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The Economic Impact of Metrology Methods in Semiconductor
Mannfactnring

Payman Jula

Abstract

Metrology is an essential part of advanced semiconductor manufacturing. It accelerates

yield improvement and sustains yield performance at every stage in both new and mature

processes. Appropriate metrology practices can reduce the cost and cycle-time of

manufacturing through better characterization of tools and processes. Advances in

metrology are needed to achieve difficult industry goals, such as smaller feature sizes and

reduced time for introduction of new materials and processes for future technology. To

achieve these goals, it is expected that metrology practices will migrate from offline to

inline, and ultimately, to insitu.

Appropriate metrology models can assist the semiconductor manufacturers to assess the

costs that drive their businesses and help them in formulating the right operational

strategies. Economic models are needed to study the costs and benefits of introducing

new metrology technologies and to compare alternative metrology practices.

To study the elements of cost in semiconductor manufacturing associated with different

metrology tools and practices, several qualitative and quantitative models are presented in

this document. Comparisons between insitu, inline and offline metrology systems are

made. The cost components of the metrology methods are analyzed and discussed with

respect to steady state process control as well as their effect on time to yield. Monte Carlo

simulation models are used to study each system under different scenarios.

Recommendations are proposed for best practices in each scenario.
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1. Introduction

Historically, semiconductor manufacturers rely on Statistical Process Control (SPG)

techniques for maintaining the processes within prescribed specification limits. While

semiconductor manufacturing has continued to pursue the ever-tightening specifications

due to the well-known problems associated with the decreasing feature size, it has also

become clear that there is a need for advanced-integrated process control. This approach

requires a major shift in operational methods and requires the existence of complex,

flexible architectures to meet the above requirements. New metrology tools are

introduced as an essential part of these architectures.

Metrology accelerates yield improvement at every stage in both new and mature

processes. Appropriate metrology practices can reduce the cost and cycle-time of

manufacturing through better characterization of tools and processes. Advances in

metrology are needed to achieve difficult industry goals, such as smaller feature sizes and

reduced time for introduction of new materials and processes for future technology. To

achieve these goals, it is expected that metrology practices will migrate from offline to

inline, and finally, to insitu [1].

Unless convinced otherwise, manufacturers are usually reluctant to adopt major

equipment and technology changes because of the short-term uncertainties, which arise

during the introduction of new technologies. Appropriate metrology models assist the

semiconductor manufacturers to assess the costs that drive their businesses and help them

in formulating the right operational strategies. The ability to effectively identify cost

drivers and manage cost reductions is a competitive advantage for any manufacturer.

Therefore, accurate models are needed to study the costs/benefits of introducing new



technologies and evaluate different practices. Toward this goal, this study introduces new

analytical models to compare three different methods - offline, inline and insitu- in a

litho/track system.

Although this study tries to address the economics of metrology systems in a general

form, the examples and illustrations are developed for litho/track systems. Lithography

steps are among the most cmcial, and lithographytools are among the most expensive in

semiconductor manufacturing. Most of the models offered in this document can easily be

modified and extended to other equipment sets and metrology tools.

Figure 1.1 shows different metrology methods in a litho/track system in terms of the

timing of the metrology operation in relation to the process. Wafers first enter the track

system, where they go through some steps such as cleaning, coating and baking in

preparation for the main lithography process (stepper), in which, small features are

printed on the wafer. After the lithography, wafers go through other steps in the track

system, such as baking and development. The qualities of the features carved during

lithography (which in turn depends on the quality of the lithography process) have a

direct effect on the quality of the final product. Therefore, we are interested in measuring

and controlling the quality of the lithography step. The quality of the process* is

represented by measuring certain quantities on the wafer, such as the critical dimension

(CD) or the overlay.

*In thisdocument, the mainprocess(e.g. lithography), whose criticalquantitiesare measuredby the
metrology tool, is called ''the main process" or simply "the process".



litho/Track System

Stepper
COAT

DEVELOP

Stepper

COAT
Stepper/Metrology
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Figure 1.1. Different Metrology Methods Applied to a Litho/Track
System: a) Offline, b) Inline, and c) Insitu.
"M" indicates the position of the metrology tool.

Part (a) of Figure 1.1 shows an offline system. In this method, which has traditionally

been practiced by semiconductor manufacturers, the metrology tool is located after the

track system. Wafers are transported to the metrology tool by lots. Lots are then

measured by the metrology tool with an appropriate sampling policy. Offline metrology



tools are usually accurate and fast, but are also expensive and occupy significant clean

room space.

Part (b) of Figure 1.1 shows an inline system. In this method, which has recently been

commercialized in the lithography industry, the metrology tool is embedded in the track

system. The metrology tool can either be mounted in the track system or be integrated

with other processes such as baking. Wafers are processed within the metrology tool one

at a time. Inline metrology tools occupy little footprint in the fab, and their accuracy and

speed is generally inferior to off-line, but rapidly improving.

Part (c) of Figure 1.1 shows an insitu system. In this method, the metrology tool is fully

integrated with the lithography tool. The measurements are done while the wafers are

under process or shortly after the process is done. Insitu systems in lithography are under

development and expected to be introduced with future generations of lithography tools.

To study the elements of cost in the above system, several qualitative and quantitative

models are introduced in this document. In chapter 2, the major components of the costs

and benefits for metrology practices are analyzed and two revenue and cost models are

introduced. The effects of metrology methods on revenue during the steady state and the

time to maturity are explained.

In chapter 3, Monte-Carlo simulation studies are conducted to compare different

scenarios. First, the results of analytical model are compared to those of simulation model

for a simple system. Then, the effects of yield and price structure, as well as control

policies are examined in a series of scenarios. The results are presented and analyzed for

each scenario. Recommendations are provided for each scenario and results are

discussed. Conclusions and future avenues of study are explored in the last chapter.



2. Analytical Models of Metrology Methods

In general, since metrology operations are in series with the processes, they reduce the

throughput and increase the Work In Process (WIP) and the cycle time. WIP inventory

between a process step and the subsequent inspection is at risk if the process drifts to an

undesirable state. Manufacturers have been trying to reduce these risks using different

methods such as changing the sampling policies and send-ahead samples [2].

Simply reducing the number of samples may result in a better cycle time and WIP, but it

has negative effects on the throughput of good products. Product yields at subsequent

steps depend on the quality of information extracted from the metrology data. The quality

of information generated from the metrology measurements can be partly characterized

by parameters Om and Pm- These parameters are the probabilities of errors involved in

measuring a process. Om, the type I error, is the probability of rejecting a good product or

process. The type n error, Pm^ on the other hand, shows the probability of acceptinga bad

product or process. The power of metrology, I-Pm, in turn shows the probability of

rejecting a process or product while it is indeed a bad product or process. Figure 2.1

shows the measurement risks involved in a metrology tool.

Classifications Based on the Measurement

Actual Process

Good Bad

Good 1—ccm ccm

Bad pM i-Pu

Figure 2.1. Probabilities of Process Misclassification



It is highly desirable to identify bad products passing through the metrology tool and

detect the out of control state of the process as soon as possible. This can be achieved by

tightening the acceptance criteria. If, however, these criteria are too tight, then good

products may be rejected, or the system may unnecessarily be shutdown too often,

resulting in production loss.

Another cause for production loss is the WIP between the process and the metrology tool.

If the process drifts to an undesirable state, the process keeps manufacturing bad products

until they are detected by the metrology tool. All the products in WIP, which have been

produced since the process got out-of-control, need to be reworked or discarded. A Send-

ahead (or look ahead) sample method eliminates the WIP risk but reduces the process

throughput and utilization. In the send-ahead sample method, one or more wafers are

processed and then submitted for measurement. The remaining wafers in the batch are

processed after the measurements are complete, the results are released and the

equipment is adjusted.

Therefore, it is also desirable to minimize the WIP in the system. Migrating from off-line

to inline and insitu usually reduces the WIP. In other words, integrated inline and insitu

metrology operation minimizes the WIP lost with little impact on utilization. But the

feasibility of these approaches and the quality of data collected by inline and insitu tools,

along with the price tag of these types of equipment should be considered in making a

decision. These issues will be addressed in this chapter.

2.1. Overall Equipment Efficiency (GEE)

OEE is one of the most important metrics for measuring equipment performance. OEE is

defined as the ratio of the theoretical time needed to produce salable wafers in a given



period, divided by the total time in that period [4], Theoretical time refers to the time

required by a machine in perfect working order performing the process specification

under ideal conditions. Figure 2.2 depicts the concept of OEE. Since in this study we are

mainly interested in understanding the differences among metrology practices, we

classify the losses in processing time to two main categories.

The first set of losses is associated with the metrology tool, its specifications, and the

control policy chosen to detect and improve the bad process. The term "Bad process", in

this document, refers to the process that is out of control and produces out-of-spec

products; the products which are not conforming to the required specification set by the

fab management. These specifications are those that are measured by the metrology tool.

The crosshatched area between OEE and OEE* inFigure 2.2 shows the first set of losses.

These losses are the focus of this study and will be explored later in this document.
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Figure 2.2. The Concept of Overall Equipment Effeciency (OEE)
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The second set of losses contains any loss that is not captured in the first set. These losses

are those that occur regardless of the type of metrology tool and the control policy. Any

loss of production due to unavailability of machine, bad utilization of equipment and

slow process belong to this category. The area between the OEE and 100% available time

in Figure 2.2 shows this set of losses.

2.2. A Mathematical Model of Metrology Tools

In this section, we present a mathematical model that captures the behavior of a

metrology tool. The model is developed to identify the main factors which are involved

in the performance of a metrology tool corresponding to the main process. The

relationship among these factors can be further studied by this model.

Assumethe main process is up and in the "In Control" state for an exponential amount of

time with the mean of MTBF, where MTBF is the Mean Time Between Failure of the

process. The process goes to the "Out-of-Control" state and stays in this state until

detected by the metrology tool. The time which is spent in the Out-of-Control state by the

equipment is proportional to two factors; first, the time required for the results of the

metrology tool to become ready, and second, the power of the metrology tool.

It is assumed that the equipment stays in the Out-of-Control state for an exponential

amount of time with the rate of (l-P/ACTM, where (1-fi) is the power of the metrology

tool and ACTM is the Average Cycle Time to Metrology. ACTM is the response time

from the metrology tool, which depends on the amount of WIP between the process and

the metrology tool. After the metrology tool gives the signal that the process is out of

control, the process is shut down and the repair starts.

10



It is assumed that the tool stays in this state, which is called "Failure Signal/Repair" state,

for an exponential amount of time with the mean of MTTRy the Mean Time To Retum.

Because of the metrology type I error (o^, there is a probability that the metrology tool

generates a failure signal even though the process is in the good (in control) state. At any

time interval h, the equipment in the good state may go to the "Failure Signal/Repair"

state with the probability of {a*h). This can be justified by considering a balanced hne,

where the measurements depend on the time spent on the product. All notations in this

chapter can be found in Appendix A.

The above system is a description of a Continuous-Time Markov Chain consisting of

three states: namely, "In Control", "Out of Control" and "Failure Signal/Repair". Figure

2.3 shows this system.

Out of Control

(1-pyACTM
1/MTBF,

InControl ^ Failure Signal/Repair
l/MTTR

Figure 2.3. Continuous Time Markov Chain Model of a Metrology System

A Continuous Time Markov Chain is a class of probability models which include a

stochastic process that moves from one state to another state in accordance with a

(discrete-time) Markov chain. The amount of time spent in each state, before proceeding

to the next state, is exponentially distributed. The amount of time the process spends in

each state and the next state visited must be independent random variables. The long term
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probabilities that the process will be in a specific state, called limiting probabilities, can

be obtained by solving this set of equations [3]:

P P

MTBF MTTR

Pq (l-jg)P.
MTBF ACTM

n

This results in the following limiting probabilities.

p^ =

^0 =
1

ACTM 1 ,
1+ —+MTTR(a+ )

MTBF{l-fi)

ACTM

MTBF

ACTM 1
MTBF{I- P){\ + + MTTRia+—=—)]

MTBF{\-P) MTBF

(Eq. 1)

(Eq. 2)

(Eq. 3)

where Po and Pi are the long-term probabilities of the process being "fin Control" and

"Out of Control", respectively. The process under control produces acceptable products,

while the out-of-control process produces bad products which should be reworked. The

faster the out-of-control state is detected, the faster the process is calibrated; which limits

the amount of required rework.

Therefore, the cost of a bad metrology practice is two fold. First, the cost due to the lost

time of equipment (metrology and litho/track), which includes losses due to the expenses

of investment in purchasing and installing the machines, maintenance, footprint, etc. The

second cost element occurs because of WIP rework, resulting in material, energy and

labor costs. These costs will further be studied in this chapter.
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2.3. Revenue Models

Lets Ni denote the number of machines of type i that are installed in the factory. Ignoring

the requirement that Ni must be an integer, Leachman et al [4] have shown that Ni

satisfies

(•^yrhPT, =N,(OEE')(J20) (Eq. 4)
where 720 is the number of hours in a month. The left hand side of this equation

expresses the total machine-hours required to process w=D/Yf wafers per month; D is the

designed output capacity and Yp is the mature die yield. ThPTi is the total theoretical

process time per wafer (expressed in hours) on equipment type i, considering all process

steps performed by that equipment. The right hand side is the total machine hours that

can be devoted to processing (at theoretical rates) considering the achieved equipment

efficiency. The production rate per day can be expressed as

(Eq.5)
ThPT,

Assuming a revenue of Ro for each wafer for the current day, the total revenue per day in

the near future can be calculated as

Ro(N.)(OEE:m)
ThPT,

Replacing the OEE* with {Po*OEE), where the Po is the long run probability of the

process being in the good (in-control) state, will result in

Revenue/Day ^^ (Eq.7)
1+ — + MTTR(a + —-—)

MTBFil-P) MTBF
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As expected, the revenue increases with the decline of a, p, ACTM and MTTR and

decreases with the decline of MTBF.

Over the long run, where the price is declining according to a continuous discount factor

of Y, the total revenue realized up to time H (expressed in days), assuming zero start-up

and production delays, is expressed as

R,{N,){0EE:){2A) 1
ThPZ ThPT

(Eq. 8)

2.3.1. The Effect of Metrology Tools on Ramp-Up

Up to this point, the behavior of metrology tools was considered in the mature and stable

phase. However, as depicted in Figure 2.4, each process goes through three different

phases: development phase where the process is first introduced, the ramp phase where

the volume of production is increased, and the mature phase where the process sustains

high volume production.

MTBF

MTBF)y

Dev.

Phase 1Ramp Phase Mature Phase

0

Figure 2.4. Different Phases of a Process life Cycle
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During the development phase, the equipment is installed and the appropriate recipe is

applied. In this phase, the process usually does not produce any marketable product.

Therefore, this phase is not in our interest. The process starts producing saleable products

in the ramp phase. In the beginning of this phase, equipment fails more often. After some

time, the process is calibrated, the rate of failures declines, and the process becomes

mature.

Here, we are interested in studying the effect of the metrology tools on the ramp phase.

For simplicity, we approximate the above curve with a step function, where the process

has the average (MTBFiow) in the deveoplment and ramp phases and jumps to the mature

phase (MTBFhigh) at time T (Figure 2.5).

MTBF

MTBFb

MTBFi

0

Dev. & Ramp
Phases Mature Phase

Time

Figure 2.5. A Simplified Process Life Cycle

There are many factors which affect the duration of the ramp phase (T). Studying the

behavior of these factors is beyond the scope of this study. However, it is known that the

ramp-up duration, especially at lithography, depends on the knowledge and experience of

the engineers working with the process. Part of the experience and knowledge comes

from trial and error. Each equipment failure contributes to the knowledge about that

15



equipment/recipe. Here, we assume the time to maturity is a function of the number of

detected problems through time. The more problems are found, the more experienced the

staff will become. Finally, after k number of trial and errors, the equipment goes to the

mature state and the failure rate decreases. We are interested in finding the effect of

metrology tools and the control policies on the value of T. Changes of T can then be

translated to cost.

The number of equipment required is usually planned for the mature case; therefore, there

is some lost revenue due to the unsatisfied demand in the development and ramp phases.

Similar to Equation (4), the satisfied demand in development and ramp phase (D/?)

follows the following equation.

i^yrhPT, =(A^,)(O££,)(P<„)(720) (Eq. 9)
Here, the Pqr is the long-term probability of the process being under control during the

development and ramp phases and follows an equation similar to Equation (2). All of the

notations in this section are the specifications of the equipment in the development and

ramp-up phases and are similar to those notations in the mature phase. Equations (4) and

(9) result in

D,=D{^) (Eq.lO)

and the lost demand per month during the development and ramp phases can be

calculated as

D(1-4^) (Eq.ll)
"o

16



The duration and the quantity of the lost demand during the ramp period will result in lost

revenue during this period. Figure 2.6 shows two different processes, one with the ramp-

up time of T2 and the other with the reduced ramp-up time of Ti. Later in this document it

is shown how the area between these two curves can be translated into additional revenue

due to the decrease of the development and ramp-up time.

MTBF

MTBFy,

MTBFx

Dev. & Ramp
Phases

< >

0 '̂ 2

Figure 2.6. Reduction of Time to Maturity

Time

Considering the Continuous Time Markov Chain model for the development and ramp

phases, the transition rate from the Out-of-Control state to the Repair-Started state is

Pir(1-P)/ACTM (Eq. 12)

Therefore, the expected value of T, the time for k number of repairs, is:

T = (kXACTM) /Pir(1-P) (Eq. 13)

The total possible revenue during the development and ramp phases, assuming all

demands are satisfied, can be expressed as

J ° 30
(Eq.l4)

Here, y is the continuous discount factor for the exponentially declining price. The lost

revenue can be calculated as

17



T

(Eq.l5)
30

The difference of the total lost revenue can be calculated as

n P \-p~^

k.ACTM
-Y-,

D P l-e

2.3.2. Comprehensive Revenue Model

The comprehensive revenue model consists of the combined revenue obtained in the

ramp phase and the mature phase. The total revenue obtained in the ramp phase can be

expressed as

k.ACTM

(—)(—)(-5)e (Eq. 17)
Y du Pq

Given the duration of the mature phase, the total revenue obtained in the mature phase

can be calculated by Equation (8). The combination of Equations (8) and (18) should be

considered in selecting the metrology setup.

The revenue models are more tailored towards the marketing department's needs versus

the manufacturing expenses. In other words, they only consider the incoming cash flow

to the company through sales. These models do not consider the outgoing cash flow and

the expenses of the company. What if a metrology tool improves revenue, but the price of

investment is high? How about the maintenance expenses and labor costs associated with

each metrology system? These issues will be addressed by another model, called the cost

model, in the following section.

18



2.4. The Cost Model of Metrology Methods

According to Leachman et al [4], total fab expenses per year {EPY) can be captured by

the total costs due to the machines, the number of wafers started and the fixed costs as

EPY = EPY{Machines) + EPY{Wafer started) + FixedCost

Mathematically, EPY can be captured by the following equation

EPY = y (Ce, +le, +Se,)——
^ ' ' (Kf)(O££ )(720) (Eq. 18)
+ {Lw+ Mw + Sw){12)w+ {Lf + Sf)

where Cei is the amortized purchase and installation cost plus the annual maintenance

cost per machine of equipment type i (expressed in dollars)

Lei = The portion of labor cost (wages, salaries, benefits) that is proportional to the

number of machines of equipment type i (expressed in dollars).

Set = Occupancy cost plus amortized capital cost for factory facilities and infrastructure

per machine of equipment type i (expressed in dollars). This is the portion of total facility

and infrastructure cost that is proportional to the floor space allocated per machine of

equipment type i.

Lw = The portion of labor cost that is proportional to the number of wafers started, per

wafer start (expressed in dollars)

Afw = Material cost, assumed to be proportional to the number of wafers started, per

wafer start (expressed in dollars)

Lf = Fixed labor cost, i.e. the portion of labor cost that is independent of wafer start

volume and the installed equipment (expressed in dollars).

19



Sw = The portion of total facility and infrastmcture cost that is proportional to the number

of wafers started, per wafer started (expressed in dollars).

Sf = Fixed space cost, i.e. the portion of total facility and infrastructure cost that is

independent of wafer volume and installed equipment (expressed in dollars).

Introducing metrology to a litho/track system will affect the time that the system spends

in producing revenue products. This change can be captured by the overall equipment

efficiency (OEE) of the litho/track system. The OEE is reduced by the factor Po, the

probability of being in the in-control state as presented in Equation (2). The total

expenses of the machines per year can then be expressed as:

EPY{Machines) =

ACTM 1{D){ThPT,^)[1 + p +MTTRia+-^)]
(Ce^ + +Se^) MTBFO. p) WTBFluhd (y.)((?££,^)(720)

+(Ce^, +Le^ +Se^)N^ + VCCe, +U,+Se,) (Eq. 19)
ieoiher ' ' \y,){OEE,){120)

The "litho" subscript represents the lithography system, which includes the exposure unit

and the track line. The first term in Equation (19) captures the effect of metrology in

lithography costs through its effective processing time. The second term is the cost

associated with the purchase, maintenance and the footprint of metrology devices. The

third term captures the rest of the expenses in the fab.

As discussed earlier, different metrology methods generate different amount of WIP and

rework. The rework consumes materials, energy and labor. Furthermore, the mask life.

20



which is considered dependent on the number of exposures, causes the expenses to

increase in proportion to the number of rework.

Similar to Equation (4), according to our Continuous Markov Chain model, the total out-

of-control machine-hours spent processing Wr products will be:

(w^WhPT,) =(|-)(Af,)(O££;)(720) (Eq. 20)
Considering Equations (2), (3), (4) and (20), the total number of reworked wafers per

month can be calculated based on the monthly production rate as

, ACTM ^
= ( z: )(—) (Eq. 21)' \\-P)MTBF Yp ^

The fab total expense per year due to the number of wafers started includes two terms.

The first term captures the expenses due to the reworked wafers in lithography steps.

These expenses reflect material costs, energy, labor and masks. The second term includes

all expenses that are functions of the number of wafers started. All the rework done on

the other equipment sets (except lithography) are assumed to belong to this category.

Therefore, the total expenses per year due to the number of wafer starts can be expressed

as

EPY(Waferstarted) =

(Lw, +Mw+SwM2)—^^^^^^^—+iLw +Mw+Sw)(l2)w (Eq. 22)

The constant terms of Equation (18), L/and Sf are assumed to remain unchanged after

introducing different metrology methods.The difference between metrology methods can

be calculated according to Equations (19) and (22). This difference can be presented as:

21



ACTM 1(DXITiPT^^ )[1+ +MTTRia+^)]
AEPr =(Ce,M„ + +Se„,^J MTBFH fi) MTBF

(r^)(O££„„J(720)

+(Lw, +ilfw, +5w,)(12)^;^^^^+(C6„„ +L6„„ +Se„,)N„. (Eq. 23)

To choose the best metrology method, manufacturers should consider the elements

involved in Equation (23). All the costs associated with acquiring, installing and

maintaining the litho/track tools should be considered. Special attention should be given

to the quality of information extracted from the metrology tools. The failure rate, ease of

repair and the position of metrology tool in the system should also be considered.

2.5. Discussion

In this chapter, two models were introduced. The revenue model emphasizes the

incoming cash flow and is tailored towards the marketing needs. The cost model, on the

other hand, emphasizes the expenses of the fab and is designed to address the

manufacturing needs.

These models assist managers in deciding the best metrology strategies. They give an

understanding of the elements involved in the decision-making process and help the

decision makers to grasp the relationships among these factors. These models are based

on some simplifying assumptions and their accuracy should be verified in any real-world

decision making process. It is very difficult to capture all the factors involved in a real

world problem in a simple model. Manufacturers mostly rely on simulation approaches to

assist them in understanding the behavior of the processes and in selecting the best

operating practices. The next chapter will explore the behavior of metrology methods in

more complex environments with the help of Monte-Carlo simulations.
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3. Monte-Carlo Simulation Models of Metrology Methods

In Chapter 2 several analytical models were presented for litho/track systems based on

some simplifying assumptions. These models help manufacturers identify some of the

important factors involved in the economics of the metrology systems. These models can

further be used to understand the relationship among these factors. There is still a need to

address the issues involved in more complex systems which arise in industrial

environments. Appropriate models can predict the behavior of these systems under

different scenarios. These models will help the decision makers in selecting the best

practices in different environments. However, it is very difficult to capture the behavior

of these complex systems with closed-form mathematical models, similar to those

presented in the previous chapter. As an alternative, Monte-Carlo (MC) simulation

models are developed in this chapter and used to study the behavior of these complex

systems.

Two new metrics are used to measure and compare the performance of metrology

methods. By measuring the revenue generated from a wafer, we can capture the quality of

the products produced from that wafer. Therefore, the long run average of the revenue per

wafer can be used to measure the quality of the product and the process. Total revenue

per day, on the other hand, measures the effects of the combination of yield, throughput

and the quality of the products. Manufacturers are usually interested in maximizing their

total revenue while minimizing the production cost.

To estimate the expected value of each of these metrics, the results of five days (24

hours/day) are collected in each simulation run. Furthermore, to minimize the effect of

randomness, these results are collected based on five different initial random seeds. The

23



results are then presented as a set of graphs that capture the behavior of the system in

each scenario. Each point in these graphs is based on the information that is statistically

collected from 36000 wafers; each wafer includes 100 dice with individual

characteristics. The data are collected after a warm-up period of 50 minutes, which

allows the system to go to its stable mode. The "C" code generated by the SIGMA [5]

simulation software was modified and used as a platform for generating the data and

collecting the information for these experiments.

The lithography throughput is considered to be 60 wafers per hour (one wafer per

minute). To accommodate the behaviorof a robot in an industrial system, a buffer (with

the capacity of one wafer) is considered before and after each station. The performances

of these systems are analyzed with respect to changes in MTBF, MTTR, a, for each of

the inline, insitu and offline cases. Later in this chapter, the effect of control policies,

yield/revenue structures, the precision of metrology tools and many other parameters are

investigated.

The values of the parameters used in these models are either the estimated values in the

industry or what the experts would expect to see in emerging technologies. The

experiments are designed to assist the manufacturers with developing similar models.

Decision-makers may establish similar experiments which will address their specific

needs and will accommodate their parameter values. For the experiments of this section,

the center working point of MTBF equal to 240 minutes and MTTR equal to 20 minutes is

chosen. For this working point, five samples are scanned from each wafer and the 3a rule

is used for the cut-off line. It is assumed that the results of the offline metrology are

provided half an hour after the main process is done. The information extracted from
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inline metrology takes less than 15 minutes to be ready, and the results of an insitu

metrology will be ready only after a couple of minutes.

Different parameter values will certainly result in different values for our metrics,

revenue per wafer and revenue per day. However, readers should keep in mind that the

absolute values of these metrics are not in our interest. We are interested in analyzing the

changes in metrics values based on the changes in the system. The relative differences

will provide us with a better understanding of each system and help us with predicting the

behavior of similar systems in similar working conditions.

The assumptions of the previous chapter's model, such as the exponential time between

failures and the exponential time to return, are used in the first attempt to develop a

simulation system. The results of the simulation model are compared to those of the

analytical models from the previous chapter. The second scenario enhances the first

scenario by introducing a variance to the process and by considering more realistic

structures for the yield and price. In the third scenario, it is shown that in some cases the

offline and inline may outperform the insitu technique, even if the quality of information

extracted from these systems is assumed to be the same. This scenario shows the

importance of the control policy and the market condition in metrology systems.

In the final scenario, more realistic conditions are introduced to the system. Different

random errors are considered for each of the inline, offline and insitu tools to capture the

different precision associated with each technology. Furthermore, wider and continuous

drifts are considered for the process. The results of these scenarios are analyzed and

recommendations are made accordingly.
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3.1. Analytical Approach vs. Monte Carlo Simulation

A Monte Carlo model is designed to verify the accuracy of the results generated from the

analytical models presented in the previous chapter. The assumptions in this model are

consistent with the assumptions of exponential failure times and repair times under which

the analytical models were developed.
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The lithography targets a CD of 205 nm at in-control state. It produces bad products with

the CD of 225 at Out-of-Control state. For simplicity, the variance of the process is

ignored at this stage; in the next section, the variance will be introduced to the system and

its effect will be explored. Good wafers generate $131500/wafer and bad wafers have no

revenue values and should be reworked. The CD of 205nm and the revenue of

$131500/wafer are chosen to be consistent with the data used in other models in this

chapter. These values are discussed and justified in section 3.2.

Figure 3.1 shows the similarity between the generated results from the analytical model

(Eq. 5), presented in chapter 2, and the results from the Monte-Carlo simulation. Both

the simulation and the analytical model show a big gain in revenue from migrating from

offline to insitu, especially in low MTBF cases, where the processes go out of control

more quickly. Both models show the increase of revenue with increasing MTBF values.
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Figure 3.2. Revenue per Day vs. MTTR from the Analytical and Simulation
models for Insitu and Offline Metrology.
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Similarly, Figure 3.2 shows the predicted values for the revenue using Equation 7 in

chapter 2 and the simulation results for changes of MJTR. Both approaches show a drop

in revenue with an increase in MTTR. These charts do not show a noticeable difference

between insitu and offline metrology, with respect to MTTR.

Figure 3.3 shows the effect on revenue of reducing the time between the process and the

metrology tool. As expected, it shows an increase in revenue by migrating from offline to

inline and insitu technology. Here, only the Revenue per Day charts are shown. The

Revenue per Wafer charts in all of the cases in this scenario are flat lines at $131500

because all the bad products are reworked. Introducing the variance to the process will

affect the revenue generated for each wafer. The next section will discuss the effects of

variance on revenue. The procedure for selecting an appropriate working point for the

process also will be reviewed.
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3.2. The Effects of Process Variation on Revenue

In semiconductor manufacturing, it is well known that the reduction of the critical

dimension results in higher revenue. A study byMotorola* has estimated an average gain

of more than $7 per chip for each nanometer reduction of CD.

Slope = -$7/nm

Yield
Revenue

Figure 3.4. Relationship Between Yield, Revenue and CD

However, as shown in Figure 3.4, the reduction of CD may result in downstream

manufacturing problems and reduction of yield, which in turn reduces the total revenue.

Therefore, targeting the right working point is an essential part of semiconductor

businesses. We want to study the effect of variance on the total revenue and find the best

working point for each variance. For simplicity, as depicted by Figure 3.5, the yield curve

is replaced by a piecewise linear curve, and the revenue curve is replaced by a straight

line with the slope of -7$/nm; going all the way to zero. The process distribution is

shown as a bell shape with a thick black line. It is assumed that the mean of the process

can be adjusted to any value. Therefore, we are interested in finding the best position for

the process mean.

*D.Gerold al,Sematech AEC/APC, Sept 97,Lake Tahoe, NY
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Slope = -$7/nm

Revenue

0 Leff (nm)

Figure 3.5. A Simplified Picture of Yield and Revenue vs. CD.

Sets of Monte-Carlo simulation models are generated and several experiments are

conducted with these models. In these experiments, each wafer carries one hundred chips.

The CD of each chip has been generated from a random process following a Normal

distribution with a specific mean and variance. The total revenue generated from these

chips according to the yield and revenue curves is then calculated. The total revenue is

then plotted versus the changes in mean and the standard deviation of the process in

Figure 3.6.

The star points in Figure 3.6 show the maximum revenue that can be achieved from the

processes with different means but the same standard deviation. Close attention to the

behavior of these peaks reveals the reduction of maximum possible revenue with the

increase in the standard deviation (Figure 3.7). This indicates that manufacturers should

try to minimize the variation in their process to achieve better revenues.
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Figure 3.7. Maximum Total Revenue vs. the Standard Deviation of the Process
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However, due to practical issues there are always some uncertainties which cause some

variation in the process. In these cases, manufactures should choose the best working

point for their businesses. For example, if the standard deviation of a process is 10 nm,

with the above assumptions, the best working point would be 205 nm.

Figure 3.8 shows this method for finding the best working point based on different

standard deviations of a process. For the rest of this document, we assume a standard

deviation of 10 nm associated with the process, and we try to keep the working point at

205 nm in order to gain the maximum revenue. Assuming a revenue of $1000 per chip

for a CD of 250 nm will result in a revenue of $1315 per chip for a CD of 205 (with the -

7$/nm decline rate). The revenue of $131500 per wafer (each wafer includes 100 chips)

is used for the quality wafers with the CD of 205 nm throughout this chapter.

Revenue

($)

Std = 0

Std = 10 nm

Std = SO nm

350 Mean (nm)

Figure 3.8. Revenue vs. Mean of the Process for Different Standard Deviation
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Another negative effect of variance on revenue is due to the risk involved in measuring

the products. As described in Chapter 2, a and P, are the risks of rejecting the process

while the process is in control, and accepting the process when the process is out of

control, respectively. The process variance has a direct affect on these risks.

To investigate more complex systems, a process variance of 10 nm is introduced to the

simulation model which was developed earlier in this chapter. The process is targeted to

work at 205 nm but it may go to the bad state of 225 nm after a random time period with

the distribution of N{MTBF, MTBF/10)*. The process stays in the bad stateuntil detected

by the metrology tool. The shutdown/repair signal is generated when the average of the

CDs measured from the sample points exceeds the cutoff line threshold. The process is

then shut down and all the bad products in WIP are sent to rework. The process will be

back in good state after a random repair time with the distribution N(MTTR, MTTR/10),

The $7/nm rule is observed in this case and there is no revenue for the products with

more than 220 nm CDs, reflecting tight specifications set by management. Figure 3.9

shows the in-control case in comparison to the out-of-control case.

205 Cutoff 225

Figure 3.9. In-Control vs. Out-Of-Control

*N(fi,(7)represents a normal distribution with mean // andstandard deviation of <t.
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To measure the performance of the system versus the measurement risks, we need to

control the values of a and fi. However, it is difficult to directly manipulate the valuesof

these parameters. We achieve these goals by changing the number of sample points taken

from each wafer and by adjusting the cutoff line of control policy. Suppose represents

the point on the Standard Normal distribution N(0,1) with the probability of upper tail

equal to C. Then the following equations hold

X-205 _ A ^
10/ "10/
/ ^fn / 4n

X-22S 20-A
= Z. (Eq.24)

Where n is the number of sample points in each wafer and A is the cutoff point as shown

in Figure 3.9. The number of sample points can be calculated as

n= ^ (Eq.25)

To obtain the desired a and p, first the number of sample points (n) is calculated. This

value is then rounded to the closest integer. Then, the value of A is obtained. A and n,

together, will specify new values for a and P, which are very close to the desired values.

For example, the standard 5 sample points along with the 3o (A =13.41nm) rule for cutoff

results in values of 0.0013 and 0.0702 for a and P, respectively. Whenever possible,

these values are set for the working point of the model. Figure 3.10 - Figure 3.14 show

the performance of this system with respect to the changes in the parameters of the

system.
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Figure 3.10. Revenue Generated vs. Different Values of the Process Mean (a)
Revenue per Day, and (b) Revenue per Wafer.

Similar to Figure 3.8, Figure 3.10 shows a big drop in the total revenue and the quality

for out of control processes and depicts the importance of choosing the correct working

point. Furthermore, it shows that the insitu model, regardless of the mean value,

outperforms the inline model, which in turn outperforms the offline techniques. However,

this figure doesn't show any noticeable difference between the qualities of products

produced with each technique.
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Figure 3.11 shows the importance of MTBF in generating revenue. It should be noted that

changes in MTBF, especially at low values, have a bigger impact on revenue than

changes of equal magnitude when MTBF has high values. Furthermore, the insitu method

here again shows better revenue than the inline and offline techniques.
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Figure 3.11. Revenue Generated vs. Different Values of the MTBF.

The revenue-per-wafer charts in this experiment are mostly flat lines and do not reflect

noticeable disparities with the changes of MTBF, MTTR and a. Therefore, they are not

shown in this section.

The change in the revenue of this system versus the changes in MTTR is depicted in

Figure 3.12. As expected, it shows a decrease in revenue with the increase in MTTR.

Furthermore, the rate of change of the revenue decreases with the increase of MTTR.

Similar to previous charts, the insitu method here outperforms the inline and offline

methods.
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Figure 3.13 captures the effect of type I error on the revenue. As a increases, more

repair/shutdown signals are generated by the metrology tool which results in frequent
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shutdowns of the system and therefore, production loss. On the other hand, the model

shows that the quality of products is not sensitive to changes in a.

"O
c
(0
(0
3
o

>%
CO

Q

CD
Q.

CD
3
C

§
O
cc

T3
c
(0
CO
3
o

CD
Q.

CD
3
C
CD

CC

140000

120000

100000

80000

60000

40000

20000

0

119.5

119

118.5

118

117.5

117

116.5

0.072 0.161

0.072 0.161

0.325

0.325

0.573

Inline

Off-lne

(a)

Beta

-Insitu

Inline

Off-line

(b)

0.573 Beta
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Type n error 0®, on the other hand, has a noticeable effect on the quality of the products.

By increasing more bad products are produced while the process is considered to be in
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control. In this case, total revenue per day is not that sensitive to the changes of P and

shows only slight decline with the increase of p.

In all of the cases studied up to now, insitu metrology outperformed inline and offline

setups. Now, the question arises whether the insitu method is always a superior method;

if not, what are the factors that may affect its performance?

3.3. A Case Where Offline Method Outperforms Insitu Method

Analytical models presented in Chapter 2 predict some of the situations where the offline

methods may outperform the inline and insitu methods. Most of these situations are due

to the better characteristics and the quality of information extracted from the offline

methods. In this section, we study the case where the offline metrology outperforms the

insitu, with the exact same specifications.

Consider the scenario discussed in section 3.2, where the process is targeted to work at

205 nm but it may go to the bad state of 225 nm after a random time with the distribution

of N(MTBF, MTBF/10). The process is then shut down and repaired and will be back in

good (in control) state after a random repair time with distribution N(MTTR, MTTR/10).

But, here we assume that the bad WIP is sent for further processing and marketing

without being reworked. Furthermore, in this scenario, the feature specifications are not

as tight as the previous scenario. The revenue declines at the rate of -7$/nm up to 380

nm, after which there is no revenue. Figure 3.15 - Figure 3.17 show the revenues

generated in this scenario.
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Figure 3.15 shows that the offline metrology slightly outperforms the inline and insitu

metrologies regardless of the targeted process mean. The quality of products, on the other

hand, doesn't show noticeable differences between offline and insitu setups. Further

study of revenue per wafer charts reveals that in this scenario the production of bad

wafers is not sufficiently penalized. Let us consider the behavior of the system with
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respect to the changes in the type I error (o^. Figure 3.16 shows that increasing a will

slightly increase the value of the wafers because of the production of good quality wafers.
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On the other hand, increasing a; corresponds to an increase in the number of false alarms

in the system, which in turn reduces the throughput and drops the total revenue. Figure

3.16 (b) shows a slight decrease of revenue by increasing a. Comparing these results with

Figure 3.13, where the drop in the revenue is much steeper, reveals that in this scenario,

producing bad products does not severely affect the total revenue.
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Changing the Type n error {fi) does not have a noticeable effect on the revenues

generated by each wafer and the total revenue generated in this scenario (Figure 3.17).

This is due to the fact that when the process is in the out-of-control state, it continues

producing products that are still marketable and there are customers that are willing to

pay a high price (slightly less than the premium) for these products. In this situation.
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manufacturers may have the incentive to postpone the repair of the bad system, because

almost all of the products, regardless of their qualities, are marketable.

All of the charts associated with this scenario show that insitu outperforms the inline and

offline methods in terms of the quality of produced wafers. However, the quality by itself

does not justify the method. The lost revenue due to the production lost in insitu offsets

the increased revenue due to better products. Therefore, here, the total revenue in an

insitu setup is less that the total revenue of inline and offline setups. The revenue vs.

MTBF and MTTR charts - Figure 3.18 and Figure 3.19- are also consistent with this

conclusion.This scenario shows the importanceof choosing an appropriate control policy

based on the system parameters and the price stmctures.
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3.4. Modeling A Complex System

In trying to model more complex systems, a scenario is designed that enhances the

previous models presented in this document. Previous models considered the precision of

metrology tools embedded in a and fi. Here, we introduce the precision of metrology

tools as a parameter in the system and study its effect on system's performance.

Furthermore, in this case, the changes in the targeted mean may occur gradually. In other

words, there are infinite numbers of out-of-control states in the system. New market

observation shows steeper line for the revenue based on the changes in CD. The price

decline rate has also been modified to accommodate the recent changes in the market.

In this scenario, the process is targeted to work at 205 nm but it may drift after a random

time with the distribution of N(MTBF, MTBF/10). The new working point can be

anywhere in the [0, +30] nm neighborhood of the previous working point. The process

keeps changing the working points (getting worse and worse) until it gets detected by the

metrology tool. The metrology tool gathers the data from several points on each wafer

according to its precision.

Here, we introduce noise to each measured point with a distribution of N(0, StdJERR).

This noise models the precision of the metrology tool. The standard deviation of these

noises for the central working point are set to the values of 3nm, 2nm, and 0.5nm

respectively for insitu, inline and offline metrology tools.

The shutdown/repair signal is generated when the average of the CDs measured from the

sample points exceeds the cutoff line threshold. The process is then shut down and all of

the bad products in WIP are sent to rework. The process will be back under control after a

random repair time with the distribution of N(MTTR, MTTR/10). Our observation of the
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current advanced logic market shows an approximate of $10/nm drop for the price of

each chip. The $10/nm price drop is implemented in this case and there is no revenue for

the products with more than 220 nm CDs. Figure 3.20 - Figure 3.23 show the system

performance versus the changes in the system's parameters.
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Revenue per wafer charts do not show noticeable changes with the change of these

parameters. Therefore, they are not included in this document.The first three charts are

similar to those of previous cases. All of these charts show that the insitu methods are

slightly superior to the inline and offline methods.
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Figure 3.22. Total Revenue Per Day vs. MTTR for the Complex System

Figure 3.23, shows the effect of the metrology precision on the total generated revenue.

The chart depicts that the revenue is very sensitive to the changes of precision. This chart

can be used to justify the migration from offline to inline and insitu based on the

precisions achieved by the different technologies. It can further be used to identify the

break-even points of each of these technologies. For example, according to Figure 3.23,

migrating from offline to insitu is justified when the offline and insitu respectively have

precisions of 0.5 nm and 3nm, but it cannot be justified if the insitu precision is greater

than 6nm.
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4. Summary and Conclusions

This document provides a framework for the economic analysis of metrology tools in

semiconductor manufacturing. Several qualitative and quantitative models were

presented in this document in order to study the elements of revenue and cost in

semiconductor manufacturing due to different metrology tools and practices. The

differences between insitu, inline and offline metrology systems were emphasized. The

proposed models should be modified and adjusted to address the practical issues in an

industrial environment.

A framework was suggested for the steady state case based on a continuous time Markov

Chain model. Based on this framework, two analytical models were developed. The first

model emphasizes the revenue generated from each system. This model mostly reflects

marketing value. The revenue model was extended to include the revenue loss due to the

delayed time-to-yield in ramp up phases. On the other hand, the second model focuses on

system costs. The cost model estimates the expenses of the manufacturing system to

satisfy certain demands for a long period of time. These analytical models present the

important factors that affect the performance of the system and depict the relationship

among these factors.

To study more complex systems, Monte Carlo simulation models were generated. These

models were used to study each system under different scenarios. Two metrics, "revenue

per wafef and "revenue per day" were introduced to measure the quality of the wafers

and the total revenue. Total revenue, in turn, captures the effect of many factors such as

the quality of products, the production rate and the market behavior. Different price and

yield structures were implemented in these scenarios. Many complexities were
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introduced to these systems, the results were analyzed, and appropriate recommendations

were made.

All of these models confirmed the importance of selecting appropriate metrology tools

and methods. The revenue and the cost of these systems are very sensitive to metrology

tool specifications, metrology structure and even the control policies. In most situations,

especially when the process is newly introduced and the failure rate is high, the insitu

metrology outperforms the inline and offline methods.

To make the decision to migrate from offline to inline and insitu, many factors should be

taken into account. The expenses of purchasing, installing and long-term maintenance

costs along with the footprint, labor and material costs should be considered. The quality

of products and the revenue associated with each technique should be studied. Both the

market situation and the control policy play important roles in the decision-making

process. Insitu and inline metrology provide better response times than offline metrology,

and are very useful especially in ramp-up phases. However, the quality of information

extracted from these methods should be comparable with the offline methods. Future

technologies will reduce this gap and it is expected that insitu metrology will become the

main trend in semiconductor industry.

There are not that many publications about the economic aspects of metrology tools in

semiconductor manufacturing. More studies should be conducted to capture the effect of

different factors on metrology tools in different environments. The analytical models

presented in this document should be further enhanced to address more practical issues.

The accuracy and the sensitivity of these models should be assessed in industrial

environments and adjustments should be made accordingly. Hybrid methods, with the
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combination of inline, insitu and offline should be studied. One approach may be to

emphasize inline information with tight specifications during the introduction of a

process and gradually change the emphasis to offline as the process matures. In general,

effective and efficient algorithms should be developed for data acquisition and control of

metrology systems.
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5. Appendix A. Notations

a- Type I error, the probability of rejecting a process (or product) while the process is in

control.

P = Type n error; the probability of accepting the process (or product) while the process

is out of control.

y= Continuous discount factor calibrating the declining price, whereby the revenue per

waferon dayt is given by R{t) = RqC'̂ .

ACTM = Average Cycle Time to Metrology; is the expected elapsed time of a product

from the main process to the metrology tool (expressed in hours).

Cei = Amortized purchase and installation cost plus annual maintenance cost per machine

of equipment type i (expressed in dollars per year).

D - Designed die output capacity at mature yield (expressed in units per month).

Dr = Designed die output capacity at the Ramp-up phase (expressed in units per month)

Lei = The portion of labor cost (wages, salaries, benefits) that is proportional to the

number of machines of equipment type i (expressed in dollars per year).

Lf = fixed labor cost, i.e. the portion of labor cost that is independent of wafer start

volume and the installed equipment (expressed in dollars per year).

Lw = The portion of labor cost that is proportional to the number of wafers started, per

wafer start (expressed in dollars per year).

Lwr = The portion of labor cost that is proportional to the number of wafers reworked at

machines of equipment type /, per wafer reworked (expressed in dollars per year).
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MTBF = Mean Time Between Failure; is the average time between two consequent

failures of a process(expressed in hours).

MTTR = Mean Time To Return; is the expected repair time when the process has failed

(expressed in hours).

Mw = Material cost, assumed to be proportional to the number of wafers started, per

wafer start (expressed in dollars per year).

Mwr = Material cost (such as mask expenses, coating and developing consumables,...)

assumed to be proportional to the number of wafers reworked at machines of equipment

type /, per wafer reworked(expressed in dollars per year).

Ni = Number of machines of type i that are installed in the factory.

OEEi = Overall equipment efficiency of equipment type f, before considering the losses

due to characteristics under study and the metrology tool control policy; assumed to be

constant over the factory operating life.

OEE*= Overall equipment efficiency ofequipment type i, after considering all the losses

(including losses due to metrology tool control policy); assumed to be constant over the

factory operating life.

Po = Long term probability that the process will be in In-Control state in the mature

phase.

For = Long term probability that the process will be in In-Control state in development

and ramp up phase.

Pi = Long term probability that the process will be in Out-of-Control state in the mature

phase.
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PjR = Long term probability that the process will be in Out-of-Control state in

development and ramp-up phase.

Ro= Sales revenue on the first day per 100%-yielding wafer (expressed in dollars)

Sci = Occupancy cost plus amortized capital cost for factory facilities and infrastructure

per machine of equipment type i (expressed in dollars per year). This is the portion of

total facility and infrastructure cost that is proportional to the floor space allocated per

machine of equipment type i.

Sw = The portion of total facility and infrastructure cost that is proportional to the number

of wafers started, per wafer started (expressed in dollars per year).

Swr= The portion of total facility, energy and infrastructure cost that is proportional to

the number of wafers reworked at machines of equipment type i, per wafer reworked

(expressed in dollars per year).

Sf = Fixed space cost, i.e. the portion of total facility and infrastructure cost that is

independent of wafer volume and installedequipment (expressed in dollars per year) .

ThPTi = Total theoretical process time per wafer (expressed in hours) on equipment type

/, considering all process steps performed by that equipment.

Yp = Mature die yield. The fab produces W=D/Yp per month in each month of operation.

(A month is defined as one-twelfth of a year that includes 360 working days, each with

24 working hours.)
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