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Abstract

A Vision System for Landing an Unmanned Aerial Vehicle

by

Courtney S. Sharp

Master of Science in Electrical Engineering and Computer Sciences

University of California at Berkeley

Professor Shankar Sastry, Chair

We present the design and implementation of a real-time vision system for a rotor-craft un

manned aerial vehicle to land onto a known landing target. This vision system consists of

customized software and off-the-shelf hardware which perform image processing, segmenta

tion, feature point extraction, camera pan/tilt control, and motion estimation. We introduce

the design of a landing target which significantly simpHfies the computer vision tasks such

as corner detection and correspondence matching. Customized algorithms are developed to

allow for real-time computation at a frame rate of 30Hz. Such algorithms include certain

linear and nonUnear optimization schemes for model-based camera pose estimation. We

present flight test results which show that our vision-based state estimates are accurate to

within 5cm in each axis of translation and 5 degrees in each axis of rotation, making vision

a viable sensor to be placed in the control loop of a hierarchical flight vehicle management

system.
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Chapter 1

Introduction

Computer vision is gaining importance as a cheap, passive and information-rich source

complementing the sensor suite for control of Unmanned Aerial Vehicles (UAV). A vision
system on board a UAV typically augments a sensor suite that might include Global Po
sitioning System (GPS), Inertial Navigation Sensors (INS), laser range finders, a digital
compass, and sonar [2, 9, 11]. Furthermore, the challenge of replacing these conventional
sensors by vision for real-time control tasks has not been well addressed in the computer vi
sion community. Most pose and structure estunation algorithms developed based on existing

multiple view geometry theory are in fact not suitable for real-time applications, sunply due

to their computational cost. Regardless, design ofany real-time vision system is a daunting

task: It involves a systematic integration of hardware, low level image processing (such as
segmentation and feature extraction); multiple view geometry (such as pose and structure

estimation); and synthesis of real-time controllers.

Because of its structured nature, the task of autonomous landing is well-suited for vision-

based state estimation and control and has recently been an active topic of research [5, 7,

8, 11, 12]. In [6] a technique is presented for estimating the pose relative to a known object
given a scaled orthographic projection model ofa camera. In [12], the use ofvanishing points

of parallel lines on a landmark is proposed for the purpose of estimating the location and

orientation of a UAV relative to a landing pad. Because their technique relies on vanishing

points of parallel fines, their algorithm is most sensitive to noise and gives the worst pose



estimates when it matters the most: when the UAV is directly over the pad.

In this paper, we introduce a design and implementation of a real-time vision system for

a rotor-craft UAV which estimates its pose and speed relative to a known landing target

at 30Hz. Our vision system uses customized vision algorithms and off-the-shelf hardware

to perform in real-time: image processing, segmentation, feature point extraction, camera

control, as well as both linear and nonlinear optimization for model-based pose estimation.

Flight test results on our UAV testbed show our vision-based state estimates are accurate

to within 5cm in each axis of translation and 5 degrees in each axis of rotation, making it

a viable sensor to be placed in the control loop of a hierarchical fhght vehicle management

system such as the one described in [9].

Section 2 contains a detailed description of each component of our vision system. Sec

tion 3 presents experimental results from flight experiments, and Section 4 gives concluding

remarks and directions for future research. Appendix A provides an overview of the code

used throughout the vision system.

a

Figure 1.1: Photos of our UAV testbed: in-flight Yamaha R-50 helicopter (top), mounted
Sony EVI-D30 camera and computer box (bottom-left), and on-board navigation and vision
Littleboard computers (bottom-right).



Chapter 2

Vision System Algorithm Design

Our vision system software consists of two main stages of execution: image processing

and state estimation, each with a sequence of subroutines. Figure 2.1 shows a flow-chart of

the overall algorithm. This chapter endeavors to describe each stage of execution in detail.

2.1 Low Level Image processing

Our goal for image processing is to locate the landing target then extract and label its

feature points. This process includes: 1. thresholding the grayscale image to a binary one,

2. segmenting the landing target out of the background, 3. detecting the corners in landing

target, and flnally 4. labeling those corners. In order to simpUfy the image processing, the

landing target must be easy to identify and segment from the image badcground, provide

distinctive feature points, simplify feature labeUng, and allow for algorithms that can execute

in realtime using off-the-shelf hardware.

Figure 2.2(a) shows our landing target design. The connected white border enclosing

the target simplifies segmenting it from the background, given that the landing target lies

on a dark background and that no other connected white region completely encloses it.

Figure 2.2(b) shows the feature point labeling on the corners of the interior white squares of

the landing target. We choose corner detection over other forms of feature point extraction
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Figure 2.1: Vision system software flow-chart: image processing followed by estimation and
control.

because it is simple, robust, and provides a high density of feature points per image pixel

area. We choose squares over other n-sided polygons because they maximize the quality of

the corners under perspective projection and pixel quantization. Moreover, our particular

organization of the squares in the target allows for straight-forward feature point labehng

invariant of Euclidean motion and perspective projection, as shown in the section "Feature

labehng."
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Figure 2.2: Landing target design and image processing. The target design (a) is made for
simple feature labeling (b), robust feature point extraction (c), and easy image segmentation
and identification (d-g).

2.1.1 Thresholding

The thresholding algorithm must produce a binary image so that the black and white re

gions of the landing target are preserved and that the primary image background is connected

and black. During the development of the image processing algorithm, we explored a variety

of techniques for selecting a threshold from the image histogram. We found the following

schemes too simplistic or less robust: selecting absolute gray level, performing gradient de-



scent from the mean gray level, or solving for the minimum of an nth order polynomial fit

to the histogram. However, we found the algorithm with the most acceptable compromise

between best-case quality and overall robustness to also be one of the simplest. We choose

the threshold on the histogram as a fixed percentage between the minimum and maximum

gray levels with nonzero pixel count. In our fhght tests, we use 65% as the threshold level.

Figure 2.2(d) through Figure 2.2(f) give results of this thresholding scheme tested on a real

image input from the on-board camera.

2.1.2 Segmentation

Given a binary image as in Figure 2.2(f), our segmentation stage must separate the

landing target from the background and return the interior squares. We segment the landing

target via two consecutive passes ofa standard connected components labeling algorithm [3]
based on 4-connectivity. A singlepass of the components labeling algorithm numbers distinct

regions of pixels such that any element of a group can reach any other element of the group

through a sequence of 4-neighbors (pixels left, right, up, or down) in the group.

The first pass of the labeling algorithm operates on the original binary image to determine

the initial regions. From that, we define the background to be the largest single region of

black pixels touching the perimeter of the image. To increase the likelihood of a correctly

labeled and completely connected background, we insert a pixel-thick perimeter of black

pixels aroimd the image prior to labefing. This connects separated background regions that

may have been split by edge-to-edge white regions or by the landing target itself.

The second pass of the labeling algorithm operates on a new binary image where we

define the background as black and all other regions as white, see Figure 2.2(g). We then

assert the landing target to be the foreground region containing seven white components and

one black component. We make no further consistency check on the landing target, leading

to the iTnplir.it assumption that no foregroimd region other than the landing target contains

a similar distribution of component regions. We improve robustness to noise by ignoring

(erroneous) component regions with less than a threshold number pixels.



2.1.3 Corner Detection

Once we have segmented the landing target from the background, our next stage of

processing is to detect the corner features. The corner detection algorithm we face is by

design highly structured: We need to detect the corners of 4-sided polygons in a binary

image. The structured nature of the problem allows us to avoid the computational cost of

a general purpose corner detector and to make the detected corners more robust through

the design of a custom corner detection algorithm. The fundamental invariant in our corner

detector is that convexity is preserved under Euchdean motion and perspective projection.

This implies that for a line through the interior of a convex polygon, the set of points in

the polygon with maximal distance from each side of the Hne contain at least two distinct

comers of the polygon.

To find two arbitrary corners of a 4-sided polygon, wecompute the perpendicular distance

from each edgepoint to the vertical line passing through the center of gravity of the polygon.

If there is more than one point with maximal distance on a side of the line, we choose the

point which is farthest from the center of gravity. We then find the third corner as the point

of maximum distance from the line connecting the first two corners. Finally, we find the

fourth corner as the point of the polygon with maximum distance to the triangle defined by

the first three corners. Figure 2.2(c) shows the output of our corner detection algorithm on

a sample image.

2.1.4 Feature Labeling

After we extract the corner features of the landing target, the next stage of processing is

to label the corners according to the numbering scheme shown in Figure 2.2(b). Our feature

labeling algorithm consists of two steps: first, each square is uniquely identified based on its

center of gravity, then the corners within each square are identified.

The technique depends on the basic property that the clockwise ordering of a set of

coplanar points is preserved under Euclidean motion and perspective projection, given that

the camera always stays on one side of the target plane. We state this fact through the



following proposition:

Proposition 1. Given Vi^V2',vz € IR^, for any > 0, and {R,p) G 5^(3), the vectors

Vi = ai{Rvi-\-p) satisfy:

sign(i;fi)2 x 1)3) = sign(i;fi;2 x V3).

Proof Since the volume of the parallelepiped formed by fi,U2,^^3 is preserved under Eu-

chdean motion, we have V1V2 xv3 = {Rvi +p)^(i?U2 +p) x {Rvz +p). Hence, we get

sign({;fi;2 x ^53) = sign(aiQ:2Ci!3i^r '̂2 x ^3)

= sign(i;fv2 x V3).

•

Proposition 1 essentially guarantees that a technique for correspondence matching based

on clockwise ordering of feature points on the landing target works for any given image of

the target. We begin by labeling the squares of the target starting with the identification

of square D shown in Figure 2.2(b). For each square, we compute the vectors between its

center to the centers of the other squares. We identify square D as the square with two pairs

of coUinear vectors. We identify the remaining squares by ordering them counterclockwise

from square D by taking the arctangent of each vector with respect to some constant vector.

Finally, we order squares associated with the colfinear vectors from square D by their distance

from it.

To identify the corners of a square, we calculate the vectors between its corners and the

center of another particular square in the landing target. One such vector will always be first

on counterclockwise ordering, and we identify the associated corner this way. We determine

the labehng of the remaining corners by ordering them counterclockwise from the identified

corner.



2.2 Pose Estimation

2.2.1 Geometry of Planar Features

Given the labeled feature points, estimating the UAV state is the so-called model based

camera pose estimation problem from computer vision. We apply both Unear and nonhnear
optimization algorithms toward this problem. The hhear optimization algorithm is globally
robust but sensitive to noise. The nonhnearoptimization algorithmrequires adequate initial

ization but is more robust to noise. Thus, we solve the camera pose estunation problem by

first solving the linear problem then using those results to initiaUze the nonhnear algorithm.

The equation relating a point in the landing pad coordinate frame to the unage of that
point in the camera-head frame is given by

AjXi = APgqu (2.1)

where At 6 IR is an unknown scale, Xt e IR^ is the homogeneous coordinates of the feature

point in the image plane, A€ IR^^^ is the camera calibration matrix, P = [/ 0] € IR^ '̂̂ is the
projection matrix, g € SE{2>) is the homogeneous representation of the Euchdean motion

between the landing pad coordinate frame and the camera-head frame, and g, € IR"^ is the
homogeneous representation of the point in the world. Using a calibrated pinhole model for

the perspective projection of the camera, without loss of generahty we set A = /ax3* Then

the scale term Aj is given by

Ai = eJPgqi, (2.2)

where ea = [0 0 1]^ € IR^. Equations (2.1) and (2.2) together imply the following constraint

{xisj - I)[R p]qi = 0. (2.3)

We have knowledge of each qi from the geometry of the designed landing target. The

corner detection algorithm extracts each feature point Xj in the image frame. The feature

labeling algorithm associates each Xf with its corresponding g^. Prom this data, we need to

recover the camera pose Pg = [i? p] where R G50(3) is the rotation and p € IR^ is the
translation from the landing target to the camera head.



10

2.2.2 Linear Optimization

Since all feature points lie on the plane of the landing target, without loss of generality

we may choose the inertial coordinate frame such that e^Qi = 0 for all i. Then for the

calculation of [R p] = [ri r2 p], we remove and the third component of qi. Taking

Qi = fei 9i2 Qiz 1]^ and [R p] = [ri r2 p], Equation 2.3 impUes

(xiej - I) [ri 7-2 p]
Qii

qi2

1

= 0. (2.4)

Since the above equation is linear in [ri r2 p], we can reorganize Equation (2.4) into vector

form for each feature correspondence pair (xi, g,) and stack all the equations to get

ri

r2

P

= 0, (2.5)

where F = [F^ •••F^]^ G n is the number of feature points on the landing target,

and

Fi =

where Xj = [xji Xi2 1]^ GIR^

Qii 0 -giiXii qi2 0 -qi2^ii 1 0 -Xji

0 qn -giiXi2 0 qi2 -qi2^i2 0 1 -Xi2
(2.6)

By a shght modification of a well known result on the planar structure from motion

problem (see, for example, Weng [10]), it can be shown that if there are at least 4 features

points such that no three are collinear, then rank(F) = 8. However, due to noise in corner

detection, in practice F is always full rank. Hence we compute the least squares estimate

of the null space of F by applying standard SVD techniques to compute the singular vector

[ff E corresponding to the smallest singular value of F. Given the "positive-
deth constraint" that the landing pad is in front of the camera, if necessary we negate the

singular vector result of the SVD computation to ensure that pa > 0.

Next, we solve for scale of the translation p 6 IR^ by computing the scale factor on the

vector [fi p^j that gives fi and r2 unit norm; namely, p = 2p/(||fi|| + l|f2||).
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Finally, we solve for the rotation matrix R from the estimates fi and f2 in two steps.

First we project the matrix [fi f2 0] € IR^^^ onto the group of orthogonal matrices 0(3)

by computing the SVD of [fi f2 0] = f/EV^ and setting R = UV'̂ . To ensure that i? is a

rotation matrix, weneed det(i2) = 1. Thus, if our SVD computation yields det(UV'^) = —1,

we flip the sign of the third column vector of i?, which is equivalent to setting R = UV'̂ Q,

where Q = diag(l, 1, -1) €

In practice, the linear algorithm described above is quite noisy because it estimates

9 parameters for a system of equations with 6 degrees of freedom. However, the Hnear

estimate is close enough to the true solution to serve as a good initialization for the nonlinear

optimization technique.

2.2.3 Nonlinear Optimization

The nonlinear algorithm optimizes over the reprojection error G = [G^ •••G^]^ € IR^"

where Gi € IR^ is given by

Gi = (xicj - I)[R p]qi, (2.7)

where the last row is ignored from the right hand side matrix. The rotation matrix is

parameterized by ZYX-Enler angles 6i, 02, 9z, where 6i € (—7r,7r] and R = e®3^3ge202gei0i

The estimation parameters for the nonlinear optimization are /? = [^i 62 ^3 Pi P2 Ps]^-

We apply the vector form of the Newton-Raphson method to iteratively solve for (3:

Pn+I = Pn- kniDpGlpy G{q, y,/3„) (2.8)

where A:„ is an adaptive step size, DfsG is the Jacobian of G with respect to /0, and {DpGlpY

is the Moore-Penrose pseudo-inverse of D^Ghs.

We symbolically calculate the Jacobian for the estimation parameters and numerically

evaluate its value at runtime. /?o is initialized by the result of the linear estimate or by a

recent nonlinear estimate, if available. We adaptively select kn to guarantee \\G{q,y^ pn)\\

monotonically decreases for successive n.
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For any rotation matrix R, there exist two congruent Euler angle parameterizations

such that S = [^i,^2j^3)PijP2)P3] and 7 = [tt -[• —62,^ ^3>Pi>P2>P3] are equivalent
parameterizations for [Rp]. When cos(02) ^ 0 it is direct to check by symbohc computation

that each iteration of (2.8) produces equivalent results for both parameterizations; that is

DpGU = {DpGl^) diag(l, -1,1,1,1,1). (2.9)

Thus, iterations of in (2.8) step through equivalent rotations Rn regardless of the partic

ular Euler parameterization.

The nonlinear algorithm outperforms the linear algorithm because it optimizes over only

the necessary 6 parameters of the transformation. However, due to the nonUnearities there

are many local minima. Hence, the algorithm is highly sensitive to initialization and thus

only useful given a decent initialization from the hnear algorithm.
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Chapter 3

System Integration and Results

3.1 Hardware

As part of the BErkeley Aerial Robot (BEAR) project [1], our UAV testbed is a Yamaha

R-50 helicopter (see Figure 1.1) on which we have mounted:

• Navigation Computer: Pentium 233MHz Ampro Littleboard running QNX realtime

OS - responsible for low level flight control [9];

• Inertial Measurement Unit: NovAtel MillenRT2 GPS system (2cm accuracy) and Boe

ing DQI-NP INS/GPS integration system;

• Vision Computer: Pentium 233MHz Ampro Littleboard running Linux - responsible

for grabbing images, vision algorithms, and camera control;

• Camera: Sony EVI-D30 Pan/Tilt/Zoom camera;

• Frame Grabber: Imagenation PXC200;

• Wireless Ethernet: WaveLAN.

The vision computer communicates with the navigation computer over a 115Kbps RS232

serial link. Currently, we only use that link to gather INS/GPS state information from the
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navigation system for "ground truth" comparison of state estimates with the vision sensor.

Images at 320 x 240 pixels resoltion are captured by the frame grabber at 30 frames per

second, asynchronous to program execution through memory-mapped 10 and system sig

nals. To reduce the computational cost of thresholding, we estimate the image histogram by

considering one-seventh of the total image pixels. Furthermore, a multi-resolution approach

is used in our segmentation algorithm to reduce processing time, effectively performing seg

mentation on a 160 x 120 pixel image. Then the edges of the interior squares of the landing

target are calculated from the original 320 x 240 pixel image. The vision computer com

municates with the PTZ camera over a 9.6Kbps RS232 serial link to send pan-tilt control

commands and receive the current pan-tilt state.

3.2 Camera Control

Proper control of the pan/tilt camera can increase the range of motion of the UAV while

keeping the landing target in the field of view of the camera-head. The goal of the desired

camera control is simple: to pan and tilt £is necessary to keep the target centered in the

image. For such a scheme to work in the overall process, measurement of the pan/tilt state

of the camera must be available for each image.

The PTZ camera we use has an internal controller which can be commanded to relative

or absolute pan/tilt locations via a RS232 protocol. Here we describe how to compute the

pan and tilt action necessary to center the target in the image. By convention, positive pan

moves the target left in the image, and positive tilt moves the target down in the image.

For our camera, the axes of rotation for pan and tilt coincide with its optical center. For a

particular axis in the image, as in Figure 3.1, the angle between a point on the axis and the

center of the axis is given by

0=h(p,d, /) =atati2 (p-^, ^cot ^0^ , (3.1)
where / is the field of view of the axis in radians, d is the width of the axis in pixels, and p

is the location in pixels of the target projected onto the axis.

Now, let the desired location of the target be at (xq,2/o)> the target be at (xi,2/i), the
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Figure 3.1: Geometry of pan/tilt with respect to the optical center and image plane. / is
the field of view of the axis in radians, d is the width of the axis in pixels, p is the location
in pixels of the target projected onto the axis, and 6 is the rotation required to center the
target.

image width and height be Ix and ly, and the horizontal and vertical field ofview be fx and
fy. Then, using Equation (3.1), the amount of pan and tilt necessary to move the target to
the desired location is given by

^pan — h (^Xi^ Ixt fx) h(XQ^lx)fx)

^tilt — h{yi,ly, fy) —h{yQ,ly^ fy) ,

(3.2)

(3.3)

where 6pan and Otm are relative to the current pan/tilt state. These pan/tilt commands
are sent to the PTZ camera over a RS232 link in order to center the target in the image

regardless of the motion of the UAV to which the camera is mounted.

3.3 Frame Transformations

The geometry of the coordinate frames and EucUdean motions involved in the vision-

based pose estimation problem are shown in Figure 3.2. We label the coordinate frames

as: (a) Landing target, (b) Landing pad, (c) Camera head, (d) Camera base, (e) UAV,

(f) Inertial frame. The notation Qba € SE{3) denotes the Euclidean motion (translation

and rotation) of coordinate frame b with respect to frame a. Table 3.1 describes how each

coordinate frame transformation is measured. Of particular note, the transformations gef
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and Qfb are exclusively used in the "ground truth" comparison of the state estimates of the

vision sensor and are never directly used by the vision algorithm.

Z c,Camera
Head

b, Landing
• Pad

d, Camera
Base

a, Landing z
Target

e. UAV

f, Inertia!

Figure 3.2: Geometry of the coordinate frames and Euclidean motions involved in the vision-
based pose estimation problem.

Description Measurement

9ba landing pad wrt
landing target frame

predefined

Qdb camera head

wrt landing pad
vision-based

state estimate

9dc camera head

wrt camera base

pan/tilt state
from camera

9ed camera base

wrt UAV

predefined

9ef UAV state

wrt inertia! frame

INS/GPS
from UAV

9fb landing pad
wrt inertial frame

predefined

Table 3.1: Description and measurement methods of coordinate frame transformations in
volved in the vision-base pose estimation problem from Figure 3.2.



3.4 Software

LAPACK (Linear Algebra PACKage) and BLAS (Basic Linear Algebra Subprograms) [4]
are used to facilitate the coding of vision algorithms for standard matrix operations such

as SVD, eigenvalue decomposition, and Gaussian elimination. Our remaining code uses a

flexible object-oriented program structiire written in C-I-+. We have developed a "ground

station" which monitors the status of flight experiments by communicating through wireless

ethernet to the onboard vision computer and displaying the current state of the vision system

through a Java-based GUI (shown in Figure 3.3).

In addition to the current vision-based state estimates, we bit-pack the thresholded 160 x

120 pixel binary image for display on the ground station. We find that this realtime view

from the PTZ camera is invaluable for testing by not only giving feedback regarding the state

ofthe hehcopter, but by also showing the quahty of thresholding algorithm and thepan/tilt
control. In practice, we find that while the pan/tilt control performs as well as expected,

there is still room for improvement in our selection of the threshold. We also display the

current labeled feature point estimates to gauge the quality of the corner detection and

labeling algorithms. In our experiments, we find that while our corner detection algorithm

produces somewhat noisy estimates, our corner labeling algorithm is extremely robust.

Landing GUI

Y pos Y rot

Z pos .... Z rot 1
<04 1

Figure 3.3: Ground-station Java-basedvisualization showing position and rotation estimates,
extracted feature points and labels, and the binary image view from the camera.
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3.5 Overall System Performance

Figure 3.4 shows the results of our flight test with the UAV, compaxing the output of the

vision-based state estimation algorithm with the INS/GPS measurements accurate to 2cm.

All plots show the state of the UAV with respect to the landing pad. The vision estimates

are more noisy, but otherwise follow the INS/GPS measurements. Also, errors in the internal

and external camera calibration parameters marginally affects some of the estimates - the

x-position and ^-rotation, in particular. While logging a fraction of the original images in

real-time, the Linux write caching algorithm caused noticeable, synchronized gaps in data

in each plot.

S 0.5

Vision-Based State Estimate (red) vs INS/GPS State (blue)
Translation (m) Rotation (deg)

20 30 40 50 60

20 30 40 50

time (seconds)

10 20 30 40 50

10 20 30 40 50 60

20 30. 40 50

time (seconds)

Figure 3.4: Flight test results: the vision estimates are more noisy but otherwise follow the
INS/GPS state of the UAV relative to the landing pad. A calibration error is most notable
in the estimates of x-position and ^-rotation.
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Figure 3.5 shows the root mean squared error of each estimated state parameter. The

position estimates are within 5cm accuracy. The x- and y-position estimates should perform

better than the ^-position estimate. That is, the same amount of translation along the

X- or y-axis causes more detectable change in the image than along the z-axis, the optical

axis of the camera. However, this is not apparent in our plots due to the noted calibration

error. The rotation estimates are all within 5 degrees accuracy. As expected, the z-rotation

estimate significantly outperforms the other two. That is, the same amount of rotation

about the z-axis causes more detectable change in the image than the other axes. Overall,

the vision-based state estimates are accurate enough to be used in the closed-loop of a high-

level controller for landing in a hierarchical fiight vehicle management system, as described

in [9],

Vision-based State Estimate, RMS Error

Position (m) Rotation (deg)

X Y Z X Y Z

Figure 3.5: The RMS error of state estimates for each axis of translation and rotation.
Position error is within 5cm. Rotation error is within 5 degrees.

Table 3.2 shows the computational cost of each stage of processing in our system, mea

sured from actual program execution. In particular, we see that almost all of our compu

tational time is spent on image processing. In turn, most of the image processing is spent

on the segmentation algorithms for extracting the landing tgirget. The obvious conclusion is

that any further effort toward improving computational efficiency should be spent optimizing

the image segmentation algorithms.



"Low Level Image Processing"
Segmentation pass 2, edge detection (low res) 42%
Threshold, segmentation pass 1 30%

Image acquisition 8%

Corner detection (high res) 6%

Histogram estimation 4%

Feature labeling <1%

Total 90%

Other Processing
Nonlinear optimization 5%

Bit-encoding binary image for GUI 2%

Linear optimization 2%

Frame transformations 1%

Misc. <1%

TotgJ 10%

20

Table 3.2: Computational cost of each stage or processing, measured from actual program
execution. Image processing is expensive, consumed by segmenting the landing target from
the image. Refer to Figure 2.1.
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Chapter 4

Conclusion and Future Work

In this paper, we have presented the design and implementation of a vision system to

land a UAV. Our proposedvision system consistsofoff-the-shelf hardware and gives realtime

estimates at 30Hz ofthe positionand orientationofthe UAV relativeto a specifically designed

IflnHing pad. The estimates are accurate to within 5cm in each axis of translation and 5

degrees in each axis of rotation.

Someaspects of our system performed particularly well. Our feature labeling is computa

tionally inexpensive and extremely robust to noise. The camera control algorithm performed

well given the dynamic limits of the pan/tilt actuators of our camera. Given a good thresh

old for a grayscale image, our segmentation algorithm never failed to extract the landing

target. With adequate initialization, our estimates from nonlinear optimization proved to

be robust to noise. The vision-based state estimates are sufficiently accurate to allow our

vision system to be placed in the hierarchical control loop for UAV landing.

In the future, we would like to use a more robust technique for selecting a grayscale

threshold to reduce the occasionally undetected landing target. Also, our corner detector

does not address the effects of pixel quantization and suffers somewhat as a result. We would

also like to obtain corners to within sub-pixel accuracy by using additional constraints from

the landing target design. These improvements can significantly decrease the overall error

of the subsequent estimates.



For future research, we will place our vision system in the control loop for autonomous

UAV landing onto a moving platform which simulates the motion of a ship deck, as shown

in Figure 4.1.

Wi

Figure 4.1: Programmable 6 DOF landing platform to simulate watercraft dynamics. To be
used in future work.
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Appendix A

Code Overview

Here we describe the code for the integrated vision landing system. Because work remains

for final integration of the landing system, the following details will help future research ex

tend the current system. And since the code is fully functional, there is value in incrementally

improving an existing code base instead of starting from scratch.

This Appendix describes the files corresponding to each component in Figure 2.1, then

goes on to describe the files for the front-end, supporting libraries, ground visualization, and

test results. And, because the intent is to enable future research, the files used for develop

ment and testing are described in addition to those used for the current implementation.

A.l Image Acquisition

For the image segmentation and corner detection, custom image processing routines are

used. So, direct access to the frame grabber must be available. The supported hardware

is the Matrox Meteor MGR, a PCI card used for desktop development, and the Ima-

geNation PXC200, a nearly equivalent PC104-I- card used on-board the hehcopter. Both

cards are based on the Brooktree Bt848 chipset. Appropriate header files were taken

from the "Bt8xx Frame Grabber Drivers for Linux" - the original archive is included as

bt848-l.l-RH-6.2.tgz. Naturally, the appropriate Linux kernel module must be present
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for access to the hardware.

All relevant files are in corner/bt848/.

A.1.1 Development

Some files in the corner/bt848/ directory were used purely for development. These

files are stand-alone and test preliminary access to the frame grabber. For example, see

capture_pxc_jnmap_single. cc.

A.1.2 Implementation

This section describes image acquisition the files used in the current vision system.

CaptureDevice.h

CaptureDevice .h defines an abstract interface for capture devices. The intent is to allow

code using a capture device to not depend on a particular frame grabber. For instance, a

saved image sequence be presented as live data without modification of the dependent code.

A capture device provides the following pubhc members:

void start_capture();
void stop_capture();
bool is_capturing();

bool is_new_image_avail();
unsigned char* get_image();
int get_image_size();
int get_rows();
int get_cols();

int get_fraiiie_count();
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CapturePXC200.{cc,h}

CapturePXC200. {cc,h} implements a capture device for the PXC200 and Meteor MGR.

It supports grayscale image acquisition from YUV packed or YUV planar modes. It also
support RGB24, although this is currently unused because the corner detection routine only
uses binary images derived from grayscale images. The class provides the following members
in addition to the CaptiureDevice interface:

CapturePXC200();
CapturePXC200(const char* dev, int rows, int cols, mode.flags flags);

void open_device(const chsir* dev, int rows, int cols, mode^flags flags);
void close.deviceC);

where mode-flags is either Y8_FR0M_YUV_PACKED, Y8_FR0M_YUV_PLANAR, or RGB24.

Note that for the current system, requesting a video mode with more than 240 rows

is undesirable. For video modes with more than 240 pixels, the frame grabber cannot be

initialized to use only even oroddscan hnes. Because NTSC is interlaced, if all scan lines are

used, the 1/60 second delay between even and odd scan lines will cause noticable ghosting
when the camera encounters vibration.

CapturePXC200. cc depends on ioctl_bt848.h and ioctl_meteor .h for interfacing with
the Linux Bt848 module.

A.1.3 Testing

test_CapturePXC200. cc exercises CapturePXC200 by opening the frame grabber, grab
bing a number of frames, reporting the frames per second grabbed, and dumping the final
frame to a PGM image file.
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A.2 Histogram and Threshold

The histogram and thresholding routines provide methods to convert a grayscale image

from the frame grabber to a binary imagefor the segmentation and corner detection routines.

The base directory for histogram and threshold is research/corner/.

A.2.1 Development

In the matlab/ subdirectory, the thresholding algorithm is one component in the devel

opment of the corner detector. In the src/ directory there remain some files left over from

exploring now unused histogram and threshold techniques.

graw2bw.m

gray2bw.m is a simple thresholding algorithm that asserts at least fifty percent of the

image pixels must be black. In practice, this algorithm was found to be less robust than

other techniques. However, it is sufficient for the simulated images used in development.

calc_moving_sum.h

calc_moving_suin.h is a templated function that calculates a simple moving-windowsum

for a hst of numeric data. In particular, it was used to low-pass filter histogram data before

performing a gradient descent.

threshold.h

threshold.h is a very simple thresholding algorithm. It performs a block of read op

erations then a block of write operations, attempting to keep the CPU pipeline full by

separating read-write dependencies. Regardless, thresholding is currently implemented as a
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function of the segmentation routine. In this case, exploiting locaUty outperforms exploiting

the pipehne.

threshold-mmx.CO

thresholdjmnx.cc is an Intel MMX-enhanced version of the thresholding routine. It

depends on mmx-loadSbyte.h. While faster than the non-MMX version, thresholding in the
segmentation routine still marginally outperforms it.

A.2.2 Implementation

This section describes the histogram and threshold files used in the current visionsystem.

calcJiistogram.h

calc_histogram.h provides three simple histogram calculation and estimation rou

tines. calc-histograni is a straight-forward calculation of the exact histogram.
calc-histograiQ-urolled also calculates the exact histogram and reduces computation time

by loading 32 bits at a time instead of 8 bits. calcJiistograiii_Qstep, used in the current
vision system, estimates the histogram by evaluating every nth pixel.

get_gray2bw_threshold.h

get_gray2bw_threshold.h provides three methods for calculating the histogram

of an image. get_gray2bw_threshold, the original thresholding algorithm, calcu

lates the local minimum in a smoothed histogram above a given minimum graylevel.

get_gray2bw_threshold_npoly fits a 6th-order polynomial to the histogram and picks the

most appropriate localminimum. get_gray2bw_threshold_fixed, used in the current vision

system, calculates the graylevel as a given percentage between the minimum and maximum

graylevels present in the histogram.
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A.2.3 Testing

For debugging the histogram and threshold routines, dmnphist. cc tahes the name ofa
PGM file on the command-hne and dumps the relevant information to standard output.

A.3 Segmentation

The segmentation routines take a binary image as input and uses connected component

labeling to locate the landing pad in the image and the components within the landing pad.

The base directory for segmentation is research/corner/.

A.3.1 Development

The segmentation routines were developed using MATLAB and can be found in the

subdirectory matlab/.

coimected-components.m

connected-components.m is a simple implementation of connected component label

ing using 4-neighbors. It takes a 2-dimensional numeric matrix as input, and produces a

2-dimensional numeric matrix with each connected region uniquely numbered. It also op

tionally outputs a 2xN matrix describing the map from group number to input value. This

implementation is not very fast in MATLABbecause it depends heavily on for-loops iterating

over scalar data.



31

connected-components_c .c

connected-components-c. c is a MEX-file that when compiled mimics the behavior of

connected-coniponents .m but is much faster. This is the base unplementation used to

develop the variations used in the current vision system.

locateJanding-pad2.m

locate_landing_pad2.m uses the connected component labeling routine to identify the
landing pad and its internal components in a binary image, then continues to find the corners

in the landing pad.

test-landing-pad.m

test-landing-pad.m rasterizes a landing pad given rotation and translation parameters

then calls locate_landing_pad2.in to find the corners of the landing pad in the rasterized

image.

A.3.2 Implemenatation

This section describes the segmentation files used in the current vision system. The files

axe found in the subdirectory src/.

connected-components.h

connected-components .h is a C++, templated incarnation of the connected components

MEX-file. This file was used as a springboard to develop the two variations currently used.
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connected_components_op.h

connected-components-op .h extends connected_components. h by first applying a func

tor object to the input data. In particular, this is used to first threshold the input data. This

exploits data locality can gives a legitimate speed boost over thresholding separately. Step-

size can also be specified as a template parameter, allowing for on-the-fiy down-sampling of

the input image.

connected_coniponents_op_edge.h

connected_components_op_edge.h further extends connected_components_op.h by also

calculating edges in the input image. Again, this functionaUty is included because it exploits

data locality and gives a legitimate speed boost over performing edge-detection separately.

connected-Components-opJnnerJoop.ccJnclude

This file is an extraction of a common inner loop firom connected-components.h in an

attempt to improve the readability of the two derived files.

encode_bw2bits.h

encode_bw2bits .h provides routines to encode and decode a byte-per-pixel binary image

to a bit-per-pixel binary image. This provides 8-factor compression, redicing data when

transmitting the binary image to the ground station as well as saving binary images to a log

file.

find_features.cc

find-features.cc uses the connected components routines to locate the landing pad in

a grayscale image, then locates the edges and corners in the landing pad, and finally uniquely
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labels each corner.

A.3.3 Testing

While testing the algorithm, the ability to read and write grayscale image files is invalu

able. This functionahty is provided by read-image. {cc,h} and write_image.{cc,h} which

handle PGM files, a simple grayscale image file format.

A.4 Corner Detection and Labeling

The corner detection algorithm uses a custom algorithm to locate the four corners ofa 4-

sided polygon in a binary image. It first performs edge detection to find the necessary edges,
then it uses convexity constraints to find the four extremities of a 4-sided, convex region.

The labehng algorithm then asserts a clockwise ordering relationship between corners.

The base directory for corner detection and labeUng is research/corner/.

A.4.1 Development

The corner detection and labehng routines were developed using MATLAB and can be

found in the subdirectory mat lab/.

calc_corners_from_perimeter.m

calc_corners_from_perimeter.m takes a number ofperimeterpixels as input and calcu

lates the four corner pixels as output. The input may be the full region, but the calculation

over the perimeter pixels is faster and equivalent.
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get_group_perimeter.m

Given an image that has probably been processed by the connected component labeling

routine and a group number, get_group_periiiieter.m calculates the edges pixels for the

given group.

locateJanding-pad2.m

After using the connected component labeling algorithm to identify the landing pad,

locate_landing_pad2.in finds and labels its corners using get_group_perimeter.m and

calc_corners_from_perimeter. m.

A.4.2 Implementation

This section describes the corner detection and labeling files used in the current vision

system. The files are found in the subdirectory src/.

LocateLandingPad.h

LocateLandingPad.h is the main interface to the corner detector. It allocates tempprary

work arrays so that major memory allocation and deallocation does not take place with each

call. There are two members functions of primary interest: set_image_size prepares the

temporary work arrays, and f ind_features takes a pointer to a grayscale image as input and

calculates the features for output. Naturally, the actual size of the image must be congruent

with the cols and rows parameters. The image data given to find_features must be stored

row-first.

LocateLandingPadO;
LocateLandingPadC int cols, int rows );

void set_image_size( int cols, int rows );
void find^features( image.type* image, double* features );
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calc_corners_£rom_perimeter.h

calc_comers_froin_perinieter .h is a templated function that takes a set of perimeter

pixels as input and calculates the four corner pixels as output. It uses the assumption that

the perimeter was taken from a convex region.

calc_corr.h

Given the 24 corner pixels of the landing pad, calc_corr.h reorganizes the corners to a

consistent ordering regardless of the rotation, translation, and projection of the landing pad

in the image. Corners from the same region should be adjacent in the input corner vector.

On output, the corners are ordered according to Figure 2.2(b).

calcJine.h

Given two points, calc_line.h calculates the equation of the Une between them. This

function is used by calc_corners_from_perimeter.h.

convertJndex_to_xy.h

Given a sequence of flat indices into a matrix and the number of rows in the matrix,

convert_index_to_xy.h produces an the corresponding x,y indices. This function is used

by find-features. cc.

convert_scaled_perim_to_unscaled.h

Segmentation and

edge detection occurs on a down-sampled image. convert_scaled_perim_to_unscaled.h

uses the unsealed image and down-sampled edges to calculate the edges in the unsealed im

age. The resulting edge pixels are used in the corner detection algorithm. The result is that
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corners are effectively calculated at full image resolution.

corr_ordered_angles.h

Given six centers of gravity and a reference index, corr_ordered_aiigles.h calculates

the angle between the reference CoG and the remaining 5 CoG's. This function is used by

calc_corr.h. It calculates all possible angles between the center of gravities of each square

in the landing target. That information is then used to determine the identity of each square.

find-features.cc

find_features.cc is the work-horse of the corner detector. It brings together the his

togram, threshold, segmentation, edge detection, corner detection, and correspondence rou

tines. Of particular note, it adjusts the down-sampling and histogram estimation parameters

so that the segmentation and histogram routines on 160 x 120, 320 x 240, and 640 x 480

images execute in approximately the same amount of time.

get_furthestJnd_from.h

get_furthest_ind_from.h is a small function support

ing calc_corners_from_perimeter.h that determines the point furthest from a reference

point in a given set of points. Note, its input and output are indices into the set of points,

rather than the point itself.

order_4corners.h

order_4comers.h is a small function supporting calc_corr.h that takes 4 counter

clockwise corners of a square in the landing target and performs the final correspondence by

considering the angle between those corners and the center of gravity of another, particular



37

square in the landing target. This routine again asserts that counter-clockwise ordering is

invariant under rotation, translation, and projection.

A.4.3 Testing

These routines test the development corner detection and labehng algorithms in the

matlab/ directory.

get_corner_grid.m

get_corner_grid.m is a simple support function that produces an evenly spaced M x N

grid of boxes with parameterized spacing and width of the boxes.

getJanding-pad.m

get_landing_pad.m produces the corners ofa landing target necessary for rendering. A

few different configurations are supported, and the default is the one currently used in the

vision system.

plot-landing-pad.m

plot_landing_pad.m plots the landing padgenerated with get_landing_pad.iii in a figure

window. It depends on plot.corner.grid. m.

renderJigure.m

render_figure.m manipulates properties of the figure window to rasterize a figure to

a desired resolution. This function allows the thresholding, segmentation, edge detection,

corner detection, and corner labeling routes to operate on a simulated set of image pixels
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at any desired resolution (up to the current screen resolution, a constraint imposed by

MATLAB).

testJanding-pad.m

test_landing_pad.m is a script that selects particular parameters to test the corner

detector.

A.5 Linear Estimation

The linear estimation directly solves for the motion parameters by relating the features

in the current image to a known feature configuration.

The base directory for linear estimation is research/landing/motion/coplanar4/.

A.5.1 Development

Although the linear algorithm is straight forward, the MATLAB file coplanar_getRp.m

is used to verify the structure of the algorithm is correct. The algorithm takes as input a

known configuration of the feature points, where the ^^-coordinate is assumed to be and must

be 0. Corresponding feature points in the image plane are also given as input. The routine

produces a matrix in SE{S) representing the rotation and translation and optionally outputs

the estimated error.

A.5.2 Implementation

coplanar_getRp.{cc,h} directly implements the MATLAB version in C+d-. However,

the zero configuration currently must supply the z-coordinate of the features in the known

configuration, although they all must be 0. Also, the estimated error is not a return value.
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A.5.3 Testing

test_coplanar_getRp.m and test_coplanax_getRp.cc exercise their MATLAB and

C++ counterparts. They allow a number ofrotationsand translations to be steppedthrough,

verifying the expected output with the actual output.

A.6 Nonlinear Estimation

The nonlinear estimation iteratively solves for the motion parameters by relating the

features in the current image to a known feature configuration.

Development of the nonfinear estimation routines is inexphcably spHt between

research/landing/nonlines't/ and research/landing/motion/nonlinest/. The most

recent development version andcurrent implementation is inmotion/nonlinest/, and some

older but somewhat useful files are in landing/nonlinest/.

A.6.1 Development

In landing/nonlinest/, the Jacobian of for the gradient function was calculated sym-
bohcally in MATLAB. A log ofthe derivation is in nonlinest .txt. Thefinal result was cut

and paste and modified into nonlinest.m.

A more current development version of nonlinest .m is in motion/nonlinest/. This

algorithm iterates until the error becomes small, the step size becomes small, or a maximum

number of iterations is reached. The step size is adaptively selected to guarantee the error

monotonically decreases.
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A.6.2 Implementation

nonlinest.{cc,h} is the current implementation of the nonlinear algorithm in

motion/nonlinest. It is a direct translation of the MATLAB version to C++.

A.6.3 Testing

test_nonlinest .m and test_nonlinest. cc in motion/nonlinest exercise their MAT-

LAB and C++ coimterparts. In particular, they step through a number of rotation and

translations, verifying the actual output matches the expected output.

A.7 Camera Communication and Control

A class was specifically written for communication with the Sony EVI-D30 PTZ camera.

Routines were developed to command the camera to pan and tilt any given pixel to any

other pixel location. Also, the routines support commanding the camera to zoom so that a

particular set of pixels maximally fill a bounding box.

The base directory for camera conmiunication and control is research/camera/.

A.7.1 Development

Development for the camera communication mostly translated to viable implementa

tion. However, there were a couple of failed experiments, namely SaphiralO.{cc,h}

and ThreadedIO.{cc,h}. SaphiralO attempted to communicate with the camera through

Saphira and was abandoned. ThreadedIO attempted threading at low-level communication

and was later replaced by threading at a higher level.

The camera supports multiple threads of communication, but conveys minimal context

information throughout a communication sequence. Also, some particular response packets
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from the camera are occasionally garbled. These two artifacts of the camera caused a couple

of rewrites before a bug-free communication class was produced.

A.7.2 Implemenatation

This section describes the camera communication and control files used in the current

vision system.

BasicIO.h

BasicIO. h defines an abstract interfacefor a character device. This abstracts the primary

camera communication class from from the particular communication device.

FileDescIO.{cc,h}

FileDescIO.{cc,h} implements BasicIO for a device accessible through file descriptors,
such as a serial device.

PTZCamera.{cc,h}

PTZCamera.{cc,h} provides a means to communicate with the Sony PTZ camera.
Three members of PTZCamera are useful in particular:

PTZCamera(BasicIO* io);

void setIO(BasicIO* io);

void putOutputPacket(const string& s);
void processCommandQueue(bool bBlock=false);

setIO assigns a BasicIO class providing input and output services to for camera.
putOutputPacket places a string on the camera's command queue. processCommandQueue
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processes any pending input from the camera, the sends the next packet on the camera's

command queue if it is safe to do so.

The namespace PTZPacket provides functions for encoding commands for the camera

and decoding responses. address_set and ifclear must be sent to the camera for initialization.

Other supported commands include pan, tilt, and zoom. See the header file PTZCamera.h

for further details.

Furthermore, the class PTZCamera is aware of pan, tilt, and zoom commands and re

sponses from the camera. As a result, it maintains a record of the most recently received

pan, tilt, and zoom measurement responses. See the header file PTZCamera.h for further

details.

CameraUtils.{cc,h}

CameraUtils.{cc,h} resides in research/landing/motion/src/ and defines a names

pace for camera control. The provided functions calculate the camera cafibration matrix,

automatically zoom a set of pixels to maximally fill a bounding box, and pan any given pixel

to any other pixel location.

A.7.3 Testing

Two files in research/camera/ exercise the camera communication class.

test_camera.cc commands the camera to pan and tilt to its four extremes, in sequence,

all the while printing out current pan, tilt, and zoom measurements. test_threads2.cc

similarly exercises the camera, except that processCommandQueue is placed in a separate

thread, allowing for unmanaged, asynchronous camera control.
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A.8 Frame Transformations

The frame transformations described in Figure 3.2 cannot be slighted. Because, the

overall evaluation of the algorithm depends on properly calibrated data. The current

implementation of the frame transformations are found in MotionEstimation.{cc,h} in
resGcLrch/landing/motion/src/. It was found that a move to homogeneous coordinates

was invaluable in simplifying the numerous coordinate transformations.

A.9 Navigation Computer Communication

Communication with the navigation computer occurs through an RS232 serial port. Data

is transmitted using the DQI packet structure. The communication class is built on ArbF-

Stream.

The base directory for navigation computer communication is

research/landing/motion/chopperio/.

A.9.1 Implementation

ChopperlO.h provides communication with the helicopter. It depends on S_DqiIO and

I_DqiIOListener provided by ArbFStream. Upon request, the navigation computer pro

vides a structure containing the following fields: time, x-position, y-position, z-position, roll,

pitch, and yaw.

A.9.2 Testing

test_chopperio. cc exercises the ChopperlO class. Upon pressing a key, a request for

data is sent to the navigation computer. The response is printed to standard output.
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A.10 Front-end

The front-end ties the diverse algorithms of the vision system together: initializing the

frame grabber, detecting the corners in the image, running the hnear and nonUnear algo

rithms, applying the frame transformations, controlling the camera, gathering log data from

the navigation computer, and providing data to the ground station. It also provides logging

the state of the vision system to a file and later replaying the log as if it were five data.

The base directory for the front-end is research/landing/motion/src/.

A.10.1 Development

Before developing the custom corner detector, we gathered image features using color

tracking with the ActivMedia Color Tracking System (ACTS). We found that color features

are not robust in a natural, outdoor environment. However, color tracking is still available in

the files ColorFeatures.{cc,h} which implement a Featurelnterface (described below)

for the color tracker.

A.10.2 Implementation

This section describes the front-end files used in the current vision system.

Featurelnterface.h

Featurelnterface defines an abstract class for providing features and controlling the

camera given those features. A class implementing Featurelnterface provides the following

members:

typedef double feature.tjrpe;
bool is_update_avail();
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bool have_features();
vector<feature_type> get_features();
vector<feature_type> get_zero_configO;

bool can_control_ptz_camera();
void control_ptz_cainera(PTZCamera& cam, int image_rows, int image.cols);

CornerFeatures.{cc,h}

CornerFeatures. {cc,h} implements FeatureInterface for the corner detector. It uses

a CaptureDevice for accessing images probably supplied by a frame grabber.

motion.cc

motion.cc provides command-line access to the front-end. It integrates the diverse

functionahty of the vision system into a single tool.

A.10.3 Testing

For testing, a series of grayscale images can be processed as if they were live data from

a frame grabber. This functionahty is provided by Testf ileFeatures.{cc,h} and exposed
by motion.cc.

A.11 Supporting Libraries

Throughthe course ofdevelopment ofthe vision system, some hbraries were necessary for

basic functionahty and infrastructure. Some were specifically written for the vision project,

while others were publicly available on the Internet.



46

A.11.1 ArbFStream

ArbFStream is a library written for the project meant to implement arbitrary file streams.

It was initially developed early on in the project to manage multiple input and output streams

in a single thread. In aU honesty, it should be rewritten to provide a cleaner, more lightweight

interface. However, one of its current, primary attractions is that it allows specification of

a variety of 10 devices from a text string. Here is a excerpt from the ArbFStream. h header

file describing the supported devices:

Standard 10

File 10

Serial 10

TCP Listener

TCP Client

stdio

files,[input file], [output file]
serial,[device],[bps]
tcplisten,[port]
top,[address/name],[port]

In practice, string specification of devices is invaluable for simple command-fine configura

tion.

The base directory for ArbFStream is research/ArbFStream/.

base/

The base/ directory provides the basic functionality for ArbFStream.

ArbFStream.{cc,h} ArbFStream.{cc,h} provides the string initialization of the file

streams. After opening a device, ArbFstream provides access through iostreams and file

descriptors:

istream* isO;

ostream* os();

int getlnputFDO const;
int getOutputFDO const;
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FDSelect.{cc,h} FDSelect.{cc,h} can wait indefinitely or for a specified period of

time for read, write, or exception events for particular file descriptors.

NonBlockingStdin.{cc,h} NonBlockingStdin.{cc,h} provides non-blocking access

to standard input. In Unix, a user must usually hit ENTER before the entered text becomes

visible on stdin.

S_CharIO.{cc,h} S_CharIO. {cc,h} and I_CharIOListener. h is ArbFStream's solution

to manage multiple 10 streams in a single thread. A S_ChaxIO is constructed from an existing

ArbFStream. Characters are then distributed to clients through the I_CharIOListener

interface.

SerialStream.{cc,h} SerialStream. {cc ,h} is used to create a serialstream. This class

is used by ArbFStream when a serial stream is requested.

TCPStream.{cc,h} TCPStream.{cc,h} is used to create either a TCP listener or a

TCP client. This class is used by ArbFStream when a TCP stream is requested.

services/

The services/ directory extends the basic functionality of ArbFStream to provide in

terface to common conununication protocols used in the project.

S_DqiIO.{cc,h} S_DqiIO.{cc,h} and IJ)qiIOListener.h manage communication for

the DQI protocol, used in particular for communication between the vision computer and

the navigation computer. I_DqiIOListener .h emulates the I_CharIOListener interface for

DQI packets.
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S_GpsIO.{cc,h} S-GpsIO. {cc,h} andI_GpsIOListener. h manage communication with

a GPS device. I_GpsIOListener.h emulates the I_CharIGListener interface for GPS pack

ets.

A.11.2 AFSBridge

AFSBridge is a simple application built using ArbFStream that ties two streams to

gether. This is useful in debugging, for instance, for forwarding a serial stream over a TCP

connection. The base directory for AFSBridge is research/AFSBridge.

A.11.3 include/

The include/ directory provides common files that are independent of the apphcation

that uses them.

cJapack.h

LAPACK is a pubUcly available Fortran hbrary used in this project for numeric calcula

tion of SVD's, eigenvalues, matrix multiplication, matrix inversion, and so on. c_lapack.h

provides a suitable C/C+H- interface for calling the particular LAPACK functions used in

the vision project. Similar LAPACK functions with different data types are overloaded to

have the same caUing name for C++.

tnt/

The Templated Numeric Toolkit (TNT), publicly available on the Internet, is used to

manage matrices throughout the project. In retrospect, a much more suitable hbrary exists

for manipulating multidimensional numeric matrices, Blitz++.
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tnt-css-finat-Ops.h

tnt_css_fmat_ops.li provides a number of matrix manipulation routines based on LA-

PACK. The primary data type used by the routines is TNT's FortranMatrix. Routines

supphed by this header include svd, eig, matsolve, matmul, null, det, rank, nomi, inv,

sum, zeros, ones, and eye. The header also provides routines for producing rotation matri

ces and handhng homogeneous matrices.

indexed-function.h

indexed_function. h allowsC++ Standard Template Library (STL) functions to operate

on the indices of a sequence rather than the sequence itself. This allows, for instance, a

sequence of indices to be sorted according to the data they reference.

matlab/

The matlab/ directory provides some commonly used MATLAB functions.

r2euler.m r2euler.m calculates the ZYX-EaAqx parameters from a given rotation mar

trix. This function was used as the basis for the equivalent C++ function used in the

project.

rotxyz.m rotxyz.m calculates a rotation matrix given ZYX-EivXqi rotation parameters.

rtp.m rtp.m rotates, translates, and projects a set of world coordinates accordingto the

given rotation and translation parameters.

unitize.m unitize.m transforms the columns of a matrix into unit-vectors.
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wedge.m wedge .mimplements the wedge operation, transforming a 3-vector into a skew-

symmetric matrix.

r2euler.h

r2euler.h is a C+H- implementation of matlab/r2euler.m, calculating ZYX-Euler pa

rameters from a rotation matrix. It is used by the homogeneous matrix manipulation routines

in tnt_css_fmat-ops. h.

A.12 Ground Visualization

Ground visualization is invaluable for identifying the performance of the system in real

time while the vision system is running. We implemented a graphical user interface in Java.

It receives data from the vision computer on the helicopter through TCP commuication.

The base path for the ground visuahzation GUI is research/landing/gui/.

A.12.1 LandingGUI.java

LandingGUI. Java implements four classes: LandingGUI, BinaryImagePlot,

CoordinatedPointPlot, and TimePlot. LandingGUI is the main interface to the graphi

cal display. It manages the TCP streams and objects displaying the data. It also provides

a member function to replay a log file. BinaryImagePlot decodes bit-encoded binary im

age data and displays it in a small window. CoordinatedPointPlot scales and displays

with labels the detected feature points in the image. TimePlot manages a running graph of

time-series data, used to plot the rotation and translation estimates.
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A.13 Results

We saved the results from a few flight tests. However, only one in particular produced

decent, usable data. In addition to the data itself, a number of MATLAB functions were

developed to aid in the analysis the flight data.

The base path for the results is research/landing/motion/flight/.

A.13.1 trial_{04,05,06}/

trial_{04,05,06}/ contain datafrom three flight tests. trial_06 inparticular provided
data suitable for analysis. Within each directory, there is a file named flight. log. This

contains a log of data saved by the vision program while in flight. There is also a set of

files that match the pattern heligray?????. pgm. These correspond to a series of grayscale

images resulting from saving every 6th frame to an image file. And, the flies matching
helihist?????.txt are post-processed histogram results of each logged PGM image.

A.13.2 MATLAB Helpers

A number of MATLAB functions were developed to aid in the analysis of the flight data.

caIc_dc_ofFset.m

calc_dc_offset .m estimates the DC offset necessary for each estimated parameter (ro

tation and translation) to zero-mean the vision estimates with the navigation computer

measurements. This is useful in evaluating calibration errors.
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plot-flightJog.m

plot_flight-log.m plots the contents of a flight log including the six vision estimates

against the six navigation computer measurements. As input, it takes a structure produced

by read_flight-log. m.

plot-hist.m

plot-hist.m plots the contents of a helihist?????.txt histogram analysis file. This is

useful for evaluating the performance of the thresholding algorithm.

plot-hist-anim.m

plot-hist-anim.m animatesofseries of helihist?????. txt histogramanalysis file. This

is useful for analyzing the performance of the thresholding algorithm on a sequence of data.

read-flightJog.m

read-flight-log.m loads the contents of a flight.log file. The data is then readily

available for plotting and analysis. This routine is very slow - read_flight-relog.m should

be used if possible. If not, it is advised that the output is immediately saved to a MATLAB

data file for quick reloads.

read-flight-relog.m

read-flight-relog.m loads a log file in the new format, which allows MATLAB to

read the data significantly faster at the expense of not having the binary image data available.

If possible, use this function over read-flight.log. m.
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