
 

 

 

 

 

 

 

 

 

Copyright © 2001, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



OVERVIEW OF THE PTOLEMY PROJECT

by

Edward A. Lee, Principal Investigator
ChristopherHylands, Jom Janneck, John Davis, U, Jie Liu,
Xiaojun Liu, Steve Neuendorffer, Sonia Sachs,
Mary Stewart, Kees Vissers, Paul Whitaker and
Yuhong Xiong

Memorandum No. UCB/ERL MO1/11

6 March 2001



OVERVIEW OF THE PTOLEMY PROJECT

by

Edward A. Lee, Principal Investigator
Christopher Hylands, Jom Janneck, John Davis, U, Jie Liu,

Xiaojun Liu, Steve Neuendorffer, Sonia Sachs, Mary Stewart,
Kees Vissers, Paul Whitaker and Yuhong Xiong

Memorandum No. UCB/ERL MO1/11

6 March 2001

ELECTRONICS RESEARCH LABORATORY

College ofEngineering
University of California, Berkeley

94720



DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

I UNIVERSITY OF CALIFORNIA
BERKELEY. CAUFORNIA 94720

OVERVIEW OF THE

PTOLEMY PROJECT

MARCH 6,2001

http://ptolemy.eecs.berkeley.edit/

John Davis, II

Christopher Hylands
Jdm Janneck

Edward A. Lee, Principal Investigator
Jie Liu

Xiaojun Liu
Steve Neuendorffer
Sonia Sachs

Mary Stewart
Kees Vissers

Paul Whitaker

Yuhong Xiong

1. Modeling and Design

The Piolemy project studies heterogeneous modeling, simulation, and design of concurrent sys
tems. The focus is on embedded systems [21], particularly those that mix technologies, including for
example analog and digital electronics, hardware and software, and electronics and mechanical
devices. The focus is also onsystems that are complex in the sense that they mix widely different oper
ations, such as signal processing, feedback control, sequential decision making, and user interfaces.

Modeling is the act ofrepresenting a system orsubsystem formally. Amodel might be mathemati
cal, in which caseit can be viewed as a set of assertions aboutproperties of the system suchas its func
tionality or physical dimensions. A model can also be constructive, in which case it defines a
computational procedure that mimics a set of properties of the system. Constructive models are often
used to describe behavior of a system in response to stimulus from outside the system. Constructive
models are also called executable models.

Design is the act of defining a system or subsystem. Usually this involves defining one or more
models of the system and refining the models until the desired functionality is obtained within a set of
constraints.

Heterogeneous Concurrent Modeling and Design



Modeling and Design

Design and modeling are obviously closely coupled. In some circumstances, models may be
immutable, in the sense that they describe subsystems, constraints, or behaviors that are externally
imposed on a design. For instance, they may describe a mechanical system that isnot under design, but
must be controlledby an electronic systemthat is underdesign.

Executable models are sometimes called simulations^ an appropriate term when the executable
model isclearly distinct from the system it models. However, inmany electronic systems, a model that
starts as a simulation mutates into a software implementation of the system. The distinction between
the model and the system itself becomes blurred in this case. This is particularly true for embedded
software.

Embedded software is software that resides in devices that are not first-and-foremost computers. It
ispervasive, appearing in automobiles, telephones, pagers, consumer electronics, toys, aircraft, trains,
security systems, weapons systems, printers, modems, copiers, thermostats, manufacturing systems,
appliances, etc. Atechnically active person probably interacts regularly with more pieces ofembedded
software than conventional software.

Amajor emphasis inPtolemy II is on the methodologyfor defining andproducing
embedded software together with thesystems within which it is embedded.

Executable models are constructed under a model of computation, which is the set of "laws of
physics" that govern the interaction ofcomponents in the model. Ifthe model isdescribing amechani
cal system, then the model ofcomputation may literally be the laws ofphysics. More commonly, how
ever, it is a setof rules thatare more abstract, and provide a framework within which a designer builds
models. Aset ofrules that govern the interaction ofcomponents iscalled the semantics ofthe model of
computation. Amodel ofcomputation may have more than one semantics, in that there might be dis
tinct sets of rules that impose identical constraints on behavior.

The choice ofmodel ofcomputation depends strongly onthe type of model being constructed. For
example, for a purely computational system that transforms a finite body ofdata into another finite
body ofdata, the imperative semantics that is common in programming languages such as C, C++,
Java, and Matlab will be adequate. For modeling a mechanical system, the semantics needs tobe able
tohandle concurrency and the time continuum, inwhich case acontinuous-time model ofcomputation
suchthat found in Simulink, Saber, Hewlett-Packard's ADS, and VHDL-AMS is moreappropriate.

The ability ofa model tomutate into an implementation depends heavily on the model ofcompu
tation that is used. Some models ofcomputation, for example, are suitable for implementation only in
customized hardware, while others are poorly matched tocustomized hardware because oftheir intrin
sically sequential nature. Choosing an inappropriate model ofcomputation may compromise the qual
ity ofdesign by leading the designer into amore costly orless reliable implementation.

Aprinciple of the Ptolemy project is that the choices of models of computation
strongly affect thequality ofa system design.

For embedded systems, the most useful models ofcomputation handle concurrency and time. This
is because embedded systems consist typically ofcomponents that operate simultaneously and have
multiple simultaneous sources ofstimuli. In addition, they operate in atimed (real world) environment,
where the timeliness of their response to stimuli may be as important as the correctness of the
response.

Ptolemy Project



Architecture Design

The objective in Ptolemy II is to support the construction and interoperability of
executable models that are built under a wide variety ofmodels ofcomputation.

Ptolemy IItakes acomponent view ofdesign, inthat models are constructed asaset ofinteracting
components. Amodel ofcomputation governs the semantics ofthe interaction, and thus imposes adis
cipline on the interaction of the interaction of components.

Component-based design in Ptolemy II involves disciplined interactions between
components governed bya model ofcomputation.

2. Architecture Design

Architecture description languages (ADLs), such asWright [1] and Rapide [27], focus on formal
isms for describing the rich sorts ofcomponent interactions that commonly arise insoftware architec
ture. Ptolemy II, by contrast, might be c^ed an architecture design language, because its objective is
not so much to describe existing interactions, but rather to promote coherent software architecture by
imposing some structure on those interactions. Thus, while an ADL might focus on the compatibility
ofa sender andreceiver in twodistinct components, wewould focus ona pattern of interactions among
a set ofcomponents. Instead of, for example, verifying that a particular protocol ina single port-to-port
interaction does notdeadlock [1], wewould focus on whether anassemblage ofcomponents candead
lock.

It is arguable that our approach is less modular, because components must be designed to the
framework. Typical ADLs can describe pre-existing components, whereas in Ptolemy II, such pre
existing components would have towrapped inPtolemy II actors. Moreover, designing components to
a particular interface may limit their reusability, and in fact the interface may not match their needs
well. All ofthese are valid points, and indeed a major part ofour research effort is toameliorate these
limitations. The neteffect, webelieve, is an approach that is much more powerful than ADLs.

First, we design components tobe domain polymorphic, meaning that they can interact with other
components within awide variety ofdomains. In other words, instead ofcoming up with an ADL that
can describe a number of different interaction mechamsms, we have come up with an architecture
where components can be easily designed to interact in a number ofways. We argue that this makes
the components more reusable, not less, because disciplined interaction within a well-defined seman
tics is possible. By contrast, with pre-existing components that have rigid interfaces, the best we can
hope for isad-hoc synthesis ofadapters between incompatible interfaces, something that is likely to
lead to designs that are very difficult to understand and to verify. Whereas ADLs draw an analogy
between compatibility of interfaces and type checking [1], we use a technique much more powerful
thantypechecking alone,namely polymorphism [24].

Second, to avoid the problem that a particular interaction mechanism may not fit the needs ofa
component well, we provide a rich set ofinteraction mechanisms embodied in Ae Ptolemy IIdomains.
The domains force component designers tothink about the overall pattern ofinteractions, and trade off
uniformity for expressiveness. Where expressiveness is paramount, the ability ofPtolemy II tohierar
chically mix domains offers essentially the same richness ofmore ad-hoc designs, but with much more
discipline. By contrast, a non-trivial component designed without such structure is likely to use a
melange, or ad-hoc mixture of interaction mechanisms, making it difficult to embedded it within a
comprehensible system.

Third, whereas an ADL might choose a particular model of computation to provide it with a for
mal structure, such as CSP for Wright [1], we have developed a more abstract formal framework that

Heterogeneous Concurrent Modeling and Design



Models of Computation

describes models ofcomputation at a meta level [23]. This means that we donot have to perform awk
wardtranslations to describe onemodel ofcomputation in termsof another. Forexample, stream based
communication via FIFO channels are awkward in Wright [1].

We make these ideas concrete by describing the models of computation implemented in the
Ptolemy n domains.

3. Models of Computation

There is a rich variety ofmodels ofcomputation that deal with concurrency and time in different
ways. Each gives an interaction mechanism for components. In this section, we describe models of
computation that are implemented in Ptolemy II domains, plus a couple of additional ones that are
planned. Our focus has been on models ofcomputation that are most useful for embedded systems. All
of thesecan lenda semantics to the samebubble-and-arc, or block-and-arrow diagramshown in figure
1. Ptolemy IImodels are (clustered, orhierarchical) graphs ofthe form offigure 1, where the nodes are
entitiesand the arcsare relations. For mostdomains, the entitiesare actors (entities with functionality)
and the relations connecting them represent communication between actors.

3.1 Communicating Sequential Processes - CSP

In the CSPdomain (communicating sequential processes), created by Neil Smyth [40], actors rep
resent concurrently executing processes, implemented asJava threads. These processes conununicate
by atomic, instantaneous actions called rendezvous (or sometimes, synchronous message passing). If
two processes are tocommunicate, and one reaches the point first atwhich itisready to communicate,
then it stalls until the other process is ready to conununicate. "Atomic" means that the twoprocesses
are simultaneously involved inthe exchange, and that the exchange is initiated and completed ina sin
gle uninterruptable step. Examples of rendezvous models include Hoare's communicating sequential
processes (CSP) [17] and Milner's calculus ofcommunicating systems (CCS) [31]. This model ofcom
putation has been realized in a number ofconcurrent programming languages, including Lotos and
Occam.

Rendezvous models are particularly well-matched to applications where resource sharing is a key
element, such as client-server database models and multitasking or multiplexing of hardware
resources. Akey feature ofrendezvous-based models is their ability tocleanly model nondeterminate
interactions. The CSP domain implements both conditional send and conditional receive. It also
includes an experimental timed extension.

FIGURE 1. A single syntax (bubble-and-arc or block-and-arrow diagram)
can havea numberof possiblesemantics(interpretations).

Ptolemy Project



Models of Computation

3,2 Continuous Time - CT

IntheCTdomain (continuous time), created lie Liu [25], actors represent components thatinteract
via continuous-time signals. Actors typically specify algebraic ordifferential relations between inputs
and outputs. The job ofthe director in the domain is to find a fixed-point, i.e., a set ofcontinuous-time
functions that satisfy all the relations.

The CT domain includes an extensible set of differential equation solvers. The domain, therefore,
is useful for modeling physical systems with linear or nonlinear algebraic/differential equation
descriptions, such as analog circuits and many mechanical systems. Its model ofcomputation issimilar
to that usedin Simulink, Saber, and VHDL-AMS, and is closelyrelated to that in Spicecircuitsimula
tors.

Embedded systems frequently contain components that are best modeled using differential equa
tions, such as MEMS and other mechanical components, analog circuits, and microwave circuits.
These components, however, interact with an electronic system that may serve as a controller or a
recipient of sensor data. This electronic system may be digital. Joint modeling of a continuous sub
system with digital electronics isknown asmixed signal modeling [26]. The CT domain isdesigned to
interoperate with other Ptolemy domains, such as DE, to achieve mixed signal modeling. To support
such modeling, the CTdomain models ofdiscrete events as Dirac delta functions. It also includes the
abilityto precisely detectthreshold crossings to produce discrete events.

Physical systems often have simple models that are only valid over a certain regime ofoperation.
Outside that regime, another model may beappropriate. A modal model is one that switches between
these simple models when the system transitions between regimes. The CT domain interoperates with
the FSM domain to create modal models.

33 Discrete-Events - DE

In the discrete-event (DE) domain, created by Lukito Muliadi, the actors communicate via
sequences of events placed intime, along a real time line. An event consists ofa value and time stamp.
Actors can either beprocesses that react toevents (implemented asJava threads) or functions that fire
when new events are supplied. This model of computation is popular for specifying digital hardware
andforsimulating teleconununications systems, andhas been resdized in a large number of simulation
environments, simulation languages, and hardware description languages, including VHDL and Ver-
ilog.

DE models are excellent descriptions of concurrent hardware, although increasingly the globally
consistent notion of timeis problematic. In particular, it over-specifies (orover-models) systems where
maintaining such a globally consistent notion is difficult, including large VLSI chips with high clock
rates. Everyevent is placed preciselyon a globallyconsistent time line.

The DE domain implements a fairly sophisticated discrete-event simulator. DE simulators in gen
eral need to maintain a global queueof pending events sortedby time stamp(this is called a priority
queue). Thiscan be fairly expensive, since inserting new events intothe list requires searching for the
rightposition at which to insert it. The DEdomain usesa calendar queuedatastructure [5] for theglo
bal event queue. Acalendar queue maybethought of as a hashtable thatusesquantized timeas a hash
ingfunction. Assuch, both enqueue anddequeue operations canbedone in time thatis independent of
the number of events in the queue.

In addition, the DE domain gives deterministic semantics to simultaneous events, unlike most
competing discrete-event simulators. Thismeans thatforanytwoevents withthe same timestamp, the

Heterc^eneous Concurrent Modeling and Design



Models of Computation

order in whichtheyare processed can be inferred fromthe structure of the model. This is done by ana
lyzing the graph structure of the model fordataprecedences so that in the event of simultaneous time
stamps, events can be sorted according to a secondary criterion given by their precedence relation
ships. VHDL, for example, uses deltatime to accomplish the same objective.

3.4 Distributed Discrete Events - DDE

The distributed discrete-event (DDE) domain, created by John Davis [8], can be viewed either as a
variant of DE or as a variant of PN (described below). Still highly experimental, it addresses a key
problem with discrete-event modeling, namely that the global event queue imposes a central point of
control ona model, greatly limiting theability to distribute a model over a network. Distributing mod
els might be necessary either to preserve intellectual property, to conserve network bandwidth, or to
exploit parallel computing resources.

The DDE domain maintains a local notion of time on each connection between actors, instead of a
single globally consistent notion of time. Each actor is a process, implemented as a Java thread, that
can advance its local time to the minimum of the local times on each of its input connections. The
domain systematizes the transmission of null events, which in effect provide guarantees thatno event
willbe supplied witha timestamp less thansome specified value.

3.5 Discrete Time - DT

The discrete-time (DT) domain, written by Chamberlain Fong [10], extends the SDF domain
(described below) with a notion of time between tokens. Communication between actors takes the
form ofa sequence oftokens where the time between tokens is uniform. Multirate models, where dis
tinct connectionshavedistinct time intervalsbetweentokens, are also supported. There is considerable
subtlety in thisdomain when multirate components areused. The semantics is defined sothatcompo
nent behavior is always causal, in that outputs whose values depend on inputs are never produced at
times prior to those of the inputs.

3.6 Finite-State Machines - FSM

The finite-state machine (FSM) domain, written by Xiaojun Liu, is radically different from the
other Ptolemy II domains. The entities inthis domain represent not actors but rather state, and the con
nections represent transitions between states. Execution is a strictly ordered sequence ofstate transi
tions. The FSM domain leverages the built-in expression language in Ptolemy II to evaluate guards,
which determine when state transitions can be taken.

FSM models are excellent for control logic in embedded systems, particularly safety-critical sys
tems. FSM models are amenable to in-depth formal analysis, and thus canbe used to avoid surprising
behavior.

FSM models have some key weaknesses. First, at a very fundamental level, they arenotas expres
sive as the other models of computation described here. They are not sufficiently rich to describe all
partial recursive functions. However, this weakness is acceptable in light of the formal analysis that
becomes possible. Many questions about designs are decidable for FSMs and undecidable for other
models ofcomputation. Asecond key weakness isthat the number ofstates can get very large even in
the face ofonly modest complexity. Thismakes the models unwieldy.

Both problems can often be solved by using FSMs in combination with concurrent models ofcom
putation. This was first noted by David Harel, who introduced that Statecharts formalism. Statecharts
combine a loose version ofsynchronous-reactive modeling (described below) with FSMs [14]. FSMs

Ptolemy Project



Models of Computation

have alsobeen combined with differential equations, yielding the soK^alled hybrid systems model of
computation [15].

The FSM domain in Ptolemy II can be hierarchically combined with other domains. We call the
resulting formalism "^charts*' (pronounced "starcharts") where the star represents a wildcard [12].
Since most other domains represent concurrent computations, *charts model concurrent finite state
machines with a variety ofconcurrency semantics. When combined with CT, they yield hybrid systems
and modal models. When combined with SR (described below), they yield something close to State-
charts. When combined withprocess networks, theyresemble SDL[39].

3.7 Process Networks - PN

In the process networks (PN) domain, created by Mudit Goel [13], processes communicate by
sending messages through channels that can buffer the messages. The sender ofthe message need not
wait for the receiver to be ready to receive the message. This style ofcommunication is often called
asynchronous message passing. There are several variants of this techmque, but the PN domain specif
ically implements one that ensures determinate computation, namely Kahn process networks [18].

In the PN model ofcomputation, the arcs represent sequences ofdata values (tokens), and the enti
ties represent functions that map input sequences into output sequences. Certain techmcal restrictions
on these functions are necessary to ensure determinacy, meaning that the sequences are fully specihed.
In particular, the function implemented by an entity must be prefix monotonic. The PN domain realizes
a subclass ofsuch functions, first described by Kahn and MacQueen [19], where blocking reads ensure
monotonicity.

PN models are loosely coupled, and hence relatively easy to parallelize ordistribute. They can be
implemented efficiently in both software and hardware, and hence leave implementation options open.
Akey weakness of PN models is that they are awkward for specifying control logic, although much of
this awkwardness may beameliorated bycombining them with FSM.

The PN domain in Ptolemy II has ahighly experimental timed extension. This adds to the blocking
reads amethod for stalling processes until time advances. We anticipate that this timed extension will
make interoperation with timed domains much more practical.

3.8 Synchronous Dataflow - SDF

The synchronous dataflow (SDF) domain, created by Steve Neuendorffer, handles regular compu
tations that operate on streams. Dataflow models, popular in signal processing, are a special case of
process networks (for the complete explanation ofthis, see [22]). Dataflow models construct processes
of aprocess network as sequences of atomic actorfirings. Synchronous dataflow (SDF) is a particu
larly restricted special case with the extremely useful property that deadlock and boundedness ^e
decidable. Moreover, the schedule of firings, parallel or sequential, is computable statically, making
SDF an extremely useful specification formalism for embedded real-time software and for hardware.

Certain generalizations sometimes yield to similar analysis. Boolean dataflow (BDF) models
sometimes yield to deadlock and boundedness analysis, although fundamentally these questions are
undecidable. Dynamic dataflow (DDF) uses only run-time analysis, and thus makes no attempt tostat
ically answer questions about deadlock and boundedness. Neither a BDF nor DDF domain has yet
been written in Ptolemy II. Process networks (PN) serves in the interim to handle computations that do
not match the restrictions of SDF.

HeterogeneousConcurrent Modelingand Design



ChoosingModelsof Computation

3,9 Synchronous/Reactive - SR

In the synchronous/reactive (SR) model ofcomputation [2], the arcs represent data values that are
aligned with global clock ticks. Thus, they are discrete signals, but unlike discrete time, a signal need
not have a value atevery clock tick. The entities represent relations between input and output values at
each tick, and are usually partial functions with certain technical restrictions to ensure determinacy.
Examples of languages that use the SR model ofcomputation include Esterel [4], Signal [3], Lustre
[7], and Argos [28].

SR models are excellent for applications with concurrent and complex control logic. Because of
the tight synchronization, safety-critical real-time applications are a good match. However, also
because ofthe tight synchronization, some applications are overspecified inthe SR model, limiting the
implementation alternatives. Moreover, inmost realizations, modularity iscompromised by the need to
seek a global fixed point ateach clock tick. An SR domain has not yet been implemented inPtolemy
n, although the methods used by Stephen Edwards in Ptolemy Classic can be adapted to this purpose
[9].

4. Choosing Models of Computation
The rich variety of concurrent models of computation outlined in the previous section can be

daunting to a designer faced with having to select them. Most designers today donot face this choice
because they getexposed toonly one or two. This ischanging, however, as the level ofabstraction and
domain-specificity of design software both rise. We expect that sophisticated and highly visual user
interfaces will be needed to enable designers to cope with this heterogeneity.

An essential difference between concurrent models of computation is their modeling of time.
Some are very explicit by taking time to be a realnumber thatadvances uniformly, andplacing events
on a time line or evolving continuous signals along the time line. Others are more abstract and take
time to be discrete. Others are still more abstract and take time to be merely a constraint imposed by
causality. This latter interpretation results in time that is partially ordered, and explains much of the
expressiveness in process networks and rendezvous-based models of computation. Partially ordered
time provides a mathematical framework for formally analyzing and comparing models of computa
tion [23].

A grand unified approach to modeling would seek a concurrent model of computation that serves
all purposes. Thiscould beaccomplished bycreating a melange, a mixture ofallof theabove, butsuch
a mixture would be extremely complex and difficult to use, and synthesis and simulation toolswould
be difficult to design.

Another altemative would be to choose one concurrent model of computation, say the rendezvous
model, and show that all the others are subsumed as special cases. This is relativelyeasy to do, in the
ory. It is the premise ofWright, for example [1]. Most ofthese models ofcomputation are sufficiently
expressive to be able to subsume most of theothers. However, this fails to acknowledge the strengths
and weaknesses of each modelof computation. Rendezvous is verygoodat resource management, but
very awkward for loosely coupled data-oriented computations. Asynchronous message passing is the
reverse, where resource management is awkward, but data-oriented computations are natural^ Thus, to

1. Consider thedifference between the telephone (rendezvous) andemail (asynchronous message passing). If you
aretrying toschedule a meeting between four busy people, getting them allona conference call would lead toa
quick resolution ofthemeeting schedule. Scheduling the meeting byemail could take several days, and may in
factnever converge. Other sorts of communication, however, are farmore efficient byemail.

Ptolemy Project



Visual Syntaxes

to design interestingsystems, designers need to use heterogeneous models.

5. Visual Syntaxes

Visual depictions of systems have always held a strong human appeal, making them extremely
effective in conveying information about a design. Many of the domains of interest in the Ptolemy
project use such depictions to completely and formally specify models.

One of the principles of the Ptolemyproject is that visual depictions of systems can
help to offset the increasedcomplexity that is introduced byheterogeneous modeling.

These visual depictions offeran alternative syntax to associate with the semantics of a model of com
putation. Visual syntaxes can be every bit as precise and complete as textual syntaxes, particularly
when they are judiciouslycombined with textual syntaxes.

Figures 2 and 3 show two different visual renditions of Ptolemy II models. Both renditions are
constructed in Vergil, the visual editor framework in Ptolemy II. In figure 2, a Ptolemy 11 model is
shown as a block diagram, which is an appropriate rendition for many discrete event models. In this
particular example, records are constructed at the left by composing strings with integers representing
a sequence number. The records are launched into a network that introduces random delay. The records
may arrive at the right outoforder, but the Sequence actor is used to re-order them using the sequence
number.

£><« £d4 SfM"* L*«<P

_J irtJtMS

I owtDMbTy
_} ittf itiiarr
_j OraifJts

lAtvrOot*

This rru>dA{ illbstratM composile r^pos m Ptoiamy II.
ma Racord A«i>an«]flr AciDf oynpovai a sinnQ an

into a >9 th>!^
a c^ionnel lhal ti»5 rarKjcm de'ay T|i^ icAarrs
posBitty'n another order The Record O'waoerncle*
actor separates tf>e stnng from trie sequence numter.
The strings are Ctspfayed as recotvod {possible out
of order}, and resoquttnced by the Sequenoar actor,
wfiidi puts thiofli back in order Thiseiampfe c«monstfalAS

ricw rypAS propd<}dt«throqgh recprd composition and
deccntpos»«>oo

Stnng Seouenoe

Seeuenee Count

Record Ammeter

Reowd DrsesMrrOMf
n Diipay As fteortved

The qiert^l is medtfed ^

by a weneCe dCe). wnRti
heiv • nndam iwih •

RaiiSe>gr>dSDilMiion.

Dn(^yRe«eq<

FIGURE 2. Visual rendition of a Ptolemy II model as a block diagram in Vergil (in the DE domain).

Heterogeneous Concurrent Modeling and Design



Visual Syntaxes

Figure 3 also shows a visual rendition ofa Ptolemy II model, but now, the components are repre
sented by circles, and the connections between components are represented by labeled arcs. This visual
syntax isa familiar way torepresent finite state machines (FSMs). Each circle represents a state ofthe
model, and the arcs represent transitions between states. The particular example in the figure comes
from a hybrid system model, where the two states. Separate and Together, represent two different
modes ofoperation ofa continuous-time system. The arcs are labeled with two lines, the first of which
is a guard, and the second of which is an action. The guard is a boolean-valued expression that speci
fies when the transition should be taken, and the action is a sequence of commands that are executed
when the transition is taken.

Thevisual renditions in figures 2 and3 areboth constructed using the same underlying infrastruc
ture, Vergil, built by Stephen Neuendorffer. Vergil, in turn, in built on top of a GUI package called
Diva, developed by John Reekie and Michael Shilman at Berkeley. Diva, in turn, is built on top of
Swing andJava 2D, which are part of the Java platform from Sun Microsystems. In Vergil, a visual
editor is constructed as an assembly of components in a Ptolemy n model. Thus, the system is config
urable and customizable, and a great deal of infrastrucmre can be shared between the two distinct
visual editors of figures 2 and 3.

Visual representations of models have a mixed history. In circuit design, schematic diagrams used
to be routinely used to capture all of the essential information needed to implement some systems.
Schematics are often replacedtoday by text in hardware description languages such as VHDL or Ver-
ilog. In othercontexts, visualrepresentations havelargely failed, forexample flowcharts for capturing
the behavior of software. Recently, a number of innovative visual formalisms have been garnering sup
port, including visual dataflow, hierarchical concurrent finite state machines, and object models. The
UML visual language for object modeling has been receiving a great deal of attention. The static struc
ture diagrams of UML, in fact, are used fairly extensively in the design of Ptolemy II itself (see appen
dix A of this chapter). Moreover, the Statecharts diagrams of UML are very similar to a hierarchical
composition of the FSM and SR domains in Ptolemy II.

A subset of visual languages that are recognizable as "block diagrams" represent concurrent sys
tems. There are many possible concurrency semantics (and many possible models of computation)
associated with such diagrams. Formalizing the semantics is essential if these diagrams are to be used

I: II. ptnlrmy.'domMrn.'tl/ilrmoyviulcjMatMr*,'

£<le

I

_J iir«<tDr!ltiratv

_J lljrirr
_j OffttfWtfi

I'lHWi iin ill xiSUa

Mtnjf nrml • StnirwiM

S«C<sr3to pi - PI: p? • Pi. vl ♦ VI S4(^aiali< >2 - V.

}n9>Mlifir

To;>eC-^ p - P 1 Toy^r«;r V - .1 - *0 3

FIGURE 3. Visual rendition of a Ptolemy n model as a state transition diagram in Vergil (in the FSM
domain).

Ptolemy Project 10



Ptolemy II Architecture

for system specification and design. Ptolemy II supports exploration of the possible concurrency
semantics. A principle of the project is that the strengths and weaknesses of these alternatives make
them complementary rather than competitive. Thus, interoperability ofdiverse models isessential.

6. Ptolemy n Architecture
Ptolemy 11 offers a unified infrastructure for implementations ofa number ofmodels ofcomputa

tion. Theoverall architecture consists of a set of packages thatprovide generic support for all models
ofcomputation and a set ofpackages that provide more specialized support for particular models of
computation. Examples ofthe former include packages that contain math libraries, graph algorithms,
an interpreted expression language, signal plotters, and interfaces tomedia capabilities such as audio.
Examples ofthe latter include packages that support clustered graph representations ofmodels, pack
ages that support executable models, and domains^ which are packages that implement a particular
model of computation.

Ptolemy II ismodular, with acareful package structure that supports a layered approach. The core
packages support the data model, or abstract syntax, ofPtolemy II designs. They also provide the
abstract semantics that allows domains to interoperate with maximum information hiding. The UI
packages provide support for our XML file format, called MoML, and avisual interface for construct
ing models graphically. The library packages provide actor libraries that are domain polymorphic,
meaning that they can operate in a variety ofdomains. And finally, the domain packages provide
domains, each of which implements a model ofcomputation, and some ofwhich provide their own,
domain-specific actor libraries.

6.1 Core Packages

The core packages are shown in figure 4. This is aUML package diagram. The name of each pack
age is in the tab at the top ofeach box. Subpackages are contained within their parent package. Depen
dencies between packages are shown by dotted lines with arrow heads. For example, actor depends on
kernel which depends on kemelutil. Actor also depends on data and graph. The role ofeach package
is explainedbelow.

actor This package supports executable entities that receive and send data through ports.
Itincludes both untyped and typed actors. For typed actors, it implements a sophis
ticated type system that supports polymorphism. Itincludes the base class Director
that is extended in domains to control the execution of a model.

actor.process This subpackage provides infrastructure for domains where actors are processes
implemented on top of Javathreads.

actor^hed This subpackage provides infrastructure for domains where actors are statically
scheduled by the director, orwhere there isstatic analysis ofthe topology ofa
model associated with scheduling.

actor.util This subpackage contains utilities that support directors invarious domains. Spe
cifically, itcontains asimple FIFO Queue and asophisticated priority queue called
a calendar queue.

data This package provides classes that encapsulate and manipulate data that istrans
ported between actors in Ptolemy models. The key class isthe Token class, which
defines a set ofpolymorphic methods for operating on tokens, such asadd(), sub-
tractO, etc.

Heterogeneous Concurrrat Modeling and Design JJ



Ptolemy n Architecture

kernel

ComponentEntity
ComponentPort

CompositeEntity
Entity
Port
Relation

I >1

I

actor

kemel-util

Attrilxtte'
CttangeUstener
CtiangeRequest
Configurable
ContiguiableAttittHite
CrossRetUat
OebugEvant
DebugUatener
Debuggable
lltegalActionException
IntemsiErrorExoeption
InvalklStateExoeption
KemelException.
KemetRuntimeExoepSon
NameOupficationException
Natnoable

NamedUal

NamedObj
NoSudittemException
PtolemyThread
RecorderLjatener
Sellable
ScngletonAttribute
SingletonConliguisbleAttiibute
StreamChsngeUatsner
StreamUatener

StringAttribute
StrlngUtilitlea
TianaientSingletonConfigurBbleAttribute
ValueUatener

Wotkaoace

A
I

TT

Ab^raclReceiver

Aetor

AtomicActor

CompoaiteActor
Director

ExaeutBble

ExeeutionUstener

RringEvent
lOPort

lORelation

Mailbox

TTT
I ' > actor.util

I

I

CQComparator
CaiendaiQueue

Double CQComparator
FIFOQueue

TiitredEvent

actor.prooeaa

BoundaryDetector
Branch

BranchControSer

CompoaiteProceaaDirector
MaHtxjxBoundary Receiver
NotifyThread
ProceaaDirector

ProcessRsoervar

ProceaaThread
TemiinatePrDceaaException

<--

NoRoomException
NoTokenException
QueueFleceiver

Reooiver

StreamExecutionLiatener

TypeAttribute
TypeConfiictException
TypedActor
TypedAtomicActor
TypedCompoaiteActor
TypedlOPort
TVpedlORelation
TypeEvent
TypeUstener

actor.sched

Ftring
NotSchedulableException
Schedule

ScheduleElement

Scheduler

StaticScheduIingDirector

graph

CPO

DirectedAcyctlcQraph
DirectedGraph
Graph
Inequality
tnequaStySotver
InequaBtyTerm

A A

- -1 - J

'—I

data I

AnayToken
BooleanMatrixToken

BooteanToken
ComplexMatrixToken
ComplexToken
DoubleMatrixToken

DoubleToken

FixMatrixToken

FixToken

IntMatrixToken

tnlToken

LongMatrixToken
LongToken
MatrixLowarBound

MatrixToken
MatiixUpporBoumS
Numerical

OtrjeclToken
ReoordToken

ScalarToken

StringToken
Token

< 1
— "1.

d8ta.type

ArrayType
BaaeType
RecordType
Structur^ype
Type
TypeConatant
I^Lattioe
Typeable

—>

math

AnayStringFonnat
Complex
ComptexArrayMath
CanphxBinatyOpemtion
Cocr^xMatrixMath
CompleXUnaryOperalion
DoubleArrayMath
DoubleArn^tat
DoubleBinaryOpemtion
DoubleMatrixMalh
DoubleUnaiyOperation
ExtendedMaOi

FixPoint
FloatAnayMath
FlostSnatyOpetaSon
FtoatMatrixMath
FhatUnaiyOperalion
Fraction
IntegerArrayMath

IntegerMatrixMath
IntegertJnaryOperation
tnteipolation
LongArrayMath
LongBinaryOporation
LongMatrixMath
Lon^naryOpetalion
Prectaion

Quantizer

SinnalProcesalna

dataexpr

ASCILCharStream
ASTPtAnrayConatnrctNode
ASTPtBitwiaeNode
ASTPtFunctionNode

ASTPtFunctionalllNode
ASTPtljaafNode

ASTPtl.ogicalNode
ASTPtMatrixConstructNode

ASTPtMethodCaONode

ASTPtProductNode

ASTPtRecordConatiuctNode
ASTPtRelationalNode

ASTPtRootNode

ASTPtSumNode

ASTPtUnaryNode
FixPointFunctions

MatrixParaer
MairixParsarConstants

MaliixParaerTokenManager
MaririxParserTmeConstanIa

Node

Parameter

ParaeEx^tion
PtParaer

PtParseiCon^anta

PtParserTokanManager
PIParserTraeConatants

SimpleNode
Token

TokenMgrEnor
UtilityFunctiona
Variabte

V

FIGURE 4. Thecorepackages shown heresupport thedatamodel, or abstract syntax, of Ptolemy II
designs. They also provide theabstract semantics that allows domains tointeroperate with maximum infor
mation hiding.

Ptolemy Project 12



Ptolemy II Architecture

data.expr This class supports an extensible expression language and an interpreter for that
language. Parameters can have values specified by expressions. These expressions
may refer toother parameters. Dependencies between parameters are handled
transparently* as inaspreadsheet, where updating the value ofone will result inthe
updateof all thosethat depend on it.

data.type This package contains classes and interfaces for the type system,
graph This package provides algorithms for manipulating and analyzing mathematical

graphs. This package isexpected to supply a growing library ofalgorithms. These
algorithms support scheduling and analysis ofPtolemy IImodels,

kernel This package provides the software architecture for the Ptolemy IIdata model, or
abstract syntax. This abstract syntax has the structure ofclustered graphs. The
classes inthis package support entities with ports^ and relations that connect the
ports. Clustering is where acollection ofentities is encapsulated in asingle com
posite entity, and asubset of the ports ofthe inside entities are exposed as ports of
the composite entity.

kemehutil This subpackage ofthe kemel package provides acollection ofutility classes that
do not depend on the kemel package. Itis separated into asubpackage so that these
utility classes can be used without the kemel. The utilities include acollection of
exceptions, classes supporting named objects with attributes, lists ofnamed
objects, aspecialized cross-reference list class, and athread class that helps
Ptolemy keep trackof executing threads,

math This package encapsulates mathematical functions and methods for operating on
matrices and vectors. It alsoincludes a complex number class, a class supporting
fractions, anda set of classessupporting fixed-point numbers.

6.2 Overview of Key Classes

Some ofthe key classes in Ptolemy II are shown in figure 5. This is aUML static stmcture diagram
(see appendix Aof this chapter). The key syntactic elements are boxes, which represent classes, the
hollow arrow, which indicates generalization (or subclassing), and other lines, which indicate associa
tions. Some lines have a small diamond, which indicates aggregation. The details ofthese classes will
be discussed in subsequent chapters.

Instances ofall ofthe classes shown can have names; they all implement the Nameable interface.
Most of the classes generalize NamedObj, which in addition to being nameable can have a list of
attributes associated with it. Attributes themselves are instances ofNamedObj.

Entity, Port, and Relation are three key classes that extend NamedObj. These classes define the
primitives of the abstract syntax supported by Ptolemy II. They are fiilly explained in the kernel chap
ter. ComponentPort, ComponentRelation, and ComponentEntity extend these classes by adding sup
port for clustered graphs. CompositeEntity extends ComponentEntity and represents an aggregation of
instances of ComponentEntity andComponentRelation.

The Executable interface, explained in the actors chapter, defines objects that can be executed. The
Actor interface extends this with capability for transporting data through ports. AtomicActor and
CompositeActor are concrete classes that implement this interface. The Executable and Actor inter
faces arekey to thePtolemy II abstract semantics.

An executable Ptolemy II model consists ofatop-level CompositeActor with an instance ofDirec
tor and an instance ofManager associated with it. The manager provides overall control ofthe execu-

Heterogeneous Concurrent Modeling and Design 13



Ptolemy II Architecture

tion (starting, stopping, pausing). The director implements a semantics of amodel of computation to
govern the execution ofactors contained by the CompositeActor.

Director is the base class for directors that implement models ofcomputation. Each such director
is associated with a domain. We have defined inPtolemy II directors that implement continuous-time
modeling (ODE solvers), process networks, synchronous dataflow, discrete-event modeling, and com
municating sequential processes.

6.3 Domains

The domains in Ptolemy II are subpackages ofthe ptolemy.domains package, as shown in figure 6.
These packages generally contain akernel subpackage, which defines classes that extend those in the
actor or kemel packages ofPtolemy II. The lib subpackage, when it exists, includes domain-specific
actors.

Attribute

•Interface*

Actor

Manager

0..1

Entity

AtomteActor

0..1

container

0..1

0..n

0..n
0..1

-o

Workspace

0..n

0..n 0..n Gnk

Port Enk 0..n Relation

ComponentPort

CompositeEntlty

oontainer

0..1

container 0..1

0..n

ComposltaAetor

0..2 DIroetor

FIGURE 5. Some ofthe key classes inPtolemy 11. These are defined inthe kemel, kemelutil, and actor
packages. They define the Ptolemy IIabstract syntax and abstract semantics.

Ptolemy Project 14



"i->

domains

sdf

kernel

ArrayPlFOOueue
SDFDirector

SDROPort

SDFReceiver
SDFScheduler

demo

Bb

ArrayToSequenoe
Autocorrelation

BitsToInt

Chop
OelayUne
OotProduct

DownSample
FIR

FFT

IFFT

InfToBits

LineCoder

LMSAdapthre
REUsedCosine

Repeat
SOFTranstormer

SampleDelay
SequenoeToAiray
Se(|uenoeTo[>oubleMatiix
UpSample
VarlableFIR
VariatileLattice

Vatiat]leRecursiveL.attice

csp

kernel
lib

do

kernel

OEActor
OECQEventQueue
OEDIrector

DEEvent

OEEvenlOueue
DEIOPort

DEReceiver

OEThreadActor

demo

pn

kernel

BasePNKrector
PNI^rector

PNQueueReceiver

TimedPNDinector

dde

lib

DETransformer

Merge
Queue

Sampler
Server

SingleEvent
TnneGap
TimeDelay
Timer

VaiiaUeDelay
Waiting'nme

demo

Ptolemy n Architecture

fsm

kemel

AbsUadAciionsAttiSMite
Action

ChoiceAetion
ConmttAOion

CommitActlonsAtlribute

FSMActor

FSMDirector

HSDirector

OutputActionsAttribute
State

Transition

demo

CSPAclor

CSPDireetor

CSPReceiver

ConrfitionalBrancli

ConifiliORalBranchActor

ConiStionalBrancliController
ConditioralRocetva

ConditionalSend
demo

kemel 19)

DDEActor
DDEDirector

DDEIOPort

ODEReoeiver

ODEThread
FeedBackOelay
NutlToken
PrioritizedTimedQueue
RcvrComparator
TimeKeeper

demo

giotto

kernel

GiottoDirector

GiottoReceiver

GiottoScheduler

demo

kernel

Biealq>olntODESolver
CTBasetntegiator
CTCompositeActor
CTDirector

CTDynamicActor
CTEmboddodDirector

CTEventGenerator

CTMixedSignalDirector
CTMuttiSolverOirector

CTRearnmeOirector

CTRecetver

CTScbeduler

CTSingleSolverOirector
CTStateftilActor

CTStepSlzeControlActor
CTTranspaientDirector
CTWavetormOeneretor
NumericalNonoonvergenoeExceptlon
ODESolver

lib

CTPeriodieSampler
CTRateUmiter

CTThreshokMonitor
CTTriggeredSamplar
ContinuousTrensterFunction

OitferentialSystem
Integrator
IPCInterface

LineaiStateSpace
TtvesholdMonitor
ZeroCrosslngDetector
ZeroOrderHold

demo

FIGURE 6. Package structure of Ptolemy 11 domains.

Heterogeneous Concurrent Modeling and Design

gr

kernel

GRActor

GROebug
GRDirector

GRReoehrer
GRSctteduier

demo

lib

RotateSD

ScaieSD

TranslateSD

GRTranstorm

BoxSO
CircutarSwaepSO
GoneSO
CyfinderSD
GRSttadedShape
PolyCyllnderSD
SphereSO
TextStringSD
TorusSD

KeylnputSD
MouselnputSD
ViewSereen

dt

kernel

DTDebug
OTDirector
DTRecehrer

demo

15



Ptolemy II Architecture

6.4 Library Packages

Mostdomains extend classes in the actor package to givea specific semantic interpretation to an
interconnection of actors. It is possible, and strongly encouraged, to define actors in such a way that
they can operate in multiple domains. Such actors are said to be domain polymorphic. Actor that are
domain polymorphic are organized in the packages shown in figure 7. These packages are briefly
described below:

actonlib This subpackage is the main library ofpolymorphic actors. Eventually, this pack-

actor.lib.oonvaraions

Carlo sanToCompiox
CartesianToPolar
CocnpleXToCartesian
Comple/roPolar
DoubleToFix

FixToDouble

FixToFk
PolaiToCartesian
Polan'oCoflnplex
Round

<- -J

actor.lib.gui

BarOraph
Display
KistgramPlotter
MatrixViewer

MalrixVisualizer
Plotter

Soquonoo Plotter
SequenceSoope
SketehedSource

TimedPlotter

TimedSoope
XYPIotter

XYScope

I

I

n

->

actor.tib _ h

AbsoIuteValue

AddSubtract

ArrayAppend
AnayElement
ArrayExtract
Average
Bernoulli

Clock

Commutator

Const

CuirentTime

DB

Discard

DiscreteRandomSource

Distributor «

Expression
FHeWriter

Gaussian

IIR

Interpolator
Lattice

LevinsonDurbin

Maximum

Maxtndex

Minimum

Multiplexor
MultiptyDivlde
PhaseUnwrap
PoissonClock

Pulse

Quantizer

Ramp
RandomSource

Reader

RealTimeDeiay
RecordAssembler

RecordtMsassembler

Recorder

RecursiveLattice

Remainder

Scale

Select

Sequencer
Se<fiienceActor
SequenceSource
SequentialCiock
Sink

Source

Switch

Test

TwnedActor

TimedSource

Transformer

TrigPunction
Unitonn

VarialileCtock
Writer

<- -•
actor.gui

8ctor.lib.javasound

AudioSink

AudioSource

ack>rJb.logic

Comparator
Equals
LegicalNot
LogicFunction

_ _r —>

— >

FIGURE 7. Packages containing domain-polymorphic actors.

Ptolemy Project 16



Capabilities

age will be reorganized into subpackages.

actor.lib.gui Thissubpackage is a library of polymorphic actors withuserinterface components,
such as plotters.

actor.lib.conversions

This subpackage provides domain polymorphic actorsthat convert databetween
different types.

actor.lib.javasound
This package provides sound actors on systems thatare running Java1.3or later.

actor.lib.logic This subpackage provides actors that perform logical functions like AND, ORand
NOT.

6.5 User Interface Packages

The UI packages provide support for our XML file format, called MoML, and a visual interface
for constructing models graphicdly, called Veigil. These packages are organized as shown in figure
6.1. The intent of each package is described below:

actor.gui This subpackage contains the configuration infrastructure, which supports modular
construction of user interfaces that are themselves Ptolemy II models.

actor.gui.styIeThis package contains classes that decorate attributes to serve ashints to a user
interface about how to present these attributesto the user,

gui This package contains generically useful user interface components,
media This package encapsulates a setofclasses supporting audio and image processing,
mom! This package contains classes support ourXML modeling markup language

(MoML),which is used to describe PtolemyII models,
plot This package and its subpackages provides two-dimensional signal plotting wid

gets.

vergil This package and its subpackages contains the Ptolemy II graphical user interface

7. Capabilities
Ptolemy II is a second generation system. Its predecessor, Ptolemy Classic, still has many active

users and developers, and may continue toevolve for some time. Ptolemy II has a somewhat different
emphasis, and through its use ofJava, concurrency, and integration with the network, is aggressively
experimental. Some of the major capabilities in Ptolemy II that we believe to be new technology in
modeling and design environmentsinclude:

• Higher level concurrent design in Java^^. Java support for concurrent design isvery low level,
based onthreads and monitors. Maintaining safety andliveness canbequite difficult [20]. Ptolemy
II includes a number of domains that support design of concurrent systems at a much higher level
of abstraction, at the levelof their software architecture. Someof these domains use Javathreads
as an underlying mechanism, while others offer an alternative to Java threads that is much more
efficient and scalable.

• Better modularization through theuse ofpackages. Ptolemy n is divided intopackages thatcanbe
used independently and distributed on the net, ordrawn ondemand from aserver. This breaks with

Heterogeneous Concurrent Modeling and Design 17



gui

BasicJApptet
CanoelExoepSon
CtoseU&tener

ComponentDialog
QraphicelMessageKander
MessageHancflef
Query
OueryUstener
StatusBar

r
actor

actor.gui I

CompositeActofAppticalion
Configuration
ConfiguralionEtfigy
Configurer
DetxigUstenerTaliteau
EditorPaneFactory
EditParametersDIalog
Effigy
EffigyPactory
HTML£ffigy
IfTMIfffigyFactoly
HTMLViewer

HTMLViewerTatrieau

l.oca!ionAttnt)ute

ModelDirectory
ModelFrame

ModelPane

MoMlJ^plet
MoMLApplication
Placeable
PortConfigurer
PortConfigurerOialog
PtExecuteAppfication
PtolemyApplet
PtolemyAppIication
PtolemyEtfigy
PtotenqpQueiy
PtolemyTableauFactory
PtolomyFiame
RenameConfigurer
Re nameDialog
RunTatileau

SizeAttrftHite
TMeauFrame

TextEditor

TextEc&torTatiteau

TextEffigy
Tableau

TableauFaclorv

doinalns.lsm.kemel

data-ocpr

TT

1 motrd

plot

CmdLineArgExoeption
EditablePlot
E«StUstener

EPSGraphics
Histogram
HIstogramApplet
Plot

PlolApplet
PlotAppllcation
PlotBox

PlotDataException
PtotFormatter

PlotFrame

PtotUve

PlotliveApptet
PtotPoint

Capabilities

>

plotcompat

PxgraptiApplet
PxgraptiAppIicalion
PxgraphParse

ploLplotml

L

1

-n 1
V 1

actor.gui.style

CheckBoxStyle
ChoiceStyle
EditableClroiceStyle
UneStyle
PammeterEditorStyle
StyleConfigurer

— >

Documentation

EntityUbraiy
ErmrHanOer

ImportAttribute
LibraiyAttribute
l.oeation

MoMl^ttribute

MoMLCtiangeRequest
MoMlParser

MoMLWiiter

ParserAttribute

URI^bute

Vertex

EcStablePlotMLApplet
EditBblePlotMUVpplicatlon
HistogramMLAp^et
HIstogramMLAppIication
HistogramMLParser
PlotBoxMLParser

PlotMl.Applet
PlotMLAppIication
PlotMLFrame

PlotMLParser

vergil

VergHApplication
MoMLViewerApplet
TypeAnimatorApplet

vergil.tootbox

Editorloon

EditParametersFactoiy
FigureAction
QraphicBement
MenuAclionFactory
MenultemFaetoiy
PtotemylistCellRenderer
PtolemyMenuFactory
PtolemyTransferable
XMLIcen

vergil.tiee _ J

Entit/rraeModel
FuIITreeModel
PTree
PtolemyTreeCetlRenderer
TreeEditor

TreeEditorPanel

TreeTableau

VisibleTreeModel

media

Audio

AudioViewer

Picture

vergfi.ptolemy

mecta-javasound

SoundCapture
SoundPlayback

AbstiactPtolemyOr^ttModel
EditorDropTarget
OraphFrame
LjocatableNodeController
LocatableNodeDraglnteractor

vergil.ptolemy.kemel

vergtl.pto(emy.fsm <r^

Arc

FSMGraphControIler
FSMGraphModel
FSMGraphFrame
FSMGraphTableau
FSMPortController

FSMStateController

FSMTransitjonControOer

FSMViewerControtler

AttributeControUer

EdtorGiaphControUer
EntityControtter
EntityPortControBer
KemelGraphFrame
KemelGraphTableau
Link

UnkControIier
PortController

PortDialogFactory
PtolemyGraphModel
RclatiooControder

RenameOialogFactory
Viewert^raDhController

FIGURE 6.1. Packages inPtolemy II that support user interfaces, including theMoML XML schema and
the Vergil visual editor.

Ptolemy Project 18



Capabilities

tradition in design software, where tools are usually embedded inhuge integrated systems with
interdependent parts.

• Complete separation ofthe abstract syntaxfrom the semantics. Ptolemy designs are structured as
clustered graphs. Ptolemy II defines a clean and thorough abstract syntax for such clustered
graphs, and separates into distinct packages the infrastructure supporting such graphs from mecha
nisms thatattach semantics (such as dataflow, analog circuits, finite-state machines, etc.) to the
graphs.

• Improved heterogeneity via a well-defined abstract semantics. Ptolemy Classic provided a worm-
hole mechanism forhierarchically coupling heterogeneous models ofcomputation. This mecha
nism isimproved in Ptolemy IIthrough the use ofopaque composite actors, which provide better
support for models ofcomputation that are very different from dataflow, the best supported model
inPtolemy Classic. These include hierarchical concurrent finite-state machines and continuous-
time modeling techniques.

• Thread-safe concurrent execution. Ptolemy models are typically concurrent, but inthe past, sup
port for concurrent execution ofaPtolemy model has been primitive. Ptolemy II supports concur
rency throughout, allowing for instance for amodel to mutate (modify its clustered graph
structure) while the user interface simultaneously modifies the structure in different ways. Consis
tency ismaintained through the use ofmonitors and read/write semaphores [17] built upon the
lowerlevel synchronization primitives of Java.

• Asoftware architecture based on object modeling. Since Ptolemy Classic was constructed, soft
ware engineering has seen the emergence ofsophisticated object modeling [30][36][38] and
design pattern [11] concepts. We have applied these concepts to the design ofPtolemy II, and they
have resulted ina more consistent, cleaner, and more robust design. We have also applied a simpli
fied software engineering process that includes systematic design and code reviews [35].

• Atruly polymorphic type system. Ptolemy Classic supported rudimentary polymorphism through
the "anytype" particle. Even with such limited polymorphism, type resolution proved challenging,
and the implementation is ad-hoc and fragile. Ptolemy II has amore modem type system based on
apartial order of types and monotonic type refinement functions associated with functional blocks.
Type resolution consists of finding a fixed point, using algorithms inspired by the type system in
ML [32].The type systemis described in [43].

• Domain-polymorphic actors. In Ptolemy Classic, actor libraries were separated by domain.
Through the notion of subdomains, actors could operate in more than one domain. In Ptolemy II,
this ideais taken much further. Actors with intrinsically polymorphic functionality canbe written
to operate in amuch larger set ofdomains. The mechanism they use to communicate with other
actors depends on the domain in which they are used. This is managed through aconcept that we
call a process level type system.

7.1 Future Capabilities

Capabilities that we anticipate making available inthe future include:
• Extensible XML-basedfileformats. XML isan emerging standard for representation ofinforma

tion that focuses on the logical relationships between pieces ofinformation. Human-readable rep
resentations are generated with the help ofstyle sheets. Ptolemy IIwill use XML asits primary
format for persistent design data.

• Interoperability through software components. Ptolemy IIwill use distributed software component
technology such as CORBA, Java RMI, or DCOM, in anumber ofways. Components (actors) in a

Heterogeneous Concurrent Modeling and Design



References

Ptolemy IImodel will be implementable on a remote server. Also, components may be parameter
ized where parameter values are supplied by a server (this mechanism supports reduced-order
modeling, where the model isprovided by the server). Ptolemy IImodels will be exported via a
server. And finally, Ptolemy n willsupport migrating software components.

• Code generation. Ptolemy IIhas an evolving code generation mechanism that isvery different
from that inPtolemy Classic. InPtolemy Classic, each component has tohave a definition inthe
target language, and the code generator merely stitches together these components. In Ptolemy II,
components are defined in Java, and the Java definition isparsed. An API for performing optimiza
tion transformations ontheabstract syntax treeis defined, and then compiler back ends canbe
used togenerate target code. Apreliminary implementation ofthis approach isdescribed in[41]
and [42].

• Integrated verification tools. Modem verification tools based on model checking [16] could be
integrated with Ptolemy IIatleast tothe extent that finite state machine models can bechecked.
We believe that theseparation ofcontrol logic from concurrency will greatly facilitate verification,
since only much smaller cross-sections ofthe system behavior will be offered tothe verification
tools.

• Refiection ofdynamics. Java supports reflection ofstatic structure, but not ofdynamic properties of
process-based objects. For example, the data layout required tocommunicate with an object is
available through the reflection package, butthe communication protocol isnot. We plan toextend
the notion of reflection to reflect such dynamic properties of objects.

• Meta modeling. The domains inPtolemy IIareconstructed based onan intuitive understanding of
a useful class of modeling techniques, andthen thesupport inffastmcture for specifying andexe
cuting models in thedomain are built byhand bywriting Java code. Others have built tools that
have thepotential of improving onthis situation bymeta modeling. In Dome (from Honeywell)
and GME (fromVanderbilt), for example, a modeling strategy itself is modeled, and user inter
faces supporting that modeling strategy are synthesized from thatmodel. We can view thecurrent
component-based architecture ofVergil asa starting point inthis direction. Inthefuture, weexpect
to see muchmore useof Ptolemy II itselfto define andconstruct Ptolemy II domains andtheiruser
interfaces.

8. References

[1] R. Allen and D. Garlan, "Formalizing Architectural Connection," in Proc. of the 16th Interna
tional Conference on Software Engineering (ICSE 94), May 1994, pp. 71-80, IEEE Computer
Society Press.

[2] A.. Benveniste and G. Berry, *The Synchronous Approach to Reactive and Real-Time Systems,"
Proceedingsof the IEEE, Vol. 79, No. 9,1991, pp. 1270-1282.

[3] A. Benveniste and P. Le Guemic, "Hybrid Dynamical Systems Theory and the SIGNAL Lan
guage," IEEETr. onAutomatic Control, Vol. 35,No. 5, pp.525-546, May1990.

[4] G. Berry and G. Gonthier, *The Esterel synchronous programming language: Design, semantics,
implementation," Science ofComputer Programming, 19(2):87-152,1992.

[5] Randy Brown, "CalendarQueue: AFast Priority Queue Implementation forThe Simulation Event
Set Problem", Communications of the ACM, October 1998, Volume 31, Number 10.

Ptolemy Project



References

[6] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, "Ptolemy: A Framework for Simulating
and Prototyping Heterogeneous Systems," Int. Journal of Computer Simulation, special issue on
"Simulation Software Development," vol. 4, pp. 155-182, April, 1994. (http://ptolemy.eecs.berke-
ley.edu/papers/JEurSim).

[7] P. Caspi, D.Pilaud, N. Halbwachs, and J. A. Plaice, "LUSTRE: A Declarative Language for Pro-
granuning Synchronous Systems," Conference Record of the14th Annual ACM Symp. on Princi
ples ofProgramming Languages, Munich, Germany, January, 1987.

[8] John Davis II, "Order and Containment in Concurrent System Design," Ph.D. thesis. Memoran
dum UCB/ERL MOO/47, Electronics Research Laboratory, University of California, Berkeley,
September 8,2000.

[9] S. A. Edwards, 'The Specification and Execution of Heterogeneous Synchronous Reactive Sys
tems," Ph.D. thesis. University of Califomia, Berkeley, May 1997. Available as UCB/ERL M97/
31.(http://ptolemy.eecs.berkeley.edu/papers/97/sedwardsThesis/)

[10] C. Pong, "Discrete-Time Dataflow Models for Visual Simulation inPtolemy II," Master's Report,
Memorandum UCB/ERL MO1/9,Electronics Research Laboratory, University of California, Ber
keley, January 2001.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements ofReusable Object-
Oriented Software, Addison-Wesley, Reading MA, 1995.

[12] A. Girault, B. Lee, and E.A. Lee, "Hierarchical Finite State Machines with Multiple Concurrency
Models," April 13, 1998 (revised from Memorandum UCB/ERL M97/57, Electronics Research
Laboratory, University ofCalifornia, Berkeley, CA 94720, August 1997).
(http://ptolemy.eecs.berkeley.edu/papers/98/starcharts)

[13] M. Goel, Process Networks in Ptolemy II, MS Report, ERL Technical Report UCB/ERL No.
M98/69, University ofCalifornia, Berkeley, CA 94720, December 16,1998.

[14] D. Harel, "Statecharts: AVisual Formalism for Complex Systems," Sci. Comput. Program., vol 8,
pp. 231-274,1987.

[15] T. A. Henzinger, 'Thetheory ofhybrid automata," in Proceedings ofthe 11th Annual Symposium
on Logic in Computer Science, IEEE Computer Society Press, 1996, pp. 278-292, invited tutorial.

[16] T.A. Henzinger, and O. Kupferman, and S. Qadeer, "From prehistoric to po^miodem symbolic
model checking," in CAV 98: Computer-aided Verification, pp. 195-206, eds. A.J. Hu and M.Y.
Vardi, Lecture Notes in Computer Science 1427, Springer-Verlag, 1998.

[17] C. A. R. Hoare, "Communicating Sequential Processes," Communications of the ACM, Vol. 21,
No. 8, August 1978.

[18] G. Kahn, 'The Semantics of a Simple Language for Parallel Programming," Proc. of the IFIP
Congress 74, North-Holland Publishing Co., 1974.

[19] G. Kahn and D. B. MacQueen, "Coroutines and Networks of Parallel Processes," Information
Processing 77, B. Gilchrist, editor, North-Holland Publishing Co., 1977-

[20] D. Lea, Concurrent Programming in Java^^, Addison-Wesley, Reading, MA, 1997.

Heterogeneous Concurrent Modeling and Design 7,1



References

[21] Edward A. Lee, "What's Ahead for Embedded Software?," IEEE Computer, September 2000, pp.
18-26.

[22] E. A. Lee and T. M. Parks, "Dataflow Process Networks,", Proceedings ofthe IEEE, vol. 83, no.
5, pp. 773-801, May, 1995. (http://ptolemy.eecs.berkeley.edu/papers/processNets)

[23] E. A. Lee and A. Sangiovanni-Vincentelli, "A Framework for Comparing Models ofComputa
tion,", March 12,1998. (Revised from ERL Memorandum UCB/ERL M97/11, University ofCal
ifornia, Berkeley, CA 94720, January 30,1997).
(http://ptolemy.eecs.berkeley.edu/papers/98/framework/)

[24] Edward A. Lee and Yuhong Xiong, "System-Level Types for Component-Based Design, "Techni
calMemorandum UCB/ERL MOO/8, Electronics Research Lab, University o f California, Berke
ley, CA94720, USA, February 29,2000.

[25] J. Liu, Continuous Time and Mixed-Signal Simulation in Ptolemy 11, MS Report, UCB/ERL
Memorandum M98/74, Dept. ofEECS, University ofCalifomia, Berkeley, CA 94720, December
1998.

[26] Jie Liu and Edward A. Lee, "Component-based Hierarchical Modeling ofSystems with Continu
ous and Discrete Dynamics," Proc. ofthe 2000 IEEE International Conference on Control Appli
cations and IEEE Symposium on Computer-Aided Control System Design (CCA/CACSD'OO),
Anchorage, AK,September 25-27,2000.pp. 95-100

[27] D. C. Luckham and J. Vera, "An Event-Based Architecture Definition Language," IEEE Transac
tions onSoftware Engineering, 21(9), pp. 717-734, September, 1995.

[28] F. Maraninchi, 'The Argos Language: Graphical Representation ofAutomata and Description of
Reactive Systems," inProc. ofthe IEEE Workshop on Visual Languages, Kobe, Japan, Oct. 1991.

[29] S.McConnell, Code Complete: APractical Handbook ofSoftware Construction, Microsoft Press,
1993.

[30] B. Meyer, Object Oriented Software Construction, 2nd ed.. Prentice Hall, 1997.

[31] R. Milner, Communication and Concurrency, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[32] R. Milner, A Theory of Type Polymorphism in Programming, Journal of Computer and System
Sciences 17, pp. 384-375, 1978.

[33] NASA Office of Safety andMission Assurance, Software Formal Inspections Guidebook, August
1993 (http://satc.gsfc.nasa.gov/fi/gdb/fitext.txt).

[34] Rational Software Corporation, UML Notation Guide, Version 1.1, September 1997, http://
www.rational.com/uml/html/notation/.

[35] J. Reekie, S. Neuendorffer, C. Hylands and E. A. Lee, "Software Practice inthe Ptolemy Project,"
Technical Report Series, GSRC-TR-1999-01, Gigascale Silicon Research Center, University of
Califomia, Berkeley, CA 94720, April 1999.

[36] A. J. Riel, Object Oriented Design Heuristics, Addison Wesley, 1996.

[37] J. Rowson and A. Sangiovanni-Vincentelli, "Interface Based Design," Proc. ofDAC '97.

[38] J. Rumbaugh, etal. Object-Oriented Modeling andDesign Prentice Hall, 1991.

11
Ptolemy Project



References

[39] S. Saracco, J. R. W. Smith, and R. Reed, Telecommunications Systems Engineering Using SDL,
North-Holland - Elsevier, 1989.

[40] N. Smyth, Communicating Sequential Processes Domain in Ptolemy II, MS Report, UCB/ERL
Memorandum M98/70, Dept. of EECS, University of California, Berkeley, CA94720, December
1998.

[41] J. Tsay, "A Code Generation Framework for Ptolemy II," ERL Technical Report UCB/ERL No.
MOO/25, Dept EECS, University of California, Berkeley, CA 94720, May 19, 2000. (http://
ptolemy.eecs.berkeley.edu/publications/papers/00/codegen).

[42] Jeff Tsay, Christopher Hylands and Edward Lee, "A Code Generation Framework for Java Com
ponent-Based Designs," CASES '00, November 17-19,2000, San Jose, CA.

[43] Yuhong Xiong and Edward A. Lee, "An Extensible TVpe System for Component-Based Design,"
6th International Conference on Tools andAlgorithmsfor the Construction andAnalysis ofSys
tems, Berlin, Germany, March/April 2000. LNCS 1785.

Heterogeneous Concurrent Modeling and Design 23


	Copyright notice 2001
	ERL-01-11

