ID for each cell. This record is a spacetime chunk with a subvolume ID equal

to the ID of the client; the body of the chunk contains the avatar ID, pose, and motion prediction

information about the client. If no clients are moving, the service sits idle. If a client does begin

moving, it begins sending periodic updates of the avatar ID, pose, and motion prediction to the ser-

vice. The service receives this information and updates the appropriate chunk, if necessary moving

it from one volume to another (deleting the chunk in the original volume and adding it to the new

volume). The data distribution layer then propagates the latest information back to each client that

is interested in those volumes.

If a client wishes to “speak,” they send a talk message to the service with the desired text.

This text is rebroadcast to each client for whom the volume is in their interest set (Figure 5.9). Thus,

the user can “hear” anyone who is in their visible or lookahead sets.

Figure 5.9:Left, multiuser chat window. Right, avatars interact with each other and the doorways
in the MIT LCS model.

5.4.3 User Interface

The UI for this simulator is very simple. For setup, a menu entry allows specification of

which avatar model the current client wants to use; the only other control is to locate and connect to

a multiuser service and begin interacting. The rendering module simply iterates the active chunks

CHAPTER 5. SIMULATOR INTEGRATION 97

in all the visible volumes, and renders the records with the appropriate avatar model in the specified

pose. The motion prediction information, combined with the timestamp on the chunk and the system

clock, allows interpolation of frames between updates from the service. The chat box is a separate

dialog that is part of the module, and presents an input box and an output box that displays all chat

messages received from the server.

5.4.4 Results

This was the simplest module written for the framework; it only took one afternoon to

write, and provides a very usable and efficient multiuser implementation within the framework.

The resulting functionality is similar to the RING system [28], but using a star topology rather

than the inner ring - outer ring topology. In fact, implementing the ring topology would be fairly

straightforward within the framework; if we started multiple services, each responsible for one set

of volumes, and had the client UI drop and reattach connections as that client moved from server to

server, the functionality would be identical to that of RING.

An interesting extension of this service would be propagating sound based on a more

interesting function than lookahead sets; e.g. a physical sound propagation function [4]. This could

have aesthetic and usability applications for evaluating spaces.

5.5 Tapestries: On-line Imposter Generation

In order to achieve fast, interactive frame rates, first-generation walkthrough systems uti-

lize a combination of model-based visibility culling, prediction of user behavior, and suitably cho-

sen imposters or lower levels of detail (LOD) for some parts of the model. To produce optimal

displays and to keep the frame rate as constant as possible, most objects are stored at various levels

of geometric complexity. In each frame, the display manager can select a combination of object

representations that produces the best image possible based on an estimation of the available re-

sources [39, 23]. To guarantee constant frame rates, the lowest LOD may have to correspond to not

displaying an object at all.

In scenes of high depth-complexity many objects, or portions of objects, that are not

visible to the current view may be sent through the rendering pipeline. In order to achieve interactive

frame rates and visual quality in such environments, it is imperative to render only those portions

of the scene that are actually visible. One approach to address this problem is to generate view-

CHAPTER 5. SIMULATOR INTEGRATION 98

dependent image-based LOD representations for large masses of objects [23, 48, 49], as well as

for individual objects. Such context-dependent display representations can better exploit available

rendering resources. Another strategy is to utilize 2.5D textured depth meshes either as the primary

rendering primitive [50] or to provide the background behind other parts that are displayed with full

3D geometry [20, 51]. Of course, any pre-computation of such representations will become invalid

if the underlying environment changes. Some image-based techniques generate image imposters on

line by caching results from the frame buffer [52, 53, 54]. Our approach extends existing imposter

generation techniques to incorporate samples from multiple views and to support automated on-line

generation and update in an interactive walkthrough environment.

A tapestry is a textured mesh constructed from an on-line sampling of the environment.

The sampling is done from a collection of adjacent views, resulting in a representation of the sur-

faces in the environment visible from those views. The tapestry imposters can be regenerated on-line

if the underlying environment changes. In our implementation, the Tapestry Simulator automatically

generates imposters given a cell-portal based environment. A tapestry is associated with each rel-

evant portal and represents the portion of the environment visible through that portal when viewed

from a particular region of space. A similar dynamic technique is presented in [55] using textured

rectangles as portal imposters. In the following sections, we discuss how a tapestry is constructed

from a given environment, and then how this functionality is incorporated into a simulation engine

in the new framework.

5.5.1 Tapestry Construction

A tapestry is a Delaunay mesh with vertices corresponding to sample points. With a

relatively dense sampling, a subset of the samples corresponding to important visual features is

chosen as vertices. In addition, explicit edges are specified at apparent discontinuities in the sample

image and incorporated into a constrained Delaunay triangulation. The set of sample color values

is stored as a texture and mapped onto the triangle mesh. This basic approach has been utilized to

generate imposters for urban environments [51].

To generate a tapestry for a given view, the environment is first rendered and the resulting

image is stored as a texture. World space coordinate values are derived for each sampled pixel

location. Each pixel is then processed and labeled as a depth- or normal-discontinuity if the depth

or estimated normal values, respectively, differ significantly from any of its eight nearest neighbors.

Such “discontinuity pixels” are then chained into edges. A collection of pixels is approximated by

CHAPTER 5. SIMULATOR INTEGRATION 99

an edge, if the line segment formed by the end points of the chain is a reasonable approximation to

the set of pixels, both in 3D and in the 2D projection in the current view. These edges and vertices

are then incorporated into a Delaunay mesh. The vertices store the world-space location of the

sample, resulting in a 2.5D representation of the part of the environment visible from that view. The

pixel location of the corresponding sample is used as the vertex texture coordinate.

The resulting mesh contains enough geometric information to produce appropriate par-

allax effects when viewed from nearby viewpoints. In general, there will be areas that were not

visible in the initial sampling. In these locations, the mesh triangles incorrectly interpolate between

two disjoint surfaces. The further the observer deviates from the generating view, the more apparent

these “skins” will become. In order to minimize these visual artifacts, we perform sampling from

additional nearby views, and incorporate this information into the mesh.

5.5.2 Tapestries in the Framework

We have implemented a tapestry-based simulation agent that automatically generates

tapestries in batch mode for a walkthrough environment and updates them on-line, when the en-

vironment changes.

In batch mode, the agent traverses the portal list and generates a tapestry for each portal.

Given a portal, a initial viewpoint must be chosen, and then only the geometry visible behind that

portal should be rendered to generate the tapestry. The tapestry should incorporate all geometry

visible through the portal. To this end, we choose a viewpoint on the portal normal ray, at a distance

that results in the viewing frustum conservatively covering the portal. To capture a wide view

angle of samples without distortion, a spherical projection surface is used instead of a plane as the

manifold for the 2D triangulation. This also allows us to generate tapestries for large cells with

complex periphery geometry (such as a large room with much clutter along the walls) by placing

the initial viewpoint in the center of the room and generating samples for the full4π angular range

about the viewpoint. Figure 5.10 illustrates this setup schematically.

In order to generate the appropriate view, we utilize the cell-and-portal cull traversal to

generate the list of visible objects resident beyond the portal. We start a cull traversal given the initial

view, but do not add any objects to the display list until the specified portal is reached. The traversal

then continues as usual from that portal through any subsequent visible portals. The resulting list of

visible objects is rendered to produce the input to the tapestry generator.

The tapestry is attached to the portal and added to the database. At rendering time the

CHAPTER 5. SIMULATOR INTEGRATION 100

�
�����
�����

���
���

�����
�����

���
������
���

���
���

�
�

�
�

���
���
���

�
�

vp

�
�����
�����

���
���

�����
�����

�
����

���
�
�

���
���

���
���

�
�
�

���
���

vp

���
���

���
���

���
���
���

�����
�����

�
�

� �

�

���
�
�
�

���
���

���
���

���
���

�����
�����

���
���

vp

����

Figure 5.10: View location and projection surface for portal and cell tapestry construction.

tapestry will be used for viewpoints that are greater than a specified distance from the portal. If the

cull traversal encounters a portal with a tapestry and the viewer is far enough away, the tapestry is

placed on the display list and the traversal is terminated.

The agent also supports dynamic tapestry updates. Each object that is represented by

a tapestry imposter stores a reference to the tapestry. Each cell also maintains a list of adjacent

tapestries. The simulation agent maintains a watch on all tapestry objects. If an object moves,

the appropriate tapestries are regenerated. If an object’s surface appearance changes, then only the

texture maps associated with the geometry need to be regenerated.

As the agent may be running independently on another machine, it does not cause con-

tention for rendering resources. Such a simulation could therefore also be used without the initial

batch calculation by incorporating a just-in-time look-ahead capability into the simulation agent.

Tapestries can then be generated on-line only for those portions of the environment that the user is

exploring.

5.6 Radiosity on Demand

5.6.1 Overview

To provide for realistic lighting conditions for walkthrough building models, a number of

researchers have developed radiosity solvers within first-generation walkthrough systems [43, 56].

These solvers generally calculate and store radiosity shading on individual model surfaces, which

are loaded and rendered at model view time. For large models, the computation time required for

CHAPTER 5. SIMULATOR INTEGRATION 101

several complete, global radiosity iterations can be very large. For example, performing three global

iterations of radiosity on a building model with 300 rooms and a total of 40,000 polygons required

nearly six full days to compute on the most powerful million-dollar, multi-CPU systems available

in 1994. Even with the massive increases in computer power since then, the same computation

requires nearly three days today on a fast desktop workstation (costing a few thousand dollars).

Newer approaches such as [57] further decrease the amount of time necessary to generate a lighted

model, but the computational expense still makes it difficult to employ such “global” solvers in an

interactive, dynamic environment.

By developing a radiosity solver as a simulator plug-in that operates incrementally, we

hope to provide support for interactively visualizing the effects of changing the lighting in a dynamic

walkthrough environment. This simulator refines partial shading solutions on a surface-by-surface

basis by focusing computational resources on areas of greatest visual importance to the currently

connected simulation clients.

5.6.2 Incremental Radiosity Updates

We assume that most changes made to our virtual environment at any one time are small

and concern only a few objects or rooms. It is thus natural to assume that a previously calculated

radiosity solution is a good starting point for calculating the new, adjusted radiosity solution. Such

incremental adjustments to existing radiosity solutions have been discussed previously in the litera-

ture [58, 59, 60, 61, 62].

A second means by which we hope to achieve a performance improvement is by taking

advantage of the fact that while any change may cause the illumination value to change on many

polygons, we are generally more interested in reducing the shading error visible to a particular

observer at a particular time, rather than globally refining the entire model at once. Past work in im-

portance regions has demonstrated how to provide solutions with a bias for increased accuracy near

a preferred viewpoint [63, 64]. Several techniques have been presented for adaptive re-computation

of radiosity in a changing environment, such as [65] which presents a method for online radiosity

updates using a radiosity renderer running concurrently with a modeling system and communicating

through shared memory.

We have tried to take the best of these many ideas and integrate them into our dynamic,

second generation walkthrough environment to see how close we can come to a “real-time” radiosity

update when objects are moved around or tumble through a room under the influences of a physical

CHAPTER 5. SIMULATOR INTEGRATION 102

force simulator.

5.6.3 View-Based Radiosity Updates

In the event that the radiosity process is started on a model for which no previous solution

has been computed, the observer locations in the model can be used to guide the global solution

dynamically to provide more “immediate” results to the observers. As we mentioned previously, the

standard simulator plug-in interface provides each simulator with a visible and potentially visible

set for each attached client. By taking the union of the cells in these sets, we generate a single global

visible set that represents the areas of interest for all users within a model. These cell sets are then

passed to the radiosity solver to guide the order of computation. Using priorities determined by the

parent set for each cell, based on the proximity of the closest viewer and number of viewers to the

cell, as well as the number of full gathers to the cell (the number of full gathers is the number of

gathers to the object contained in the cell with the minimum gather count), the radiosity solver can

order the cells in a priority queue. Selecting the next object to undergo a radiosity gather is then a

simple matter of iterating through the objects contained within the highest priority cell until one is

found with the same number of gathers as the full gather count of the cell. If all objects within the

cell have a greater number of gathers than the full gather count of the cell itself, then the cell’s full

gather count is incremented, it is reinserted into the priority queue, and the process repeats with the

next highest priority cell.

Obviously, the priorities assigned to cells are the key to calculating the radiosity in this

scheme in a way that is satisfying to users. While we would like to concentrate as much computation

as possible on the objects in the visible set, since that is the only one that users are seeing at any

given time, it is also important to provide some computation to the objects in the lookahead set

so that users find the other parts of the model reasonably well lit when they move around. To

accomplish this, we assign priorities to the visible set cells of twice the number of full gathers to

those cells, while the cells of the lookahead set receive priorities equal to the number of full gathers

to those cells. We also provide a slight additional increase in priority to the visible cells, so that

they receive the first gathers in an unlit model prior to the lookahead set. This priority choice seems

to work well in practice, lighting those areas visible to the viewer, while not ignoring other areas

nearby.

CHAPTER 5. SIMULATOR INTEGRATION 103

5.6.4 Radiosity Updates in a Dynamic Model

The previous section assumes a static world which we are trying to dynamically shade to

convergence given a set of viewers moving through the model. Since we wish to support concurrent

simulation and editing of model contents, it will often be the case that the radiosity solution in

progress, or the solution that has been previously computed, is invalidated by objects moving or

changing material properties. It is wasteful to recalculate the radiosity solution for an entire model

from scratch when only a few objects have been altered, so we instead look to support selective

correction to the existing solution. By making use of the database watch mechanism, the radiosity

simulator can monitor all objects on which a solution has been computed. If any of these objects

should change, the simulator is notified of the change and can analyze the object to determine an

appropriate dynamic response.

In the situation where the object’s material properties have changed, we can make use

of the standard method of shooting a correction for the changed material properties back into the

environment[66]. The walkthrough visibility system provides an efficient mechanism for deter-

mining which objects are visible to the changed object; this is simply a slight modification of the

observer’s display list computation. This set is used to accelerate the computation of form factors,

and can be precomputed and cached at model generation time. These caches are updated when

objects are moved, added, or deleted.

By shooting radiosity corrections to all objects in the changed object’s visible set, the error

in direct illumination is corrected efficiently. For each object receiving correction, we may further

shoot a new correction to the objects in that object’s visible set, and so on, until the correction factor

becomes small, or we have matched the number of light bounces previously computed. Once this

happens, we merge the correction with the existing radiosity on all objects with corrected radiosity,

resulting in a model that is updated and correct for the new material properties of the object.

In the situation where the object’s geometry has changed, we can also use the standard

method of shooting corrections into the environment based on the change in form factors. Although

a näıve method for finding form factor changes would require a computation on every object in the

model, we are fortunate to have two shortcuts provided through the standard functionality of our

system. Using the point location facility provided by a KD tree we can quickly find the cell location

of the changed object’s new position, and from that we can quickly compute the object’s new set of

visible objects. Using the union of the object’s new and old set of visible objects, we can compute

the form factor differences between each of those objects and the changed object in its new position.

CHAPTER 5. SIMULATOR INTEGRATION 104

We also compute the form factors of each pair of objects in the changed object’s old visible set and

new visible set to determine changes caused by the object acting as a blocker. After discovering

all possible form factor differences, we can then shoot radiosity corrections into the environment

in much the same way as for the case where the object’s material properties have changed. Having

done this and merged the correction with each object’s radiosity, our model’s radiosity is correct for

the new geometry position.

5.6.5 Radiosity Results

While we did not expect to get “real-time” performance due to the fairly loose coupling of

the radiosity simulator to each client’s rendering system, we did see performance that was acceptable

for interactive purposes in many instances. With the described techniques in their current state of

implementation – without having done any code optimization – we see radiosity updates every few

seconds, with the final solution taking on the order of a few minutes. A reasonable looking intial

solution takes about one minute. At this point the user can get a rough impression of how the

lighting change will affect the overall appearance of the environment.

Figure 5.11 shows an example of the radiosity and tapestry simulators interacting via

persistent updates. The user begins in a Soda Hall model that has been solved for radiosity and local

tapestries; the alcove at the end of the hallway is dark due to a lack of lighting. The user places

a brightly emissive green sculpture on a pedestal in the dark alcove. This editing action creates in

a database transaction which adds the emissive sculpture to the alcove’s spatial cell contents list.

The radiosity agent and tapestry agent have both placed watches on this cell, and receive updates

that cause them to move from the idle state to the active state, and begin reprocessing radiosity and

tapestry solutions, respectively, on that cell and nearby cells. After a short time, the radiosity agent

begins committing transactions of its own that alter the lighting conditions on wall surfaces near the

sculpture, reflecting the new green light being emitted in the alcove. This, in turn, triggers further

watches directed at the tapestry agent, which begins incorporating the newly green-tinted surfaces

into the tapestries that show those wall surfaces. Eventually, the two agents go dormant again, after

the lighting effects of the new sculpture are fully integrated into the cells, surfaces, and tapestry

abstractions near the alcove.

From our observed results, it is apparent that making use of a radiosity solver as a sim-

ulator is a useful technique for supporting dynamic lighting updates in an interactive walkthrough

environment. Although we do trade some performance to enable the integration of the radiosity

CHAPTER 5. SIMULATOR INTEGRATION 105

(a) We approach the alcove to be edited. At this
distance the alcove is represented by a tapestry.

(b) We deposit a brightly emissive sculpture
on the pedestal; this triggers watches in both
agents.

(c) We observe the radiosity update. After a
minute, the radiosity agent commits changes to
the wall colors, causing watches to fire in the
viewer. The viewer reloads the changed sur-
faces, making the new lighting visible.

(d) Moving back, we see the tapestry that was
committed by the tapestry agent while the ra-
diosity agent was computing the first gather.
The bright lighting is not yet present in the
tapestry.

(e) After 3 gathers the radiosity solution has
converged, and the final watch causes the last
updated tapestry to be displayed in the viewer.

identify dirty tapestries,
regenerate and

store results

recalculate radiosityDB
Server

radiosity
Agent

tapestry
Agent

1
Soda DB

notification
of new
 object

2

2Viewer
Client

identify dirty tapestries,
regenerate texture,

store texture

DB
Server

radiosity
Agent

tapestry
Agent

Soda DB

store
appearance

 change

5

3

notification of
appearance

 change4

Viewer
Client

(f) A diagram illustrating the flow of informa-
tion between the database server, viewer client,
and simulation agents.

Figure 5.11: An example interaction between a user, the radiosity agent, and the tapestry agent.

CHAPTER 5. SIMULATOR INTEGRATION 106

solver into our heterogeneous system, the resulting system as a whole provides a richer interactive

experience.

5.7 The Generic Metasimulator

It is often useful to be able to persistently store the results of a simulation. The output can

be reviewed later, shown to others, or retrieved and compared to simulation results computed at dif-

ferent times for “what-if” comparisons. Providing this ability requires a mechanism for interacting

with a simulation that has been run in the past; the data must be stored, retrieved, and played back to

the client or clients. Since we already have an interface designed to help interact with simulations,

it seems like an obvious choice to use all of the interfaces and data distribution mechanisms for

real-time simulations, applying them to data that has been stored rather than obtaining the data on

the fly from a running simulator.

Since the Citywalk simulation framework is designed to store and forward arbitrary simu-

lation results, and is tightly coupled with the database communication code, it is a trivial manner to

simply assign simulation data to a database in addition to storing it in the real-time data distribution

buffer. Once they have been stored, we can create a “virtual simulator” that, rather than generating

the data itself, simply retrieves the data from the database and feeds it back into the data distribution

mechanism. We call this subsystem themetasimulator.

The metasimulator can act as a simulator of any type supported by the system. Since the

data needs to be interpreted properly by the client, running the metasimulator on a data set requires

the client to have the proper front-end module for the original simulator installed, to provide the UI

and rendering callbacks for that specific type of data. To facilitate this, the metasimulator checks

via the simulation manager on the client whether the client has the appropriate view class to render

the data. However, the metasimulator itself is perfectly generic; it does not understand the data it

is providing to the clients, but it can understand the volume and timestamps on the data chunks

and forward them accordingly. The metasimulator has also been used as a testing tool; it can

simulate both an arbitrarily fast simulator of the specified type (by feeding the chunks into the data

distribution layer at full speed) or a slower, more realistic simulator (by waiting a specified amount

of time before introducing the data chunks for the next timeslice).

In practice, the metasimulator has proven valuable for many tasks. For debugging and

demonstration purposes, we have used the metasimulator to generate movies of the same simulation

under various visualizations, and to store interesting, but very large, simulation cases to be played

CHAPTER 5. SIMULATOR INTEGRATION 107

back in “real time.” It has also been used to simulate system response under various network condi-

tions while providing a control for the input of the simulator into the system. To the simulation user,

it allows storage and later review of interesting cases, and allows comparison of newer simulations

with older simulations of the same type, under different conditions.

5.8 Overall Integration Experiences

Many individuals in two geographically separated research groups have participated in

the development of this framework. Systems components of the participants’ own former research

efforts in this area, as well as code and models made available by others were used in the com-

position of the new overall environment. The basic walkthrough code and the whole database and

communications infrastructure have been developed by the two aforementioned research teams via

a common code base shared over the Internet. Individual code modules were properly checked out

from the code control system, modified, tested and then checked back into the source code control

system.

The resulting framework also runs over the Internet and may involve many different sim-

ulation machines and viewing stations. These can be of different hardware type (Silicon Graphics

or PC’s) and run different operating systems (IRIX, UNIX, Linux, or Windows variants).

In our experience, integration of a new simulator program that previously ran in stand-

alone mode takes from a day to a few weeks. Much of that time is spent writing mappings and

translations between the data structures used in the walkthrough environment and the data structures

used by the simulators. In contrast, the communication and control processes provided by the

framework are typically sufficient to support the agent with little modification.

Whether we can achieve “real-time” performance for any particular set-up depends heav-

ily on what kind of simulations we are attempting to run, how much compute power is available for

each of the simulations, and, of course, on the complexity of the world itself. The primary factor

tends to be the simulator itself; a simulation that can be run in real time on a dedicated machine

can generally be run in real-time in a multiuser, distributed form within our framework, since we

can always give it its own machine as a simulation service. Even so, a slower simulation can often

benefit from integration by taking advantage of the area of interest information available to frame-

work plug-ins, which sometimes allow a previously non-interactive application (like radiosity) to

significantly improve its response characteristics by focusing its efforts on more time-critical areas

of the environment.

108

Chapter 6

Model Construction with Floorsketch

6.1 Motivation

Interactive visualization of large virtual models is a very challenging problem, but not a

very interesting one in the absence of large, complex, and useful models. Unfortunately, construc-

tion of large databases is itself a very difficult problem, and one that has historically received little

attention in the research community. Constructing and populating the original Berkeley Walkthru

model of Soda Hall required two man-years of effort for a single building. The initial assumption

was that it would be straightforward to translate the architectural CAD model, created by the archi-

tects as part of their design efforts, into a 3D virtual building model. The Walkthru group rapidly

discovered that this approach was badly flawed. First, CAD models are made to be human readable,

but are often geometrically malformed, and automatic cleanup is very difficult and error-prone. Se-

mantic information, such as room numbers, are often not present in a computer-readable format,

and different CAD primitives are used to represent the same building elements. For example, in the

Soda Hall CAD plans, several different types of line, multi-line, 2D polygon, and 3D volumetric

primitives were used to represent interior walls, in no particular pattern. Certain elements may also

be represented in a topologically inconsistent manner, such as windows being “painted” on wall

surfaces with polygons, rather than actually penetrating the wall geometry. Initially, these incon-

sistencies were resolved by hand and with custom software specific to the Soda Hall CAD models.

Later work by Lewis on the Building Model Generator system (BMG) [67] specifically addressed

the CAD-to-model conversion problem. The result is a multi-stage pipeline that resolves many of

these inconsistencies (Figure 6.1), but even this work was unable to completely automate the pro-

cess. BMG requires a human to go through the CAD plans and make specific partitions and layer

CHAPTER 6. MODEL CONSTRUCTION WITH FLOORSKETCH 109

assignments in the file before the pipeline can handle it, and requires a fair amount of “handholding”

and manual fixup during the various stages of semantic partitioning and extrusion.

Figure 6.1:The Building Model Generator (BMG) converts modified CAD floorplans into 3D City-
walk models, but not without substantial help from the user.

Even if the pipeline worked perfectly, consistently, and with no human interaction, the

CAD-to-model approach is impractical in many common situations. First, a CAD model needs

to be available in the first place; this is not always the case, as many times we will have either a

blueprint or a description of a model, as opposed to actual CAD files. Second, we need a CAD

program available and a person with both CAD expertise and expertise with our software tools.

CAD program licenses can be prohibitively expensive for single users, and CAD expertise can be

lacking in many groups of potential users.

We have observed that, for many practical applications, extreme precision (e.g. to within

an inch) is unnecessary. Real buildings are seldom that precisely related to their plans anyway

(hence the large and lucrative “as-built” industry, which specializes in creating models of buildings

as they stand, as opposed to what the plans say). If we had a method by which a user could “sketch”

floorplans in a way similar to sketching floorplans on a sheet of paper, prototyping new models

would become much easier, and more models could be created with less effort.

The Citywalk Floorsketch program is a result of these observations. Floorsketch is de-

signed to allow modeling by approximating sketching floorplans symbolically in 2D. It assumes no

knowledge of CAD, and can be used effectively with nothing more than a text description or a GIF

photograph of the floorplan in question. This chapter discusses the design and implementation of

CHAPTER 6. MODEL CONSTRUCTION WITH FLOORSKETCH 110

Floorsketch, and describes some results of its use with Citywalk. Floorsketch is not designed to be

a complete modeling solution; rather, it is intended to be useful in situations where CAD extrusion

is difficult or impossible due to poorly formed or missing CAD files, or in situations where rapid

prototyping of a model is more important than high accuracy; e.g. in conceptual studies, or for

conducting simulations where rapid, qualitative exploration of the problem is more important than

extremely precise quantitative results.

6.2 Basic Modeling with Floorsketch

Floorsketch was designed from the ground up with two principles in mind. First, it should

be as easy to create models with the program as it is to sketch floorplans on a paper. Second, the

floorplan models that are generated with floorsketch should be inherently well-formed; that is, the

user simply cannot create a model in floorsketch that could not be efficiently modeled in the City-

walk system. Where these two principles conflict, ease of use is chosen over strict enforcement of

well-formed models, with the caveat that any malformation can be easily found, and communicated

to the user or resolved by the system at extrusion time.

Cell and Portal Construction

The basic modeling operation is creating a room. This is accomplished with a single

button press, which inserts a rectilinear volume into the model with a default width and height,

which can be changed by the user via the preference menu. Volumes can be dragged with the

mouse, or resized via their sides and corners. Dimensions can also be set via a dialog box to precise

values. Volumes snap to alignment with nearby volumes to facilitate placement (Figure 6.2). They

cannot be rotated, because Citywalk cannot deal with non-axis-aligned rooms.

A volume automatically has awall inset. This inset represents the half-thickness of the

wall between rooms; e.g. when two rooms are placed side by side, their insets add together to form

the wall thickness. It is impossible to make a wall with a zero inset; thus, the user cannot create

badly formed (e.g. infinitely thin) walls.

Portals are created by double-clicking on the wall inset region of a room. This creates a

portal in the room against the specified wall. This portal stays inside the room where it was created,

and can only be slid along the wall or widened or narrowed via the handles on its sides. Rooms are

not explicitly connected via these portals; at extrusion time, the portal will automatically “punch

CHAPTER 6. MODEL CONSTRUCTION WITH FLOORSKETCH 111

Windows
(Exterior)

Frustum
Token

Doors
(Interior)

Door
(Exterior)

Wall
Inset

Room
Labels

Figure 6.2:A basic floorplan in Floorsketch, and its components.

through” the wall to any volume that is immediately adjacent. This removes the need for the user

to join rooms explicitly, and makes the interconnection process much easier. Which room the user

creates the portal in is up to them; it depends on which room they would rather have the portal

“travel with” when they copy or move the volumes involved. For example, in the case of a hallway

with many attached rooms, the user would most likely place the doorframes in the rooms. That way,

if another room was copied and nestled into the row, it would have its own door and automatically

connect to the hallway. If the portals were in the hallway, they would have to be manually reshuffled

to make space for the new room (Figure 6.3).

Figure 6.3:Portals move with the room they are in; this makes adding rooms to central hallways
easier, and prevents the user from having to track two-sided entities if the floor layout is modified.

Portals come in three semantic types (Figure 6.4). Windows are the generic type, with a

CHAPTER 6. MODEL CONSTRUCTION WITH FLOORSKETCH 112

sill and soffit height and position on the wall. These appear in yellow on the floorplan. Doors are

different only in that their sill is at floor height; these portals appear in red on the plan. Finally, there

is a special portal type called the “full wall” portal. This portal is the exact dimension of the inset

wall in both sill, soffit, and width; the effect is to “punch out” the entire wall seamlessly into the

adjacent volume. Full wall portals appear in dark purple on the floorplan, and are used to combine

multiple rectilinear basic volumes into a larger, non-rectilinear volume, such as a hallway that turns

several corners.

Figure 6.4:The three flavors of portal (“Door”, “Window”, and “Full Wall”), and how they extrude
into 3D from different 2D configurations.

Tokens

Floorsketch provides the ability to definetokensthat can be instanced and placed in vol-

umes on the floorplan (Figure 6.5). Tokens have an associated 2D icon as well as 3D geometry, and

can be dragged and dropped on or between rooms in the plan. They cannot be dropped outside of a

room, and they move with the room they are in if that room is dragged elsewhere. Tokens normally

correspond to furnishings, but there is also a special token that cooresponds to the user’s eyepoint,

which can be placed in the model to indicate where the user should start when loading the model

for the first time.

CHAPTER 6. MODEL CONSTRUCTION WITH FLOORSKETCH 113

Bookshelf

Desk

Chair

Figure 6.5:Rooms in Floorsketch, populated with tokens representing furniture and view frustums.

Backgrounds

The ability to create and manipulate cells and portals is useful for rapidly sketching out

simple plans or for creating plans from written descriptions of rooms and their interconnections.

However, it is often the case that the user has a digitized picture of a floorplan (in GIF or JPEG

form, for example) and wishes to turn that floorplan into a Citywalk model.

In this case, rather than painstakingly measuring the size of volumes from the floorplan,

the user can load the image into Floorsketch as a background. This includes scaling the image to an

appropriate size to calibrate the measurement units in pixels to the scale of the floorplan. Once this

is done, the user can simply sketch out volumes and portals directly onto the image, lining them up

visually to easily create a fairly accurate model of the building (Figure 6.6).

6.3 Extrusion

Verifying Floorplans

There are only two ways for a floorplan to be invalid in Floorsketch. The first way is if

two volumes overlap; allowing temporarily overlapping volumes was deemed a necessary compro-

mise, because during floorplan construction it is often convenient to “pile up” a bunch of rooms, or

to have temporary overlaps when the user has adjusted one room but not the adjacent ones. Enforc-

ing non-overlap would unnecessarily constrain intermediate configurations in annoying ways. The

CHAPTER 6. MODEL CONSTRUCTION WITH FLOORSKETCH 114

Figure 6.6:Using a JPEG image in the background, the user can more easily “trace” an existing
floorplan into a 3D model.

CHAPTER 6. MODEL CONSTRUCTION WITH FLOORSKETCH 115

second way to make an invalid plan is to have a portal in one room that, when punched through

the intervening wall, overlaps a portal, wall inset, or volume border in the adjacent room. Again,

this was allowed because enforcing the rule during intermediate stages of construction would be

annoying to the user.

In order to guarantee that the plan is well formed at extrusion time, Floorsketch provides

a “verify” button that checks for instances of these two cases. If it finds one, it tells the user exactly

which room and portal caused the error and highlights it on the sketch, making it easy to fix.

Inferences and Adjacency

Several aspects of the resulting model are inferred from the adjacency of volumes in the

floorplan at extrusion time. The most obvious example of this is the portals, which do not actually

connect two volumes until the extrusion takes place. In addition, any section of volume wall that

does not have an adjacent volume is considered to be bordering on the “outside” (Figure 6.7). Thus,

those sections of wall are tiled with outward-facing polygons in the resulting model, and any portals

that punch through to outside are connected with these exterior walls.

Door
(Exterior)

Outer Wall

Door
(Interior)

Figure 6.7:Example of portals that lead to other volumes vs. portals that lead to the outside.

CHAPTER 6. MODEL CONSTRUCTION WITH FLOORSKETCH 116

Positioning the Model in World Space

Often an extruded floorplan is being generated to be inserted into a larger model. To

facilitate this, Floorsketch takes a global transformation as input that positions the extruded model in

an arbitrary world coordinate system. This is used, for example, to allow construction of multistory

buildings; each floor is globally transformed in Z so that it lines up vertically with adjacent floors,

and the X and Y transformations and rotation position the entire stack in world coordinates.

Tokens and Insets

Each token type is assigned a Citywalk model name in the Floorsketch configuration. At

extrusion time, tokens on the floorplan are instanced into the output file with the appropriate trans-

formation to position them in the model as they appear on the floorplan. The bottom Z coordinate

of the token is aligned with the floor of the volume.

Each portal can also specify an inset model. These models refer to a master instance in the

output file, appropriately transformed, rotated, and scaled such that they fit exactly in the volume

of the portal when the model is compiled. Inset models can be composite models; for example, our

standard inset door model has two parts, the frame and the door panel, and when inserted into the

model, the appropriate object associations are activated so that the door can be naturally opened and

closed about its frame hinges.

Extrusion Output

The result of the extrusion process is a set of Unigrafix (UG) files describing the floor,

suitable for compilation with the Citywalk model compiler into a binary 3D model database. The

user has the option of generating a “build file” along with the UG file; this is a Citywalk-readable

script that will execute all the steps to build the floor when run from the Citywalk console. The

extruder can also output asemantic descriptionfile; this file contains the user-assigned names and

bounding boxes of the rooms on the floorplan, so that if these volumes are split by the visibility

engine, an application can rederive the set of cells that corresponded to an original room in the

floorplan.

CHAPTER 6. MODEL CONSTRUCTION WITH FLOORSKETCH 117

6.4 Advanced Applications

Multi-Story Structures

Floorsketch is sometimes used to create multi-story structures, and provides several facil-

ities to assist in that process. One of the global settings in a floorplan is aceiling flangeand afloor

flange. Any volume can be instructed to leave off the floor or ceiling, so that that volume can form

a vertical shaft with either or both of the floors adjacent to it. When a ceiling or floor is removed,

the walls are extended vertically by the ceiling or floor flange height, respectively. Exterior wall

segments are also extended vertically with the ceiling and floor flanges. These flanges allow the

floors to stack properly, with a nonzero interstitial space between them, while having exterior walls

and vertical shafts seamlessly interconnect with each other vertically.

Of course, it is critical that the shafts line up with each other to properly mesh, so Floors-

ketch provides for the ability to “pin down” volumes once they are created. A pinned volume cannot

be dragged or resized. Typical usage of Floorsketch is to either create the vertical shafts on a floor

first, then pin them down and copy the file for use as a template for the adjacent floors; or, alterna-

tively, completely build one floor, pin down the vertical shafts, then copy the file and erase or edit

the adjacent floors appropriately. This guarantees that shafts will properly meet.

Once the floors are extruded individually, creating the entire building is a simple matter

of concatenating all of the Unigrafix files together and compiling them as one unit. This results in a

single model that contains all the floors; if they are properly stacked with the global offset function,

they will mesh perfectly in the output model.

Using Floorsketch for Visualization

In some cases, it is useful to view the output of a simulation or the position of the user’s

eyepoint in a model in real-time on a 2D version of the floorplan; Floorsketch provides a convenient

interface for doing so. When Floorsketch is running alongside a Citywalk client, the user can load

a model of the floorplan they are currently visualizing and connect the Floorsketch instance to it.

This results in an animated version of the User Eyepoint token on the floorplan that shows the user’s

eye position in the model in real time. If the model was generated directly from Floorsketch output,

they are automatically aligned properly.

Furthermore, it is possible to write a simulation view client that renders to the Floorsketch

model rather than rendering to the frame display of the 3D viewer. We have demonstrated this

CHAPTER 6. MODEL CONSTRUCTION WITH FLOORSKETCH 118

capability with a CFAST visualization client that runs from Floorsketch and displays heat levels

and detector activations in real time on the Floorsketch model rather than drawing the conditions

into the 3D view.

6.5 Results

Floorsketch was not intended to be a complete solution to model construction; it was

meant to make model prototyping easier in a set of very specific circumstances. These included

building a model on limited information (such as a simple list of rooms and interconnections with

rough dimensions), building quick prototypes to perform simulations in, and quickly generating

approximately correct floorplans without CAD files. Small, single-floor models are very quick and

easy to create; people often make models with a dozen rooms in a matter of minutes. Larger mod-

els have shown an equal degree of success; we were able to construct an interior model of MIT’s

10-floor Laboratory for Computer Science (LCS) in about 30 minutes per floor, or about 5 hours

(Figure 6.8). This model was created by using scans of the LCS blueprints as backgrounds in Floors-

ketch, using the punch-out and stacking abilities to model stairwells and elevator shafts, and using

the global positioning mechanism to place the model within a reconstructed rectangular shell on a

terrain model calibrated to world coordinates via GPS. The shell was built from photographic data

and was only used to get the “cornerstone” coordinate for the global positioning of the Floorsketch

model. The result was a stacked interior model of the building that fit within the shell to within 6

inches on all sides, populated with openable doors. In order to perform the same task with the older

Walkthru tools, the AutoCAD models of the floors would have been necessary (and these were not

readily available to us) and extensive processing, both human-assisted and automated, would have

been necessary to massage the CAD file into a 3D floorplan.

Floorsketch requires no setup, no CAD model or available CAD program (which can be

very expensive), and no knowledge of CAD. This makes it invaluable in cases where limited source

data is available or a model is needed quickly. The Floorsketch models may not be a completely

accurate representation of the underlying plan; they are typically several pixels off, due to user

positioning error, typically corresponding to an inch or two. On the other hand, if the building

wall centers lie on a fixed grid, then the Floorsketch model could bemoreaccurate, given cursor

snapping and the inaccuracies in the CAD model. Floorsketch also cannot represent angular, off-

axis, or more complex structural geometry; this shortcoming reflects the fact that it was designed

specifically to construct Citywalk models, which need primarily rectilinear geometry due to the

CHAPTER 6. MODEL CONSTRUCTION WITH FLOORSKETCH 119

Figure 6.8:The 12-story MIT Laboratory for Computer Science (LCS), modeled in Floorsketch from
JPEG images of its floorplans in less than 1 day. Left, the stacked floors extruded from Floorsketch.
Right, the exteriors of the buildings in Tech square (LCS building is circled). The interior fits inside
the exterior shell to within 6 inches on all sides.

underlying KD-tree based cell structure.

The one major problem we have had with Floorsketch is the difficulty of maintaining a

network of non-rectangular rooms that represent a more complex room. In these cases, it would be

easier if Floorsketch provided the ability to do arbitrarily shaped axis-aligned geometry for volumes,

rather than just rectilinear geometry. Were we to undertake a redesign of Floorsketch, we would

most likely attempt to represent more complex rectilinear geometry for volumes.

120

Chapter 7

Discussion

7.1 Architectural Analysis

There were two major goals for this project. First, we wanted to extend the functionality

and scope of the Berkeley Architectural Walkthru project by providing a foundation for much larger,

distributed, multiuser systems, which could combine multiple different types of model, different

visibility approaches, and different forms of data into one database while maintaining the interactive

performance the first generation walkthru provided. Second, we wanted to provide a framework

by which physical simulators written by other research groups could be integrated into the virtual

environment to enhance the utility of both systems.

The resulting system is essentially a two-tier model that dynamically distributes environ-

ment information via two channels: a high-performance, intelligent, direct channel that automates

management of time-critical data (e.g. the simulation data distribution stratum), and a database

channel that provides persistence and fine grained data sharing abilities at the cost of additional

latency (e.g. the database layer).

Why the two tier architecture?

Given an object database server that both simulation client and simulation agent can com-

municate with, it would be possible to have the simulator simply write simulation results directly

into the database and have the client read the data back out as it needed it. This approach would

work with a sufficiently fast database and network, and sufficient prefetching of data by the client,

a simulator that works sufficiently “ahead of time,” and a sufficiently fast network. However, this

CHAPTER 7. DISCUSSION 121

approach greatly increases the amount of traffic required of all the participants. First, the fact that

there is an additional node in the communication (e.g. the database server) adds at least one “unit”

of latency to the process. Second, the “dumb” server approach requires additional communication

between the database server and client, because the client needs to actively request not only the data

itself, but also the indexing structures that allow it to discern which data it needs. Conversely, a

smarter server (such as the simulation manager) can proactively send data it knows the client needs

by processing the indexing structures locally. Third, this increases processing time on all partici-

pants; the client must now process the indexing information and database notifications as well as

the simulation results, the simulation server must construct indexing structures that allow the client

to perform this task efficiently, and the database server must process the entire set of interactions

with both agents. Fourth, this approach is less scalable as it is locked into a star topology with

a database server as the center; intelligent simulation managers can operate in other topologies,

such as the ring topology that has been established to be better for simulations in many cases (e.g.

Funkhouser’s RING work).

Simulation Coupling

The two-tier architecture effectively addresses high speed, read-only coupling and low

speed, interlocked coupling, with free interaction of data between the layers (for example, the

physics simulator creates dynamic information that is normally distributed through the high-speed

direct layer, but that information can also be committed to the database and thus become visible

through the lower layer to clients not directly connected to the simulator). However, we have not

directly addressed interactions that require real time performance and tight interaction between

agents. A (somewhat contrived) example might be to have two physics simulators operative in the

same volume on different object sets, then have those objects interact with each other “across” the

two simulators. Each system’s computation speed would be limited to the latency of sending each

step of data to the other system. In the worst case, such interactions between complex simulations

would likely lead to instabilities or very poor performance.

Unfortunately, it is not clear that there is any general-purpose solution to this problem.

There is an entire field of study that focuses on partitioning computations efficiently between pro-

cessors, and that field has many and varied approaches to such partitioning. As such, we are forced

to leave simulations that require very tight coupling to the user who is writing to our API; they

will need to select the phase of computation at which they can afford to hand the data over to our

CHAPTER 7. DISCUSSION 122

framework for general distribution.

In this vein, it is interesting to note that, for the simulators that we have integrated thus

far, such partitionings can actually be done relatively efficiently in our system, even replicating

efficient techniques known in the literature for those problems. For example, in closed environment

radiosity, one can achieve a good solution between separate radiosity agents by partitioning the

problem along the boundaries between contiguous sets of volumes, each set of volumes having a

dedicated radiosity agent, and having the agents treat the adjacent volume’s results as constant for

several iterations of their local solution. This is very compatible with having each agent act as a

simulation client to neighboring agents, updating the “constant” state of the other room periodically

via simulation data updates, and generating internal updates quickly within their volumes [43].

Similarly, for physics agents, a similar partition would lead to objects being “handed off” between

agents as they cross through portal regions between local sets of volumes. These two problems,

distributed radiosity and distributed physical simulation, would admit similar optimizations and a

similar style of simulator-to-simulator coupling through our framework. We believe these examples

speak to the generality of the partitioning of data by volume, which is the basis of our real-time data

distribution framework.

Why not use existing common object protocols?

A fairly obvious question to ask is why we didn’t simply use off the shelf database and

distributed object frameworks to build our system. We covered the technical reasons for using

our own database instead of a commercial one in chapter 3. In brief, we feel that the additional

capabilities and nominally optimized nature of the commercial databases do not offset the cost of

using a foreign and unmodifiable code base.

There are two major common object protocol standards in existence that provide some-

what similar functionality to the network tier of our system; COM (the Common Object Model,

from Microsoft, and in common use in the various versions of Windows [68]) and CORBA (The

Common Object Request Broker Architecture, which is an open standard under development [69].

These systems provide distributed objects with remote procedure call (RPC) and interface abstrac-

tions, and allow for platform independence of objects (and, in some cases, language independence).

However, they are relatively “dumb” protocols, and as such would only serve to replace the com-

munication and object serialization portions of our framework. Furthermore, that serialization and

communication process is “hidden” behind the COM or CORBA API, and as such we would nei-

CHAPTER 7. DISCUSSION 123

ther be able to use the packing and marshalling mechanisms to store the objects in a persistent store,

nor would we have high-level control over the bandwidth usage of the system. Finally, there are

the practical issues; using COM would tie us exclusively to Windows platforms, and there are no

good implementations of CORBA in existence, since it was a “design by committee” system with

no party responsible for the actual implementation.

7.2 Relationship to Existing Techniques

An important measure of success of a framework system is how well we can replicate

the functionality of existing visualization and modeling systems efficiently within this second-

generation system architecture.

7.2.1 Database Techniques

Basic architectural walkthrough functionality, as provided by the first-generation Berke-

ley Walkthru and UNC walkthrough projects, is well incorporated into the system. However, the

database is strictly superior to that of the first-generation Walkthru, incorporating not only the abil-

ity to do arbitrary swapping of model components into and out of memory, but also incorporating

the tools needed to manage simultaneous viewing and editing of the model (e.g. locks, watches, and

transactions).

Real-time city walkthroughs can incorporate such a large quantity of data as to require

databases to be distributed among multiple large servers that can stream data to the clients [22]. Our

second-generation architecture is designed to fully support this mode, with event-driven prefetching

of objects from remote databases, and the ability to connect any client to any number of database

services simultaneously.

In general, there are three possible approaches in sharing a world model: replicate the

model entirely on each client and disallow changes to it [24, 28], “centralize” the model and have

all clients attach to it [22], or use a truly distributed environment with clients each acting as local

databases, replicating aspects of the world model to other nearby clients [70, 71]. The first of these

approaches is simple but yields minimal interactivity; of course, replicating a database at each client

is simple for any system, and requires only the simplest database technology. The second approach

requires a database that provides full multiuser semantics (locking and watches) which is provided

by our second-generation database. The last approach requires both multiuser semantics and the

CHAPTER 7. DISCUSSION 124

ability to attach, detach, and interact with many different databases at once, on different machines,

simultaneously. We also support this mode of operation with server-client mode and the ability to

provide database services from any node in the network to any other node. Thus, we can claim to

support all of these modes of operation with our second-generation architecture.

7.2.2 Communication and Interaction Techniques

Communication techniques used by various shared environments include both point-to-

point and multicast techniques. The former is more common; the latter is typically usable only with

tightly coupled clients [24]. Our second-generation system simulation data network API explicitly

provides for multicast semantics to system clients, so that in our data distribution network can

support multicast approaches to provide low-latency distribution of local model elements.

Consistency can be maintained loosely, with voting approaches [70], or strictly enforced

with more traditional locking mechanisms. Again, we can support both approaches with global

object identifiers provided by our database layer and point-to-point and local multicast provided by

the data layer, and local locking and watch semantics provided by the second-generation database.

7.2.3 Distributed Simulation Techniques

Most work in this area has been concerned with simulations that are highly localized to

peer-to-peer interactions between small groups of actors [24, 29]; as far as we are aware, Citywalk

is the first system to address distribution of large-scale environmental data. However, a simple

extension of the volume tagging scheme would result in the Citywalk data distribution network

providing the same functionality as a peer-to-peer system; indeed, our multiuser simulation agent

replicates a peer-to-peer system quite well already.

7.3 New Directions

7.3.1 Simulation Triggering

In the current Citywalk system, the user must explicitly trigger simulations through some

mechanism provided by the UI plugin for the desired simulator. Of course, the real world doesn’t

work that way; physics are always present, and one only needs to take an appropriate triggering

action (e.g. pushing a book off the desktop, or throwing a smoldering match into a wastebasket full

of paper) for the “simulation” to begin. It seems natural to ask the same of the virtual environment;

CHAPTER 7. DISCUSSION 125

when an action “appropriate” to a given simulator is performed, that simulator should transparently

begin running and presenting its results in the current environmental view.

While such behavior would certainly contribute to therealismof the environment, it poses

a number of difficult issues. We have discovered in the process of designing a general-purpose

framework that the type of data required by and generated by the simulator cannot be predicteda

priori . Fire simulators require materials and chemical information; dynamics simulators need mass

and moment of intertia. Fire simulators produce atmospheric conditions and thermal information;

dynamics simulators move objects in the same way a user might. In response to these varying needs,

both the incoming and outgoing information for a simulator type must be specified by the user who

is integrating the simulation into the framework, and the framework assumes very little about the

form of the data. Simulation triggering has the same problem. The type of event that would or

should trigger a simulation varies with the type of simulation as well as the situation the user is in.

Throwing an object onto another object may or may not be a fire event, based on the composition

and state of the objects in question (a lit match onto paper triggers a fire; an unlit match onto paper

does not; a book onto a table does not, unless the book is already on fire and the table is flammable,

etc.). The biggest question is, can we abstract anything out of the process of triggering a simulation

that would allow us to provide any assistance to the simulation integrator at all? If the answer is

no, then there is no way to improve upon the current situation, which is to have the UI module for a

simulator or the simulator itself monitor world state via watches and client callbacks for any events

that interest it (the simplest possible case being watching for the user to press a “start fire” button).

A second obstacle is the fact that there are also conditions under which a simulation may

be called for in a strict physical sense, but may not be desired in ateleologicalsense [37]. That

is, the user may be moving a burning match through an intermediate position when it contacts a

flammable surface, and the user doesnot want a simulation to trigger, because they are setting

up an entirely different situation. This observation proved critical to the implementation of the

Object Associations editing framework, and has serious implications for an automated triggering

mechcanism. Simulations can be very resource-intensive, and starting one against the user’s wishes

can be costly in terms of system response. At the very least, the user requires a means of deactivating

certain types of triggers while they are in intermediate states of world manipulation.

CHAPTER 7. DISCUSSION 126

7.3.2 Temporal Navigation and Representation

Representation of time is interesting from both a data representation point of view and a

navigation point of view. Navigation in space is both natural to humans, and widely explored in the

HCI literature and in industry. Navigation in time is more difficult; the only intuitive analog most

people have to temporal navigation is recording devices such as VCR’s and tape decks. Unfortu-

nately these interfaces are one-dimensional and provide little interface to having multiple time axes

available at once to the user, as is the case when the user may have simultaneous access to many

virtual-time simulations, both ongoing and previously recorded. Navigating multiple time axes at

once is useful for the purposes of comparing the results of simulations as well as synchronizing

different simulators operating simultaneously. We need better mechanisms and interfaces for such

navigation.

This leads naturally to the representation and interaction between these multiple timelines.

Consider a user opening a door in the Citywalk environment. Do they mean to physically simulate

the interactions of the door with the environment? What about the interactions of the newly opened

door with running simulators? Should those simulations be restarted with the door open, or should

the door be considered to be opened at the virtual time being viewed at the moment? What if the

simulation is paused or being directly manipulated? These questions all relate to how the time axis

is handled in a simulation-enriched model, and we do not have good, general answers at this point.

7.3.3 Integrated Rendering Frameworks

The system that we have described and implemented allows us to navigate and run simu-

lations in a collection of buildings that fit into a single homogeneous database. One clear avenue for

future evolution of walkthrough systems is an extension to integrated systems that involve models

of different kinds and an expansion to models of wider scope and larger scale. Many groups have

independently built virtual worlds with very sophisticated machinery for visibility culling, LOD

selection, efficient collision detection, and other simulation tasks. This machinery is often tied very

closely to the internal structure of the particular walkthrough system. For example, NPSNet [24]

uses different basic structures from the downtown LA model [22], the UNC coal-firing plant [20],

or the Berkeley Soda-Hall Walkthru model [5].

Conceptually, the simplest approach to combining such models into a virtual world would

be to convert all data into a single walkthrough model format and to use one set of tools to navigate

it. However, such an import task could be impractically large, and there might be primitives that

CHAPTER 7. DISCUSSION 127

translate poorly and structures that would be lost. It is thus preferable to use these models as they

were designed, with their abstractions and machinery in place.

We propose to introduce another level of abstraction to the world model. Rather than

merely considering scene graph objects, cells, and actors, we need to add the concept of a walk-

through space, which has its own visibility culling and rendering methods, and which may reside

on a remote system. We will let the individual walkthrough systems handle the rendering of their

model worlds, since they have the appropriate machinery, and we will create a new layer of inte-

gration via a general communication interface designed to handle rendering queries between these

different heterogeneous systems.

The simplest form of a query will consist of a view frustum relative to the coordinate

frame of the child space within the integrated heterogeneous model. A single view of a scene will

result in a recursion into all spaces that are visible in the view. Each space will collect up visible

geometry from its contained spaces, which will be returned in the query response to its parent

space. The rendering program will gather up all of the geometry and impostors from all spaces that

are visible on each frame and render them together.

The simplest interface offers occlusion culling only in the most rudimentary form: that

derived from the view frustum. Almost every virtual reality system provides more advanced mech-

anisms for culling hidden objects. If we want to provide such mechanisms at the highest level of

abstraction, our interface must be capable of transmitting occlusion information. In order to achieve

this goal, we must devise a format to describe occlusion information in the form of a generic vis-

ibility structure, for example, as a portal tree plus occluders. Information in this format may then

be transmitted for a particular view across multiple types of walkthrough models. For example, we

may use a cell and portal visibility scheme within a building [14, 5], and a cull horizon for looking

across a city [72]. A single view from within a building may include occlusion specifications from

both of these mechanisms at once.

So far, we have only described an interface forrenderingof heterogeneous models. Clearly,

before too long people will demand all the same capabilities that are now available in second-

generation systems: simulation and interaction. This will necessitate transmittal of corresponding

information (forces, temperatures, light flux, etc.) through the interface. This is an open grand

challenge: how to deal with interactions that go across the seams of such a heterogeneous world.

Opening up simulation across the boundaries of these models may require a very large bandwidth

of communication, and interactive simulations may be difficult to achieve at interactive rates with

the long feedback delay inherent in distributed systems.

CHAPTER 7. DISCUSSION 128

7.4 Summary

We have presented the salient features of Citywalk that we believe to be representative

of second generation virtual walkthrough environments. Our environment combines many of the

techniques that were individually developed on several different first generation walkthrough sys-

tems. Its architectural framework is built on top of an object-oriented database management system

and makes use of an intelligently buffered communication layer. These abstractions enable a fairly

platform independent system and make it easier to distribute its functionality over many different

computing sites. Different interaction and simulation engines can be added to the environment in a

modular manner, as demonstrated by the six agents described in this paper.

We conclude with a vision of a third generation framework that would allow us to combine

walkthrough systems with different organizations into a heterogeneous world model, in which the

various model spaces communicate through a standardized interface that handles suitably abstracted

and extended rendering requests. We also propopse continuing work in navigation, user interfaces,

and more intuitive and useful triggering of simulation agents in the framework.

7.5 A Final Thought

Much of the power of the framework we have built is in its expandability, as a basis

for future work in large virtual environments. There has been a large amount of recent work in

acquisition of very large city models, and we believe that integration of the many visualization

techniques that are available in the research literature, as well as physical behaviors as explored in

this thesis, will be necessary to fully realize the utility of these large models. Integration is not a

very well-explored issue in the community, as it leans more towards “engineering” than “science,”

and so suffers from being, in a sense, less “publishable.” Integration of these various approaches

into a seamless whole is a large problem, and one that we believe is worthy of study in its own right.

Hopefully we have provided the groundwork for both this research group, and our collaborators

at MIT and here at Berkeley, to continue this process and to produce some truly large-scale and

highly integrated virtual environments that provide both realism and a high level of utility for real

applications.

129

Bibliography

[1] Richard W. Bukowski and Carlo H. Séquin. Interactive simulation of fire in virtual building

environments. InComputer Graphics (Proceedings of SIGGRAPH 1996), August 1997.

[2] G. Ward. The radiance lighting simulation and rendering system, 1994.

[3] Taisei Corporation. Yebisu garden palace. Video, 1994.

[4] T. A. Funkhouser, I. Carlborn, G. Elko, M. Sondhi, and J. West. A beam tracing approach to

acoustic modeling for interactive virtual environments. InComputer Graphics (Proceedings

ACM SIGGRAPH ’98), pages 21–32, July 1998.

[5] Thomas A. Funkhouser, Seth J. Teller, Carlo H. Séquin, and Delnaz Khorramabadi. UCB

system for interactive visualization of large architectural models.Presence: Special Issue on

Teleoperators and Virtual Environments, 5(1):13–44, Winter 1995.

[6] P. Reneke et. al. R.D. Peacock, G.P. Forney. CFAST, the consolidated model of fire and smoke

transport. 1993.

[7] G.T. Chou and S. Teller. Multi-level 3d reconstruction with visibility constraints. InProceed-

ings of Image Understanding Workshop, 1998.

[8] S. Coorg and S. Teller. Extracting textured vertical facades from controlled close-range im-

agery. InProceedings of CVPR, pages 625–632, 1999.

[9] M. Bosse, D. De Couto, and S. Teller. Eyes of argus : Georeferenced imagery in urban

environments. InGPS World, pages 20–30, April 2000.

[10] Bruce J. Schachter. Computer image generation for flight simulation.IEEE Computer Graph-

ics & Applications, 1(5):29–68, 1981.

BIBLIOGRAPHY 130

[11] B. J. Schachter.Computer Image Generation. John Wiley, New York, 1983.

[12] Seth Teller. Visibility Computations in Densely Occluded Polyhedral Environments. PhD

thesis, Dept. of EECS, University of California at Berkeley, October 1992.

[13] M.J. Zyda, D.R. Pratt, J.G. Monahan, and K.P. Wilson. Npsnet: Constructing a 3d virtual

world. In ACM SIGGRAPH Special Issue: 1992 Symposium on Interactive 3D Graphics,

march 1992.

[14] John M. Airey. Increasing Update Rates in the Building Walkthrough System with Automatic

Model-Space Subdivision and Potentially Visible Set Calculations. PhD thesis, Dept. of CS,

U. of North Carolina, July 1990. TR90-027.

[15] Frederick P. Brooks, Jr. Walkthrough — A dynamic graphics system for simulating virtual

buildings. In Frank Crow and Stephen M. Pizer, editors,Proceedings of 1986 Workshop on

Interactive 3D Graphics, pages 9–21, 1986.

[16] R. Deyo, J. Briggs, and P. Doenges. Getting graphics in gear: Graphics and dynamics in

driving simulation, 1988.

[17] M.R. Macedonia, D.P. Brutzman, and M.J. Zyda et al. Npsnet: A multi-player 3d virtual envi-

ronment over the internet. InProceedings of the 1995 Symposium on Interactive 3D Graphics,

pages 93–94, April 1995.

[18] Christer Carlsson and Olof Hagsand. DIVE — A platform for multi-user virtual environments.

Computers and Graphics, 17(6):663–669, November–December 1993.

[19] Thomas Funkhouser.Database and Display Algorithms for Interactive Visualization of Archi-

tectural Models. PhD thesis, Dept. of EECS, University of California at Berkeley, September

1993.

[20] D. Aliaga, J. Cohen, A. Wilson, H. Zhang, C. Erikson, K. Hoff, T. Hudson, W. Stuerzlinger,

E. Baker, R. Bastos, M. Whitton, F. Brooks, and D. Manocha. MMR: An interactive mas-

sive model rendering system using geometric and image-based acceleration. InProceedings

Symposium on Interactive 3D Graphics, pages 199–206, April 1999.

[21] J. Barrus, R. Waters, and D. Anderson. Locales and beacons: Precise and efficient support

for large multi-user virtual environments.Proceedings of VRAIS’96, Santa Clara CA, pages

204–213, 1996.

BIBLIOGRAPHY 131

[22] W. Jepson, R. Liggett, and S. Friedman. An environment for real-time urban simulation. In

Proceedings Symposium on Interactive 3D Graphics, pages 165–166, 1995.

[23] P. W. Maciel and P. Shirley. Visual Navigation of Large Environments Using Textured Clus-

ters. InProceedings of the Symposium on Interactive 3D Graphics, pages 95–102, 1995.

[24] M. J. Zyda, D.R. Pratt, J.G. Monahan, and K.P. Wilson. NPSNET: Constructing a 3d virtual

world. In Proceedings Symposium on Interactive 3D Graphics, 1992.

[25] M. Macedonia, M. Zyda, D. Pratt, D. Brutzman, and P. Barham. Exploiting reality with

multicast groups: A network architecture for large-scale virtual environments.Proceedings of

VRAIS’95, 1995.

[26] Mingyu Lim and Dongman Lee. Improving scalability using sub-regions in distributed virtual

environments.

[27] T. A. Funkhouser, C. H. Śequin, and S. J. Teller. Management of Large Amounts of Data in

Interactive Building Walkthroughs. InProceedings Symposium on Interactive 3D Graphics,

pages 11–20, March 1992.

[28] Thomas A. Funkhouser. Ring: A client-server system for multi-user virtual environments.

Proceedings of the 1995 Symposium on Interactive 3D Graphics, pages 95–92, April 1995.

[29] J. Cremer, J. Kearney, and H. Ko. Simulation and scenario support for virtual environments.

Computers and Graphics, 20(2):199–200, 1996.

[30] S. Doi, T. Takei, and Y. Akiba et. al. Real-time visualization system for computational fluid

dynamics. 37(1):114–123, January 1996.

[31] J. Cohen, M. Lin, D. Manocha, and M. Ponamgi. I-collide: An interactive and exact collision

detection system for large-scale environments. InProceedings of the 1995 Symposium on

Interactive 3D Graphics, pages 189–196, April 1995.

[32] B. Mirtich and J. Canny. Impulse-based simulation of rigid bodies. InProceedings of the 1995

Symposium on Interactive 3D Graphics, pages 181–188, April 1995.

[33] S. Bryson. The virtual windtunnel: A high-performance virtual reality application. InIEEE

Virtual Reality Annual International Symposium, pages 20–26, 1993.

BIBLIOGRAPHY 132

[34] S. Bryson. Virtual reality in scientific visualization.Communications of the ACM, 38(5):62–

71, May 1996.

[35] T.A. Defanti, D.J. Sandin, and G. Lindahl et. al. High bandwidth and high resolution immer-

sive interactivity. InVery High Resolution and Quality Imaging, pages 198–204, 1996.

[36] G. Singh. Bricknet: Sharing object behaviors on the net. InProceedings of the IEEE Virtual

Reality Annual Symposium, pages 19–25, 1995.

[37] Richard Bukowski and Carlo Séquin. Object associations: A simple and practical approach

to virtual 3d manipulation. InProceedings of Symposium on Interactive 3D Graphics, pages

131–138, April 1995.

[38] Akmal B. Chaudhri and Peter Osmon. A comparative evaluation of the major commercial

object and object-relational dbmss: Gemstone, o2, objectivity/db, objectstore, versant odbms,

illustra, odapter and unisql.

[39] T. A. Funkhouser and C. H. Séquin. Adaptive display algorithm for interactive frame rates

during visualization of complex virtual environments. InComputer Graphics (Proceedings

ACM SIGGRAPH), pages 247–254, August 1993.

[40] M. Mine and H. Weber. Large models for virtual environments : A review of work by the

architectural walkthrough project at unc.Presence: Teleoperators and Virtual Environments,

5(1):136–145, 1995.

[41] M. Kofler, H. Rehatschek, and M. Gruber. A database for a 3d gis for urban environments sup-

porting photo-realistic visualization.International Archives of Photogrammetry and Remote

Sensing (ISPRS), 31, 1996.

[42] S. Chenney and D. Forsyth. View-dependent culling of dynamic systems in virtual environ-

ments. InProceedings of the 1997 Symposium on Interactive 3D Graphics, pages 55–58, April

1997.

[43] Seth Teller, Celeste Fowler, Thomas Funkhouser, and Pat Hanrahan. Partitioning and ordering

large radiosity computations. InComputer Graphics (Proceedings of SIGGRAPH 1994), pages

443–450, July 1994.

[44] J. Postel. RFC 793: Transmission Control Protocol, 1981.

BIBLIOGRAPHY 133

[45] J. Postel. RFC 768: User Datagram Protocol, 1980.

[46] K. Gong and L.A. Rowe. Parallel mpeg-1 video encoding. InProceedings of the 1994 Picture

Coding Symposium, September 1994.

[47] Brian Mirtich. Impulse-Based Dynamic Simulation of Rigid Body Systems. PhD thesis, Uni-

versity of California, Berkeley, 1996.

[48] D.G. Aliaga. Visualization of Complex Models Using Dynamic Texture-based Simplification.

In Proceedings IEEE Visualization, pages 101–106, October 1996.

[49] G. Schaufler. Nailboards: A rendering primitive for image caching. InRendering Techniques,

pages 151–162. Springer-Verlag, 1997.

[50] L. Darsa, B. Costa, and A. Varshney. Navigating static environments using image-space sim-

plification and morphing. InACM Symposium on Interactive 3D Graphics, pages 25–34, 1997.

[51] F. Sillion, G. Drettakis, and B. Bodelet. Efficient impostor manipulation for real-time visu-

alization of urban scenery. InComputer Graphics Forum (Proceedings Eurographics), pages

207–218, 1997.

[52] G. Schaufler and W. Stürzlinger. A three-dimensional image cache for virtual reality. In

Computer Graphics Forum (Eurographics 96), pages 227–236. 1996.

[53] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder. Hierarchical image caching

for accelerated walkthroughs of complex environments. InComputer Graphics (Proceedings

ACM SIGGRAPH), pages 75–82, August 1996.

[54] W. R. Mark, L. McMillan, and G. Bishop. Post-rendering 3d warping. InProceedings Sym-

posium on Interactive 3D Graphics, pages 7–16, April 1997.

[55] D.G. Aliaga and A. Lastra. Architectural Walkthroughs Using Portal Textures. InProceedings

IEEE Visualization, 1997.

[56] Thomas A. Funkhouser. Coarse-grained parallelism for hierarchical radiosity using group

iterative methods. InComputer Graphics (Proceedings of SIGGRAPH 1996), pages 343–352,

August 1996.

[57] Andrew Willmott, Paul Heckbert, and Michael Garland. Face cluster radiosity.Eurographics

Rendering Workshop 1999, 1999.

BIBLIOGRAPHY 134

[58] Shenchang Eric Chen. Incremental radiosity: An extension of progressive radiosity to an

interactive image synthesis system.Computer Graphics (Proceedings of SIGGRAPH 90),

pages 135–144, August 1990.

[59] David W. George, François X. Sillion, and Donald P. Greenberg. Radiosity redistribution for

dynamic environments.IEEE Computer Graphics & Applications, 10(4):26–34, July 1990.

[60] Stefan M̈uller and Frank Scḧoffel. Fast radiosity repropagation for interactive virtual envi-

ronments using a shadow-form-factor-list.Fifth Eurographics Workshop on Rendering, pages

325–342, June 1994.

[61] David A. Forsyth, Chien Yang, and Kim Teo. Efficient radiosity in dynamic environments.

Proceedings Eurographics Workshop on Rendering, pages 313–323, June 1994.

[62] George Drettakis and François X. Sillion. Interactive update of global illumination using a

line-space hierarchy. InComputer Graphics (Proceedings ACM SIGGRAPH), pages 57–64,

August 1997.

[63] Philippe Bekaert and Yves D. Willems. Importance-driven progressive refinement radiosity.

Proceedings Eurographics Workshop on Rendering, pages 316–325, June 1995.

[64] Attila Neumann, Ĺaszĺo Neumann, Philippe Bekaert, Yves Willems, and Werner Purgathofer.

Importance-driven stochastic ray radiosity.Proceedings Eurographics Workshop on Render-

ing, pages 111–122, June 1996.

[65] F. Scḧoffel. Online radiosity in interactive virtual reality applications.ACM Symposium on

Virtual Reality Software and Technology, September 1997.

[66] François X. Sillion and Claude Puech. Radiosity and global illumination. 1994.

[67] Richard Lewis.Generating Three-Dimensional Building Models from Two-Dimensional Ar-

chitectural Plans. PhD thesis, Dept. of EECS, University of California at Berkeley, May 1996.

[68] Don Box. Essential COM. Object Technology Series. Addison-Wesley, 1998.

[69] Alan Pope.The CORBA Reference Guide. Addison-Wesley, 1998.

[70] A. Frcon, H. J-Aro, and S. Stenius. Dive - the distributed interactive virtual environment - dive

files description for dive version.

BIBLIOGRAPHY 135

[71] R.C. Waters, D.B. Anderson, and J.W. Barrus et. al. Diamond park and spline: A social

virtual reality system with 3d animation, spoken interaction, and runtime modifiability.MERL,

January 1996.

[72] Laura Downs, Tomas M̈oller, and Carlo Śequin. Occlusion horizons for driving through urban

scenes. InProceedings of Symposium on Interactive 3D Graphics, pages 21–25, 2001.

136

Appendix A

Library API Reference

This appendix provides an overview of the APIs, classes, and functions implemented for

this thesis.

A.1 System Library (system)

The system library provides low-level, C++ language-based compatibility functions to

bridge gaps between operating systems and compilers, and provides enhanced error reporting facil-

ities.

A.1.1 Compatibility Functions (system.h, compat.[h,c])

These files are concerned with providing defines and function stubs that provide missing

functions like bcmp/bzero (which was used extensively in the original SGI walkthrough, but is not

available on Windows) to the code when compiled on different architectures.

A.1.2 Error Reporting (errors.[h,c])

These error reporting functions are invaluable as a cross-platform tool, asstderr is not

well defined across non-UNIX operating systems (e.g. Windows does not provide a standard console

for all processes), and as a tool for logging errors from multiple batch runs of the program.

APPENDIX A. LIBRARY API REFERENCE 137

WKReportError, WKPrintToConsole

These functions take argument lists identical toprintf, except that they route their output

to locations other than the console. These extra routings are controlled by the additional functions,

defined below.

WKReportError allows the specification of an additional error type tag as the first argu-

ment. There are several error types defined inerrors.h, ranging from warnings, to errors, to fatal

errors. Extra behavior is produced by these tags:

1. WKERR NONFATAL: Causes the error to not only be written to the specified target loca-

tions, but it will also pop up an immediate modal dialog box that informs the user of the

problem.

2. WKERR FATAL: Will do everything NONFATAL does, plus force an immediate system exit.

3. WKERR WARNING, WKERR COMMENT: Prepend prefix strings to the output (“WARN-

ING:” and “Comment:” respectively) which allows these types of message to more easily be

stripped from the error log file produced byWKSetErrorScriptFile.

WKSetErrorScriptFile

Causes copies of the error messages to be printed to the specified stream. There is only

one stream maintained at any time.

WKSetConsolePrintCallback

Causes the specified callback function to be invoked with a copy of each error message as

they are generated.

wkprintf, wkeprintf

These functions are aliases forWKPrintToConsoleandWKReportErrorrespectively; they

are a bit easier to type and read.

A.2 Core Class Library (gsim)

Thegsim library provides two major sets of functions. First, it provides higher-level ab-

stractions of common operating system facilities, including multithreading (which includes locking

APPENDIX A. LIBRARY API REFERENCE 138

and events), sockets and socket connections, and timing facilities (in floating-point seconds rather

than system-specific integer fixed point formats). Second, it provides a global base class from which

C++ objects can be inherited; this base class provides greatly enhanced runtime type identification

(RTTI), supporting a global class factory and unique, universal integer IDs for all classes, and a

serialization interface (corresponding “smart buffer” class) that provide for a common, machine-

independent serialization API across all objects.

A.2.1 Socket Abstraction (rtsocket.[hpp, cpp])

This code provides an abstracted, OS-independent socket interface. The two major classes

areRtSocketandRtSocketPort, which are the socket object and the port object (to which incoming

sockets connect) respectively. The semantics of these sockets differ slightly from the standard UNIX

form; they default to an asynchronous mode of operation, allowing the user to specify a callback

function which is called from a dispatch thead whenever incoming data is detected, and another

callback which is invoked if an error condition is detected on the socket. This socket code does not

provide any additional buffering; data must be consumed by the callbacks as it comes in.

TheRtSocketPort object is created to listen on a port on the current machine. The user

can either poll for connections, or instruct the port to launch a new thread each time a new socket

connects; in this case, the user provides a callback function to be invoked in the thread with the

newly created socket.

A.2.2 Channel Abstraction (rtchannel.[hpp, cpp])

The RtChannel is an extra abstraction layer that can be wrapped around a socket. The

channel provides the concept of allocatablebandson a socket, thus partitioning the socket into

many independent two-way bands of communication that can be monitored as a group. These

bands each operate via asynchronous callbacks like the socket itself, but they each maintain their

own buffer, and a central dispatch thread automatically reads incoming socket data and routes it to

the specified band buffer. The channel also specifies two different forms of message: acommand

message consisting of a single integer, or adatamessage, which is a standard variable-length packet.

The channel also provides several utilities, including the ability to register callbacks for

data flow (to provide for benchmarking and logging) and functions to estimate latency on the socket.

Finally, the channel abstraction removes any size restriction on packets; it has the ability

to split up and recombine large packets transparently, removing any requirement for higher level

APPENDIX A. LIBRARY API REFERENCE 139

operations to worry about maximum packet sizes.

A.2.3 Timer Facilities (rttimer.[hpp,cpp])

This package provides OS-independent timing and interval callback facilities. ClassRt-

Timer serves both these functions; as a class, each instance provides a separate timer that can be

paused, restarted, and have a different time velocity (e.g. ratio of timer time to real time, which

can be negative to cause time to flow backward). These objects inherit from the packable base class

and implement the packing interface, so they can be transmitted to other entities on the network to

provide timer synchronization. The class also contains several static functions which can return the

current system time, and provide a global interval callback mechanism (e.g. the user can register

callback functions to be invoked at a specified interval).

A.2.4 Threading Facilities (rtthread.[hpp,cpp])

The RtThread package provides OS-independent threading and synchronization prim-

itives. The three component classes areRtThread, which acts as a both thread launcher and

the controller object of the launched thread;RtThreadSemaphore, which provides locking across

threads; andRtThreadEvent, which provides signallable event queues. There are currently three

separate implementations of this package, one for SPROC threads (e.g. Irix basic threads), one for

PTHREAD threads (used in Linux and later versions of IRIX for better performance), and one for

Win32 threads.

A.2.5 Universal Base Class (wkobject.[hpp,cpp])

WkObject is a base class from which all packable and transmissible objects must be

inherited. This is becauseWkObject provides an extended form of RTTI that is needed to provide

different processes, on different machines, compiled with different compilers, with the ability to

identify and reconstruct classes that are specified by other processes. To implement this, the user

must identify a unique integer ID with each class that is ever integrated into the system; we maintain

a central list of the already-used IDs, and have typically in the past assigned ranges of IDs to students

and users who are adding classes to the system to prevent collisions. Once these IDs are assigned,

a class must include the SUPPORTRTTI and RTTIDEFINE macros in its implementation (the

header and source files, respectively) which bind the compiled code for the class to the specified

integer ID.

APPENDIX A. LIBRARY API REFERENCE 140

Any WkObject can be asked what its class ID is, via a virtual function call. This ID, in

turn, may be passed to the globalWkClassRegistryobject to provide the following functions:

1. Ask whether one class ID inherits from another class ID.

2. Construct a new instance of the specified class on the heap.

A.2.6 Packable Interface and Smart Buffers (rtbuffer.[hpp,cpp])

RtBuffer is an extensive and flexible buffer class that supports:

1. Heap allocated or static buffers;

2. Rotating/Circular buffers;

3. Buffer references (e.g. “pointers” into buffers);

4. Buffer locking and producer/consumer queueing;

5. Byte-order-independent writing and reading;

6. Loading or storing buffers to and from files

This header also defines the packable interface,RtPackableIfc, which should be inherited

from to implement packable objects (e.g. those that can be transmitted across the network or to

persistently stored in databases).RtPackableIfc inherits fromWkObject , so you need only inherit

from the former. The function signatures in the packable interface read from and write to buffer

references (RtBuffer::Ref), which is why these classes are together in this file.

A.3 Database Library (ndf)

The database library is called thendf library, and can be found insrc/ndf. This library

implements the classes necessary for manipulating databases, database objects, and schemas in

server and client mode. This library depends onsystemandgsim.

APPENDIX A. LIBRARY API REFERENCE 141

A.3.1 Block Services (dfblockservice.[hpp,cpp], dfblockserviceex.[hpp,cpp])

The lowest level services are the block service classes, which abstract a linearly addressed,

flat file space containing a number of blocks of a specified size. Blocks can be added, removed, read,

and written. The block service reads and writes to a file; it is not network enabled. The API interface

for the base class can be found in classDfBlockService in dfblockservice.[hpp,cpp].

The virtual function API provides fortransactionfunctionality at the block service level.

This means that a transaction may be begun, operations performed on the file, and the transaction

can be committed atomically. If the commit fails or the program crashes, the next time a block

service is opened on that file, the file is transparently repaired to conform to the state before the

transaction began. If the commit succeeds, the physical state of the file is brought in line with

the operations performed. The base class,DfBlockService, does not implement this functionality

(e.g. the virtual functions returnfail for all transaction calls); however, there is an additional class,

DfBlockServiceEx, defined indfblockserviceex.[hpp,cpp], which does implent the transaction op-

erations. It does this by opening, in turn, a normal block service, but taking over and hiding the

“zero” block in the file, where it stores transaction information. When a transaction is begun,Df-

BlockServiceExbuffers all operations in memory until an abort or commit is performed. If an abort

is performed, the buffers are simply flushed. If a commit is performed, a sequence of operations

(including writing a recovery record to the end of the file (past the last “valid” block), making mod-

ifications, then tagging and deleting the recovery record) is performed such that at no time is the

physical disk image inconsistent. If the commit completes, the physical image is the same as the

memory image and the memory image is flushed.

A particular file can only ever be opened as one of the two types,DfBlockService or

DfBlockServiceEx. Opening the same file later as the other type will at best cause errors and at

worst corrupt the database. At this time, all files are being created and opened as the extended form,

DfBlockServiceEx.

The blocks themselves are referenced with a block reference class,DfBlockId , which is

defined in this header. Block IDs are 64-bit values implemented as a pair of integers; they may

be incremented, decremented, compared, etc. The block services take and return these IDs rather

than integers; this abstracts away a 64-bit file space, getting away from the 2 GB file size limit

imposed by many operating systems, a consequence of taking 32-bit integers to the various file

I/O functions.DfBlockId s are packable and can be converted to and from byte-order-independent

values for transmission or storage.

APPENDIX A. LIBRARY API REFERENCE 142

A.3.2 Blob Services (dfblobservice.[hpp,cpp])

The blob service sits atop a block service, and abstracts efficient storage and retrieval of

Binary Large OBjectS (e.g. blobs). The blob service provides server/client functionality, where

a “universal blob server” can be attached to a block service on a local disk, then an adapter blob

service can connect to the universal server; clients on the adapter machine can then access data in

the remote machine via the exact same API as if the data were on the local machine. The blob

server, class nameDfBlobService, provides the following operations:

1. Open with either a local block service, or to a server port on which a universal blob server is

running;

2. Allocate a new blob ID (e.g. aDfRef, also called a Ref);

3. Store a binary blob referenced by a particular Ref;

4. Retrieve a binary blob referenced by a particular Ref;

5. Lock or unlock a blob referenced by a particular Ref;

6. Watch or stop watching a blob referenced by a particular Ref.

Locking is done by Ref, and is a control mechanism for multiple clients attaching to the

same blob service. A lock specifies an ID, which is used to identify the same “client” for future

lock requests. The semantics of this ID are up to the client itself; the blob service does not interpret

it. Watches allow the client to specify a callback function to be invoked when the Ref in question

is manipulated in a particular way via the API. When in local mode, the lock and watch tables are

simply kept in the blob service object. In server-client mode, the adapter service passes the requests

via a channel control band to the universal server, which executes the command locally and returns

the result via the same band. Watches and locks are aggregated at the adapters and passed along

to the server as single requests, using the adapter’s local pointer as its ID, then dispatched to local

processes via local routing tables when the server responds. Watch responses are executed in a

special watch thread, started by the server when it runs.

The blob service also supports nested transaction functionality. A stack oftransaction

buffers (DfTxnBuffer) are maintained; whenever a transaction begin is issued, a new buffer is

pushed onto the stack. Writes to the database are routed to the top buffer, where they are stored

pending a commit. Reads are also routed to the top buffer; if the buffer contains a cached write,

APPENDIX A. LIBRARY API REFERENCE 143

that value is returned, else it recurses to the next element in the stack, eventually reaching a read

from the database itself. A commit writes the cached blobs in the topmost buffer to the next buffer

down, and pops the buffer; if the buffer is the last one in the stack, the commit is performed on the

database itself. An abort simply pops the top buffer, deleting those writes. Note that watches are

triggered only on that last commit to the database itself. The lowest level buffer uses the transaction

functionality provided by the block service to make atomic changes to the database file.

A.3.3 Universal Blob Server (dfservermain.[hpp,cpp])

The file dfservermain.cppprovides the main routine for the universal blob server. To

create the server, simply compile and link thendf library with dfservermain.cpp; this will create the

server executable. The server takes two arguments; the local file on which the block service will be

opened, and the port number on which the server is to listen.

A.3.4 Transaction Stack Object (dftransaction.[hpp,cpp])

The transaction stack objects,DfReadTransactionandDfTransaction, are utility objects

intended to automate common tasks. It is very common, in the scope of a function, to read some

database objects, acquiring read or write locks, operate on them, and then release them before exit-

ing. However, it is easy to lose track of locks or object references in such functions due to a return

from the middle of the function, or an exception being thrown from a lower scope. Explicitly un-

locking and dereferencing all the temporary objects every time you call return or throw an exception

is hard to remember and makes the code hard to read.

DfReadTransactionandDfTransaction help by being declared locally, in the function

scope, on the stack. Instead of requesting an object directly from the database, the user requests it

via the transaction (e.g. instead of database-¿Get(object), the user calls transaction.Get(database,

object)). TheDfReadTransaction automatically applies a read lock and keeps track of the ref-

erence for the user; since it is a stack object, any return or exception thrown from the scope will

automatically cause the transaction destructor to be called, which causes the object to be unlocked

and dereferenced properly.DfTransaction inherits fromDfReadTransaction, so it provides read

tracking as well. However, it also provides write and transaction tracking; simply declaring aDf-

Transaction automatically begins a transaction on the database, and if the user does not explicitly

commit the transaction in scope, the object will abort the transaction upon destruction. This guar-

antees proper stacking and closure of transactions within scopes, again preventing subtle bugs from

APPENDIX A. LIBRARY API REFERENCE 144

sneaking into the code.

A.3.5 Persistent Object Base Class (dfobject.[hpp,cpp])

All persistent objects are inherited from theDfObject base class, defined indfobject.hpp.

This class inherits from theRtPackableIfc base class, inheriting schema identification, a class

factory, and serialization interfaces. TheDfObject adds the concept of the object “belonging” to a

database with aDfRef object identification. This is not to say that aDfObject mustbe assigned to a

database; the user can create an object of this type that does not belong to a database, in which case

its database pointer and ref are both NULL. Such an object still responds to the reference counting

interface (e.g. the user can still Remember() or Forget() an unassignedDfObject; however, if

the object is unassigned, this process becomes simple reference counting, with the final Forget()

resulting in a call to C++ delete).

An unassigned object may be assigned to aDfDatabasevia the AssignToDatabase(db)

call, at which point it acquires a single reference count (belonging to the assigning function), a

newly allocated non-NULLDfRef, and a database pointer. At this point, the object may be Store()d

into the database and retrieved by other processes via its ref. Typically, some other object in the

database will be modified to have the new Ref added to it in some way; other processes learn of the

existence of the new object by reading the other object, thus finding the new Ref, and then issuing a

load for that Ref to get the new object.

A.3.6 Database Shell Object (dfdatabase.[hpp,cpp])

The DfDatabaseobject provides the final layer of abstraction atop the database stack

(DfDatabaseaccesses aDfBlobService which accesses aDfBlockService). This layer presents

C++ objects to the code above, and translates those objects to and from BLOBs to the blob service.

The user requestsDfObjects from theDfDatabaseby their DfRefs. TheDfDatabase

checks for the existence of the object in the current memory space; if it is already there, it is simply

referenced and returned. If it is not there, theDfDatabasepasses the Ref along to the blob service,

which returns the binary block stored for that Ref (from disk or network, depending on what oper-

ating mode the blob service is in). TheDfDatabasereads the object’s class ID from the beginning

of the block, uses the class factory to construct a C++ object of that type, and applies the object’s

unpacking routine to the remainder of the buffer to reconstitute the object. The object is then added

to the lookup table for the local memory space, referenced, and returned.

APPENDIX A. LIBRARY API REFERENCE 145

Storing an object proceeds in reverse. The Store() call on an object causes the object to

write its class ID and call PackTo() function on a buffer, which is then passed to theDfDatabase,

which stores the buffer in the blob service under the specified Ref.

Locking and watching are passed largely unchanged through to the blob serivice; however,

the blob service requires a local ID for locks and watches. TheDfDatabaseobject simplifies the

process by acting as the ID for the caller; it passes its own memory pointer along as the ID for the

lock or watch, preventing the user from having to worry about ID allocation.

A.3.7 Smart Pointers (dfsmartptr.[hpp,cpp])

DfSmartPtr is a template class that automates tracking and loading of database objects.

A very common operation in database objects is to have a reference to another database object

which can be loaded or unloaded dynamically as the needs of the program dictates. The “raw” way

of doing this is to keep aDfRef and a pointer to the object, where at any given time the pointer

can be NULL even though the Ref is not. This requires all pieces of code which use the pointer

value to check if it is loaded and load it into the pointer if not. This, in turn, requires mutexing if the

object can be accessed in multiple threads. All of this bookkeeping can make the code unnecessarily

complex, is prone to errors, and can require modifying legacy code that operated on the pointers.

The DfSmartPtr class alleviates many of these problems. The class encapsulates a

pointer value and a Ref value; the pointer is to the type templated into the class instance. The smart

pointer can be assigned from either a Ref directly, or from an object (in which case the pointer loads

the ref and database from the object, if it is assigned). The smart pointer can be used by operators

in the same way a direct pointer would be used; if the object is not loaded, the smart pointer will

transparently load the object before executing the operation. All normal pointer operations are over-

loaded on the smart pointer to perform this service. Furthermore, loading and unloading the pointer

are single function calls (to Load() and Unload()), which perform all necessary tracking, untracking,

and pointer tests. Legacy code can usually operate properly on a smart pointer to typeT with no

changes, where it was expecting a direct pointer toT . This class greatly improves readability and

portability of code.

APPENDIX A. LIBRARY API REFERENCE 146

A.4 Simulator Library (newsim)

A.4.1 General Architecture

The simulation subsystem relies on a central controller object, theRtSimulationMan-

ager, of which there is one per machine. The purpose of the manager is to establish and maintain

simulation servicesand communication between those services and their clients.

When a process is started, a simulation manager is created for that process. This is done

only once; the first call toRtSimulationManager::GetGlobalManager creates the global service,

and that service is the same for that process from then on. After the global service is created, a

number of types of service may be registered with the manager within the process. This registration

is done via theRtSimulationDescription object; for each type of simulator in the process, the

process callsRtSimulationManager::RegisterServicewith a service descriptor for the service.

The service descriptor is basically a holder object that contains universal class IDs de-

scribing which class is used for a given position in the pipeline for that service. The main types and

elements thatmustbe defined in a service description are:

1. A local simulator class (derived fromRtLocalSimulationService);

2. A class of conditions generated by that simulator (derived fromRtConditions); and

3. A description string that can be displayed in a dialog box, describing what service this repre-

sents (in English text).

Optionalelements that may be overloaded in a description, but do not generally have to

be overloaded, consist of:

1. A local client class (derived fromRtLocalSimulationClient);

2. A new client telemetry type (derived fromRtPackableClientState);

3. Remote client and service classes (derived fromRtRemoteSimulationClientandRtRemoteS-

imulationServicerespectively); the remote client defines the just-in-time priority function for

bandwidth usage, and the remote service acts as a local surrogate for the actual service on the

remote machine;

4. A new intermediate condition manager type (derived fromRtSimServiceConditionMan-

ager), which defines the policy of how new conditions are integrated into the condition set;

APPENDIX A. LIBRARY API REFERENCE 147

5. Capability flags that describe what general capabilities the service has.

These optional classes are ones that, for most simulators, work fine with the default, base

classes, and do not commonly need overrides.

Registering a simulator does not actually create any running instances; however, simula-

tion managers automatically notify “neighbor” managers of what services are available on the local

machine, so registering a service on a machine will cause that service descriptor to show up as a

“remote service” on all other machines in the network.

The client process may request a list of available descriptors from its local simulation

manager; this will return two sets of services, one set ofavailableservices (e.g. those for which

new instances can be launched) and a set ofrunningservices (e.g. specific running examples of a

simulation). The latter descriptors are actually derived from a subclass ofRtServiceDescription

calledRtRunningServiceDescription. There are extra, private fields in both types that allow the

local manager to route requests to other managers or specific instances of simulations on other

managers, in the case of the running services.

Once the process has a descriptor, it can request either a new instance of the service be

launched on the provider machine (in the case of a simple descriptor), or a new connection to an

existing (running) service (in the case of a running descriptor). Typically the former is followed

immediately by the latter; note that immediately after launching a service, a newRtRunningSer-

viceDescriptorwill be available representing the new instance.

Successfully connecting to a service will result in the return of a new object derived from

RtLocalSimulationClient . This client object is the interface through which all communication

with the service is performed. Figure A.1 shows the configurations of objects and machines that

will be created if the request is made for a service registered on the local machine; figure A.2

shows the configuration resulting from a request for a service on a remote machine. Note that, to

the requesting process, the result is the same; a pointer to a localRtSimulationClient , and to the

specific launched simulator, again, the result is the same, a pointer to anRtSimulationClient . In

the remote case, however, there may be one or more jumps through intermediate, virtual clients and

servers, that behave as a local proxy of the remote object.

During simulation, the actual service (derived fromRtLocalSimulationService feeds

conditions of the type specified in the service description into its localRtConditonSet. All lo-

cal clients of the simulation can simply read directly out of this set for maximal performance.

Some of these clients, however, may be remote clients, representing interested processes

APPENDIX A. LIBRARY API REFERENCE 148

Requesting
Process

RtSimulationManager

Launch
Service

Requesting
Process

RtSimulationManager

RtLocalSimulationService
(Instance of Desired Sim)

RtLocalSimulationClient
(Possibly Customized)

Generated
Conditions

Figure A.1:The object configuration resulting from a request to create and connect to a service on
the local machine.

on other machines. These remote clients act as surrogates for the virtual service on the client ma-

chine. A RtRemoteSimulationClient implements the just-in-time priority function that decides

which conditions are the most important to transmit at a given time. Every so often (typically one or

two tenths of a second), the simulation manager performs a callback on allRtRemoteSimulation-

Client objects for currently running simulations, instructing those clients to gather a certain amount

of data (specified by theRtBandwidthManager for the channel, which provides a certain amount

of bandwidth available for the timeslice; this bandwidth is evenly split among all active remote sim-

ulation clients). The job of the condition manager is to select the most important conditions from

the service it is connected to, up to an amount of data equal to the amount specified by the band-

width manager, and transmit those conditions to the remote simulation service on the other end of

the channel. In this way, conditions make their way in a just-in-time fashion from the actual service

to the “real” client on the remote machine, potentially several hops away.

In order to decide which elements are most important, theRtRemoteSimulationClient

must have access to client telemetry (defined in chapter 4). This telemetry is an object subclassed

from RtPackableClientState; one such object is maintained at each local client, and these objects

are propagated from local clients to remote server to remote client to local server in the reverse direc-

tion from the conditions, but via the same mechanism (e.g. the simulation manager also allocates

bandwidth to theRtRemoteSimulationClient objects it is managing to allow them to propagate

changed telemetry to the services they are attached to). Given the telemetry state at the remote ser-

APPENDIX A. LIBRARY API REFERENCE 149

Requesting
Process

RtSimulationManager

Launch Remote
Service

Requesting
Process

RtSimulationManager

RtSimulationManager

RtLocalSimulationClient
(Possibly Customized)

RtRemoteSimulationService
(Probably Generic)

Cached Generated
Conditions

RtSimulationManager

RtLocalSimulationService
(Instance of Desired Sim)

RtRemoteSimulationClient
(Probably Generic)

Generated
Conditions

Figure A.2:The object configuration resulting from a request to create and connect to a service on
a remote machine.

APPENDIX A. LIBRARY API REFERENCE 150

vice node in which it lives, the simulation service condition manager can decide what data is most

important for transmission.

All of the optional components have overloads already defined for the two common cases

of the generic virtual time simulation and the generic real time simulation. In practice, the defaults

for all classes except theRtLocalSimulationService (e.g. the simulation itself) and the condition

set type (e.g. the simulation data) can be used directly by deriving the service from eitherRtLocal-

RtSimulationService(for real-time simulations) orRtLocalVtSimulationService (for virtual-time

simulations), and inheriting the simulation descriptor fromRtRtServiceDescriptionor RtVtSer-

viceDescription(for real-time or virtual-time services respectively). This will automatically select

appropriate overloads for all the other classes which implement the telemtry types (e.g. visible and

lookahead sets) and packing algorithms (e.g. closest visible conditions first) described in the body

of this thesis.

Figure A.3 shows the inheritance patterns of the classes implemented in the simulation

base library. Users should typically be either overloading or directly using leaf classes in this hier-

archy.

A.4.2 Summary of Optional Overloadable Classes

Overload .. In To ...
RtLocalSimulationClient RtServiceDescription Provide simulator-specific telemetry

changing calls, or simulator-specific
communication utility functions

RtPackableClientState RtRemoteSimulationClient
subclass

Provide additional telemetry data
specific to the simulation

RtRemoteSimulationClient RtServiceDescription Allow you to define a new just-in-
time packing function, and specify
the packable client state class.

RtRemoteSimulationService RtServiceDescription Allow you to overload the simula-
tion service condition manager

RtSimServiceConditionManager RtRemoteSimulationService
subclass

Allow you to define a new override
policy for submissions of new con-
ditions.

A.4.3 Simulation Manager (rtsimulationmanager.[hpp,cpp])

This file defines the simulation manager and its auxiliary classes. There should be one

simulation manager per process; processes can retrieve this manager by including the header and

calling RtSimulationManager::GetGlobalManager. If the manager is to be able to receive con-

APPENDIX A. LIBRARY API REFERENCE 151

RtSimulationManager

RtSimulationService

RtSimulationClient

RtVtSimulationService

RtRtSimulationService

RtLocalSimulationClient

RtRemoteSimulationClient

RtLocalRtSimulationClient

RtLocalVtSimulationClient

RtServiceDescription

RtRemoteRtSimulationClient

RtRemoteVtSimulationClient

RtSimServiceConditionManager

RtRtServiceDescription

RtVtServiceDescription

RtRtSimServiceConditionManager

RtVtSimServiceConditionManager

RtConditions

RtRtConditions

RtVtConditions

RtSimulationView

RtRtSimulationView

RtVtSimulationView

RtPackableVisibleSet

RtRtPackableVisibleSet

RtVtPackableVisibleSet

RtPackableClientState

Figure A.3:Classes and inheritance patterns in thenewsim library.

APPENDIX A. LIBRARY API REFERENCE 152

nections from other managers, the process must callRtSimulationManager::StartServerThread

and give it a port number for the manager to use on the local machine to listen for connections

from other managers. The process then registers any local simulators with the manager, and con-

nects the manager to other managers (if a network is desired) by callingRtSimulationManager::-

ConnectToOtherManager.

Once simulations are registered and connections established, the process can get descrip-

tions of local and remote, running or provided simulators via the two callsGetProvidedServices

andGetRunningServices. Each returns a set of services that are available. A provided service may

be launched by passing its description back toLaunchService, and a running service may be con-

nected to by passing the running service description toConnectToService. Each of these functions

returns a subclass of aRtLocalSimulationClient , which the caller is then responsible for “hanging

up” when they are done with it.

There is a callback event interface, provided by theRegisterForEventscall, which allows

the caller to be notified by the manager when certain events happen:

1. A new service is registered somewhere on the network.

2. A service is taken off line.

3. A new simulation has been run somewhere on the network.

4. A new client has been created on the local machine.

5. A connection to another simulation manager has been severed.

6. A simulation is shutting down.

7. A client is being closed on the local machine.

A.4.4 Bandwidth Manager (rtbwmanager.[hpp,cpp])

The bandwidth manager is a utility class used byRtSimulationManager to monitor and

control traffic on itsRtChannel. The bandwidth manager is allotted a certain amount of bandwidth

per second, and is given a callback frequency. The bandwidth manager then notifies the simulation

manager when bandwidth is available, and how much; the simulation manager can then partition

this bandwidth among its client objects and allow them to communicate in a controlled fashion.

APPENDIX A. LIBRARY API REFERENCE 153

A.4.5 Condition Chunk Base Class (rtconditions.[hpp,cpp])

TheRtConditions class is the base class for all simulated output. The base class defines

virtual comparison functions between condition objects, and keys conditions by a spatial key and

subkey. This file also defines the conditionset, RtConditionSet, which is a set of conditions that

defines various utility functions, the ability to lock and unlock the set, and an optional efficient

secondary key lookup function (needed by some operations; e.g. some operations need efficient

lookup by space, whereas other operations need efficient lookup by time. In this case, the secondary

key function would be the time-based lookup).

A.4.6 Simulation Service Base Class (rtsimulationservice.[hpp,cpp])

The simulation service base class provides derived classes with the ability to track and

talk to the simulation manager, and provides storage space for a condition set and a simulation

service condition manager. It also provides calls to communicate with clients (in either broadcast

or single-client mode), and callback functions for incoming messages from clients. These functions

are common to all subclasses of service, from actual services to remote stubs.

Typical users will need only interact with the callback functions to receive messages and

state change requests from clients, and the interface to submit new or changed conditions for the

running simulation.

A.4.7 Simulation Client Base Class (rtsimulationclient.[hpp,cpp])

Similar to the service base class, this class provides space for a telemetry object, utility

functions to communicate with the simulation manager and the attached simulation service, and pro-

vides callbacks for incoming messages from the service. It handles tracking the telemetry object’s

dirty state and whether or not it needs to be updated.

Typical users will only need to interact with the interface for receiving direct communi-

cations from the server, the interface for sending direct communications to the server, and the call

to update the telemetry object.

A.4.8 Local Simulation Service Base Class (rtlocalsimservice.[hpp,cpp])

This is an intermediate class and should not be directly used; the user must derive their

local service class from eitherRtLocalVtSimulationService or RtLocalRtSimulationService,

APPENDIX A. LIBRARY API REFERENCE 154

which are both derived from this class. This class exists primarily to group those two subclasses

together under one class ID.

A.4.9 Remote Simulation Service Base Class (rtremotesimservice.[hpp,cpp])

This class is the base class forRtRemoteRtSimulationServiceandRtRemoteVtSim-

ulationService, which in turn are used as proxies for a service that is connected to, but actually

resides on another machine. This class should not be overloaded directly.

A.4.10 Real-Time Simulation Components (rtrtcomponents.[hpp,cpp])

This is one of two files that contain the “grab bag” of overloads of the optional classes

that implement the real-time simulation functions. It includes the following:

Class Overloads Purpose
RtRtConditions RtConditions Real-time conditions; adds

time stamp, and sets the
sort order to{Key, Time,
Subkey}

RtRtServiceDescription RtServiceDescription Selects RtLocalRtSimu-
lationClient as the local
client type, RtRemoteRt-
SimulationClient as the
remote client type, and
RtRemoteRtSimulation-
Service as the remote
service type.

RtRtSimServiceConditionManager RtSimServiceConditionManager Specifies the real-time re-
placement function for new
conditions; e.g. if new con-
ditions are submitted for a
volume, they override the
existing conditions for that
volume.

RtRemoteRtSimulationService RtRemoteSimulationService Forces use of theRtRt-
SimServiceCondition-
Manager as the condition
manager.

RtLocalRtSimulationService RtLocalSimulationService Base class for actual real-
time services.

APPENDIX A. LIBRARY API REFERENCE 155

A.4.11 Real-Time Simulation Client Base Class (rtrtsimulationclient.[hpp,cpp])

This is the other package of overloads for real-time simulation. It includes the following:

Class Overloads Purpose
RtRtPackableVisibleSet RtPackableClientState Real-time simulator

telemetry class; provides a
visible set of spatial keys,
and a lookahead set of
spatial keys.

RtLocalRtSimulationClient RtLocalSimulationClient Declares RtRtPackable-
VisibleSet as the client
telemetry type, and pro-
vides utility functions for
accessing and setting the
telemetry set.

RtRemoteRtSimulationClient RtRemoteSimulationClient Implements the real-time
importance algorithm;
e.g. transmit elements
that are visible, have
not been transmitted yet,
and have not yet been
overloaded by more recent
conditions. Also, declares
RtRtPackableVisibleSet
as the client telemetry
type.

APPENDIX A. LIBRARY API REFERENCE 156

A.4.12 Virtual-Time Simulation Components (rtvtcomponents.[hpp,cpp])

This is one of two files that contain the “grab bag” of overloads of the optional classes

that implement the virtual-time simulation functions. It includes the following:

Class Overloads Purpose
RtVtConditions RtConditions Virtual-time conditions;

adds time stamp, and sets
the sort order to{Time,
Key, Subkey}

RtVtServiceDescription RtServiceDescription Selects RtLocalVtSimu-
lationClient as the local
client type, RtRemoteVt-
SimulationClient as the
remote client type, and
RtRemoteVtSimulation-
Service as the remote
service type.

RtVtSimServiceConditionManager RtSimServiceConditionManager Implements the replace-
ment policy for virtual time
conditions.

RtRemoteVtSimulationService RtRemoteSimulationService Forces use of theRtVt-
SimServiceCondition-
Manager as the condition
manager.

RtLocalVtSimulationService RtLocalSimulationService Base class for virtual time
simulators.

APPENDIX A. LIBRARY API REFERENCE 157

A.4.13 Virtual-Time Simulation Client Base Class (rtvtsimulationclient.[hpp,cpp])

This is the other package of overloads for virtual-time simulation. It includes the follow-

ing:

Class Overloads Purpose
RtVtPackableSpaceTimeState RtPackableClientState Virtual-time simulator

telemetry class; provides a
visible set of spatial keys,
a lookahead set of spatial
keys, and a current time
and time velocity for the
viewer.

RtLocalVtSimulationClient RtLocalSimulationClient Declares RtVtPacka-
bleSpaceTimeStateas the
client telemetry type, and
provides utility functions
for accessing and setting
the telemetry object.

RtRemoteVtSimulationClient RtRemoteSimulationClient Implements the virtual-
time importance function;
e.g. transmit elements that
are visible, haven’t been
transmitted yet, and are
closest to the user’s current
desired visualization time;
also, declaresRtVtPacka-
bleSpaceTimeStateas the
client telemetry type.

A.4.14 Simulation View Base Classes ([rtsimview,rtbasicsimview].[hpp,cpp])

The view classes are basically utility classes that can be attached to anRtSimulation-

Client and a graphics engine, and provide two major functions. First, they provide a standard UI

window, in some cases with standard widgets (e.g. the VCR controller in the virtual time view

class), to help control the simulation. Second, they automate the updating of the client telemetry

object by hooking into frame callbacks and setting the new visible and lookahead sets if the user’s

viewpoint has changed.

There is a basic view class that simply provides a name for the subclasses,RtSimulation-

View, and the ability to hook into a generic UI window in the Citywalk system.RtBasicSimView

adds the ability to automatically hook into the frame callback for Citywalk and propagate visible

APPENDIX A. LIBRARY API REFERENCE 158

set information automatically in the telemetry set;RtVtSimulationView adds the VCR widget and

adds time and time velocity tracking to the telemetry. All view classes also track the client itself

for the user; e.g. when the view object is destroyed, it automatically dereferences and frees the

simulation client.

